
NASA Contractor Report 145352

CRITICAL FAULT PATTERNS DETERMINATION IN FAULT-TOLERANT

COMPUTER SYSTEMS

E. J. McCluskey and J. Losq

(tASA-Cn-145352) CRITICAL .AUL'I
 PATTERNS
 N78-23796
I	DETERMINATION IN FAULT-TOtEnAVT COMPUTER

SYSTEMS Final Report, 1 Apr.
- 30 Sep. 1977

(Stanford Univ.) 82 p HC A05/MF A:01
 Unclas

CSCL 09B G3/62 16759

STANFORD UNIVERSITY

Stanford, CA 94025

NASA Grant NSG-1410

January 1978

NASA
National Aeronautics and 	 '9,>
Space Administration
Langley Research Center
Hampton Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19780015853 2020-03-22T05:02:07+00:00Z

DIGITAL SYSTEMS LABORATORY

STANFORD UNIVERSITY

Stanford, California 94305

CRITICAL FAULT PATTERNS DETERMINATION IN FAULT-TOLERANT COMPUTERoSYSTEMS

FINAL REPORT

Covering the period: I April 1977 - 30 September 1977

NASA Grant no. NSG 1410

SEL Project 24-77

Prepared for the:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Langley Research Center

Hampton, Virginia 23665

Principal Investigator:

Prof. E. J. McCluskey

Project Leader:

J. Losq

ABSTRACT

Digital systems that use redundancy to achieve high reliability -are

designed so that they. recover from most failures. The problem of

accurate evaluation of the failure tolerance of any particular redundant

system is quite difficult. The methods based on general analytical

modeling techniques suffer from the need to make simplifying

assumptions. Thus, the confidence that can be granted to their results

is low. Some techniques use fault-simulation and try to estimate the

size of the failure population that causes system crash by simulating a

random sample of failures. However, ultra-reliable systems will

tolerate most of the failures, so, very many faults need to be simulated

to reach an acceptable level of confidence. The method proposed here

tries to enumerate all the critical fault-patterns (successive

occurrences of failures) without analyzing every single possible fault.

From the system description, one can find all the output devices that

allow the system to communicate with the outside world. From the

description of these output devices, one can find the conditions that

must be satisfied for the system to be operating correctly. Also, one

can enumerate all the possible operating modes according to their

criticality (high, low, or no tolerance to subsequent failures) and list

the corresponding conditions. Most highly redundant systems are

provided with capabilities to disable some part of the system or , at

least, to ignore data coming from them. These constitute switches and

they control the system configuration. At any point in time, the list

of the faulty units and the actual system configuration give the static

state of the system. The conditions for the system to be operating in a

ii

given mode can be expressed in term of the static states. Thus, one can

find all the system states that correspond to a given critical mode of

operation. The next step consists in analyzing the fault-detection

mechanisms, the diagnosis algorithm and the process of switch control.

From them, one can find all the possible system configurations that can

result from a failure occurrence. Thus, one can list all the

characteristics , with respect to detection, diagnosis, and switch

control, that failures must have to constitute critical fault-patterns.

Such an enumeration of the critical fault-patterns can be directly used

to evaluate the overall system tolerance to failures. Present research

is focused on how to efficiently make use of these system-level

characteristics to enumerate all the failures, defined at the gate level

(for example line i stuck-at-one), that verify these characteristics.

1

I. CRITICAL FAILURES AND REDUNDANT SYSTEMS

The purpose of using massive redundancy in computer systems is to

protect them from the effects of internal failures. When several

computers perform the same computations in tight synchronism, it is

possible to detect the occurrence of a computer failure by comparing the

computer outputs. The -faulty computer is then switched off and it is

said that the system has recovered from the failure. As first

approximation, one can say that system failure, also referred to as

system crash, occurs only when there are not enough fault-free computers

left to allow a meaningful comparison. For example, Triple Modular

Redundant systems (also called TMR systems) [von Neumann; 1956], Fig.

1, fail upon the second failure occurrence: the majority voter will not

produce the correct output when two of its inputs are faulty.

But even for systems as simple as TMR systems, the actual system

behavior in presence of failures is far more complex. Some of the

failures that affect the voter, (cf. Fig. 1) cause a system crash; for

example, a stuck-at-one failure in the OR gate (line a7 , a8, a9 , or a10

stuck-at-one). Also some double failures will be tolerated. For

example, if the output of computer 1 (line y1) is stuck-at-zero while

the output of computer 2 (line y2) is stuck-at-one, the system will

still operate correctly since the faulty logic one on line Y2

compensates for the faulty logic zero on line y1 in the voting process.

This phenomenon is known as compensating failures. It was shown in

[Siewiorek; 1971] that many double failures are compensating failures

and that the actual reliability performance of TMR systems is far better

than what is estimated when compensating failures are ignored.

Computer I
 Y-1

a I

Computer 2 AND 1a
a4
 System

~Output

a6

Computer 3

Y3

Majority Voter
.- . -. -. - -. -. - -. - . - . - -..-- - - ---

Fig. 1. T.M.R. Redundant System.

3

For the simple system of Fig. 1 , one can enumerate all single and

double failures from which the system does not recover. The uncoverable

single and double failures are respectively.the most and-the second most

critical failures. For example, the set of uncoverable single failures

is:

{line a7 s-a-i, line a8 s-a-i, line a9 s-a-l, line a,, s-a-l}.

The set of uncoverable double failures is quite large, even for such a

simple example. Some simplifications can be obtained if one uses the

various relations that exist between failures, for example fault

equivalence and fault dominance [Bfoute; 1972].

Most actual systems, however, are far more complex than the

oversimplified example of Fig. 1. Pure enumeration of all the faults

and their classification according to their respective criticality is a

prohibitive task. In most redundant systems, the problem of finding the

critical failures is further complicated by the fact that each computer

has some internal fault-detection mechanisms (self-test programs, parity

verification, watchdog timers,...) and some way to disable itself when a

fault-detection mechanism gives some error indication. The ability for

a computer to detect some of its failures without requiring comparison

between several computers greatly improves the overall system

reliability but also greatly complicates the system analysis. For each

fault one needs to consider the state of the faulty computer (whether

the fault was locally detected, correctly diagnosed and the proper

reconfiguration steps taken) and also the global state of the system

(the decision taken by the fault-free computers and their agreement with

the state of the faulty computer).

4

II. DESCRIPTION OF THE AIRBORNE ADVANCED RECONFIGURABLE COMPUTER SYSTEM

II.1 Introduction

The Airborne Advanced Reconfigurable Computer System -the ARCS­

[Bjurman; 19761 is an integrated navigation/guidance/flight control

system for commercial aircrafts. The system is a

Triplex-to-Duplex-to-Simplex fault-tolerant computing system with the

capability to be expanded to a Quadruplex-to-Triplex-to-Duplex-to-

Simplex mode of operation. Fig. 2 shows a block diagram of the ARCS.

11.2 Channel Description

A channel in the ARCS terminology refers to a computer with its

associated sensor and servo equipment. A channel contains all the

electronics and the mechanical component to fully implement all the

navigation, guidance and flight control operations. Thus, a single

channel can fly the aircraft. The ARCS contains three channels (four in

the expanded verion).

11.2.1 Channel Components

The components within each channel are: sensors and mode controls,

computer unit, iterative timer and watchdog monitor, servo electronics,

servo monitor, and switch and servo actuator.

From Channel C To Channel C
Voter I

2 Figl cneptoR s
2

Sero­

Cros-Channl Comunicton
Links

12S n o

21

S e n

Comp u te r

s o re

Cross-Channel

S e rvo
2'

