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Abstract 

One of the key issues in the design of Multiprocessors 

System-on-Chip (MP-SoCs), multicomputers, and peer-

to-peer networks is the development of an efficient 

communication network to provide high throughput 

and low latency and its ability to survive beyond the 

failure of individual components. Generally, the faulty 

components may be coalesced into fault regions, which 

are classified into convex and concave shapes. In this 

paper, we propose a  mathematical solution for 

counting the number of common fault patterns in a 2-D 

mesh interconnect network including both convex 

(|-shape, ||-shape, �-shape) and concave (L-shape, U-

shape, T-shape, +-shape, H-shape) regions. The 

results presented in this paper which have been 

validated through simulation experiments can play a 

key role when studying, particularly, the performance 

analysis of fault-tolerant routing algorithms and 

measure of a network fault-tolerance expressed as the 

probability of a disconnection. 

1. Introduction 

Advances in VLSI technology will soon allow a single 
chip to contain more than one billion transistors, 
indicating that a large number of processing units (such 
as CPU, DSP, multimedia processor) shall be 
integrated into one packaged chip. In these systems, 
communication resources are competed by the vast 
volume computational resources. Over the recent years, 
a new trend in the design of communication 
architecture in multi-core Systems-on-Chip (SoCs) has 
appeared in the research literature. In particular, 
researchers in [1] have recommended that a complex 
SoC can be viewed as a micro-network of multiple 
blocks due to the fact that this trend converges to the 
Networks-on-Chip (NoCs) solution. With a 
communication-centric design style, NoC was proposed 
to mitigate the complex communication problems. 

Interconnect structure of regular high performance 
systems such as multicomputers is a promising 
architecture to achieve high performance NoC design. 
The interconnect networks in such systems have 
become the center of focus, because the network 
structures and topologies, as well as the processing 
elements greatly influence the system cost 
(complexity), performance (throughput), and reliability 
(fault-tolerance) [2, 3]. The design of NoCs trades-off 
several important choices, such as topology, routing 
strategy, and application mapping to the network 
nodes. Nowadays there are some experimental NoCs 
being developed such as SPIN [4], aSOC [5], CLICHÉ 
[6], and OCTAGON [7].  

The NoC system is composed of a large number of 
interconnected components (such as processors, 
embedded memories, and intermediate processor 
blocks) where communication is achieved by sending 
messages over a scalable interconnect network. While 
providing adequate Quality-of-Service (QoS) under 
performance constraints will continue to present a 
major design concern, achieving on-chip fault-tolerant 
communication will become increasingly more 
important. Therefore, fault-tolerance is becoming a key 
concern in designing parallel computer systems, MP-
SoCs, multicomputers, and cluster computers. Fault-
tolerant algorithms in such systems aim at providing 
continuous operations in the presence of one or more 
faults by allowing the graceful degradation of system.  

In recent years, many researchers have addressed to 
several issues in the field of fault-tolerance and 
reliability analysis of large scale parallel and 
distributed systems [4-16]. These researches span a 
diverse range of systems and applications such as 
massively parallel processors [8], cluster-based systems 
[9], mobile systems [10], sensor networks [11], and 
more recently network on chip [1].  

The simplicity and accuracy of analytical model as an 
alternative to simulation make it an attractive and 
effective tool for characterizing the performance trade-
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off. A model attempts to explain behaviors of a system, 
using a set of simple and understandable rules. The 
research presented in this paper use theoretical results 
of combinatorics to enumerate the number of 
occurrences of different common fault patterns in a 
mesh network. 

The paper is organized into five main sections. 
Section 2 reviews some definitions and background of 
the structure of mesh networks. Moreover, the concept 
of fault models and fault patterns used in the paper is 
introduced in this section. In Section 3, the general 
solution to compute the number of common fault 
patterns occur in the mesh interconnect topologies has 
been proposed. Section 4 confirms the proposed 
mathematical expressions using a simulation approach. 
Finally, Section 5 concludes our study and presents 
possible directions for future work. 

2. Preliminaries  

This section initiated by a discussion on 2-D mesh 
structure and then describes the necessary background 
information that is used in the paper. 

