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ABSTRACT

Digital systems that use redundancy to achieve high reliability -are
designed so that <they recover from most failures. The problem of
accurate evaluation of the failure tolerance of any particular redundant
system is quite difficult. The methods based on general analytical
modeling  techniques suffer from the need to make simplifying
assumptions. Thus, the confidence that can be granted to their results
is low. Some techniques use fault-simulation and try to estimate the
size of the failure population that causes system crash by simulating a
random  sample of failures. However, ulira-reliable systems will
tolerate most of the failures, so, very many faults need to be simulated
to reach an acceptable level of confidence. The method proposed here
tries to enumerate all the ecritiecal fault-patterns (successive
occurrences of failures) without analyzing every single possible fault.
From the system description, one can find all the outpui devices that
allow the system to communicate with the outside world. From the
description of these output devices, one can find the conditions that
must be satisfied for the system to be operating correctly. Also, one
can enumerate all the possible operating modes according to their
criticality (hagh, low, or no tolerance to subsequent faiiures) and list
the corresponding conditions. Most highly redundant systems are
provided with capabilities 1o disable some part of the system or , at
least, to ignore data coming from them. These constitute switches and
they conbrol the system configuration. At any point in time, the list
of the faulty units and the actual system configuration giye the static

state of the system. The conditions for the system to be operating in a
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given mode can be expressed in term of the static states. Thus, one can
find all the sysbtem states that correspond to & given critical mode of
operation. The next step consists in analyzing the fault-detection
mechanisms, the diagnosis algorithm and the process of switch control.
From them, one can find all the possible system configurations that can
result from =a failure occurrence. Thus, one can 1list all the
characteristies , with respect to detection, diagnosis, and switch
control, +that failures must have to constitute critical fault-patterns.
Such an enumeration of the ecritical fault-patterns can be directly used
to evaluate the overall system tolerance to failures. Present research
is focused on how to efficiently make use of these system-~level
characteristics to enumerate all the failures, defined at the gate level

(for example line i stuck-at-one), that verify these characteristics.



I. CRITICAL FAILURES AND REDUNDANT SYSTEMS

The purpose of using massive redundancy in computer systems \is to
protect them from the effects of internal failures. When several
conputers perform the same computations in tight synehronism, it is
possible to detect the oceurrence of a computer failure by comparing the
computer outputs. The -faulty computer is then switched off and it is
said that the system has recovered from the Tfailure. As first
approximation, one can say that system failure, also referred to as
aystem crash, occurs only when there are not enough fault-free computers
left to allow a meaningful comparison. Tor example, Triple Modular
Redundant systems (also called TMR systems) [von Neumann; 1956], Fig.
1, fail upon the second failure occurrence: the majority voter will not

produce the correct output when two of iis inputs are faulty.

But even for systems as simple as TMR systems, the actual system
behavior in presence of failures is far more complex. Some of the
failures that affect the voter, (ef. Fig. 1) cause a system crash; for
example, a stuck-at-one failure in the OR gate (line a7, ags ag, or 249
stuck-at-one). Also some double failures will be tolerated. For
example, if the output of computer 1 (line y1) is stuck-at-zero while
the output of computer 2 (line y2) is stuck-at-one, the system will
still operate correctly since the faulty logic one on line Yo
compensates for the faulty logic zero on line 3,r,i in the voting process.
This phenomenon is known as compensating failures. It was shown in
[Siewiorek; 1971] that many double failures are compensating failures
and that the zctual reliability performance of TMR systems is far better

.

than what is estimated when compensating failures are ignored.
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For the simple system of Fig. 1 , one can enumerafte all single and
double failures from which the system does not recover. The uncoverable
single and double failures are respectively.the most and. the second most
critical failures. For example, the set of uncoverable single failures
is:
{line aq s-a-1, line ag s-a-1, line ag s-a-1, line 440 s-a~1}.

The set of uncoverable double failures is quite large, even for such a
simple example. Some simplifications can be obtained if one uses the
various relations that exist between Tfailures, for example fault

equivalence and fault dominance [Boute; 1972].

Most actual systems, however, are far more complex than the
oversimplified example of Fig. 1. Pure enumeration of all the faults
and their classification according to their respective criticality is a
prohibitive task. In most redundant systems, the problem of finding the
critical failures is further complicated by the fact that each computer
has some internal fault-detection mechanisms {self-test programs, parity
verification, watehdog timers,...) and some way to disable itself when a
fault-detection mechanism gives some error indication. The ability for
a computer to detect some of its failures withoui requiring comparison
between several computers greatly improves the overall system
reliability but also greatly complicates the system analysis. For each
fault one needs to consider the state of the faulty computer (whether
the fault was locally detected, correctly diagnosed and the proper
reconfiguration steps taken) and alss the global state of the system
{the decision taken by the fault-free computers and their agreement with

the state of the faulty computer).



II. DESCRIPTION OF THE AIRBORNE ADVANCED RECONFIGURABLE COMPUTER SYSTEM

II.1 Intreduction

The Airborne MAdvanced BReconfigurable Computer System ~the ARCS-~
[Bjurman; 19761 is an integrated navigation/guidance/flight control
system for commercial aircrafts. The system is a
Triplex-to-Duplex-to-Simplex fault-tolerant computing system with the
capability to be expanded to a Quadruplex-to-Triplex-to-Duplex-to-

Simplex mode of operation. Fig. 2 shows a block diagram of the ARCS.

11.2 Channel Description

A channel in the ARCS terminology refers to a computer with its
associated sensor and servo equipment. A channel contains all the
electronics and the mechanical component to fully implement all the
navigation, guidance and flight control operations. Thus, a single
channel can fly the aircraft. The ARCS contains three channels (four in

the expanded version).
11.2.1 Channel Components
The components within each channel are: sensors and mode controls,

computer wunit, iterative timer and watchdog monitor, servo electronies,

servo menitor, and switch and servo actuator.
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I1.2.%.1 Sensors and Mode Control

These are inputs to the computer unit. The sensors provide data for
flight control of the aircraft and the mode controls are instructions

given by the pilot to the systen.
IT.2.1.2 Computer Unit

The computer unit is the major element of a channel. It is =a
microprogrammed general purpose 16 bit computer. The instruction set
provides for real-time control applications. It has built-in test and
self-monitoring features for detecting arithmestic errors, memory and bus
errors (by parity checks), and input/output hardware faults (by
self-test loops). The major function is the control of the flight of
the aircraft, The computer is designed with cross-chanel communication
inferfaces to implement data links between channels. The use of optical
coupling removes the potential dangers associated with electrical

coupling. '

11.2.1.3 Iteration Timing Reference and Watchdog Monitor

These are devices independent of the computer unit. Under normal
operation, the computers operate in frame synchronous mode where certzin
computations are performed within a fixed time frame. The end of a time
frame 1s marked by an interrupt from the iteration timing reference.
When more than one computer unit are in operaﬁion, the synchronization
indicator signals generated by each unit in response to the interrupt

are exsmined by other units in other channels. VWhen all syneronization



indicators are set 2all channels will synchronize.,K Thus begins a new

time frame.

The watchdog monitor checks the synchronization signal of the computer
unit to determine if it is set and reset within acceptable upper and
lower time limits., If not, the monitor will cause the associated servos

to be disengaged and the computer unit marked as faulty.

The iterative timing reference also serves the purposes of interrupting
the ccmputer unit at regular intervals after power-on or any transient
fault condition to attempt recovery and of synchronizing with the other

wits.

IT.2.1.4 Servo Electronics

The servo electroniecs interface the computer with the serve actuator.
In each actuator, the electronics are duplicated and two inputs are
required to operate them. This provides the means for electric current
comparison (between the servo electonics outputs) for the purpose of

self-monitoring.

11.2.1.5 Servo Monitor and Switch

The servo monitor controls the engage/shut off switch between the servo
electronics and the actuator. When a failure is detected by comparison
of the output current of the dual servo electronics, or when a signal is
received from the watchdog monitor or the computer itself; the servo

monitor commands the servo switch to shut off the “servo.



I1.2.1.6 Servo Actuator

The servo actuators are the mechanical/hydraulic oubtput devices of the
channels. They produce hydraulic pressures that are used in the force

voting devices that position the aircraft flaps.
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11.3 Detection, Diagnosis and Recovery Description

The fauli<tolerance objective in the design of ARCS is {o provide a
system coverage of unity for any first-failure condition in a triplex
configuration. Further, a second-failure module coverage of 0.95 or
better and a simplex failure-detection probability of 0.90 are design

goals for the computer and interfaces modules.