r vo

Comuniaton Links

-

~~~ComputerSeo­
121 

To Channel A Fr-om Channel A 

Fig. 2. General concept ofARCS. 



6 

11.2.1.1 Sensors and Mode Control
 

These are inputs to the computer unit. The sensors provide data for
 

flight control of the aircraft and the mode controls are instructions
 

given by the pilot to the system.
 

11.2.1.2 Computer Unit
 

The computer unit is the major element of a channel. It is a
 

microprogrammed general purpose 16 bit computer. The instruction set
 

provides for real-time control applications. It has built-in test and
 

self-monitoring features for detecting arithmetic errors, memory and bus
 

errors (by parity checks), and input/output hardware faults (by
 

self-test loops). The major function is the control of the flight of
 

the aircraft. The computer is designed with cross-chanel communication
 

interfaces to implement data links between channels. The use of optical
 

coupling removes the potential dangers associated with electrical
 

coupling.
 

11.2.1.3 Iteration Timing Reference and Watchdog Monitor
 

These are devices independent of the computer unit. Under normal
 

operation, the computers operate in frame synchronous mode where certain
 

computations are performed within a fixed time frame. The end of a time
 

frame is marked by an interrupt from the iteration timing reference.
 

When more than one computer unit are in operation, the synchronization
 

indicator signals generated by each unit in response td the interrupt
 

are examined by other units in other channels. When all syncronization
 



indicators are set all channels will synchronize.. Thus begins a new
 

time frame.
 

The watchdog monitor checks the synchronization signal of the computer
 

unit to determine if it is set and reset within acceptable upper and
 

lower time limits. If not, the monitor will cause the associated servos
 

to be disengaged and the computer unit marked as faulty.
 

The iterative timing reference also serves the purposes of interrupting
 

the computer unit at regular intervals after power-on or any transient
 

fault condition to attempt recovery and of synchronizing with the other
 

units.
 

II.2.1.4 Servo Electronics
 

The servo electronics interface the computer with the servo actuator.
 

In each actuator, the electronics are duplicated and two inputs are
 

required to operate them. This provides the means for electric current
 

comparison (between the servo electonics outputs) for the purpose of
 

self-monitoring.
 

11.2.1.5 Servo Monitor and Switch
 

The servo monitor controls the engage/shut off switch between the servo
 

electronics and the actuator. When a failure is detected by comparison
 

of the output current of the dual servo electronics, or when a signal is
 

received from the watchdog monitor or the computer itself, the servo
 

monitor commands the servo switch to shut off the-servo.
 



11.2.1.6 Servo Actuator
 

The servo actuators are the mechanical/hydraulic output devices of the
 

channels. They produce hydraulic pressures that are used in the force
 

voting devices that position the aircraft flaps.
 



10 

REPRODUCIBILITY OF THE
 
ORIGINAL PAGE M POOL
 

Fault 

Occurence 
_____Redundancy 

Fault 

Detection 

Fault 

Localization 

'Fault 
Isolation 

Recovery 

and' 

Degradation I 

Sensor 
Inputs 

Sensor 
SSFD 

Sensor 
Fault 

SSFD 
Algorithms 

Computer 

Outputs 

Oupu 

Monitor 

Computer 

Redundancy 

Management 

Software 

Software 
Processes 

Watchdog 
Monitor Servo 

Switch 

Servo 

Performance 

Servo 

Nonitor 

Servo 

Fault 

Electrical 

Power 

Power 

Monitor 

F 3 

Fig. 3. ABCS reconfiguration process. 



9 

11.3 Detection, Diagnosis and Recovery Description
 

The fault-tolerance objective in the design of ARCS- is to provide a
 

system coverage of unity for any first-failure condition in a triplex
 

configuration. Further, a second-failure module coverage of 0.95 or
 

better and a simplex failure-detection probability of-0.90 are design
 

goals for the computer and interfaces modules.
 

Reconfiguration is the process of attempting to tolerate a fault. It
 

consists of the sub-process of fault detection, fault localization,
 

fault isolation, recovery and redundancy degradation. Fig. 3 shows
 

which sub-processes are initiated in response to particular faults, and
 

Fig. 4 gives a description of the ARCS channels that is based upon the
 

detection, diagnosis and reconfiguration processes.
 

11.3.1 Reconfigur9tion for sensor failures
 

Faults that occur in the sensors are monitored by the sensor Signal
 

Selection and Fault Detection (SSFD) algorithm. Sensors are afflicted
 

with a number of error characteristics: bias error, scale factor
 

tolerance, dynamic response tolrance and noise. In ARCS, compensation
 

of these error characteristics is part of the SSFD process.
 

For continuous (non-discrete) signals, comparison between the current
 

compensated input data and the avenage~of the input values from the
 

previous iteration is used to monitor for dynamic faults (rapidly
 

deviating raw signal inputs). Calculations of the bias error for the
 



REPRODUCIBILITY OF"THE 
ORIGINAL PAGE ISPOOR 

A 

Out;put ie:o 

STnsn? Cornnl 

fl.tc Monito 

enr tto: 5:o 

to0 to
CneAChneCCarn.I. Chnl nr LECD 

oces 
C.-oe 1-,e.C A1 C . 1 Ch'-e 

alano C ' Actuator Stot'h 

t-t *1 

Fig. )l. Description or the channels in ARCS
 

(Channel B reprented).
 



12 

next iteration provide a means-of monitoring static faults. When the
 

bias error reaches a predetermined level, fault is declared. Redundant
 

sensor data (from different channels) are then averaged, and further
 

fault detection is done by comparing these data. For discrete signals,
 

time skews are resolved in the SSFD algorithm. Consistent disagreement
 

of input from one channel with others indicates a fault.
 

The SSFD algorithm thus consolidates redundant sensor data and provides
 

identical data for all computer units. Further computations operate on
 

identical data, and any discrepency between channels in later stages
 

indicates a fault condition.
 

Fault isolation is effected by raising do-not-use flags against faulted
 

sensors on a per-channel basis. If the fault is transient, the input
 

will become acceptable after a time delay and the flag will be removed.
 

If it persists, a permanent fault flag is raised, disconnecting this
 

input from the computations. These are the recovery and redundancy
 

degradation processes for sensor faults, which are part of the SSFD
 

algorithm within the Redundancy Management process.
 

11.3.2 Reconfiguration for computer failures
 

11.3.2.1 Output Monitor
 

The output monitor is a software process that compares, the computed.
 

outputs of a processor with the computed, cross-channel transferred
 

outputs of the other processors. An output monitor flag is set for the
 

affected output if the comparison does not agree within the monitoring
 



13 

threshold. In such a case, each channel determines if itself can be
 

faulty. A singl& disgreement in a triplex or- quadruplex mode of
 

operation can be determined immediately.- Otherwise, each channel checks
 

the fault status table for related faults. If such a fault is
 

registered, the associated servo is disengaged and recovery is attempted
 

using data from a fault-free channel. If the fault persists, the
 

predetermined upper limit on the number of output monitor trips will be
 

exceeded and the fault will be declared permanent.
 

If no related fault is registered in the fault status table of a
 

channel, the routine to check for a persistent fault in other channels
 

is still performed. Thus, permanent failures of the total system are
 

determined independently by each channel.
 

11.3.2.2 Watchdog Monitor
 

The Watchdog Monitor is an independent (in term of hardware, from the
 

processor) fail-safe monitor of the real-time operation of each
 

computer. A computer fault condition will be indicated if the
 

synchronization indicator from the computer arrives outside a specified
 

time interval. If, in a following time frame, the synchronization
 

indicator falls back in the specified time interval, the fault
 

indication will be cleared. When the watchdog monitor trips, it sends a
 

command to the servo monitors to disengage the servos.
 

Timer interrupts occur when the time counts that define frames reach
 

zero. This initiates the synchronization process for a new frame. The
 



14 

local synchronization indicator is set and the local computer checks
 

other computers to determine if their synchronization indicators are
 

set. When all indicators are set, all channels clear their local
 

synchronization indicator and they are thus synchronized. Cross-channel
 

communication of the synchronization indicators is made through
 

dedicated hardware links.
 

11.3.2.3 Additional Testing of the Computer
 

In addition to these first-level monitors, the computers are provided
 

with hardware parity error detection for the Random Access Memory (RAM)
 

and arithmetic error detection for the processor. These interrupt the
 

processor when any error condition is detected. Furthermore, software
 

implemented self-test functions operate in the background mode, that is,
 

the self-test routines are executed whenever the processor is done with
 

all the computations allocated to the current time frame and there is
 

time remaining before the commencement of the next frame. The
 

self-tests include checking of all the instruction of the processor, the
 

integrity of the memory and the input/output ports.
 

Any fault detected is entered into the system fault status table, which
 

is used by the redundancy management software for reconfiguration and
 

maintenance routines to update failure records.­



15 

N1.3.3 Reconfiguration of servo failures
 

11.3.3.1 Servo Self-Monitor
 

The behavior of the servo self-monitor was briefly described in a
 

previous section. It compares the two output currents produced by the
 

dual servo electronics and performs the difference. If this exceeds a
 

predetermined threshold, a command is sent to the servo switch to
 

disengage the servo. The servo self-monitor also looks at the actuator
 

to determine whether it is engaged or shut off and signals the
 

processor. The servo self-monitor receives signals from the watchdog
 

monitor and the computer and disengages the servo accordingly.
 

11.3.3.2 Cross-Channel Servo Monitor
 

The cross-channel servo monitor is a software process that compares the
 

the sum of the coil currents for corresponding servos in the three
 

channels. Because the servo are close-loop control systems (they are
 

fed back the difference between the actual flap position and the desired
 

position), the cross-channel servo monitors can detect inconsistencies,
 

of the force applied by actuator. If a disagreement is noted and the
 

output monitor is not tripped, a servo fault is indicated and the
 

affected servo is disengaged.
 

11.3.4 Reconfiguration for Power Failures 

The power monitor's primary purpose is to indicate a power-on condition.
 

Once a power-on condition is indicated, the channel initiates a recovery
 



16 

process. This is the same recovery process as is generated after a
 

transient fault has disappeared.
 

Durii a initial startup (power-on interrupt) the local channel sets its
 

synchronization indicator. It then waits for 1.1 frame times and tests
 

if other channels are operating. If there are no other activities, the
 

local channel configures itself to operate in the simplex mode. If
 

another channel is operating, the local channel will synchronize with
 

it. As all state variable data required for recovery are transmitted
 

across the channels during every frame by the operating channels, the
 

new channel may now copy this data and start processing.
 