2.1 The Mesh topology 

A 2-D mesh with N = R×C nodes has an interior node 
degree of 4 and E = 2×R×C−R−C channels. Each node 
u has an address (ux , uy), where ux ∈{0,1,2,…, R−1}, 
uy ∈{0,1,2,…, C−1}. Two nodes u: (ux , uy) and  
v: (vx , vy) are connected if their addresses differ in one 
and only one dimension, say dimension x. Moreover, 
ux – vx =1. Similarly, if they differ in dimension y, 
then uy – vy =1. The mesh topology is inherently 
asymmetric as a result of the absence of the wrap-
around connections along each dimension. Thus, nodes 
at the corners and edges in the network have two and 
three neighbors, respectively.   

2.2 Fault models 

The fault-tolerant computing literature is extensive and 
thorough in the definition of fault models for the 
treatment of faulty digital systems. Faults in a network 
can take many forms, such as hardware faults when a 
node or a link stops to function, software bugs, or 
malicious sniffing or removal of packets. In this paper, 
we shall focus on hardware faults only. Hardware faults 
may be present at network startup time, in which case 
the fault is considered to be static [3, 12, 14]. Routing 
tables can be calculated based on knowledge of these 
faults, and loaded into each routing node before the 
network is made available for traffic. In contrast, a 
dynamic fault occurs while the network is running. To 

avoid shutting down and restarting the network 
manually, there are approaches which allow automatic 
reconfiguration. These approaches might refuse new 
packets access the network until reconfiguration is 
completed. Other approaches such as adaptive routing 
algorithms can also be used. 

2.3 Fault patterns 

Adjacent faulty nodes are coalesced into fault regions, 
which may lead to different patterns of failed 
components. To analyze the performance of fault-
tolerant systems, it is important to identify and quantify 
the fault regions, which may occur in the network. 
Faulty regions extended by faulty components, may 
form convex (also known as block faults) or concave 
shape [3, 12-16].  
 
Definition [3, 12, 13]: A convex region is defined as a 

region F in which a line segment connecting any two 

points in F lies entirely within F. If we change the 

“line segment” in the standard convex region 

definition to “horizontal or vertical line segment”, the 

resulted region is called rectilinear convex segments. 

Any region that is not convex is a concave region.  

Examples of convex regions are |-shape, �-shape and 
concave regions are L-shape, U-shape, T-shape, H-
shape, +-shape. Figure 1 illustrates common types of 
convex and concave fault regions in a mesh network. 

  
 

(a) The ||-shaped region 
 

(b) The H-shaped region 
 

  
 

(c) The �-shaped region 
 

 
(d) The +-shaped region 

Figure 1: Examples of convex and concave fault patterns in a  
2-D mesh interconnect network. 

3. The mathematical model  

In this section, we propose a general solution to 
enumerate the number of occurrences of fault patterns 
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in the mesh topology. We begin by establishing some 
conventions. Let Fn

 denote the fault region constructed 
by n faulty nodes (n > 2). Some of the common fault 
patterns occurring in the network are depicted in Figure 
1. Our main purpose is to compute the number of 
occurrences of Fn

 in a given network with a total of N 
nodes. Let Φ(Fn) denote the total number of 
occurrences of pattern Fn conditioning on n faulty 
nodes in a mesh. We also assume that the probabilities 
of node failure in the network are equally alike and 
independent of each other. Due to the asymmetric 
property of the mesh topology, it is necessary to 
compute the Φ(Fn) for each shape separately. In what 
follows, we calculate Φ(Fn) for five common fault 
patterns. However, by using the same approach, 
enumeration of the other fault patterns can be realized 
for each shape.    

Case 1 (the |-shape): The simplest fault pattern is 
constructed when all n faulty nodes lie in a straight 
line. It is noteworthy to mention that we have to 
distinguish between a horizontal and vertical line in a 
mesh with R rows and C columns. We would like to 
enumerate all cases that is possible for a line to be 
embedded in the mesh without being distorted. We 
assume that n ≤ C for the vertical line and n ≤ R for the 
horizontal line. It is clear that a line may rest in C 
places for vertical case and R places for horizontal line. 
Moreover, for each placement there are R−n safe 
positions that a vertical line can be allocated and C−n 
safe positions for horizontal case. It follows 
immediately from the above discussion that for the 
vertical line, Φ(Fn) can be calculated as  

Φ(Fn) = (R− n) × C (1)

 

Similarly, by exchanging the roles of R and C, we have 
the following equation for the horizontal line as  

Φ(Fn) = (C − n) × R (2)

 

Case 2 (the L-shape): Another common fault pattern 
is L-shape. In order to enumerate the number of L-
shaped fault patterns with n faulty nodes we employ a 
form of L which is illustrated in Figure 2. The number 
of L-shaped patterns in which their related line 
segments contain i and x faulty nodes can be 
represented as  

L(i, x)= (R− i) × (C− x), (3)

 

where x = n− i.    