Reconfiguration is the process of attempting to tolerate a fault. it
consists of the sub-process of fault detection, fault localigzation,
fault isolation, recovery and redundancy degradation. Fig. 3 shows
which sub-processes are initiated in response to particular faults, and
Fig. 4 gives a description of the ARCS channels that is based upon the

detection, diagnosis and reconfiguration processes.

II.3.1 Reconfigurdtion for sensor failures

Faults that occur in the sensors are monitored by the sensor Signal
Selection and Fault Detection {SSFD) algorithm. Sensors are afflicted
with a number of error characteristics: bias error, scale factor
tolerance, dynamic response tolrance and noise. In ARCS, compensation

of these error characteristics is part of the SSFD process.

For continucus (non-discrete) signals, comparison between the current
compensated input data and the avenage.of the input values from the
previous iteration is used %to monitor for dynamic faults (rapidly

deviating raw signal inputs). Calculations of the bias error for the
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next iteration provide a means.of monitoring statie faults. When the
bias error reaches a predetermined level, fault is declared. Redundant
sensor data {from different channels) are then averaged, and further
fault detection is done by comparing these data. For discrete signals,
time skews are resolved in the SSFD algorithm. Consistent disagreement

of input from one channel with others indicates a fault.

The SSFD algorithm thus consolidates redundant sensor data and provides
identical data for zll computer units. Further computations operate on
identical data, and any discrepency between channels in later stages

i

indicates a fault condition.

Fault isolation is effected by raising do-not~use flags against faulted
sensors on a per-channel basis., If the fault is transient, the input
will become acceptable after a time delay and the flag will be removed.
If it persists, a permanent fault flag is raised, disconnecting this
input from the computations. These are the recovery and redundancy
degradation processes for sensor faults, which are part of the SSFD

algorithm within the Redundancy Mahagement process.
I1.3.2 Reconfiguration for computer failures

IT.3.2.1 Qutput Monitor

The output monitor is a software process that compares. the computed.

outputs of a processor with the computed, cross-channel transferred

-

outputs of the other processors. An output monitor flag is set for the

affected output 1f the ccmparison deoes not agree within the monitoring

12°
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threshold. In such a case, each channel determines 1if 1itself c¢an be
faulty. A single disgreement in a triplex or _quadruplex mode of
operation can be determined immediately.  Otherwise, each channel checks
the fault status table for related faults. If such a fault 1s
registered, the asscciated servo is disengaged and recovery is attempted
using data from‘ a fault-free chénnel. If the fault persists, the
predetermined upper 1limit on the number of output monitor trips will be
exceeded and the fauli will be declared permanent.

If no related fault is registered nin the fault status table of a
channel, the routine to check for a persistent fault in other channels
is still performed. Thus, permanent failures of the tTotal system are

determined independently by each channel.
J1.3.2.2 Watchdog Monitor

The Watghdog Monitor is an independent (in term of hardware, from the
procaessor) fail-safe monitor of the real-time operation of each
computer, A computer fault condition will be indicated if the
synchronization indicator from the computer arrives outside a specified
time interval. If, in a following time frame, the synchronization
indicator falls back in the specified time interval, the fault
indieation will be cleared. When the watchdog monitor trips, it sends a

command to the servo monitors to disengage the servos.

Timer interrupts occur when the time counts that define frames reach

Zero. This initiates the synchronization process for a new frame. The



local synchronization indicator is set and the 1local computer checks
other computers to determine if thelr synchronization indicators are
set. When all indiecators are set, all channels clear their local
synchronization indicator and they are thus synchronized. Cross—-channel
communication of the synchronization indicators is made through

dedicated hardware links.

I11.3.2.3 Additional Testing of the Computer

In addition to these first-level monitors, the computers are provided
with hardware parity error detection for the Random Access Memory (RAM)
and arithmetic error detection for the processor. These interrupt the
processor when any error condiiion is detected. Furthermore, software
implemented self-test functions operate in the background mode, that is,
the self-test routines are executed whenever the processor is done with
all the computations allocated to the current time frame and there is
time remaining before the commencement of the next frame. The
self-tests include checking of all the instruction of the processor, the

integrity of the memory and the input/output ports.

Any fault detected 1s entered into the system fault status table, which
is used by the redundancy management softwarse for reconfiguration and

maintenance routines to update failure records.-

14
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TFTL.3.3 Reconfiguration of serve failures
I1.3.3.1 Servo Self-Monitor

The behavior of the servo self-monitor was briefly described in a
previous section. It compares the two output currents produced by the
dual servo electronics and performs the difference. If this exceeds a
predetermined threshold, a command is sent to the serve switch to
disengage the servo. The servo self-monitor also looks at the actuator
to determine whether it 1is engaged or shut off and signals the
processor. The servo self-monitor receives signals from the watchdog

monitor and the computer and disengages the servo accordingly.
I1.3.3.2 Cross~Channel Servo Monitor

The cross—-channel servo monitor is a software process that compareé the
the sum of the co0il currents for corresponding servos in the three
channels. Because the servo are close-lcoop control systems (they are
fed back the difference between the actual flap position and the desired
position), the cross-channel servo monitors can detect inconsistencies
of the force applied by actuator. If a disagreement is noted and the
output monitor is not ¢tripped, a servo fault is indicated and the

affected servo is disengaged.
IT1.3.4 Reconfiguration for Power Failures

The power monitor's praimary purpose is to indicate a power-on condition.

Once a power-on condition is indieated, the channel initiates a recovery



process. This is the same recovery process as is generated after a

transient fault has disappeared.

Durifng a initial startup {power-on interrupt) the local channel sets its
synchronization indicator. It then waits for 1.1 frame times and tests
if other channels are operating. If there are no other activities, the
local channel configures itself To operate in the simplex mode. Ir
another channel 1s operating, the local channel will synchronize with
it. As all state variable data required for recovery are transmitted
across the channels during every frame by the operating channels, the

new channel may now copy this data and start processing.

16
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II1.4 Groung Test Mode of Operation

Extensive tests of the overall ARCS are performed - in the ground test
mode. The computer units are tested by a self-test of all intructions,
2ll registers and all addressing modes. The ROM and REM are checked.
The hardware monitor are tested to insure that they are capable of
detecting and enunciating existence of fault conditions. The analog and
digital input/output ports are tested by wrap-around testing. Sensors
are tested utilizing built-in fault-detection mechanisms, self-tests and
operator simulated tests. Servo testing requires synchronization of the
redundant channels and 1includes tests for synchronization, engagement

control testing, dynamic response tests and force override tests.
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ITI. SYSTEM STATES AND THEIR CRITICALITY

I17.1 Introduction

This section describes a method that makes it possible to enumerate all
the dangerous states in whieh the system can be. A very general
description of the method will be given and ARCS will be used as an
example. The first part introduces notations that are needed to be able
to represent the static state of the system at any point in time. The
second part locks at the various degreeé of criticality the system can

be in. The last part gives a method to enumerate all the system states

with a given degree of criticality.

IIT.2 Notations

III.2.1 Partition of the channels into units
I¥T.2.1.1 Switches

Each channel is composed of a c¢ollection of hardware and software
components. Among these components, there are some are switches. When
they are commanded, they disable some of the channel components (for
example the servo switches). Some other ‘components ' have similar
effects: they allow the channel to ignore data coming from some of its

components or from cther channels. As a example 1in ARCS, one can
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mention the "do-not-use" flags that control whether or not sensor
outputs will be ignored, and also the fault-status table that indicates
whether or not a channel trusts the other channels. A1l these
components (whether hardware 1like the servo switches or software like
the "do-not-use" flags or the fault-sztatus table) will be referred to as
switches. In ARCS, one can list as switches the trios of "do-not-use"
flags,the couples of "disregard-channel® flags in the local fault status
table, the servo switches and possibly, depending upon the exact
software specification of the system, a computer flag that will order
the computer to discontinue to send any further commands to the servo

electronics (Fig. 5).