17 

II.4 Groung Test Mode of Operation
 

Extensive tests of the overall ARCS are performed- in the ground test
 

mode. The computer units are tested by a self-test of all intructions,
 

all registers and all addressing modes. The ROM and RAM are checked.
 

The hardware monitor are tested to insure that they are capable of
 

detecting and enunciating existence of fault conditions. The analog and
 

digital input/output ports are tested by wrap-around testing. Sensors
 

are tested utilizing built-in fault-detection mechanisms, self-tests and
 

operator simulated tests. Servo testing requires synchronization of the
 

redundant channels and includes tests for synchronization, engagement
 

control testing, dynamic response tests and force override tests.
 



18 

III. SYSTEM STATES AND THEIR CRITICALITY
 

III.1 Introduction
 

This section describes a method that makes it possible to enumerate all
 

the dangerous states in which the system can be. A very general
 

description of the method will be given and ARCS will be used as an
 

example. The first part introduces notations that are needed to be able
 

to represent the static state of the system at any point in time. The
 

second part looks at the various degrees of criticality the system can
 

be in. The last part gives a method to enumerate all the system states
 

with a given degree of criticality.
 

111.2 Notations
 

111.2.1 Partition of the channels into units
 

111.2.1.1 Switches
 

Each channel is composed of a collection of hardware and software
 

components. Among these components, there are some are switches. When
 

they are commanded, they disable some of the channel components (for
 

example the servo switches). Some other 'components' have similar
 

effects: they allow the channel to ignore data coming from some of its
 

components or from other channels. As a example in ARCS, one can
 



19 

mention the "do-not-use" flags that control whether or not sensor
 

outputs will be ignored, and also the fault-status table that indicates
 

whether or not a channel trusts the other channels. All these
 

components (whether hardware like the servo switches or software like
 

the "do-not-use" flags or the fault-status table) will be referred to as
 

switches. In ARCS, one can list as switches the trios of "do-not-use"
 

flags,the couples of "disregard-channel" flags in the local fault status
 

table, the servo switches and possibly, depending upon the exact
 

software specification of the system, a computer flag that will order
 

the computer to discontinue to send any further commands to the servo
 

electronics (Fig. 5).
 

111.2.1.2 Units
 

These switches induce a partition of the channels into units. A unit is
 

a set of components upon which all the switches have the same action.
 

For example, a sensor and its interface constitute a unit, for the loss
 

of either one implies the loss of both and the "do-not-use" flag will 

logically disconnect both out of the channel. The partition of a 

channel into units is not dictated by strict rules and the user has much 

liberty. One partition that can be given for the channels of ARCS is 

shown in Fig. 6 . However, one should note that, because each channel 

has access to other channel data by the cross-channel communication 

link, one should consider the computer and sensors of both channel A and 

channel C as units of channel B. A failure in computer A will cause 

computer B to disregard data coming from computer A or from its sensors. 

But a failure in one of the sensors of channel A will only disconnect 

that sensor. 



20
 

fros Cross 

Cha ...IhaneI 

M onitor 

ooitr 

e-sor ,'oe-so -r o. 

:te zron 

froc £ro., 

pro CeSq 

....L ......... ......ar 

Fig. 5. Switches in ARCS. 



21 

Servo
 

Servo 

S}onitor 

Sensor Computer
 

el
I 


(Channe B reprsentedl
 



22 

The units in one channel will be numbered from I to n. Switches are
 

considered as units and are numbered from 1 to k. Because of the
 

symmetry between channels, all channels in ARCS have the same partition.
 

111.2.2 Failure Configuration Vectors
 

When a failure occurs in a unit, the unit behavior becomes potentially
 

incorrect. At any point in time, we can represent the state of an unit
 

(whether or not that unit has suffered a permanent failure) by a binary
 

variable. Let the three vectors AF, BF and CF represent the state of
 

the units in channels A, B and C respectively:
 

AiF = with t -0 if unit i of channel A is 
A <-AflAf 2 

, "Afn > Afi 

fault-free, 

with Afi = 1 if unit i of channel A is 

faulty, 

' Bfn> BF <-Bfl Bf2 ) 


and
 

C{F <Cf, 1cf2'. Cfn> -


The vectors AF, ,F and 0F will be called the failure configuration
 

vector for channel A, B and C respectively. If the state of a unit is
 

irrelevant, an x is put for its state variable. The complete system
 

failure configuration will be represented by r:
 

F <AF BF, cF>. 



23 

111.2.3 Channel Configuration Vectors
 

Following failure occurrences, each channel takes appropriate action by
 

commanding some switches to turn off. The units that are disabled-(or
 

disregarded) by the switch actions are said to be reconfigured out of
 

the channel. The configuration vectors, A R and itindicate whether
 

or not units are configured out of channel A, B and C respectively:
 

AR =<Ar1 Ar2 ' Ar> with Ar1 0 if unit i of channel A is 

not configured out of channel A, 

with Ari = 1 if unit i of channel A is 

configured out of channel A, 

I Brn>
 BR =<Brl, P2 .
 

and
 

>
 .. , Cr'n .
CR <Cr , cr2 , 


Similarly to the failure configuration vectors, a entry of x means that
 

the state (configured in or out) is either one. The complete system
 

configuration will be represented by R:
 

= <A IR 

111.2.4 Channel and System States
 

Both the failure configuration vectors and the channel configuration
 

vectors give a static picture of the system at any point in time. The
 

failure configuration vectors indicate which units are faulty while the
 



24 

configuration vectors point to the units that are reconfigured out of
 

the channels at that time. One should note that it is conceptually
 

possible for one unit, for example a computer, to be reconfigured out of
 

one channel but still kept active in another channel. For example, when
 

a system operates in a triplex mode, a computer failure may not be
 

- detected-by the computer itself - or the computer will ignore the­

failure indications in provenance of the fault-detection mechanisms ­

while the other two channels will note the disagreement.
 

The static state of a channel can be defined as the couple formed of the
 

failure configuration and the channel configuration vectors for that
 

particular channel:
 

AR> = Static State of channel AA = <AF , 

= Static State of channel B
B= <BF, BR> 


= Static State of Channel C.
C Q = <CFI CR> 


The system state is the collection of all three channel states:
 

= <A , B9 CC = Static State of the system.
 

111.2.5 Channel Validity Equations
 

Because the correct functioning of every single unit in a channel is not
 

required for the channel to produce the correct pressures on the voters,
 

there is a boolean expression, V, that relates the correctness of the
 

channel commands to output mechanisms (actuators, displays,...) to the
 

state of the channel units. This expression, V, involves as variables
 



25 

both the failure state of the units , excluding the output units, and
 

the configuration state (whether or not the unit is still configured in
 

the channel). For unit i of any channel (channel A for example),
 

AfIis 1 when the unit is faulty and Ari is 1 when the unit is
 

configured out of the channel. So, in the actual system configuration,
 

unit i correctly performs its function if and only if both Afi and Ari
 

are 0. So, the validity expression, V, can be expressed as a function
 

of the AND of vectors AF and AR:
 

,V(A.R) = 1 implies that channel A in state <A AR> produces 

correct commands to all the output devices, 

' = 0 implies that channel A in state <AF, AR> does not
 

produce correct commands to the output devices.
 

The validity expression does not indicate whether the actual outputs are
 

correct. A faulty output mechanism, like an actuator, can yield
 

incorrect pressures even if the channel is correct. The validity
 

expression is important because the computers control several output
 

devices and a failure in one output device does not influence the
 

correctness of other output devices.
 

The expression V can be easily obtained from the system description. It
 

directly expresses the redundancy that a channel can take advantage of
 

to carry its computations.
 



26 

111.3 State Criticality and Associated Conditions
 

Failures can be globally considered as transitions between static system
 

states. So, the criticality of failures is directly related to the
 

notion of system state criticality.
 

111.3.1 Voter Behavior and its Influence on State Criticality
 

Corresponding actuators in the three channels produce pressures which
 

are force-voted by mechanical voters which position the aircraft flaps.
 

When one of the three pressures is incorrect, the mechanical voter is
 

presented with contradictory forces. The resulting flap position
 

depends upon the behavior of the voter in such a situation. For the
 

completeness of any analysis related to system crash, one must examine
 

carefully how the mechanical voter behaves in such conditions.
 

111.3.1.1 Correct Flap Positioning with one Faulty Actuator
 

The mechanical voters are devices which translate a set of three input
 

pressures, P1, P2, P3' into a flap position. The actual motion of the
 

flap between its initial position and the desired position indicated by
 

the pressures is subject to a differential equation. The final flap
 

position (if there is a steady state solution) depends upon the three
 

pressures P1, P2, P3. A detailed study of the mechanical voter behavior
 

is required to check if the actual final position of the flap is within
 

tolerance when one of the three pressures, let assume p,, differs from
 

the others. Such a analysis of the voter will likely give a range of
 



27 

values for ply as a function of P2 and P3' where the final flap position
 

is within tolerance. Only if this range covers the complete range of
 

values for ply and this for all possible values of P2 and P3' will the
 

voter always adequately'compensate for a faulty pressure (compensation
 

in the sense that the flap position is within tolerance). However, the
 

flap motion is subject to a differential equation, so it is still
 

possible that the flap will reach its final position with large
 

oscillations that may damage the aircraft. So, in addition to an
 

analysis of the static behavior of the voter, one also must analyse the
 

dynamic behavior of the flap motion as a function of the three input
 

pressures , plyP2, P3. 

The complete analysis of the flap motion (including the static behavior
 

of the voter when one input pressure disagrees with the other two and
 

the corresponding motion of the flap) will yield operating ranges where
 

the system operates correctly with two fault-free pressures and a faulty
 

one. These ranges will be called the adequate compensation ranges.
 

Only if the adequate compensation ranges cover all the possible
 

operating ranges with one faulty pressure, will the operating mode - two
 

fault-free pressures, one faulty one - corresponds to a fault-free mode
 

of operation for the system. If it is possible that a faulty actuator
 

which is not disengaged causes potential dangers to the aircraft, for
 

example flap positionings that are slightjy off or aircraft vibrations
 

and oscillations, the operating mode with one faulty pressure at a voter
 

input will be called a dangerous mode of operation.
 



