94,657 research outputs found

    Event-B Patterns for Specifying Fault-Tolerance in Multi-Agent Interaction

    No full text
    Interaction in a multi-agent system is susceptible to failure. A rigorous development of a multi-agent system must include the treatment of fault-tolerance of agent interactions for the agents to be able to continue to function independently. Patterns can be used to capture fault-tolerance techniques. A set of modelling patterns is presented that specify fault-tolerance in Event-B specifications of multi-agent interactions. The purpose of these patterns is to capture common modelling structures for distributed agent interaction in a form that is re-usable on other related developments. The patterns have been applied to a case study of the contract net interaction protocol

    Machine learning techniques for fault isolation and sensor placement

    Get PDF
    Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance

    Critical fault patterns determination in fault-tolerant computer systems

    Get PDF
    The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics

    A method for rigorous development of fault-tolerant systems

    Get PDF
    PhD ThesisWith the rapid development of information systems and our increasing dependency on computer-based systems, ensuring their dependability becomes one the most important concerns during system development. This is especially true for the mission and safety critical systems on which we rely not to put signi cant resources and lives at risk. Development of critical systems traditionally involves formal modelling as a fault prevention mechanism. At the same time, systems typically support fault tolerance mechanisms to mitigate runtime errors. However, fault tolerance modelling and, in particular, rigorous de nitions of fault tolerance requirements, fault assumptions and system recovery have not been given enough attention during formal system development. The main contribution of this research is in developing a method for top-down formal design of fault tolerant systems. The re nement-based method provides modelling guidelines presented in the following form: a set of modelling principles for systematic modelling of fault tolerance, a fault tolerance re nement strategy, and a library of generic modelling patterns assisting in disciplined integration of error detection and error recovery steps into models. The method supports separation of normal and fault tolerant system behaviour during modelling. It provides an environment for explicit modelling of fault tolerance and modal aspects of system behaviour which ensure rigour of the proposed development process. The method is supported by tools that are smoothly integrated into an industry-strength development environment. The proposed method is demonstrated on two case studies. In particular, the evaluation is carried out using a medium-scale industrial case study from the aerospace domain. The method is shown to provide support for explicit modelling of fault tolerance, to reduce the development e orts during modelling, to support reuse of fault tolerance modelling, and to facilitate adoption of formal methods.DEPLOY: The TrAmS Grant: The School of Computing Science, Newcastle University

    On quantifying fault patterns of the mesh interconnect networks

    Get PDF
    One of the key issues in the design of Multiprocessors System-on-Chip (MP-SoCs), multicomputers, and peerto- peer networks is the development of an efficient communication network to provide high throughput and low latency and its ability to survive beyond the failure of individual components. Generally, the faulty components may be coalesced into fault regions, which are classified into convex and concave shapes. In this paper, we propose a mathematical solution for counting the number of common fault patterns in a 2-D mesh interconnect network including both convex (|-shape, | |-shape, ý-shape) and concave (L-shape, Ushape, T-shape, +-shape, H-shape) regions. The results presented in this paper which have been validated through simulation experiments can play a key role when studying, particularly, the performance analysis of fault-tolerant routing algorithms and measure of a network fault-tolerance expressed as the probability of a disconnection

    Interacting Components

    Get PDF
    SystemCSP is a graphical modeling language based on both CSP and concepts of component-based software development. The component framework of SystemCSP enables specification of both interaction scenarios and relative execution ordering among components. Specification and implementation of interaction among participating components is formalized via the notion of interaction contract. The used approach enables incremental design of execution diagrams by adding restrictions in different interaction diagrams throughout the process of system design. In this way all different diagrams are related into a single formally verifiable system. The concept of reusable formally verifiable interaction contracts is illustrated by designing set of design patterns for typical fault tolerance interaction scenarios

    Fault detection and diagnosis technique for a SRM drive based on a multilevel converter using a machine learning approach

    Get PDF
    Trabalho apresentado em 12th International Conference on Renewable Energy Research and Applications (ICRERA 2023), 29 augusto-1 setembro 2023, Oshawa, CanadaSRM drives based on multilevel converters is now a solution well accepted due to their interesting features like extended voltage range and capability to fault tolerance. However, one aspect that is fundamental to ensure fault tolerance or preventive maintenance is the fault detection and diagnosis of failures in power semiconductors. In this way, in this paper it is presented a new diagnostic method for the failure of those semiconductors in asymmetric neutral point clamped converters. The proposed method will be based on the development of specific patterns that are associated to each semiconductor and fault type. The procedures presented here are based on the image identification of the currents patterns in the multilevel converter that allow the identification of distinct fault type. The pattern recognition system uses visual-based efficient invariants features for continuous monitoring of multilevel converter The proposed method will be verified through several tests in which were used a simulation tool and an experimental prototype.N/
    corecore