IT1.2.1.2 Units

These switches induce a partition of the channels into units. A unit is
a set of components upon which all the switches have the same action.
For example, a sensor and its interface constitute a unit, for the loss
of either one implies the loss of both and the "do-not-use" flag will
logically disconnect both out of the channel. The partition of a
channel into uniits is not dictated by strict rules and the user has much
liberty. One partition that can be given for the channels of ARCS is
shown in Fig. 6 . However, one should note that, because each channel
has access to other channel data by the c¢ross-channel communication
link, one should consider the computer and sensors of both channel A and
channel € as units of channel B. A failure in computer & will cause
computer B to disregard data coming from computer A or from its sensors.
But a failure in one of the sensors of channel A will only disconnect

.

that sensor.
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The wnits in one channel will be numbered from 1 to n. Switches are
considered as units and are numbered from 1 to k. Beecause of the

symmetry between channels, all channels in ARCS have the same partition.
I111.2.2 Failure Configuration Vectors

When a fajilure occurs in a unit, the unit behavior becomes potentially

incorrect. At any point in time, we can represent the state of an unit
(whether or not that unit has suffered a permanent failure) by a binary
L)
- ->

—
variable. Let the three vectors AF’ BF and CF represent the state of

the units in channels A, B and C respectively:

{4

AF = <Af1’ Afz’ ey Afn> with Afi =0 if upit 1 of channel 4 is
fault-free,
with Afi = 1 if unit i of channel A is
faulty,
BF = <Bf1’ Bf2’ see Bfn>
and
CF = <Cf1’ Cf2’ ey Cfn>'

-

The vectors Aﬁ’ BF and CF will be called the failure configuration
vector for channel A, B and C respectively. If the state of a unit is
irrelevant, an x is put for its state variable. The complete system
failure configuration will be represented by F:

-

= <F >

aF: 8Fr ¢

it
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IT1.2.3 Channel Configuration Vectors

Following failure occurrences, each channel takes appropriate action by
commanding some switches to turn off. The units that are disabled -(or
disregarded) by the switch actions are said to be reconfigured out of
- =

BR and CR indicate whether

or not units are configured out of channel A, B and C respectively:

the channel. The configuration vectors, Aﬁ’

-

AR = (AP1, Ar2’ . Arn> with ATy = 0 if unit i of channel A is
not configured out of channel A,
with afs = 1 if unit i of channel A 1s

configured out of channel A,

BY = <plqs pFor -+ 1 gy

and

=)

= <cPyr 20 <o+ 0 ¢'n

(]
1

Similarly to the failure configuration vectors, a entry of x means that
the state (configured in or out) is either one. The complefe system
configuration will be represented by K:

R =< ﬁ, E,

A R>.

C

I17.2.4 Channel znd System States

Both the failure configuraticn vectors and the channel configuration
vectors give a static picture of the system at any point in time. The

failure configuration vectors indicate which uvnits are faulty while the



configuration vectors point to the unifs that are reconfigured out of
the channels at that time. One should note that it 1is conceptually
possible for one unit, for example a computer, to be reconfigured out of
one channel but still kept active in another channel. For example, when

a system operates in a ftriplex mode, a computer failure may not be

24

detected-by the computer ¥tself - or the computer will ignore the-

failure indications in provenance of the fault-detection mechanisms -

while the other two channels will note the disagreement.

The static state of a channel can be defined as the couple Fformed of the
failure configuration and the channel configuration vectors for that

particular channel:

492 < F, A§> = Static State of channel A
pf= <BI?’, B'§> = Static State of channel B
9= <C§", C§’> = Static State of Channel C.

The system state 1s the collection of all three channel states:

Q = <A9, BQ, CQ> = Static State of the system.

I11.2.5 Channel Validity Equations

Because the correct functioning of every single unit in a channel 1s not
reguired for the channel to produce the correct pressures on the voters,
there 1s a boclean expression, V, that relates the correctness of the
channel commands to ouiput mechanisms (actuators, displays,...) to the

state of the channel units. This expression, V, involves as variables
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both the failure state of the units , exeluding the output uniits, and
the configuration state (whether or not the unit is still configured in
the channel)}. For unit i of any channel (channel A for example},
Af‘l is 1 when the unit is faulty and aFs is 1 when the wunit is
configured out of the channel. So, in the actual system configuration,
unit i correctly performs its function if and only if both

Afi and Ar

are 0. S0, the valadity expression, V, can be expressed as a function

i

of the AND of vectors A? and Aﬁ:

-

R> produces

L]
P
[
w3}
"
"

1 implies that channel A in state <A?’ A

correct commands to all the output devices,

0 implies that channel A in state < F, R®> does not

A

produce correct commands to the output devices.

The validity expression does not indicate whether the actual ouiputs are
correct. A fauity ouiput mnmechanism, like an actuator, can yield
incorrect pressures even 1if the channel 1is correct. The validity
expression is important because the computers control several output
devices and a failure in c¢ne output device does not influence the

correctness of other output devices.

The expression V can be easily obtained from the system description., It
directly expresses the redundancy that a channel can take advantage of

to carry its computations.



II1I.3 State Criticality and Associated Conditions

Failures can be globally considered as transitions between static system
states. So, the criticality of failures is ddirectly related to the

notion of system state criticality.
III.3.1 Voter Behavicor and its Influence on State Criticality

Corresponding actuators in the three channels produce pressures which
are force-voted by mechanical voters which position the airecraft flaps.
When one of the three pressures is incorrect, the mechanical voter is
presented with contradictory forces. The resulting flap position
depends upon the ©behavior of the voter in such a situation. For the
completeness of any analysis related to system crash, one must examine

carefully how the mechanical voter behaves in such conditions.

I11.3.1.1 Correct Flap Positioning with one Faulty Actuator

The mechanical voters are devices which translate a set of three inpui
pressures, Pg, Dy p3, into a flap position. The actual motion of the
flap between its initial position and the desired position indicated by
the pressures 1is subject to a differential equation. The fipal flap
position (if there is a steady state solutioﬁ) depends upoﬁ the three
pressures Py, D, p3. A detailed study of the mechanical voter behavior
is required to check if the actual final position of the flap is within
tolerance when one of the three pressures, lel assume Py differs from

the others. Such a analysis of the voter will likely give a range of
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values for p1, as a function of P, and p3, where the final flap position
is within tolerance. Only if this range covers the complete range of
values for Pyy and.th;s for all possible values of P, and p3, will the
voter always adeguately compensate for a faulty pressure {compensation
in the sense that the flap position is within tolerance). However, the
flap motion is subject to a differential equation, so it 1is still
possible that the flap will reach its final position with large
oscillations that may damage the aircraft. S0, Iin addition to an
analysis of the static behavior of the voter, one also must analyse the
dynamic behavior of the flap motion as a function of the three input

pressures , Py Py p3.

The complete analysis of the flap motion (including the static behavior
of the voter when one input pressure disagrees with the other two and
the corresponding motion of the flap) will yield operating ranges where
the system operates correctly with two fault-free pr;ssures and a faulty

one. These ranges will be called the adequate compensation ranges.

Only if the adequate compensation ranges cover all the possible
cperating ranges with one faulty pressure, will the operating mode - two
fault-free pressures, one faulty one -~ corresponds to a fauvlt-free mode
of operation for the system. If it is possible that a faulty actuator
which is nct disengaged causes potential dangers to the airecraft, for
example flap positionings that are slightﬂy off or aircraift vibrations
and oscillations, the operating mode with one faulty pressure at a voter

input will be called a dangerous mode of operation.
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IT¥.3.1.2 Modes of Operation Dictated by the Output Mechanisms

The description of the mechanical behavior of the actuators and voters
is not very detailed in the ARCS report. However, it is conceivable
that several other modes of operation with various degrees of
criticality can be defined for the set voter~flazp. In general, one can
say that the output devices will dictate a partition of the operating
modes into several classes with different degrees of eriticality. For

ARCS, a simple analysis gives the following modes of operation:

~ All three pressures at the voter inputs agree: the voter is not

submitted to undue stresses,

- Two input pressures agree, the third one 1is in disagreement: the
voter may or may not compsnsate adequately depending upon the value

of the incorrect pressure,

~ Twe input pressures agree, the third actuator is shut-off; the flap

position will be correctily controlled by the two agreeing pressures,

~ Only one pressure 15 fed to the voter: the flap position is

controlled by that pressure,

- Two pressures are applied to the voter but they disagres: the flap
position will depend upon the relation .between the disagreeing

pressures,

- No pressure is applied: the flap does not move.
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111.3.2 Modes of Operations and Their Degree of Criticality

The modes of operation dictated by the behavior of the output mechanisms
need to be extended o take into account., the correctness of the
pressures each channel produces. For exesmple, if the voter receives
three pressures that agree, it does not necessarily mean that they are
the correct pressures. For a system such as ARCS, one can enumerate the

various modes of operation:

- EBach mechanical voter (one per flap) receives three identical
pressures that are the correct ones: all the flaps will be correctly

moved, the system is fault-free.