28 

III.3.1.2 Modes of Operation Dictated by the Output Mechanisms
 

The description of the mechanical behavior of the actuators and voters
 

is not very detailed in the ARCS report. However, it is conceivable
 

that several other modes of operation with various degrees of
 

criticality can be defined for the set voter-flap. In general, one can
 

say that the output devices will dictate a partition of the operating
 

modes into several classes with different degrees of criticality. For
 

ARCS, a simple analysis gives the following modes of operation:
 

- All three pressures at the voter inputs agree: the voter is not
 

submitted to undue stresses,
 

- Two input pressures agree, the third one is in disagreement: the
 

voter may or may not compensate adequately depending upon the value
 

of the incorrect pressure,
 

- Two input pressures agree, the third actuator is shut-off; the flap
 

position will be correctly controlled by the two agreeing pressures,
 

- Only one pressure is fed to the voter: the flap position is
 

controlled b3 that pressure,
 

- Two pressures are applied to the voter but they disagree: the flap
 

position will depend upon the relation between the disagreeing
 

pressures,
 

- No pressure is applied: the flap does not move.
 



29 

111.3.2 Modes of Operations and Their Degree of Criticality
 

The modes of operation dictated by the behavior of the output mechanisms
 

need to be extended to take into account, the correctness of the
 

pressures each channel produces. For example, if the voter receives
 

three pressures that agree, it does not necessarily mean that they are
 

the correct pressures. For a system such as ARCS, one can enumerate the
 

various modes of operation:
 

- Each mechanical voter (one per flap) receives three identical
 

pressures that are the correct ones: all the flaps will be correctly
 

moved, the system is fault-free.
 

- Each mechanical voter 'receives at least two correct, identical
 

pressures but none receives a third pressure that disagrees with the
 

other two. At least two actuators for each voter produce the correct
 

pressure and the third one either also produces the correct pressure
 

or is disengaged, thus the system is fault-free (all the flaps moved
 

correctly) and there is no potential danger (no flap oscillations nor
 

slightly-off positioning),
 

- One of the mechanical voters receives only one pressure, the correct
 

one, while all the other voters receive either two or three correct
 

pressures but no incorrect pressures. The system is still
 

fault-free; all the flaps are correctly positioned but the tolerance
 

to further failures is low.
 

- At least one voter receives two correct and one incorrect pressure
 

and all the other voters receive only correct pressures, either one
 



30 

two or three. If the discrepency between the pressures is not too
 

large, (if the voter adequately compensates for it), then the system
 

is still operating correctly. However, this mode of operation is
 

quite dangerous since an increase in the discrepency may produce
 

oscillations or slighly incorrect positioning. Such a mode of
 

operation will be called dangerous aod warrants special study.
 

- The system has failed (not able any longer to position correctly the
 

flaps) but was able to signal the fact to the pilot before issuing
 

any wrong commands to the servos. This is a safe failure; the system
 

has suffered a fail-safe crash.
 

- The system has failed but was not able to signal the fact to the
 

pilot. Thus, the system is still in control of the aircraft but
 

sends wrong positioning commands to the flaps. This is the worst
 

mode of operation.
 

These modes of operation are listed in increasing order of criticality.
 

In general, for any system, one can list all the operating modes and
 

order them by increasing criticality. We will assume, in the following,
 

that the system has d modes of operation, ordered from 1 to d by
 

increasing critcality. One should note that the notion of modes of
 

operation carries far more meaning that the simpler notion of
 

fault-free/failed dichotomy. A failure pattern (successive occurrences
 

of different failures) may take the system from a fault-free state to a
 

failed state, but each individual failure in the pattern will correspond
 

to a transition between different operating modes, in general from a
 

mode with a given criticality to another mode with a higher criticality.
 



31 

111.3.3 Conditions Associated with Operating Modes
 

For the system to be in a given mode of operation, it must satisfy some
 

conditions. These conditions express the requirements on the system
 

state in terms of failure and channel configurations. For example, for
 

the dangerous mode of operation one has the following conditions:
 

For at least one actuator trio, trio U, two channels produce the
 

correct pressure while the third one gives an incorrect pressure
 

(actuator still engaged): This can be expressed in terms of the
 

state variables as follows:
 

([V(A - Aful + Ar4= 0 Servo u of channel A produces 

(VC) B ru )r 
. 

incorrect pressures.
orVAF.ARf) . Ar I BAfu -- Sreufhnl prou1e
(VF. R) . Cfu * 1 )ru 
AAR -A -Au/ 1 Servo u of channel B produces
 

VB) Bru) : incorrect pressures.
BuJ 


orVuVR) f. cru)= 1A'4v(Y.Ah Aru 1 Serv~o u of channel C produces 

(VB FB .A Bu aru) incorrect pressures. 

([V(Ci.JS) -cpu] + c__U ) 

For all other actuator trios, there are either one, two or three
 

correct pressures and no faulty actuator still engaged:
 



32 

V(A9.AR) . Af r = 1
 
AF A A v A v
 vc. Dry rY =1iDf 


V(CF'cR) - cf" Brv 	=1 

or v 0 
V( B.BR) B v fi 1 

V(C.-R) - Cfv •.cry	 : I 

vVD~j Byv Byv:
 
.c R)
V(cF . C fv . C ry 1
 

.or V(A F.AR) . Af v	 Arv =I
 

cRry =
 

or 	V(AF.A ) . Af r
 

Brv =0
 

crv 
 0
 

or A.A0
 

V(BF.BR) B B
Bfv Dry
 

c ry 	 = 0 

or 	Arv = 0
 

Brv 	= 0 

V(CF.cR) . f . rv 

For every operating mode, one can list all the associated conditions in
 

terms of the variables of vectors F and R. The set of conditions for
 

the operating mode with criticality degree d will be referred to as
 

{C d} F
 



33 

It is possible to simplify these conditions by boolean manipulations.
 

It is also possible to express these conditions in a table form that may
 

provide a simpler way to represent the state of the system. r
 

111.3.4 System States that Correspond to a Given Operating Mode.
 

As it was shown, it is possible to find a set of conditions that must be
 

satisfied for the system to be in a given operating mode. These
 

conditions are also sufficient.
 

These boolean conditions provide a mathematical means to find all the
 

states the system can be in for a given operating mode. The system
 

states are given by the combination of the F and R vectors that satisfy
 

the conditions {Cd).
 

All the system states that satisfy the conditions for a given operating
 

mode have the criticality of this operating mode. However, it is
 

possible that some of these states can not actually occur in the
 

systems. A fault pattern that leads the system from an,initial
 

fault-free state to a final state characterized by the failure
 

configuration vectors F will allow only certain actions to be taken.
 

For example,-it is not possible that the failure of one actuator in
 

channel A causes the computer of channel B to be'declared faulty (as
 

long as everything else is fault-fTee). So, once all the possible
 

system states that correspond to a given operating mode are enumerated,
 

it is necessary to study whether or not they can actually occur in the
 

system. This will involve looking at the detection, diagnosisand
 

reconfiguration processes and is the subject of section IV.
 



34 

III.4 A Method to Enumerate All the System States with Given Criticality
 

The process for finding all the system states that can correspond to a
 

given mode 6f operation, hence to a given criticality degree, can be
 

automated and implemented as a computer program. It follows closely the
 

step& described in the previous sections (Fig. 7). The advantages of
 

such an computer implementation are first and foremost that it will
 

yield a complete enumeration of all the potentially dangerous states,
 

and secondly, that it allows fast system analysis, hence, the
 

possibility to study the effects of various system modifications.
 

111.4.1 First Step
 

The first step of the method is to look at the system under study and to
 

find a partition into channels. One also needs to find all the output
 

voters. Careful study of these voters (especially when they are
 

mechanical devices as in ARCS) will tell if, when and with which
 

confidence voters can compensate for faulty inputs. This will give a
 

first partition of the system operating modes ( for example, all inputs
 

in agreement; the majority of the inputs in agreement, all other inputs
 

disengaged; the majority of inputs in agreement, one input disagrees,
 

and all remaining inputs are disengaged, ...
 

III.4.2 Second Step
 

The second step consists in looking at each channel and in finding all
 

the ways a channel can disable/disengage/disregard a piece of logic.
 

This requires a study of the system hardware and of the
 



-35 

Static System Description 

Switches 

Units 

Static System State 
<F, R> 

State Criticality 

'I 
Associated Conditions 

Static States With Static States With Static States With 

Criticality I Criticality 2 . . . Criticality d 

Fig. 7. Process of enumerating the critical states.
 



36 

hardware/software process of reconfiguration (to find the software
 

implemented switches). This will give the set of switches and also a
 

partition of the channel into units (partition with respect to the
 

control of the switces and their action on the system). This step
 

should also provide the controllability and the controlling matrices
 

(which units control the switches and which units are disabled by the
 

switches). This information will be useful while looking at the
 

detection/diagnosis/reconfiguration processes to decide which of the
 

critical states can actually occur.
 

Because of the use of redundancy (both internal redundancy inside the
 

channels and external redundancy such as the use of sensor data from,
 

other channels) one needs to find the conditions that a channel must
 

satisfy in order that the commands it sends to its output devices be
 

correct. These conditions can be expressed as a boolean expression,
 

expression V, that involves the states and configuration (fault-free,
 

faulty, enabled, disabled) of the system units.
 

111.4.3 Third Step
 

The third step consists in listing all the operating modes as functions
 

of the partition induced by the behavior of the output voters and the
 

validity of the channel outputs. For each mode of operation, it is
 

necessary to find the corresponding boolean conditions in terms of the
 

failure vectors, F, the configuration vectors, R, and the channel
 

validity expression.
 



37 

III.4.4 Fourth Step
 

This last step consists in finding all the solutions (all the system
 

states) that satisfy all the conditions for the various operating modes.
 

A complete enumeration of all the solutions may require much computation ­

since it will require looking at every state and checking whether or not
 

it meets the conditions. Some simplification can be obtained if all the
 

channels are similar (taking advantage of the symmetries in the
 

solutions). Also, as xe are principally concerned with the analysis of
 

the system tolerance to the first few failures (i.e. the first, second
 

and third failures), one can significantly reduce the amount of
 

computation if we limit ourselves to them. This step will yield all the
 

system states with a given criticality (the criticality of the operating
 