By the definition above and noting that the variable i is 
in [1, n −2] interval, the number of L-shapes in a mesh 
network can be derived as 

2

1
( , )

n

mesh
i

L L i x
−

=
=∑  (4)

 

 

On the other hand, depending on the location of each 
pattern in the network, there are various coefficients of 
rotation and reflection. Let 

nϕℵ indicate the number of 

ways that a pattern Fn can be reflected in a mesh and 
let

nFℜ denote the number of ways that Fn can be 

rotated in a given network without affecting its shape 
and topology. These parameters are heavily dependent 
on the shape of Fn. It can be easily shown that the 
values of 

nFℜ and 
nϕℵ for the L-shaped pattern are the 

same and equal to 4. We can therefore obtain Φ(Fn)  as      

Φ(Fn) = 
2

1
4 ( , )

n

i
L i x

−

=
×∑    (5)

 

 

Case 3 (the U-shape): Now, let us consider the U-
shaped fault pattern. To enumerate all cases in which 
the U-shaped pattern can be embedded in a mesh, we 
use the following approach. As it can be seen in Figure 
3, the U-shaped fault pattern consists of a single line 
which is joined to an L-shaped pattern. Thus, the 
number of different L-shaped patterns for each 
connected line yields the following summation   

 ( , 1)
i

L i x −∑   
(6)

 

Moreover, the length of each connected line may be 
variable and any node that is added to one side of the L 
may decrease one node from the other side. So, for 
each new case we should enumerate the number of 
possible L-shaped patterns that is denoted by 

2

2 0
( 2, 2)

n k

k i
L i x k

∞ −

= =
− − −∑ ∑   (7)

 

where subscripts k and i are relating to add one node in 
the line segment and the L-shape, respectively. In the 
case that the vertical line segments of pattern U are 
equivalent (which is referred as the balanced U), the 

Figure 2: The L-shaped fault 
region in a mesh network; the 
variables i and x in Equation 
(3) have been showed. 
 

Figure 3: The U-shaped 
fault region is constructed 
from an L and a straight line. 
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values of 
nϕℵ and 

nFℜ are 1 and 4, respectively. In the 

unbalanced case, however, 
nϕℵ and 

nFℜ are identical 

and equal to 4. Therefore, in Equation (7), we have to 
distinguish these two cases. That is   

     
2( 1)

2 0

2

( ) ( 2, 2)

( 2 3, 1)

[ ]
n n

n

n k

k i

k

L i x k

L n k k

ϕ ϕ

ϕ

∞ − −

= =

∞

=

ℵ + ℜ − − −

+ ℜ − − −

∑ ∑

∑
  (8)

 

By using the above formula, Φ(Fn) can be described in 
a general form which is given by 

2( 1)

2 0
( ) = 4 2 ( 2, 2)

( 2 3, 1)

[

]

n k

n
k i

F L i x k

L n k k

∞ − −

= =
Φ × × − − −

+ − − −

∑ ∑
  (9)

 

 

Case 4 (the T-shape): One of the most common fault 
patterns is T-shape. For counting the number of pattern 
T in a mesh, we first represent the following 
proposition. 

Proposition: let n be the number of faulty nodes in a 

mesh network. Then, we can propose the following 

expression Tmesh (n) =Umesh(n −1), for n ≥ 5.  

Proof: Take U as an arbitrary pattern with n faulty 

nodes. To compute the number of U-shaped patterns 

we assume that one of its line segments is being fixed 

such that we can enumerate the number of existing L-

shaped patterns. Therefore, the corresponding line 

segment may be altered using an appropriate manner. 