- Each mechanical voter 'receives at least two correct, identical
pressures but none receives a third pressure that disagrees with the
other twe. At least two actuators for each voter produce the correct
pressure and the third one either also produces the correct pressure
or is disengaged, thus the system 1s fault-free (all the flaps moved
correctly) and there is no potential danger (no flap oscillations nor

slightly-off positioning),

- One of the mechaniecal voters receives only one pressure, the correct
one, while all the other voters receive either two or three correct
pressures but no i1ncorrect pressures. The system is ' still
fault-free; all the flaps are correctly positioned but the tolerance

to further feilures is low.

- At least one voter receives two correct and one incorrect pressure

and all the other voters receive only correct pressures, either one
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two or three. If the discrepency between the pressures is not too
large, (if the voter adequately compensates for it), then the system
is still operating correctly. However, this mode of operation is
quite dangerous sinece an Increase in the discrepency may produce
osgcillations or slighly incorrect positioning. Such a mode of

operation will be called dangerous and warrants special study.

— The system has failed (not able any longer to position correctly the
flaps) but was able to signal the fact to the pilot before issuing
any wrong commands to the servos. This is a safe failure; the system

has suffered a fail-safe crash.

- The system has failed but was net able to signal the fact to the
pilot. Thus, the system is still in control of the aircraft but
sends wrong positioning commands to the flaps. This is the worst

mode of operation.

These modes of operation are listed in increasing order of criticality.
In general, for any system, one can list all the operating modes and
order them by increasing critiecality. We will assume, in the following,
that the system has d modes of operation, ordered from 1 to d by
increasing criti.cality. One should note that the notion of modes of
operation carries far more meaning that the simpler notion of
fault-free/failed dichotomy. A failure pattern (successive occurrences
of different failures) may take the system from a fault-free state to a
failed state, but each individual failure in the pattern will correspond
to a transition between different operating modes, in general from a

mode with a given criticality to another mode with a higher criticality.



31

I1I.3.3 Conditions Associated with Operating Modes

For the system to be in a given mode of operation, it must satisfy some
conditions. These conditions express the requirements on the system
state in terms of failure and channel configurations. For example, f{or

the dangerous mode of operation one has the following .conditions:

For at least one actuator trio, trio U, two channels produce the

correct pressure while the third one gives an incorrect pressure
(actuator still engaged): This can be expressed in terms of the

state variables as follous:

— -
([V(AF.AR) SRAE A"u)= 0
o Servo u of channel A produces
( V(F..R) . f . or =1 .
B"°B B'u " Bu incorrect pressures.
- -
( V(F.oR) - of, - Cru)= 1
or( V{ f.vﬁ) £ . .r ): 1
ACA Au " Au Servo u of channél B produces
([V(BF BR)-' Bfu] * Bru)z 0 incorrect pressures.
( V(F.cR) . o - Cr‘u): 1
op(V(F.ﬁ).f.r):i
A A Au " Au Servo u of chamnnel C produces
V(F..R) . of r )= 1
B 'B "Bu "Bu/” incorrect pressures.
—> >
([V(CF.CR) AL Cru)= 0

For all other actuator trios, there are either one, two or three

correct pressures and no faulty actuator still engaged:
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For every operating mode, one can list all the associated conditions

terms
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The set of conditions for

the operating mode with critieality degree 4 will be referred to as

1.
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It is possible to simplify these conditions by booclean manipulations.
It is also possible to express these conditions in a table form that may

provide a simpler way to represent t{he state of the system. r
ITI.3.4 System States that Correspond to a Given Operating Mode.

As it was shown, it is possible to find a set of conditions that must be
satisfied for the system fto be in a given operating mode. These

conditions are also sufficient.

These boolean conditions provide a mathematical means to find all the
states the system can be 1in for a given operating mode. The system
states are given by {he combination of the F and R vectors that =satisfy

the conditions {Cd}. \

All the system states that satisfy the conditions for a given operating
mode have the criticality of this operating mode. However, it is
possible that soée of these states ecan not actually occur in the
systems. A fault pattern that leads the system from an initial
fault-free state to a <final state characterized by the failure
configuration vectors Fowill allow only certain actions to be taken.
For example, it is not possible that the failure of one actuator in
channel A causes the computer of channel B to be’ declared faulty (as
long as everything else is Ffault-free). So, once all the possible
system states that correspond to a given operating mode are enumerated,
it is necessary to study whether or not they can actually occur in the
system. This will involve 1looking at the detection, diagnosis.and

reconfiguration processes and is the subject of section IV.
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IIT.4 A Method to Enumerate All the System States with Given Criticality

The process for finding all the system states that can correspond to a
given mode of operation, hence to a given criticality degree, can be
automated and implemented as a computer program. Lt follows closely the
steps described in the previous sections (Fig. 7). The advantages of
such an computer implementation are first and foremost that it will
yield a complete enumeration of all the potentially dangerous states,
and secondly, that it allows Tfast system analysis, hence, the

possibility to study the effecis of various system modifications.

IIT.4.1 First Step

The first step of the method is to look at the system under study and to
find a partition into channels. {ne also needs to find all the output
voters. Careful study of these voters {especially when they are
mechanical devices as in ARCS) will tell if, when and with which
confidence voters can compensate for faulty inputs. This will give a
first partition of the system operating modes ( for example, all inputs
in agreement; the majority of the inputs in agreement, all other inputs
disengaged; the majority of inputs in agreement, one input disagrees,

and all remaining inputs are disengaged, ...).
III.4.2 Second Step
The second step consists in looking at each channel and in finding all

the ways a channel can disable/disengage/disregard a piece of logic.

This reguires a study of the systen hardware and of the
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hardware/software process of reconfiguration (to find the software
implemented switches). This will give the set of switches and also a
partition of +the channel into units (partition with respect to the
control of the switces and their action on the system). This step
should also provide the controllability and the controlling matrices
(which units control the switches and which units are disabled by the
switches). This information will be wuseful while looking at the
detection/diagnosis/reconfiguration processes to decide which of the

critieal states can actually occur.

Because of the uvse of redundancy (both internal redundancy inside the
channels and external redundancy such as the use of sensor data from
other channels) one needs to find the conditions that a channel must
satisfy in order that the commands it sends to its ocutput devices be
correct., These conditions can be expressed as a boolean expression,
expression V, that involves the states and configuration (fault-free,

faulty, enabled, disabled) of the system wnits.
II1.4.3 Third Step

The third step consists in listing all the operating modes as functions
of the partition induced by the behavicor of the output voters and the
validity of the chammel outputs. For each mode of operation, it is
necessary to find the corresponding boolsan conditiqns in terms of the

failure vectors, F, the configuration vectors, ﬁ, and the channel

validity expression.
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ITT.4.4 Fourth Step

This last step consists in finding 211 the =solutions (all +the system
states) that satisfy all the conditions for the various operating modes.
A complete enumeration of 211 the solutions may‘require much computation
since it will require looking at every state and checking Vhether or not
it meets the conditidns. Some simplification can be obtained if all the
channels are similar (taking advantage of thg symmetf%es in the
solutions). Also, as We are prinecipally concerned with the analysis of
the system bolerance to the first few failures (i.e. the first, second
and third failures), one c¢an significantly reduce the amount of
computation if we 1limit ourselves to them. This step will yield all the
system states with a given eriticality (the criticality of the operating
mode) and with the additional restriction that only a few units have

suffered failures (first few failures).
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IV. FAULT-PATTERNS AND THEIR CRITICALITY

IV, Introduction

The previous section presented a method to 1ist all the system states
with a given criticality. In this section, we will make the
correspondance -between the critical system states and the fault-patterns
({successive occurrences of failures) that take the system from the
initial fault-free state to these critical states. This will provide a
method %o list all the failure events that can leave t{the system in a
critical, dangercus or failed state without analyzing every single

failure.

The method to go from the static states to the fault-patterns is
illustrated in Fig. 8. First, for each critical state, one has to find
all the combinations of failures that can drive the system in such a
state (obtained from the failure configuration vectors). The order of
occurrences is important since a failure can affect the functioning of a
fault~detection mechanism for a later failure. So, this first step will
give all the possibly eritical fault-patterns that correspond to a given
critical state. Secondly, wWe will look at the detection process and
find all the possible error indications that can produced following a
failure. Then, one needs to conslder the diagnosis process and find
which diagnosis will be produced for a given set of error indications.
The next step is to find which commands are sent to the switches and
what is the final system state. Thus, we will be able to decide

whether, and under which conditions, a failure can leave the system in a
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given state. This process will then be repeated for each of the
individual failures that make up the possibly critical fault~patterns.
Then, we can decide whether a possibly critical fault-pattern can indeed

drive the system intoe a eritical state.

