3,921 research outputs found

    An Approach for Minimizing Spurious Errors in Testing ADA Tasking Programs

    Get PDF
    We propose an approach for detecting deadlocks and race conditions in Ada tasking software. It is based on an extension to Petri net-based techniques, where a concurrent program is modeled as a Petri net and a reachability graph is then derived and analyzed for desired information. In this approach, Predicate-Action subnets representing Ada programming constructs are described, where predicates and actions are attached to transitions. Predicates are those found in decision statements. Actions involve updating the status of the variables that affect the tasking behavior of the program and updating the Read and Write sets of shared variables. The shared variables are those occurring in sections of the program, called concurrency zones, related to the transitions. Modeling of a tasking program is accomplished by using the basic subnets as building blocks in translating only tasking-related statements and connecting them to produce the total Predicate-Action net model augmented with sets of shared variables. An augmented reachability graph is then derived by executing the net model. Deadlocks and race conditions are detected by searching the nodes of this graph. The main advantage offered by this approach is that the Predicate-Action extension of the net leads to pruning infeasible paths in the reachability graph and, thus, reducing the spurious error reports encountered in previous approaches. Also, this approach enables a partial handling of loops in a practical way. Implementation issues are also discussed in the paper

    Design of an integrated airframe/propulsion control system architecture

    Get PDF
    The design of an integrated airframe/propulsion control system architecture is described. The design is based on a prevalidation methodology that uses both reliability and performance. A detailed account is given for the testing associated with a subset of the architecture and concludes with general observations of applying the methodology to the architecture

    QUEST/Ada (Query Utility Environment for Software Testing of Ada): The development of a prgram analysis environment for Ada, task 1, phase 2

    Get PDF
    The results of research and development efforts are described for Task one, Phase two of a general project entitled The Development of a Program Analysis Environment for Ada. The scope of this task includes the design and development of a prototype system for testing Ada software modules at the unit level. The system is called Query Utility Environment for Software Testing of Ada (QUEST/Ada). The prototype for condition coverage provides a platform that implements expert system interaction with program testing. The expert system can modify data in the instrument source code in order to achieve coverage goals. Given this initial prototype, it is possible to evaluate the rule base in order to develop improved rules for test case generation. The goals of Phase two are the following: (1) to continue to develop and improve the current user interface to support the other goals of this research effort (i.e., those related to improved testing efficiency and increased code reliable); (2) to develop and empirically evaluate a succession of alternative rule bases for the test case generator such that the expert system achieves coverage in a more efficient manner; and (3) to extend the concepts of the current test environment to address the issues of Ada concurrency

    From types to type requirements: Genericity for model-driven engineering

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-011-0221-0Model-driven engineering (MDE) is a software engineering paradigm that proposes an active use of models during the development process. This paradigm is inherently type-centric, in the sense that models and their manipulation are defined over the types of specific meta-models. This fact hinders the reuse of existing MDE artefacts with other meta-models in new contexts, even if all these meta-models share common characteristics. To increase the reuse opportunities of MDE artefacts, we propose a paradigm shift from type-centric to requirement-centric specifications by bringing genericity into models, meta-models and model management operations. For this purpose, we introduce so-called concepts gathering structural and behavioural requirements for models and meta-models. In this way, model management operations are defined over concepts, enabling the application of the operations to any meta-model satisfying the requirements imposed by the concept. Model templates rely on concepts to define suitable interfaces, hence enabling the definition of reusable model components. Finally, similar to mixin layers, templates can be defined at the meta-model level as well, to define languages in a modular way, as well as layers of functionality to be plugged-in into other meta-models. These ideas have been implemented in MetaDepth, a multi-level meta-modelling tool that integrates action languages from the Epsilon family for model management and code generation.This work has been sponsored by the Spanish Ministry of Science and Innovation with projects METEORIC (TIN2008-02081) and Go Lite (TIN2011-24139), and by the R&D program of the Community of Madrid with project “e-Madrid” (S2009/TIC-1650)

    The Watchdog Task: Concurrent error detection using assertions

    Get PDF
    The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined

    A programming-language extension for distributed real-time systems

    Get PDF
    In this paper we propose a method for extending programming languages that enables the specification of timing properties of systems. The way time is treated is not language specific and the extension can therefore be included in many existing programming languages. The presented method includes a view on the system development process. An essential feature is that it enables the construction of (hard) real-time programs that may be proven correct independently of the properties of the machines that are used for their execution. It therefore provides a similar abstraction from the execution platform as is normal for non-real-time languages. The aim of this paper is to illustrate the method and demonstrate its applicability to actual real-time problems. To this end we define a simple programming language that includes the timing extension. We present a formal semantics for a characteristic part of the language constructs and apply formal methods to prove the correctness of a small example program. We consider in detail a larger example, namely the mine-pump problem known from the literature. We construct a real-time program for this problem and describe various ways to map the program to an implementation for different platforms

    The development of a program analysis environment for Ada: Reverse engineering tools for Ada

    Get PDF
    The Graphical Representations of Algorithms, Structures, and Processes for Ada (GRASP/Ada) has successfully created and prototyped a new algorithm level graphical representation for Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and thus improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under the Virtual Memory System (VMS) on a VAX 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. In Phase 3 of the project, the prototype was prepared for limited distribution (GRASP/Ada Version 3.0) to facilitate evaluation. The user interface was extensively reworked. The current prototype provides the capability for the user to generate CSD from Ada source code in a reverse engineering mode with a level of flexibility suitable for practical application

    A survey of program slicing for software engineering

    Get PDF
    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field
    corecore