To enumerate the number of T-patterns, let the 

unchanged line segment be in the opposite direction so 

that we can compute the number of L-shaped patterns 

(see Figure 4). However, in this case we need to 

identify the number of L-patterns in which their 

intersection point (depicted by k in Figure 4) is being 

fixed. To this end, it is required to append this point to 

the other fixed vertices in the pattern. Consequently, 

the number of T-patterns would be equal to the number 

of U-patterns with a number of faulty nodes minus 

one.♦                  

By using the above theorem, Φ(Fn) can be expressed as 
2 3

2 0
( ) = 2 [2 ( 2, 2)

( 2 4, 1)]

n k

n
k i

F L i x k

L n k k

∞ − −

= =
Φ × × − − −

+ − − −

∑ ∑   (10)

 

Case 5 (the H-shape): Finally, to enumerate the 
number of H-shaped fault patterns we observe that the 
pattern H may be formed of an U-shape added to two 
vertical line segments that are joined to two 
intersection vertices of U (see Figure 3). Therefore, the 
number of H in a mesh network can be expressed as  

meshU∑∑   (11)

 

The lower and upper limits of summation terms in 
Equation (11) must be chosen due to the fact that in an 
H-shaped fault pattern the length of any vertical line 
segment may not be less than one and at least one fault-
free column of nodes must be considered between 
every two line segments. As a result of the discussion 
above, we can determine the related mathematical 
formula as 

 Φ(Fn) =
7 6

1 1

n n j

mesh
j l

U
− − −

= =∑ ∑   (12)

 

Calculating the Φ(Fn) for other patterns, except 
�-shape, is treated in a similar manner. For �-shaped 
fault pattern, the number of ways to construct a 
rectangular region from n nodes should satisfy the 
following conditions  

 ( , ( 1) )
i

i i i

x

L x n x x−∑   
(13)

 

where n divides xi and is described in terms of its 
power-prime factorization [17]. That is   

1

i
m

i
i

n x
α

=
= ∏   (14)

 

In Table 1, we list the mathematical equations that are 
used to calculate the number of occurrences of the most 
common fault patterns in an R × C mesh network. Note 
that, all equations hold when R=C. However, in the 
case that R≠C, L(i, x) will be replaced by the following 
equations 

L(i, x) = (R − i) × (C − x)  (15)

 

or  

L(i, x) = (C − i) × (R − x)  (16)

 

4. Simulation experiments 

In the previous section, we have derived mathematical 
expressions to calculate the total number of 
occurrences of pattern Fn conditioning on n faulty 
nodes that can arise in the mesh networks. These 
analytical expressions form the core of other fault 
patterns enumeration in other topologies and can be 
extensively generalized.  

Figure 4: The T-shaped 
fault region in a mesh 
network; variable k shows 
the intersection point. 
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Table 1: The mathematical expressions to calculate the number of the most common fault patterns in a mesh network

†
. 

Fault Pattern Mathematical expression  

|-shape (R−n)×C  or  (C−n)×R 

=-shape ( )
3

0 0
, 2, 2 , ; , , 0

n C

i j
R i R x C j Rα β γ α β γ β α β γ

−

= =
× × = − = − + = − − ≤ >∑ ∑  

||-shape ( )
3

0 0
, 2, 2 , ; , , 0

n R

i j
C i C x R j Cα β γ α β γ β α β γ

−

= =
× × = − = − + = − − ≤ >∑ ∑  

□-shape ( , ( 1) )

i

i i i

x

L x n x x−∑      ;
1

i
m

i
i

n x
α

=
= ∏ and n divides xi 

L-shape 
2

1
4 ( , )

n

i
L i x

−

=
×∑  

T-shape 
2 3

2 0
4 ( 2, 2) ( 2 4, 1)( )

n k

k i
L i x k L n k k

∞ − −

= =
× − − − + − − −∑ ∑  

U-shape 
2( 1)

2 0
8 ( 2, 2) ( 2 3, 1)( )

n k

k i
L i x k L n k k

∞ − −

= =
× − − − + − − −∑ ∑  

+-shape 
3 2 2

1 1 1
( , )

n n k n

k j i
L i x

− − − −

= = =∑ ∑ ∑  

H-shape 
7 6

1 1

n n j

mesh
j l

U
− − −

= =∑ ∑  

† For the case R≠C, the function L(i, x) is set to (R − i) × (C − x), or (C − i) × (R − x). 

Table 2: Simulation results of the number of fault patterns in the mesh networks for several combinations of network 
sizes and different number of failed nodes. 