This method will provide the list of all the fault-patterns that Jleave
the system in a critical state. Each individual failure in the pattern
will be characterized by its location (at the unit level), the 1list of
error indications that is produced, the diagnosis that 1s generated and

the actual commands sent to the system switches.

The enumeration of all the eritical fault-patterns is very helpful for
evaluating the séstem tolerance to failures. It will indicate whaich
unit(s) is‘(are) the most eritical and, hence, where additional testing
will be Dbeneficial. It is als® a nescessary step before studying the
detailed hardware description of each unit and enumerating all the
critical hardware failures. :A complete enﬁmeration of all the single
and double {without mentioning triple) failures is a’ prohibitive task.
But the knowledge of the critical fault-patterns and their
characteristics will sustantially reduce the number of actual failures

that need to be analyzed.

IV.2 Definitions and Notations

iv.2.1 Fault-Patterns

A fault-patiern is a succession of failure ocecurrence. The order in

which failures occur can be quite important. For example, 1f we assume
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that ARCS is operating in a simplex mode {only one channel up), an
undetected failure in a sensor followed by a detected failure in the
processor will cause an unsafe system crash. The undetected failure in
the sensor will cause wrong commands to be-issued to .the actuators. On
the other hand, if the computer failure (which is detected) occurs
first, the computer will be able to signal the pilot, hence, this will
be a safe failure. One can represents a fault-pattern that takes the
system from the initial fault-free state to a final state with failure

-

vectors AF’ Bﬁ-and Cﬁ as the series of state transitions:

R>—1t s =-<f' B>—2 5 ...

Each of the individual failure ocecurrence will be denoted by dFj_where i

refers to the rank of the failure in the pattern.

iV.2.2 Detection Mechanisms and Detection Vectors

Each channel of ARCS is provided with fauli-detection mechanisms that
are either hardware or software. We will ecall a fault-detection
mechanism, also referred to as a detector, every hardware or software
component of the channel that can detect the presence of failure. ARCS

hzs the following detectors (Fig. 9):

a sensor self-monitor for every sensor,

]

cross channel sensor monitor (also called SSFD) for every sensor,

1w

computer self-test in every channel,

a watchdog monitor for every computer,
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a cross-channel synchronization monitor in every channel,
a cross-—channel output monitor in every channel,
a servo self-monitor for every servo,

and a eross-channel servo monitor for every servo.

in general, it is quite simple to 1list all the fault-detection
mechanisms for any computer systems. In the following, cne will assume

that each channel has k fault-detection mechanisms.

Following the occurrence of a failure, some of the fault-detection
mechanisms may indicate the presence of the failure. Let Atj denote the
binary variable which indicates whether or not detector j in chanmnel A

has detected the failure:

-
T = {,t 1"

A Aty g t.> with ,t, = 0 1f detector J of channel A

2" 77T Y Ak &7

does not give an error indication)

with Atj = 1 if detector j of channel A

gives an error indication,

gl = <ty gbor «- s ph

-
and (T = <otay oty e s gbe

-

The vectors AT ? and C? are called the detection vectors (also referred

' B

to as trip vectors). The overall detection vector is denoted by T:

—

- = -
T = <,T, gT, I>.
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IV.2.3 Diagnosis Mechanisms and Diagnosis Vectors

When a fault-detecticon mechanism gives an error indication, it is
sometimes required for each channel to perform some diagnosis. ¥Tor
example, when the ceross-channel output monitor in channel B detects a
disagreement, the computer of channel B needs to test itself, to send
information to other channels, to check the validity of other channeis
{based on the information it receives) and to make a decision based on
its fault-status table and past failure history. This process is calleéed
the diagnosis process realized by the computer. However, the diagnosis
process is not run for every error indication. For example, when the
watchdog monitor or the serve self-monitor indicates an error, this
information is sent directlyt to the servo self-moniftor to command the
actuator switch to turn off. The computer does not run the diagnosis

program.

In general, one will call diagnosis mechanism any component that looks
at some of the detectors and makes a decision concerning where the
failure is located. In most systems, diagnosis will be performed by the
computers (when there is need for diagnosis). However, to be quite
general, one will assume that each channel can have more than one
diagnosis mechanism (let m represent such diagnosis mechanism). Each
dragnosis mechanism looks at some of the indications coming from the
detectors and decides where the "failure is located inside a ‘subset of
the channel. So, for each diagnosis mechanism, there is a corresponding
diagnosis vector that indicates the decision made by that particular

diagnosis mechanism concerning the location of the failure:



=03

APy = <Ad1’ Ad2, ey Adn> with Adi = 0 if the diagnosis mechanism
of channel A does not locate the

failure in unit i of channel 4,

with Adi = 1 if the diagnosis mechanism
locates the failure in unit i of

channel A4,

with Adi = 2 if unit i of channel A is
not part of the diagnosis range of

the detection mechanism.

w = <410 Blpr --- 0 pdp”s

Dy = $edr eps coe s >

o, Tl
i

These diagnosis vectors carry the information that the system has about
itself, For notation simplicity, one will use Aﬁl (Bﬁ'or Cﬁ) to refer

to the set of all diagnosis vectors produced in channel A (B or C):

AP = <pPys aDoo » APy’
50 = <gBis glos --e b
CD = <aDys Dps ~ev s (D>

Also, we will use U to refer to the complete system diagnosis:

D = <Aﬁ; Bﬁ, vee s QD>
iV.2.4 Switch Control Mechanisms and Switch Vectors
¥hen an error indication is produced by a fault-detection mechanism, it

is necessary to command some switches in order to reconfigure the faulty

unit out of the channel. These commands may be sent directly by the
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fault-detection mechanisms or by the computer following the diagnosis
process. For example, as soon as the watchdog monitor indicates an
error, a signal is sent to all the servo self-monitor to order them to
turn off +the actuator switches. The units that zctuwally control the
switches can be different from the units that perform the detection or
the _diagnosis. For example, the control of the actuator switches is
done by the servo self-monitor (and not directly by the watchdog
monitor}. So, a careful analysis of the system needs to take into
account the fact that while =signals may be sent to the servo
self-monitors to order them to turn off the actuator switches, some of
these monitors may be faulty and not command their switch to disengage
the actuator. When switches are implemented in software, for example,
the "do-not-use" flags for +the inputs sensors, they are directl¥
controlled by the mechanisms that perform the diagnosis, for example the
computer. In general, one will assume that some switches have control
mechanisms different from the diagnosis mechanisms, These control

mechanisms will be called the switch control mechanisms. e

So, the switches are controlled exther directly by the diagnosis
mechanisms or indirectly through the switch control mechanisms. In both
cases, one car represent the actual commands issued to the switches by
the binary variable sj where Sj is one if the switch j is commanded to

turn of [

1}
o

AS = <AS1’ ASor e Ask> with Asj if switch j of channel A is

not commanded to turn off,

1
-

with ASJ = if switch j of channel A is

commanded to- turn off,
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= <BS1, B52, s e 3 Bsk>,

c <CS1’ €Sy cee s Csk>'

o
W W
1

Similarly to the previous sections,.§'will refer to the set of the three
channel switch vectors:
§-¢5 8 &

= <pSr g5 57-
These switeh vectors carry all the information concerning the control of
the switches after diagnosis. From them, if one knows the state

(fzult-free or faulty) of every switch, one can deduce the actual system

configuration.
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IV.3 Detection Process

IV.3.1 Detection Range

Bach fault-detection mechanism can not detect failures in all the units.
For example the sensor self-monitors can detect failures only in the
‘corresponding sensor. For each detection mechanism, one can list all
the units for which it can detect the presence of failures. This will
be called the range of the detector. In general, one can use a matrikx

notation to express the range of detection:

Units =——ce—-— > Detectors

0
[e]

N = [nij] with n, if detector j can not detect the presence of

J
failures in unit i,
nl:j = 1 if detector.j is able to detect the presence

of failures in unit i.