mode) and with the additional restriction that only a few units have
 

suffered failures (first few failures).
 



38 

IV. FAULT-PATTERNS AND THEIR CRITICALITY
 

IV. Introduction
 

The previous section presented a method to list all the system states
 

with a given criticality. In this section, we will make the
 

correspondance-between the critical system states and the fault-patterns
 

(successive occurrences of failures) that take the system from the
 

initial fault-free state to these critical states. This will provide a
 

method to list all the failure events that can leave the system in a
 

critical, dangerous or failed state without analyzing every single
 

failure.
 

The method to go from the static states to the fault-patterns is
 

illustrated in Fig. 8. First, for each critical state, one has to find
 

all the combinations of failures that can drive the system in such a
 

state (obtained from the failure configuration vectors). The order of
 

occurrences is important since a failure can affect the functioning of a
 

fault-detection mechanism for a later failure. So, this first step will
 

give all the possibly critical fault-patterns that correspond to a given
 

critical state. Secondly, we will look at the detection process and
 

find all the possible error indications that can produced following a
 

failure. Then, one needs to consider the diagnosis process and find
 

which diagnosis will be produced for a given set of error indications.
 

The next step is to find which commands are sent to the switches and
 

what is the final system state. Thus, we will be able to decide
 

whether, and under which conditions, a failure can leave the system in a
 



39 

Initial System State
 

<ro, R0 >

I
 
Single Failure Occurrence
 

F01 

V- ection PjSocu 

List of All Possible
 

Error Indications
 

Diagnosi&P.'oces 

List of All Possible
 

Diagnosis Results
 

Switch Control PAocess
 

List of All Possible
 

Switch Commands 

j Reconfigwwtion Pi'oceS6S 

List of All Possible
 

System Configurations
 

List of All Possible
 

Final States
 

1 > 

Fig.8. Failures and their effects.
 



40 

given state. This process will then be repeated for each of the
 

individual failures that make up the possibly critical fault-patterns.
 

Then, we can decide whether a possibly critical fault-pattern can indeed
 

drive the system into a critical state.
 

This method will provide the list of all the fault-patterns that leave
 

the system in a critical state. Each individual failure in the pattern
 

will be characterized by its location (at the unit level), the list of
 

error indications that is produced, the diagnosis that is generated and
 

the actual commands sent to the system switches.
 

The enumeration of all the critical fault-patterns is very helpful for
 

evaluating the system tolerance to failures. It will indicate which
 

unit(s) is (are) the most critical and, hence, where additional testing
 

will be beneficial. It is also a necessary step before studying the
 

detailed hardware-description of each unit and enumerating all the
 

critical hardware failures. A complete enumeration of all the single
 

and double (without mentioning triple) failures is a' prohibitive task.
 

But the knowledge of the critical fahlt-patterns and their
 

characteristics will sustantially reduce the number of actual failures
 

that need to be analyzed.
 

IV.2 Definitions and Notations
 

IV.2.1 Fault-Patterns
 

A fault-pattern is a succession of failure occurrence. The order in
 

which failures occur can be quite important. For example, if we assume
 



41 

that ARCS is operating in a simplex mode (only one channel up), an
 

undetected failure in a sensor followed by a detected failure in the
 

processor will cause an unsafe system crash. The undetected failure in
 

the sensor will cause wrong commandsto be-issued to.the actuators. On
 

the other hand, if the computer failure (which is detected) occurs
 

first, the computer will be able to signal the pilot, hence, this will
 

be a safe failure. One can represents a fault-pattern that takes the
 

system from the initial fault-free state to a final state with failure
 

vectors AF, B F and C as the series of state transitions:
 

F F dFx20 = <FOP R>- > R ....= <F, RI > >f =<F, Rx> 

Each of the individual failure occurrence will be denoted by dF where i
 

refers to the rank of the failure in the pattern.
 

IV.2.2 Detection Mechanisms and Detection Vectors
 

Each channel of ARCS is provided with fault-detection mechanisms that
 

are either hardware or software. We will call a fault-detection
 

mechanism, also referred to as a detector, every hardware or software
 

component of the channel that can detect the presence of failure. ARCS
 

has the following detectors (Fig. 9):
 

a sensor self-monitor for every sensor,
 

a cross channel sensor monitor (also called SSFD) for every sensor,
 

a computer self-test in every channel,
 

a watchdog monitor for every computer,
 



42
 

RERODUCI3Lr Op 

OA'GIAL PAGE M,O(OR 

C, 00 

Ir~ aSC,, 23te\ 
S1if,, 

.,:........... ...' - ".. . ....... 

| jt~elA Ch... I C C n-! A C 1-11 dc 

... ... .......... 
; : U 1 Prcess 

.......................... 

* L9F imA 

Fig. 9. Fault-detecti~on mechanisms in AB:CS. 



43 

a cross-channel synchronization monitor in every channel, 

a cross-channel output monitor in every channel, 

a servo self-monitor for every servo, 

and a cross-channel servo monitor for every servo.
 

In general, it is quite simple to list all the fault-detection
 

mechanisms for any computer systems. In the following, one will assume
 

that each channel has k fault-detection mechanisms.
 

Following the occurrence of a failure, some of the fault-detection
 

mechanisms may indicate the presence of the failure. Let At. denote the 

binary variable which indicates whether or not detector j in channel A 

has detected the failure: 

AT ... , Ark > with Ati = 0 if detector j of channel A = <At1 , At 


does not give an error indication
 

with Atj= 1 if detector j of channel A 

gives an error indication,
 

,

BT = <Btl , Bt2 ... I Btk>
 

.
and CT = <Ct ct22 ... Ctk >
J 


The vectors AT, B T and CT are called the detection vectors (also referred
 

to as trip vectors). The overall detection vector is denoted by T:
 

T <AT, BT CT> 



44 

IV.2.3 Diagnosis Mechanisms and Diagnosis Vectors
 

When a fault-detection mechanism gives an error indication, it is
 

sometimes required for each channel to perform some diagnosis. -For
 

example, when the cross-channel output monitor in channel B detects a
 

disagreement, the complxter of channel B heeds to test itself, to send
 

information to other channels, to check the validity of other channels
 

(based on the information it receives) and to make a decision based on
 

its fault-status table and past failure history. This process is called
 

the diagnosis process realized by the computer. However, the diagnosis
 

process is not run for every error indication. For example, when the
 

watchdog monitor or the servo self-monitor indicates an error, this
 

information is sent directlyt to the servo self-monitor to command the
 

actuator switch to turn off. The computer does not run the diagnosis
 

program.
 

In general, one will call diagnosis mechanism any component that looks
 

at some of the detectors and makes a decision concerning where the
 

failure is located. In most systems, diagnosis will be performed by the
 

computers (when there is need for diagnosis). However, to be quite
 

general, one will assume that each channel can have more than one
 

diagnosis mechanism (let m represent such diagnosis mechanism). Each
 

diagnosis mechanism looks at some of the indications coming from the
 

detectors and decides where the failure is located inside a 'subset of
 

the channel. So, for each diagnosis mechanism, there is a corresponding
 

diagnosis vector that indicates the decision made by that particular
 

diagnosis mechanism concerning the location of the failure:
 



45 

ADu <Adi, Ad2, Ad,> with Adi = 0 if the diagnosis mechanism
 

of channel A does not locate the
 

failure in unit i of channel A,
 

with Adi = 1 if the diagnosis mechanism
 

locates the failure in unit i of
 

channel A,
 

with Adi = 2 if unit i of channel A is
 

not part of the diagnosis range of
 

the detection mechanism.
 

,

BDu= <Bdl, Bd2 ... Bdn> ,
 

I Cdn>
 CDu <cdl1 cd2 1 ... . 

These diagnosis vectors carry the information that the system has about
 

itself. For notation simplicity, one will use AD (BDor CD) to refer
 

to the set of all diagnosis vectors produced in channel A (B or C):
 

Am> 
AD <AD1' AD2f 


B <BDi, 2 

c " <cD1, c2Y ... 

' 

IcDm>. 

Also, we will use D to refer to the complete system diagnosis: 

D= <ADI , ... I ­

IV.2.4 Switch Control Mechanisms and Switch Vectors
 

When an error indication is produced by a fault-detection mechanism, it
 

is necessary to command some switches in order to reconfigure the faulty
 

unit out of the channel. These commands may be sent directly by the
 



46 

fault-detection mechanisms or by the computer following the diagnosis
 

process. For example, as soon as the watchdog monitor indicates an
 

error, a signal is sent to all the servo self-monitor to order them to
 

turn off the actuator switches. The units that actually control the
 

switches can be different from the units that perform the detection or
 

the fiiagnosis. For example, the control of the actuator switches is
 

done by the servo self-monitor (and not directly by the watchdog
 

monitor). So, a careful analysis of the system needs to take into
 

account the fact that while signals may be sent to the servo
 

self-monitors to order them to turn off the actuator switches, some of
 

these monitors may be faulty and not command their switch to disengage
 

the actuator. When switches are implemented in software, for example,
 

the "do-not-use" flags for the inputs sensors, they are directly
 

controlled by the mechanisms that perform the diagnosis, for example the
 

computer. In general, one will assume that some switches have control
 

mechanisms different from the diagnosis mechanisms. These control
 

mechanisms will be called the switch control mechanisms.
 

So, the switches are controlled either directly by the diagnosis
 

mechanisms or indirectly through the switch control mechanisms. In both
 

cases, one car represent the actual commands issued to the switches by
 

the binary variable s. where s. is one if the switch j is commanded to
3 3
 

turn off;
 

S= <A s , ... , S > with AS = 0 if switch j of channel A is
A A A522 A k A jA1' ' 

not commanded to turn off,
 

with Asi = 1 if switch j of channel A is
 

commanded to-turn off,
 



47 

B8s2' Bsk>
<c~,c2 s>
B3S = <Bs1' .
 

Cs 'Csk >
911 C 2Y
C 


Similarly to the previous sections, S will refer to the set of the three
 

channel switch vectors:
 

S = <A S S, c3>. 

These switch vectors carry all the information concerning the control of
 

the switches after diagnosis. From them, if one knows the state
 

(fault-free or faulty) of every switch, one can deduce the actual system
 

configuration.
 



48 

IV.3 Detection Process
 

IV.3.1 Detection Range
 

Each fault-detection mechanism can not detect failures in all the units.
 

For example the sensor self-monitors can detect failures only in the
 

corresponding sensor. 
 For each detection mechanism, one can list all
 

the units for which it can detect the presence of failures. This will
 

be called the range of the detector. In general, one can use a matrik
 

notation to express the range of detection:
 

N
 

Units --- > Detectors
 

with
 

N = [nij] with nij = 0 if detector j can not detect the presence of
 

failures in unit i,
 

nl .= 1 if detectorj is able to detect the presence
 

of failures in unit i.
 