Fault 

Pattern 
n 2 ××××3 4 ××××4 5××××6 8××××8 10 ××××10 13 ××××4 14 ××××18 17 ××××22 20 ××××20 32 ××××32 

5 0 0 16 64 120 36 376 592 640 1792 
8 0 0 0 16 60 24 280 475 520 1600 |-shape 

15 0 0 0 0 0 0 56 202 240 1152 
5 2 24 62 168 288 114 824 1270 1368 3720 
8 0 32 238 1028 2012 458 6724 10806 11732 33956 U-shape 

15 0 0 0 704 3408 360 25024 46550 51888 180000 
5 0 40 136 424 760 256 2296 3592 3880 10792 
8 0 0 100 1040 2360 460 8960 14810 16160 48560 T-shape 

15 0 0 0 24 840 96 19656 42432 48360 190632 
5 0 0 0 0 0 0 0 0 0 0 
8 0 6 22 70 126 42 382 598 646 1798 □-shape 

15 0 0 10 48 96 18 328 530 576 1680 
5 0 4 12 36 64 22 192 300 324 900 
8 0 0 54 384 824 118 3024 4974 5424 16224 +-shape 

15 0 0 0 36 1204 62 20020 40898 46332 176748 
5 0 0 0 0 0 0 0 0 0 0 
8 0 20 85 300 560 155 1780 2825 3060 8700 H-shape 

15 0 0 16 8744 39776 5936 235320 421854 467136 1553904 
5 0 60 456 3444 10224 1320 84552 201120 233244 1727940 
8 0 3 210 3087 11340 66 120666 299880 341145 2724435 

||-shape 
(vertical) 

15 0 0 0 84 2016 0 126672 376320 397404 4127340 
5 0 60 440 3444 10224 1572 84320 200760 233244 1727940 
8 0 3 100 3087 11340 2016 111384 282240 341145 2724435 

=-shape 
(horizontal) 

15 0 0 0 84 2016 1092 76160 276360 397404 4127340 
5 0 40 136 424 760 256 2296 3592 3880 10792 
8 0 0 40 416 944 184 3584 5924 6464 19424 L-shape 

15 0 0 0 4 140 16 3276 7072 8060 31772 
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Figure 5: Pseudocode to compute the number of fault 
patterns in a mesh network. 

An experimental approach is necessary to verify the 
mathematical expressions that have been developed in 
this paper. A program has been developed which 
simulates the analytical model. The objective of the 
simulation is to enumerate the number of fault pattern 
occurrences in the mesh networks for different number 
of faulty nodes. Figure 5 indicates the algorithm used 
in the simulation methodology. Table 2 reveals the 
results obtained from simulation experiments and 
mathematical expressions in the 2×3, 4×4, 5×6, 8×8, 
10×10, 13×4, 14×18, 17×22, 20×20, and 32×32 mesh 
networks when the number of faulty nodes is set to  
n = 5, 8, 15. 

5. Conclusions                    

A large number of fault-tolerant routing algorithms 
have been proposed in the literature for parallel 
computer systems. To study the performance behavior 
of these algorithms, one must investigate the 
topological shapes of fault patterns, which can be 
categorized to convex (|-shape, ||-shape, and �-shape) 
and concave (L-shape, U-shape, +-shape, T-shape, and 
H-shape) regions. In this paper, we have derived 
mathematical expressions to calculate the number of 
common fault patterns in the mesh networks. The 
novelty of the proposed expressions lies in their 
simplicity and modularity. Since, successive failures 
might eventually lead to a situation of disconnected 
network topology, attempting to propose a probabilistic 
measure of network disconnection expressed as a 
probability of occurrences of a fault pattern may be a 

more challenging extension of our approach in future 
directions. 
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00  Subroutine MakePattern (PatternType, FaultyNodes)  
01   for all available shapes with PatternType and FaultyNodes    

02         do   build four main vertices for each fault pattern 
03   Program PatternCount  
04 input  Row, Col, FaultyNodes, PattrnType 

05     Count ← 0 
06   if construction of the pattern with given FaultyNodes is   
07       impossible then  return   0 
08        MakePattern (PatternType, FaultyNodes)   
09 for each constructed pattern do          
10       Shape.Width ← Max (width of four main vertices) 
11                                             − Min (width of four main vertices) 
12 /* Shape.Width is the width of a specific pattern */   
13      Shape.Height ← Max (height of four main vertices) 
14                                             − Min (height of four main vertices) 
15   /* Shape.Height is the height of a specific pattern */ 
16       for i ← Shape.Width to Row do      
17                          for j ← Shape.Height to Col do   
18                               Count ← Count +1   
19    return Count    
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