In ARCS 211 the channels are identical, s¢ it will be the same matrix
for every c¢hannel. In systems with dissimilar channels, it will be
required to use one detection matrix for every channel. It sheuld be
noted that the detection matrices indicate only if failures can be
detected. Even if a detector can detect only some of all the failures
that can ocecur in a unit, this unit will still be considered as part of

the range of the detector.
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IV.3.2 Complete Versus Incomplete Detection

While most of the fauli-detection mechanisms can not detect every single
failure in the units they cover, the detectors that use cross-channel
comparison are able to achleve complete detection (at least for the
first two failures)}. Thus, one needs to classify the fault-detection
mechanisms as providing either complete or incomplete detection. The
difference is important since most of the critical system states are
reached following failures that are not detected. Furthermore, as it
will be our goal to list all the possible fault-patterns along with
their detection, diagnosis, switeh and reconfiguration vectors, one
needs to find all the possible detection “vectors that c¢an occur

following a failure. If a detector does not achieve 100% detection,

then we need to consider that it may or may not detect the failure.

Even for the detection mechanisms that wuse cross-channel comparison,
100% detection is not always guaranteed. For example, when two channels
are down, tbthe output cross-channel comparison in the third channel
becomes & meaningless process (which is not in fact carried out). Thus,
complete detection is still dependent upon the system state. In
general, it is easy to list the conditions that must be satisfied for a
fault-detection by cross-channel compariscon to achieve 1009 detection.

This can be mathematically expressed as:

- - g
channel state 0 = <,F, K> -—--S-- > {0, 1}

with
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complete detection,

- g . - = . .
{,F, B> —-2— > 1 if, in state <AF’ R>, detector j achieves perfect

detection.
IV.3.3 Implementation of the Fauli-Detection Mechanisms

The fault-detection mechanisms need to use some of the units to perform
their detection function. If these units are defective, then the
behavior of the fault—detecéion mechanisms may possibly be affected.
For example, the cross-channel output monitor that should always detect
the first diasagreement between the channel outputs may not detect 1t if
the computer that performs the comparison is itself faulty, It is also
possible that a detector will give an erroneous error indication when
the ynits used to perform the detection are faulty. For example, a
computer failure may cause the cross-channel sensor monitor to decide
that the sensor is faulty when, in fact, it 1is the computer that is

faulty.

For each fault-detection mechanism, one can list the set of units that

they use. This can be expressed in a matrix form:

Units -——§-~—> Detectors

M= [mlj} = Detector implementation matrix

with mij = 0 if unit i is not used to implement the function
of detector j,
with mij = 1 if unit i1 is used to implement the function of

detector j.
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In ARCS, because all three channels are identieal, there will be only

one such detector

implementation matrix.

channels, cne matrix per channel will be required.

Given the channel failure configuration,

matrix makes 1t possible

produce

incorrect error indication or

indication.

to 1list all the detectors which may either

IV.3.4 Set of All Possible Detection Vectors

For systems with dissimilar

the detector implementation

fail to generate an error

Given the system initial failure configuration (the ?;igvector) and an

occurrence of an individual failure (individual failure dF), one can

find the set of all possible detection vectors.

The first step 1is to

find all the detectors that can detect the failure (using the detection

matrix)

achieve complete detection (using the g function).

find the

. The second step consists in finding whether

some detectors

The third step is to

set of faulty units that are vsed to implement the relevant

detaction functions (using the detector implementation matrix). These

three

steps yield the set of all detection vectors that can follow that

particular failure occurrence:

——— e ey

set of detection vectors for

correspond to failure dF (in

set of detection vectors for

correspond to failure dF (in

channel A that

state ),

channel B that

state 1),

II
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dF

CF-——--—-~> { CT} = set of detection vectors for channel C that

correspend to failure dF (in state§2).

For simplicity, we will use T to refer to the complete detection:
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IV.4 Diagnosis Process

IV.4.1 Diagnosis Mechanisms

Sometimes, when a fault-detection mechanism gives an error indication,
ezch channel nesds to perform some diagnosis to loecate the unit.where
the failure has occurred. For exaample, any error indication provided by
a cross-channel monitor requires finding which channel is faulty. This
can be quite simple, for example in the case of cross-channel servo
monit;r Diagnosis consists simply 4in finding which of three servos
disagrees with the other two. On the other hand, when a cross-channel
output monitor detects an error, the‘Aiagnosis is more complex since it
is required that two of the three channels reach a consensus. Sonme
other error indications do not require follow-up diagnosis. For
example, an error indication in provenance of the watchdog monitor or
the sensor 'self-monitor does not trigger any diagnosis since these

fault~detection mechanisms monitor only one unit each.

In ARCS, all the diagnoses are performed by the channel computers.
However, in general, one can assume that each channel has more than one
diagnosis mechanism (up to m). Each diagnosis mechanism looks at only
some of the indications provided by the channel fault-detection
mechanisms. TFor example, error indications given by the  servo
self-nmonitors are ignored. The set of the error indications that a
diagnosis mechanism looks at will be called the input rangé. Each
diagnosis mechanism c¢an locate the failure only inside a subset of the

channel units (for example determine whether the failure occcurs in the
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computer of either channel A, B or C). So, the diagnosis performed by a
diagnosis mechanism is not a complete system diagnosis. One can call a
diagnosis output range the set of units which can be distinguished by a

diagnosis mechanism (cf. section IV.2.3).
For every diagnosis mechanism, one can define:

input range = subset of the channel error indications,

output range = subset of the channel units,
input = error indications from the input range,
output = diagnosis vector,

diagnosis algorithm = function relating the output to the input.

For every system, 1t should be possible to obtain the input and output
ranges of every diagnosis mechahism. This is available from the
deseription of the diagnosis algorithms with which the system are

provided.

IV.L,2 Diagnosis Algorithm

The process of going from an error indication to a diagnosis vector is
called the diagnosis algorithm. Each diagnosis mechanism has one such
algorithm (that can be either software or implemented in hardware). The
exact mathematical description of the diagnosis aigorithms may be quite
conplex. However, it is available, from the system description (the
software specifications relative to diagnosis). In the following, one

will assume that the diagnosis algorithms perform mappings from the



detector indication vectors to the diagnosis vectors that are dependent

only upon the system state before the failure occurrence:

Fi 4P “ror aiagnosts mecbaniem 37 53
B D gy e A 7 53
<?; 0?5 *__fordgzzgziggsaiiggizggm i Cﬁs
with
Aﬁj = $pqr pdps vee s g4y WAth . d; =0 If diagnosis mechanism j

diagnoses unit i of channel 8 as

fault-free,

with adi = 1 if diagnosis mechanism j
diagnoses unit i of channel A as
faulty,

with adi = 2 if diagnosis mechanism j

is not intended to diagnose unit

i of channel 4.

IV.4.3 Implementation of the Diagnosis Algorithms

The diagnosis mechanisms can be Faulty and, hence, the diagnosis vectors
they produce may be different from those produced by fault-free
mechanisms. For example a computer failure may cause the processor to
decide that another channel is faulty when }t is not so. Thus, one also
needs to - take into acecount the state (fault-free or faulty) of each
diragnosis mechanisms to find all the possible diagnosis vectors that can
be produced when an error indication is produced. This reguires finding

all the channel units used to run the diagnosis algorithms. For example
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in ARCS, diagnosis is performed by the computers. In general, one ecan

list all %the units used by a given diagnosis mechanism to perform its

function. Similarly to what was done * for the fault-detection

mechanisms, one can use a matrix notation:

1
Units --—g———> Diagnosis Mechanisms

M = [m"ij] = Diagnosis Implementation Matrix
with m'ij = 0 if unit i1 is.not used to Iimplement the
function of the diagnosis mechanism j,
with m'ij = 1 if uwnit i is used in the implementation

of the function of diagnosis mechanism j.

In ARCS, since zll the channels are identical, there will be only one

such diagnosis implementation matrix (which is extremely simple).

For

systems with dissimilar channels, one matrix per channel will be

required.

IV.4.4 Set of All Possible Diagnosis Vectors

For each of the detection vectors that can be produced following a

faalure, ({occurrence of failure dF while the system has a failure

configuration given by F), 1t is necessary to find all the possible

diagnosis vectors that can result. This can be done in three steps:

find all the diagnosis mechanisms that look at-the error indications

of the detection vector,

for each one, find the diagnosis vector that would be produced should
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the diagnosis mechanism be fault-free. This can be done wusing the

deseription of the diagnosis algorithm.

find the diagnosis mechanisms that are affected by the failure
configuration of the system (either by the failure that causes. the
diagnosis to be run or by all the previous failures). This is
achieved by looking at the the system failure configuration and the
diagnosis implementation matrix, M'. The diagnosis produced by these
diagnosis mechanisms can be incorrect. Thus, one needs to consider

that every single diagnosis vector can occur.