In ARCS all the channels are identical, so it will be the same matrix
 

for every channel. In systems with dissimilar channels, it will be
 

required to use one detection matrix for every channel. It should be
 

noted that the detection matrices indicate only if failures can be
 

detected. Even if a detector can detect only some of all the failures
 

that can occur in a unit, this unit will still be considered as part of
 

the range of the detector.
 



49 

IV.3.2 Complete Versus Incomplete Detection
 

While most of the fault-detection mechanisms can not detect every single
 

failure in the units they cover, the detectors that use cross-channel
 

comparison are able to achieve complete detection (at least for the
 

first two failures). Thus, one needs to classify the fault-detection
 

mechanisms as providing either complete or incomplete detection. The
 

difference is important since most of the critical system states are
 

reached following failures that are not detected. Furthermore, as it
 

will be our goal to list all the possible fault-patterns along with
 

their detection, diagnosis, switch and reconfiguration vectors, one
 

needs to find all the possible detection vectors that can occur
 

following a failure. If a detector does not achieve 100% detection,
 

then we need to consider that it may or may not detect the failure.
 

Even for the detection mechanisms that use cross-channel comparison,
 

100% detection is not always guaranteed. For example, when two channels
 

are down, the output cross-channel comparison in the third channel
 

becomes a meaningless process (which is not in fact carried out). Thus,
 

complete detection is still dependent upon the system state. In
 

general, it is easy to list the conditions that must be satisfied for a
 

fault-detection by cross-channel comparison to achieve 100% detection.
 

This can be mathematically expressed as:
 

channel state A = A > t0, 1}<AFA> g 

with
 

R - g >
<AF,AB>-----> 0 if, in state <AFAR>, detector j does not achieve
 



50 

complete detection,
 

<AFAR> ------ if, in state <A R detector j achieyes perfect> 1 


detection.
 

IV.3.3 Implementation of the Fault-Detection Mechanisms
 

The fault-detection mechanisms need to use some of the units to perform
 

their detection function. If these units are defective, then the
 

behavior of the fault-detection mechanisms may possibly be affected.
 

For example, the cross-channel output monitor that should always detect
 

the first diasagreement between the channel outputs may not detect it if
 

the computer that performs the comparison is itself faulty It is also
 

possible that a detector will give an erroneous error indication when
 

the units used to perform the detection are faulty. For example, a
 

computer failure may cause the cross-chAnnel sensor monitor to decide
 

that the sensor is faulty when, in fact, it is the computer that is
 

faulty.
 

For each fault-detection mechanism, one can list the set of units that
 

they use. This can be expressed in a matrix form:
 

M

Units ------- > Detectors 

M =Em j] = Detector implementation matrix 

with m.. = 0 if unit i is not used to implement the function 

of detector j, 

with m = 1 if unit i is used to implement the function of 

detector j. 



51 

In ARCS, because all three channels are identical, there will be only
 

one such detector implementation matrix. For systems with dissimilar
 

channels, one matrix per channel will be required.
 

Given the channel failure configuration, the detector implementation
 

matrix makes it possible to list all the detectors which may either
 

produce incorrect error indication or fail to generate an error
 

indication.
 

IV.3.4 Set of All Possible Detection Vectors
 

Given the system initial failure configuration (the F,R vector) and an
 

occurrence of an individual failure (individual failure dF), one can
 

find the set of all possible detection vectors. The first step is to
 

find all the detectors that can detect the failure (using the detection
 

matrix). The second step consists in finding whether some detectors
 

achieve complete detection (using the g function). The third step is to
 

find the set of faulty units that are used to implement the relevant
 

detection functions (using the detector implementation matrix). These
 

three steps yield the set of all detection vectors that can follow that
 

particular failure occurrence:
 

-* dF ­

-------S > AT set of detection vectors for channel A that
 

correspond to failure dF (in state Q),
 

dF
 
B that
set of detection vectors for channel
BF........ > BTI 


correspond to failure dF (in state Q), 



52 

CF
- -> C = 	 set of detection vectors for channel C that 

correspond to failure dF (in state 9). 

For simplicity, we 	will use T to refer to the complete detection:
 

T= <AT BT , cT>. 



53 

IV.4 Diagnosis Process
 

IV.4.1 Diagnosis Mechanisms
 

Sometimes, when a fault-detection mechanism gives an error indication,
 

each channel needs to perform some diagnosis to locate the unit where
 

the failure has occurred. For example, any error indication provided by
 

a cross-channel monitor requires finding which channel is faulty. This
 

can be quite simple, for example in the case of cross-channel servo
 

monitor Diagnosis consists simply in finding which of three servos
 

disagrees with the other two. On the other hand, when a cross-channel
 

output monitor detects an error, the diagnosis is more complex since it
 

is required that two of the three channels reach a consensus. Some
 

other error indications do not require follow-up diagnosis. For
 

example, an error indication in provenance of the watchdog monitor or
 

the sensor self-monitor does not trigger any diagnosis since these
 

fault-detection mechanisms monitor only one unit each.
 

In ARCS, all the diagnoses are performed by the channel computers.
 

However, in general, one can assume that each channel has more than one
 

diagnosis mechanism (up to m). Each diagnosis mechanism looks at only
 

some of the indications provided by the channel fault-detection
 

mechanisms. For example, error indications given by the servo
 

self-monitors are ignored. The set of the error indications that a
 

diagnosis mechanism looks at will be called the input range. Each
 

diagnosis mechanism can locate the failure only inside a subset of the
 

channel units (for example determine whether the failure occurs in the
 



54 

computer of either channel A, B or C). So, the diagnosis performed by a
 

diagnosis mechanism is not a complete system diagnosis. One can call a
 

diagnosis output range the set of units which can be distinguished by a
 

diagnosis mechanism (cf. section IV.2.3).
 

For every diagnosis mechanism, one can define:
 

input range = subset of the channel error indications,
 

output range = subset of the channel units,
 

input = error indications from the input range,
 

output = diagnosis vector,
 

diagnosis algorithm = function relating the output to the input.
 

For every system, it should be possible to obtain the input and output
 

ranges of every diagnosis mechaniism. This is available from the
 

description of the diagnosis algorithms with which the system are
 

provided.
 

IV.4.2 Diagnosis Algorithm
 

The process of going from an error indication to a diagnosis vector is
 

called the diagnosis algorithm. Each diagnosis mechanism has one such
 

algorithm (that can be either software or implemented in hardware). The
 

exact mathematical description of the diagnosis algorithms may be quite
 

complex. However, it is available, from the system description (the
 

software specifications relative to diagnosis). In the following, one
 

will assume that the diagnosis algorithms perform mappings from the
 



55 

detector indication vectors to the diagnosis vectors that are dependent
 

only upon the system state before the failure occurrence:
 

detection algorithm D 
F -AT> ---for diagnosis mechanism j- A Dj 

Tdetection algorithm
BT > 
---for diagnosis mechanism j-
 BDj 

fodetection algorithm
 
CT > <F1 --- for diagnosis mechanism j-> CD 

with 

, 	 adi ='0 if diagnosis mechanism jA j = 	<Adl, Ad2 ... , Adn> with 
diagnoses unit i of channel A as
 

fault-free,
 

with 	adi = I if diagnosis mechanism j
 

diagnoses unit i of channel A as
 

faulty,
 

with 	ad. = 2 if diagnosis mechanism j
 

is not intended to diagnose unit
 

i of channel A.
 

IV.4.3 	Implementation of the Diagnosis Algorithms
 

The diagnosis mechanisms can be faulty and, hence, the diagnosis vectors
 

they produce may be different from those produced by fault-free
 

mechanisms. For example a computer failure may cause the processor to
 

decide that another channel is faulty when it is not so. Thus, one also
 

needs to 'take into account the state (fault-free or faulty) of each
 

diagnosis mechanisms to find all the possible diagnosis vectors that can
 

be produced when an error indication is produced. This requires finding
 

all the channel units used to run the diagnosis algorithms. For example
 



56 

in ARCS, diagnosis is performed by the computers. In general, one can
 

list all the units used by a given diagnosis mechanism to perform its
 

function. Similarly to what was done , for the fault-detection
 

mechanisms, one can use a matrix notation:
 

Units > Diagnosis Mechanisms
 

M1 = Em"ij = Diagnosis Implementation Matrix 

with m'.. = 0 if unit i is.not used to implement the
 

function of the diagnosis mechanism j,
 

with m'.. = 1 if unit i is used in the implementation 

of the function of diagnosis mechanism j.
 

In ARCS, since all the channels are identical, there will be only one
 

such diagnosis implementation matrix (which is extremely simple). For
 

systems with dissimilar channels, one matrix per channel will be
 

required.
 

IV.4.4 Set of All Possible Diagnosis Vectors
 

For each of the detection vectors that can be produced following a
 

failure, (occurrence of failure dF while the system has a failure
 

configuration given by F), it is necessary to find all the possible
 

diagnosis vectors that can result. This can be done in three steps:
 

find all the diagnosis mechanisms that look at the error indications 

of the detection vector, 

for each one, find the diagnosis vector that would be produced should
 



57 

the diagnosis mechanism be fault-free. This can be done using the
 

description of the diagnosis algorithm.
 

find the diagnosis mechanisms that are affected by the failure
 

configuration of the system (either by the failure that causes-the
 

diagnosis to be run or by all the previous failures). This is
 

achieved by looking at the the system failure configuration and the
 

diagnosis implementation matrix, M'. The diagnosis produced by these
 

diagnosis mechanisms can be incorrect. Thus, one needs to consider
 

that every single diagnosis vector can occur.
 

So, for each detector indication vector, one can find the set of all the
 

possible diagnosis vectors that can result:
 

<F, AT> ------- > AA1 } ' { A D2}' ADm)
 

F, >------- 3D1}, BY, . Bm
< >------- > D ..., c .
 

For simplicity in the notations, one can say that a particular detector
 

indication vector, T , in a given system failure configuration, F I
 

yields a set of possible diagnosis vectors, [D}:­

<F, T> ------- > {D. 



DO 

IV.5 Switch Process
 

IV.5.1 Switch Control Mechanisms
 

As it was previously mentioned,, some of the switches are controlled by 

the diagnosis mechanisms while others are under the control of the 

switch control mechanisms. The switch control mechanisms receive 

signals either from the fault-detection mechanisms or from the diagnosis 

mechanisms. In ARCS, all the signals received by the servo 

self-monitors have the same meaning: a request to turn off the actuator 

switch. If the servo monitor is fault-free, reception of any single 

signal will result in a command being sent to the actuator switch to 

disengage. However, one can conceive systems in which the switch 

control mechanisms are also provided with some intelligence to resolve 

possible inconsistencies between the incoming signals. In general, one 

can say that each switch control mechanism receives inputs from some 

fault-detection mechanisms (some components of the detector indication 

vectors) and from the diagnosis mechanisms (some components of the 

diagnosis vectors) and controls the switch according to some function of 

the input signal (for example reception of any signal results in a 

command to the switch to turn off): 

For every switch control mechanism, one has:
 

inputs = subset of the detector indication vectors
 

+ subset of'the diagnosis vectors,
 

outputs = {stay on, turn off) commands to the switches
 

function = relation between the inputs and outputs.
 



59 

For every system, it is possible to list all the switch control
 

mechanisms and to find their inputs and the function they implement.
 

This is available from the hardware and software description of the
 

channels. So, for every detector indication and diagnosis vectors,,it
 

is possible to find what should, be the commands received by all the
 

switches should the switch control mechanisms be fault-free:
 

< T, D >------- S => <A Cs> 

IV.5.2 Implementation of the Switch Control Mechanisms
 

For a complete study, one needs to find which channel units are used to
 

implement the function of the switch control mechanisms. Similarly to
 

what was done for the fault-detection mechanisms and the diagnosis
 

mechanisms, one can use a matrix notation to represent which units are
 

used by the switch control mechanisms:
 

Units ------> Switch switch control mechanisms
 

M" = Em")ij = Switch Control Implementation Matrix 

with m".. = 0 if unit i is not used in the implementation
ij
 

of the switch control mechanism j,
 

with m" = 1 if unit i ia used in the implementation of
 

13 
the switch control mechanism j. 



60 

IV.5.3 Set of All Possible Switch Vectors
 

For each combination of detection and diagnosis vectors, it is necessary
 

to find all the possible combinations of commands that are received by
 

the switch (this in order to find all the possible system
 

configurations). This can be performed in two steps:
 

find all the switches that are controlled directly by the diagnosis
 

(or detection) mechanisms. For each one, find the switch command
 

that corresponds to the particular diagnosis (detection) vector.
 

find all the switches that are controlled through a switch control
 

mechanism. Find the switch control mechanisms that are affected by
 

the failures the system has suffered. This can be obtained from the
 

system configuration vector, R , by using the matrix M".
 

So, for every combination of a detection vector, T , and a diagnosis 

vector, D, one can find the set of all the possible commands that are 

issued to the switches:
 

F, AT, AD >--------> ( }
 

,------->
<F, BT, 
< F, T, ' > -- - - > {C-9 -

For simplicity in the notations, one will write:
 

<F, T >------>> 




61 

IV.6 Reconfiguration Process
 

IV.6.1 Final System State
 

The commands issued to the switches along with the state of the switches
 

dictate completely the system configuration (the R vector). Switches
 

can fail in such a way that either they ignore the commands or they turn
 

off without being issued any command. The first kind of failure van be
 

called unsafe failure since it is far more dangerous for a faulty unit
 

to be enabled than for a fault-free unit to be accidentally disabled.
 

Given the switch vectors and the knowledge of the switch states, one can
 

find the system configuration:
 

<AF , AS> ------- > A ,
 

,
<B BS>-------> B 

<cF, c> ------ > c.
 

which can also be noted as:
 

<t 'g>-------S> >?.I R. 

IV.6.2 Consistent Static System States
 

Section III presented a method to list all the possible static system
 

states with a given criticality. However, as it was mentioned, some of
 

these states could never occur in the actual system. This present
 

section gives a method to find which static states can actually occur.
 



62 

Furthermore, and even more importantly, it also characterizes the
 

fault-patterns that can drive the system in these dangerous states.
 

Fault-patterns were defined as ordering of individual failure
 

occurrences:
 

± dF dF - dF dFx - -

F ---- 2 ------> Fx = F.F1 -...-


For each individual failure in the fault-pattern, it was hown bow to
 

find all the detection vectors that could possibly be produced:
 

<F, d ------- > PT}. 

Then, for each detection vector, one can find all the possible diagnosis
 

vectors that are produced:
 

<F, 7 > > 

For each combination of a detection vector and a diagnosis vector, one
 

can find all the possible combinations of commands that are issued to
 

the switches:
 

<F, T, r>------->s) 

Then, it is quite simple to find the system configuration from the
 

switch vector and the failure states of the switches:
 

Thus, one can find all the possible configuration that a failure pattern
 

can induce on the system. The condition for a static state to be
 



63 

consistent is that the system configuration, the R vector, can be the
 

result of at least one fault-pattern.
 

IV.6.3 Characterization of the Critical Failure-Patterns
 

A critical fault-pattern is one that leaves the system in a critical
 

static state. One can characterize fault-patterns by the detection,
 

diagnosisa nd switch vectors associated with each individual failures.
 

This provides all the information relating to the detection, diagnosis
 

and isolation of every individual failure in the pattern. In general, a
 

critical fault-pattern will be listed as:
 

o 1 dFC > <F.. -- L-> > <Fx, R > = <F , R >dF1 dF dF 

T, 
+ 

T2 Tx
 

S, S2
 

$i S2 Sx
 



64 

IV.7 A Method to List All the Failure-Patterns with a Given Criticality
 

Starting from the enumeration of the critical states with a given
 

criticality, the enumeration of the corresponding critical
 

fault-patterns can implemented as a computer program.
 

IV.7.1 First Step
 

The first step consists in listing all the possible fault-patterns that
 

correspond to a given failure configuration. The failure configuration,
 

F, that should be considered first are those which are part of the most
 

critical static states. The list of fault-patterns that correspond to a
 

given failure configuration F, depends upon what is considered an
 

individual failure (whether individual failures affect only one unit or
 

more). The fault-patterns that correspond to a given failure
 

configuration will be called potentially critical.
 

IV.7.2 Second Step
 

The first part is to find all the fault-detection mechanisms (whether
 

hardware or software).
 

For each fault-detection mechanism, one needs to list all the units for
 

which detection is possible. This gives the matrix N.
 

It is also required to find whether there are detection mechanisms that
 

can achieve perfect detection. In general, only the mechanisms that use
 

cross-channel comparison can achieve perfect detection. For each one of
 

them, one should also find under which conditions perfect detection is
 



65 

achieved.
 

For each fault detection mechanism, one needs to find all the channel
 

units that are used to perform the detection (the matrix M).
 

Then, for each individual failure in a potentially critical
 

fault-pattern, one needs to list all the possible detection vectors.
 

This produces the list of detection vectors associated with a
 

potentially critical failure.
 

IV.7.3 Third Step
 

The first part is to find all the mechanisms that are used to perform
 

diagnosis (either local or global).
 

For each diagnosis mechanism, one needs to find which error indications
 

trigger the diagnosis process and which is the diagnosis algorithm.
 

For each diagnosis mechanism, it is necessary to find all the system
 

units that are used to implement this mechanism. This gives the matrix
 

N'.
 

For each diagnosis mechanism, one needs to find all the possible
 

diagnosis vectors that can be produced as a result of the detection
 

vectors found in step 2.
 

IV.7.4 Fourth Step
 

The first part is to find how switches are controlled. For the switches
 

that are controlled directly by the diagnosis mechanisms,,one must find
 

wnat commands are issued for each diagnosis vector found in step 3.
 



66 

For the switches that are controlled through control mechanism, one
 

needs to find the inputs, outputs and function of such mechanisms.
 

For every switch control mechanism, it is necessary to find which units
 

are used to implement their function. This wi-l-l give the matrix M".
 

For every combination of detection and, diagnosis vectors that is 

produced by step 2 and 3, one needs to find all the possible 

combinations of commands sent, to the switches. This, with the first 

part of step 4, will give all the possible switch vectors.
 

IV.7.5 Fifth Step
 

Given the switch vector and the system failure configuration, one can
 

find the system configuration. If a potentially critical failure
 

pattern (along with its detection, diagnosis and. switch vectors) does
 

not drive the system in a critical static state, then this
 

fault-pattern is not critical (consistency operation).
 

This fifth step yields all the fault-patterns with their detection,
 

diagnosis and switch vectors that drive the system from an initial
 

fault-free state to a critical static state (cf. Fig. i0).
 

One should note that this procedure to enumerate the critical
 

fault-patterns seems to involve much computation. However, since we
 

are principally interested in the system tolerance to the first few
 

failures, the total number of all the possible combinations of
 

detection, diagnosis and switch vectors will be quite manageable.
 



67
 

<F Ro 

dF o-. 

> <F, R'> 
D1 

S1 

dF2 

> 
2 

S2x 

... 

... <Fx,, 

x 

R,> 

dF-. 

D, 

c 

<F R 

Initial Fault-Fred 

State: <F 1?R> 

0' 
<F > 

0 

_ >dF2" 
_ 

1 

01 

12 

1 
__ 

-p 

1, 

* 
xC ) 

dFl" 
>-T<F> 

-

D. 

C 

xC' 

Final State: 

<F ,Rgx> 

dP' 

-1 

F 

D" 

><FR> 

dF2' 

-2 
" 

2 

)C 

> 

' 

dF" 

1'' 
7' 

1 

> P 

' 

Fig. 10. Cri.tical fault-patterns for a critical state.
 



68 

V. CURRENT AND FUTURE RESEARCH
 

V.1. Computer Program for Enumerating the Critical Fault-Patterns
 

We are presently looking at the problems posed by a computer
 

implementation of sections III. and IV. One of the major criteria is
 

generality. Such a program should be applicable to any highly redundant
 

computer system. For this reason, an interactive approach seems more
 

appropriate.
 

The problem of computation complexity needs also to be carefully
 

considered. Enumeration of the static states with a given criticality
 

will be a fairly simple task since we are principally interested with
 

the system tolerance to the first few failures. It is highly likely
 

that most of the computations will take place when listing all the
 

possible detection, diagnosis and switch vectors for each of the
 

individual failures that are part of the potentially critical
 

fault-patterns. Some reduction in the computation can be obtained by
 

using the symmetry between channels. Another method to reduce the
 

computation complexity is to eliminate some of the potentially critical
 

static states before analysing each of the corresponding fault-patterns.
 

For example, it is possible to eliminate some potentially critical
 

system states by noting that some failures can never induce certain
 

reconfiguration actions. Thus, a preliminary gross analysis of the
 

range of possible effects for failures will significantly reduces the
 

nunber of fault-patterns that need to be analyzed.
 



69 