So, for each detector indication vector, one can find the set of all the

possible diagnosis vectors that can result:

— - —> - -
<Fy g1 mmmme- > LD Do), ey 100
—> —_ -— — —
<F, Bl) ——————— > { BD.I}, { BD2}, L s’ { BDm}

— — e -
R gL IS JO QU FA . i

For simplicity in the notations, one can say that a particular detector

-y wy
indication veector, T , in a given system failure configuration, F ,

yields a set of possible diagnosis veectors, {D}:-
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IV.5 Switeh Process

IV.5.1 Switch Control Mechanisms

As it was previously mentioned, some of the switches are controlled by
the diagnosis mechanisms while others are under the control of the
switch control mechanisms. The switch contreol mechanisms receive
signals either from the fault-detection mechanisms or from the diagnosis
mechanisms. In ARCS, all the signals received by the s8rvo
self-monitors have the same meaning: a request to turn off the actuator
switeh. If the serve monitor is fault-free, reception of any single
signal will result in a command being sent to the actuztor switch to
disengage. However, one c¢an conceive systems in which the switech
control mechanisms are also provided with some intelligence to resolve
possible inconsistencies between the incoming signals. In general, one
can say that each switch control mechanism receives inputs from some
fauli-detection mechanisms (some components of the detector indication
vectors) and from the diagnosis mechanisms (some components of the
diagnosis vectors) and controls the switch according to some function of
the input signal (for example reception of any signal results in a

command to the switch to turn off):

For every switch contrel mechanism, one has:

inputs = subset of the detector indication vectors

+ subset of "'the diagnosis vectors,

outputs = {stay on, turn off} commands to the switches

1\

function relation between the inputs and outputs.
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For every system, it is possible to 1list all the switch control
méchanisms and to find their inputs and the function they implement.
This is available from the hardware and software description of the
channels. So, for every detector indication and diagnosis vectors,. it
is possible to find what should be the commands received by all the

switches should the switch control mechanisms be fault-free:

S T e —— > <8, 8, D= . :
1V.5.2 Implementation of the Switch Control Mechanisms
For a complete study, one needs to find which channel units are used to
implement the function of the switeh control mechanisms. Similarly to
what was done for the fault-detection mechanisms and the diagnosis
mechanisms, one can use a matrix notation to represent which units are
used by the switch control mechanisms:

n
Units ~——§——~> Swatch switeh control mechanisms

Mt = [m“ij] = Switch Control Implementation Matrix

with m"ij = 0 if unat i is not used in the implementation
of the switch control mechanism j,
with m"lJ = 1 1f unit i is used in the implementation of

the switch control mechanism j.



IV.5.3 Set of All Possible Switch Vectors

For each combination of detection and diagnosis vectors, it is necessary
to find all the possible combinations of commands that are received Dby
the switch (this in order to find all the possible system

configurations). This can be performed in two steps:

find all the switches that are controlled directly by the diagnosis
(or detection) mechanisms. For each one, find the switch command

that corresponds to the particular diagnosis (detection) vector.

find all the switches that are controlled through a switeh control
mechanism. Find the switch control mechanisms that are affected by
the failures the system has suffered. This can be cbtzined from the

system configuration vector, ﬁ , by using the matrix M".

So, for every combination of a detection vector,ﬁa, and a diagnosis
vector, 5, one ean find the set of all the possible commands that are

issued to the switches:

<F, T, B> —mmeeee > {,5},
< FJ BT)’ BTb) """"""" > {BS} 3
S A > {5}
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iV.6 Reconfiguration Process

IV.6.1 Final System State

The commands issued to the switches along with the state of the swiiches
dietate completely the system configuration (the ﬁb vector). Swicches
can fail in such a way that either they ignore the commands or they turn
off without being issued any command. The first kind of failure can be
called unsafe failure since it is far more dangercus for a faulty unit

to be enabled than for a fault-free unit to be accidentally disabled.

Given the switch vectors and the knowledge of the switch states, cne can

find the system configuration:

> - ey
GFs (D mmmeee >,
<Bﬁ, B§> ------- > gl
=g - -
<GFy S mmmmme > R

iV.6.2 Consistent Static System States

Section III presented a method to list all the possible static system
states with a2 given criticality. However, as it was mentioned, some of
these states could never occur in the actuwal system. This present

section gives a method to find which static states c¢an actually occur.
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Furthermore, and even more importantly, 1t also characterizes the

fault-patterns that can drive the system in these dangerous states.

Fault-patterns were defined as ordering of individual failure

Qccurrences:

For each individual failure in the fauwlt-pattern, i% was hown how to

find all the detection vectors that could possibly be produced:

Then, for each detection vector, one can find all the possible diagnosis

vectors that are produced:

For each combination of a detection vector and a diagnosis vector, one
can find all the possible combinations of commands that are issued to

the switches:

Then, 1t 1s quite simple to find the system configuration from the

switch vector and the failure states of the switches:

Thus, one can find all the possible configuration that a failure pattern

can induce on the system. The condition for a static state fo be
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-
consistent is that the system configuration, the R vector, can be the

result of at least one fault-pattern.

IV.6.3 Characterization of the Critieal Failure-Patterns

A eritical fault-pattern is one that leaves the system in a critical
static state. One can characterize fault-patterns by the detection,
diagnosisa nd switch vectors associated with sach individual failures.
This provides all the information relating to the detection, diagnosis
and isolation of every individuval failure in the pattern. 1In general, a

critical fault-pattern will be listed as:

> dFl > - sz de -+ > > >
<?,R> ~~~~~~~ ><F., R,> ———="— > .. . mme=se- ><F ,R>=«<F,R
0 0 1 1 x? x !
> > -
T T, T,
5. B, 7
> - >
Sl Sz SX
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IV.7 A Method to List All the Failure-Patterns with a Given Criticality

Starting from the enumeration of the critical states with a given

critieality, the enumeration of the corresponding cratical

fault-patterns can implemented as a computer program.
IVv.7.1 First Step

The first step consists in listing all the possible fault-patterns that
correspond to a given failure configuration. The failure configuration,
;, that should be considered first are those which are part of the most
ceritical statiec states. The list of fault-patterns that correspond to a
given failure configuration-;, depends upon what is considered an
indaividual failure (whether individual failures affect only one unit or

more) . The fault-patterns that correspond to a given failure

configuration will be called potentially eritiecal.
IV.7.2 Second Step

The first part is to find all the fault-detection mechanisms (whether

hardware or sofiware).

For each fault-detection mechanism, one needs to list all the units for

which detection is possable. This gives the matrix N.

It is also required to find whether there are detection mechanisms that
can achieve perfect detection. In general, only the mechanisms that use
cross-channel comparison can achieve perfect detection. For each one of

-

them, one should also find under which conditions perfect detection is
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achieved.

For each fault detection mechanism, one needs to find all the c¢hannel

units that are used to perform the detection (the matrix M).

Then, for each individual failure in a potentially eritical
fault-pattern, one needs to 1list all the possible detection vectors.
This produces the 1ist of detection vectors asscciated with =

potentially critical failure.
IV.7.3 Third Step

The first part is to find all the mechanisms that are used to perform

diagnosis (either local or giobal).

For each diagnosis mechanism, one needs to find which error indications

trigger the diagnosis process and which is the diagnosis zlgorithm.

For each diagnosis mechanism, it is necessary to find all the sysiem
units that are used to implement this mechanism. This gives the matrix

Mt.

For each diagnosis mechanism, one needs to find all the possible
diagnosis vectors that c¢an be produced zs a result of the detection

vectors found in step 2.
IV.7.4% Fourth Step
The first partils to find how switches are controlled. For the switches

that are controlled directly by the diagnosis mechanisms, one must find

wnat commands are issued for each diagnosis vector found in step 3.
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For the switches that are controlled through contrgl mechanism, one

needs to find the inputs, outputs and function of such mechanisms.

For every switch control mechanism, it is necessary to find which units

are used to implement their function. This wildl give the matrix M".

For every combination of detection and. diagnosis vectors that is
produced by step 2 and 3, one needs to find all the possible
combinations of commands sent- to the switeches. This, with the first

part of step 4, will give all the possible switch vectors.

IV.7.5 Fifth Step

Given the switch vector and the system failure configuration, one can
find the system configuration. If a potentially ecritical failure
pattern (along with its detection, diagnosis and. switch vectors) does
not drive the systen in a ecritical static state, then this

fault-pattern is not crifical (consistency operation)}.