Another problem that is currently under study relates to the diagnosis
 

algorithms. Such diagnosis algorithms are substantial pieces of
 

software. In the case of ARCS, the diagnosis process following an error
 

indication in provenance of the cross-channel output monitors is fairly
 

complex since it may lasts several time frames and involves
 

cross-channel communication. One possibility is to allow the program
 

for critical fault-pattern enumeration to use the actual system
 

diagnosis software as a subroutine. This way, the need to model the
 

diagnosis process (and the corresponding loss of accuracy) is bypassed
 

completely. However, unless the diagnosis software is available in a
 

high level language, this will require to write a simulator.
 

The end goal of this enumeration program is to list all the
 

fault-patterns, with their detection, diagnosis and switch vectors, that
 

take the system from an initial fault-free state to a critical state
 

(cf. Fig. 10). This will already provide a simple way to relate the
 

system coverage to the first few failures to the efficiency of the
 

fault-detection mechanisms, since we can list which of the undetected
 

failures will cause a system crash. However, far more accurate system
 

evaluation can be made if one can map the critical fault-patterns (as
 

described by their detection, diagnosis and switch vectors) onto the
 

physical hardware failures (for example line x stuck-at-one, ...).
 



70 

V.2 Mapping Between Critical Fault-Patterns and Hardware Failures
 

We are presently investigating how to find all the hardware failue
 

(described for example as line x stuck-at-one) which correspond to a
 

given critical fault-pattetn.
 

V.2.1 First Approach: Simulation
 

The first approach under consideration is to use a fault simulator. The
 

enumeration program will provide the list of the most critical
 

fault-patterns. Each individual failure in these critical
 

fault-patterns is characterized by its locatioh (at the unit level),
 

detection, diagnosis and switch vectors. Thus, one can easily list the
 

subset of the system units where a failure can correspond to the first
 

individual failure of one of the most critical fault-patterns. Then,
 

one can simulate each one of these units. The simulation should include
 

the possibility to establish whether failures are detected. The
 

simulation can be either a gate level simulation, if one wishes to
 

characterize the faults down to the gate inputs and outputs, or a higher
 

level simulation (for example at the I.C. chip level). Many such
 

fault-simulators have been developed in relation to test generation and
 

some are commercially available (H.P. TESTAID system for example).
 

If the unit that is simulated is provided with some hardware
 

fault-detection mechanism, the simulation will also provide the list of
 

failures that are not detected. If the unit is tested throught software
 

tests (for example the processor is tested by the test routines), then,
 



71 

we can run the softare tests on the simulated unit. This way, one can
 

get a list of all the failures that will have a detection vector that
 

matches the detection vector specified in the characteristics of the
 

critical fault-patterns.
 

If a failure has the detection vector specified in the *fault-pattern
 

characteristics, then one needs to look at the diagnosis and switch
 

control processes. If the unit that performs the diagnosis is
 

fault-free, then one can run the diagnosis program for this particular
 

detection vector and find out whether the failure is correctly
 

diagnosed. If the diagnosis mechanism is itself affected by the failure
 

(for example if the failure is in the processor), then, one needs to run
 

the diagnosis program on the faulty machine. This can also be done with
 

the simulator. Similarly, one can also simulate the switch control
 

process and decide whether a particular failure has diagnosis and switch
 

vectors that match those specified in the fault-pdttern characteristic.
 

This will yield the list of all the failures in a particular unit that
 

correspond to the first individual failure of a critical fault-pattern.
 

Then, one can use the same method to find all the failures that
 

constitute the second individual failure of the fault-pattern.
 

This method may require a substantial amount of computation since it
 

involves using a fault simulator. It is commonly assumed that a
 

software implemented simulator runs about a thousand time slower than
 

the actual hardware. However, it is believed that this approach is
 

still a valid one. First, one will have to simulate only some of the
 

units, and never the complete system (at the most, it will require
 



72 

simulating one channel). Secondly, since the systems under
 

consideration are highly reliable, it is likely that there will be only
 

a few failures that will satisfy the conditions specified in the
 

fault-pattern characteristics. Thus, when looking for the second
 

individual failures of the fault-patterns, one will have only a very
 

limited number of first failures to consider. One should also note that
 

this approach is far more efficient that a straightforward method that
 

would ignore completely the enumeration of the critical fault-patterns
 

and simulate directly the system behavior for every single, double, and
 

even triple failures.
 



73 

V.2.2 Second Approach: Analysis of the Detection Process
 

One of the major problems with simulation is that it is necessary to
 

simulate all the faults in order to find which ones are not detected. A
 

different approach, that is currently under study, will avoid such a
 

complete enumeration of all the failures.
 

This approach is based upon the observation that detection can be
 

achieved either through hardware mechanisms (parity, encoding) or
 

throught test sets. A hardware detection fault-detection mechanism will
 

yield an error indication if the circuit cuputs invalidate a certain
 

condition (fig. 11). For example, a parity checker will trip if the
 

values on the circuit outputs do not sum up to zero (mod. 2).
 

Similarly, a test set will indicate a failure if the circuit output
 

values, for the inputs specified in the test set, do not match the
 

correct values. So, in both cases, an error indication will -be
 

generated if some boolean conditions are not satisfied. Failures escape
 

detection if the faulty circuits still satisfy the conditions but yet,
 

they produce erroneous outputs. For example, one can state the boolean
 

conditions that must be satisfied for a failure to escape detection by
 

the parity checker for the circuit of Fig. 11:
 

let X represent the input vector,
 

let z1 , z2 , z3 and z4 be the circuit outputs when it is fault-free,
 

let z'1, z'2, Z?3 and z'4 be the circuit outputs when it is faulty,
 

then, the conditions for a failure to go undetected are:
 

z I1 Z'2 e Z'3 q z'4 = 0 for every value of X,
 

and there exist X such that
 

(z 1 z'1) + (z2 e z'2 ) + (z3 z'3 ) + (z4 9 z'
 



74 

ErrorAindication 

1 
I Parity checker 

i-t­
circuit outputsFiC icui. t o sol 


Fig. 11. Example of a circuit with parity checker.
 



75 

For combinational circuits, one can express the circuit faulty behavior
 

(the output functions) as a function of the fault-free functions and the
 

faults if one replaces every line by an AND and OR gates to take into
 

account the fact that the 'line can be fault-free, .stuck-at-one or,
 

stuck-at-zero. Fig. 12 gives an example of such a transformation.-


Thus, the functions z' can be expressed as functions of the fault:
 

z' = z'(X, F)
 

with F = <f1' f2' .... I fk>
 

f. = 00 if line i is fault-free,1 

f. = 01 if line i is stuck-at-one,1 

f. = 10 if line i is stuck-at-zero.1 

Such a description of the faults allows the use of boolean manipulations
 

to find the faults that escape detection (for which the circuit does not
 

satisfy the detection conditions). The problem is analogous to solving
 

a boolean expression, since failures can be represented as extra inputs
 

to the circuit.
 

We are presently studying the relations between the faults with respect
 

to detection. This will allows to reduce significantly the
 

computations. We are also investigating methods to scan circuits for
 

the faults that escape detection. The end goal is to be able to list
 

all the failures that escape detection with a single scanning of the
 

circuit. This involves studying the propagation of the detection
 

conditions throught the circuit.
 

In a parallel effort, we are trying to obtain a very fine partitionning
 

of the units in terms of subunits which would be quite independent with
 



76
 

state of
 

line i
 

line i -

I - - - - - - - - - - - - - - -

Transform of line i
 

Fig. 12-a. Transformation of a line to reflect possible line failures.
 

line 1 E
 

line 2
 

line 7
 
line 3
 

State orln5 
line 4 
 lne
 

Fig. 12cb. Example of a circuit.
 
State of lineT
 

State of line 

ate of linI
 

State cf line 5
 

Fig12 . tafmiFag. tosI1-c. Tansfomedicrcuit
 

State of line 3 State of line 6
 

Fag. 12-e. Transformed circuit.
 

Fig. 12. Circuit transformation to take into effect possible failures.
 



77 

respect to failure detection. This will decrease significantly the
 

complexity of the circuits for which one needs to find the undetected
 

failures.
 



78 

VI. REFERENCES
 

[Bjurman, 1976] 


[Boure, 1972] 


[Siewiorek, 1971] 


[von Neumann, 1976] 


Bjurman, B.E., G.M. Jenkins, C.J. Masreliez, K.L.
 

McClellan, and J.E. Templeman, "Airborne Advanced 

Reconfigurable Computer System (ARCS)," 

NASA Contractor Report 145024, 1976. 

Boute, R., "Equivalence and Dominance Relations between
 

Output Faults in Sequential Machines," Tech. Rep. No. 38,
 

SU-SEL-72-052, Nov. 1972, Stanford University, Stanford,
 

California.
 

Siewiorek, D.P., "An Improved Reliability Model for NMR,'
 

Tech. Rep. No. 24, Digital Systems Laboratory, Stanford
 

University, Stanford, California, Dec. 1971.
 

von Neumann, J., "Probabilistic Logics and the Synthesis of
 

Reliable Organisms from Unreliable Compbnents," Automata
 

Studies (Annals of Mathematical Studies), C.E. Shannon and
 

J. McCarthy, Ed., Princeton Univ. Press, Princeton, NJ,
 

1956, pp. 43-98.
 



1. Report No. 2 Government Accession No 3 Recipient's Catalog No 

NASA CR-145352
 
4 Title and Subtitle 5 Report Date 

January 1978
 
Critical Fault Patterns Determination in Fault-Tolerant S Performing Organization Code
 
Computer Systems
 

7 Author(s) P Performing Organization Report NoProf. g. d. McCluskey - Principal Inves. 

J. Losq - Project leader SEWProject 247 
__________________________________________________________10 Work Unit No
 

9 Performing Organization Name and Address
 

Stanford University 11 Contract or Grant No 

Digital Systems Laboratory NSG-1410 
Stanford, CA 94025 13 Type of Report and Period Covered 

12 Sponsoring Agency Name and Address Contractor Report 

National Aeronautics and Space Administration 14 Sponsoring Agency Code
 

Washington, DC 20546
 

15 Supplementary Notes 

NASA Technical Manager, S. J. Bavuso, FED, NASA Langley 

16 Abstract 

A method is proposed which attempts to enumerate all the critical fault-patterns
 
(successive occurrences of failures) without analyzing every single possible fault.
 

The intent of this study is to develop a technique for predicting or measuring
 
coverage parameters for fault-tolerant computing systems.
 

17 Key Words (Suggested by Author(s)) 18 Distribution Statement 

Coverage
 
Fault Analysis Unclassified - Unlimited
 
Reliability
 

19 Security Classif (of this report) 20 Security Classtf (of this page) 21 No of Pages 22 Price* 

unclassified unclassified 78 1 $6.00
 

For sale by the National Technical Information Service, Springfield Virginia 22161 