This fifth step yields zll the fault-patterns with their detection,
diagnosis and switeh vectors that drive the system from an initial

fault-free state to a critical static state (cf. Fig. 10).

One should note that this procedure to enumerate the critical
fault-patterns seems to involve much computation. However, since we

are principally interested in the system tolerance to the first few
failures, the total number of all the possible combinations of

detection, diagnosis and switch vectors will be quite manageable.
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Fig. 10. Critical fault-patterns for a critical state.



V. CURRENT AND FUTURE RESEARCH

V.1. Computer Program for Enumerating the Critical Fault-Patterns

We are presently looking at the problems posed by a computer
implementation of sections III. and IV. One of the major ceriteria is
generality. Such a program should be appliceble to any highly redundant
computer system. For this reason, an interactive approach seems more
appropriate.

The problem of computation complexity needs also to be carefully
considered. Enumeration of the static states with a given criticality
will be a fairly simple task since we are principally interested with
the system tolerance to the first few failures. It is highly likely
that most of the computations will take place Qhen listing all the
p0551bie detection, diagnosis and switch vectors for each of the
individual failures that are part of the potentially eritiecal
fault-patterns. Some reduction in the computation can be obtained by
using the symmetry between channels. Another method to reduce the
computation complexity is to eliminate some of the potentially eritical
static states before analysing each of the corresponding fault-patterns.
For example, it is possible to eliminate some potentially critical
system states by noting that some failures can never induce certain
reconfiguration actions. Thus, a preliminary gross analysis of the
range of possible effects for failures will significanﬁly reduces the

number of fault-patterns that need to be analyzed.
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Another problem that is currently under study relates to the diagnosis
algorithms. Such diagnosis algorithms are substantial pieces of
software. 1In the case of ARCS, the diagnosis process following an error
indication in provenance of the cross-chamnel cutput monitors is fairly
complex since it may lasts several time frames and involves
cross-channel communication. One possibility is to allow the program
for eritical fault-pabttern enumeration %to use the actual system
diagnosis software as a subroutine. This way, the need to model the
diagnosis process (and the corresponding loss of accuracy) is bypassed
completely. However, unless the diagnosis software is available in a

high level language, this will require to write a simulator.

The end goal of this enumeration program is to list all the
fault-patterns, with their detection, diagnosis and switch vectors, that
take the system from an initial fault-free state to a ecritical state
(ef. Fig. 10). This will already provide a simple way to relate the
system coverage to the [first few ~failures to the efficiency of the
fault-detection mechanisms, since we can list which of the undetected
failures will cause a system crash. However, far more accurate system
evaluation can be made if one can map the eoritieal fauli-patterns {as
described by their detection, diagnosis and switch vectors) onte the

physical hardware failures (for example line x stuck-at-one, ...).



V.2 Mapping Between Critical Fault-Patterns and Hardware Failures

Ve are presently investigating how to find all the hardware failures
{described for example as line x stuck-at-one) which correspond to a

given critical fault-pattern.

V.2.1 First Approach: Simulation

The first approach under consideration is fto use & fault simulator. The
enumeration program will provide the 1list of the most eritical
fault-patterns. Each individual failure in  these critical
fault-patterns is characterized by its location (at the unit level),
detection, diagnosis and switch vectors. Thus, one can easily list the
subset of the system units where a failure can correspond to the first
individual failure of one of the most critical fault-patterns. Then,
one can simulate each one of these units. The simulation should include
the possibility ¢to establish whether failures are detected. The
simulation can be either a gzte level simulation, 1if one wishes fo
characterize the faults down to the gate inputs and outputs, or a higher
level simulation (for example at the I.C. chip level). Many such
fault-sigulators have been developed in relation to test generation and

some are commercially available (B.P. TESTAID system for example).

If the unit that is simulated is provided with some hardware
fault-detection mechanism, the simulation will also provide the list of
failures that are not detected. If the unit is tested throught software

tests (for example the processor is tested by the test routines), then,
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we can run the softare tests on the simulated unit. This way, one can
get a list of all the failures that will have a detection vector that

matches the detection vector specified in the characteristies of the

eritical Tault-patterns. -

If a failure has the detection vector specified iIn the TfTault-pattern
characteristics, then one needs to look at the diagnosis and switch
control processes, If the unit that performs the diagnosis 1is
fault-free, then one can run the diagnosis program for this particular
detection vector and find out whether the failure is  correctly
diagnosed. If the diagnosis mechanism is itself affected by the failure
(for example if the failure is in the processor), then, one needs to run
the diagnosis program on the faulty machine. This can also be done with
the simulator. Similarly, one can also simulate the switch control
process and decide whether a particular failure has diéénosis and switch
vectors that mateh those specified in the fault-pdttern characteristic.
This will yield the list of all the failures in a2 particular unit that
correspond to the first individual failure of a critical fault-pattern.
Then, one can use the same method to find all the failures that

constitute the second individual failure of the fault-pattern.

This method may require a substantial amount of computation since it
involves wusing a fault simulator. It is commonly assumed that a
software implemented simulator runs about a thousand time slower than
the astual ﬁérdware. However, 1t 1is believed that this approach is
still a valid one. First, one will have to simulate only some of the

units, and never the complete system (at the most, it will require
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simulating one channel). Secondly, since the systems under
consideration are highly reliable, it is likely that there will be only
a few failures that will satisfy the conditions specified in the
fault-pattern characteristics. Thus, when looking for .the second
individual failures of the fault-patterns, one will have only a very
limited number 6f first failures to consider. One should also note that
this approach is far more efficient that a straightforward method that
would ignore completely the enumeration of the critical fault-patterns
and simulate directly the system behavior for every singlé, double, and

even triple failures.
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V.2.2 Second Approach: Analysis of the Deteetion Process

One of the major preblems with simulation is that it is necessary to
simulate all the faults in order to find which ones are not detected. A
different approach, that is currently under study, will avoid such a

complete enumeration of all the failures.

This approach is based upon the observation that detection can be
achieved either t©hrough hardware mechanisms (parity, encoding) or
throught test sets. A hardware detection fault-detection mechanism will
yield an error indication if the circuit ouputs invalidate a certain
condition (fig. 11). For example, a parity checker will +trip if the
values on the ecircuit outputs do not sum up to =zero (mod. 2).
Similarly, a test set will indicate a failure if the eircuit output
values, for the dinputs specified in the test set, do not match the
correct values. S0, 1n beth ecases, an error indication will -be
generatsd if some boolean conditions are not satisfied. Failures escape
detection 1if the faulty circuits still satisfy the conditions but yet,
they produce erronsous outputs. For example, one can state the boolean
conditions that must be satisfied for a failure to escape detection by

the parity checker for the circuit of Fig. 11:

let X represent the input vector,

let Z1s Zgy z3 and 2y be the circuit outputs when it is fault-free,
let z‘1, z'2, 2'3 and Z'H be the circuit outputs when it is faulty,
then, the conditions for a failure to go undetected are:

z'1 e 2'2 & 2'3 e Z‘H = 0 for every value of X,

and there exist X such that

(z1 @ 2'1) + (22 ® z'2) + (23 & 2'3) + (zll e z'u) = 1.
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For combinational circuits, one can express the circuit faulty behavior
{(the outpui functions) as a function of the fault-free functions and the
faults if one replaces every line by an AND and OR gates to take into
account the fact that the "line can be fauli-free, -stuck-at-one or-
stuck-at-zero,. Fig. 12 gives an exanmple of such a transformation.-

Thus, the functions z' can be expressed as functions of the fault:

z' = z' (X, F)

f>

with F = <f., £5, «.. , 52,

fi = 00 if line i is fault~free,
fi = 01 if line i is stuck-at-one,
fi = 10 if 1line i is stuck-at-zero.

Such a description of the faults allows the use of boolean manipulations
to find the faults that escape detection (for which the circuit does not
satisfy the detection conditions). The problem is analogous to solving
a boolean expression, since failures can be represented as extra inputs

to the circuit.

We are presently studying the relations between the faults with respect
to detection. This will zllows to reduce significantly the
computations. We are also Iinvestigating methods to scan c¢ircuits for
the faults that escape detection. The end goal is to be able to list
all the failures that escape detection with a2 single scanning of the
errcuit. This dnvelves studying the opropagation of the detection

conditions throught the circuit.

In a parallel effort, we are trying to obtain a very fine partitionning

of the units in terms of subunits which would be quite independent with
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respect to failure detection. This will decrease significantly the

complexity of the

failures.

¢ircuits for which one needs to find the undetected
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