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ABSTRACT 

We propose an approach for detecting deadlocks and race conditions in Ada tasking 

software. It is based on an extension to Petri net-based techniques, where a concurrent 

program is modeled as a Petri net and a reachability graph is then derived and analyzed for 

desired information. In this approach, Predicate-Action subnets representing Ada 

programming constructs are described, where predicates and actions are attached to 

transitions. Predicates are those found in decision statements. Actions involve updating the 

status of the variables that affect the tasking behavior of the program and updating the Read 

and Write sets of shared variables. The shared variables are those occurring in sections of the 

program, called concurrency zones, related to the transitions. Modeling of a tasking program 

is accomplished by using the basic subnets as building blocks in translating only tasking

related statements and connecting them to produce the total Predicate-Action net model 

augmented with sets of shared variables. An augmented reachability graph is then derived by 

executing the net model. Deadlocks and race conditions are detected by searching the nodes 

of this graph. The main advantage offered by this approach is that the Predicate-Action 

extension of the net leads to pruning infeasible paths in the reachability graph and, thus, 

reducing the spurious error reports encountered in previous approaches. Also, this approach 

enables a partial handling of loops in a practical way. Implementation issues are aslo 

discussed in the paper. 

Index terms: Ada tasking, concurrent programs, deadlock detection, Petri net 

applications, race conditions, software testing, static analysis. 



1. INTRODUCTION 

Software testing is an important phase in the development lifecycle since it has an 

important effect on the reliability of the software in operation. Testing is a systematic, though 

nonformal, validation method that aims at gaining confidence in the correctness of a program. 

It is costly and difficult for sequential as well as concurrent software [Hausen 84, Tai 89b]. 

The growing use of concurrent computers, centralised, parallel or distributed, for 

solving a variety of problems, accentuates the need for more research in the area of testing 

concurrent programs. In particular, there is a need for developing automated tools to reduce 

the complexity and the effort involved. Research in this area is still in its early stages. 

Testing concurrent software is more difficult than sequential software testing because in a 

concurrent program a number of processes are considered. These processes may run, on the 

target machine, on several processors. They communicate and synchronize with each other in 

order to produce a total solution. In such a concurrent processing environment, a number of 

factors contribute to the complexity of testing the software. The main factors are different 

processor speed, unpredictable scheduling of processes and nondeterministic constructs in 

languages used for asynchronous processing. These factors lead to nondeterministic sequence 

of execution and cause the reproducibility or replay problem [Tai 85, 89a, 89b], where 

different executions of the program may yield different results. Moreover, if shared variables 

are allowed in the programming language, concurrent processes may enter a race condition. 

In addition to the sequential computational and domain errors [Howden 76], concurrent 

programs may contain synchronization and concurrency errors and anomalies. The most 

important of these are deadlocks and data-usage anomalies, namely potential race conditions 

on shared global variables. The term deadlock is used in this paper and in most of the testing 

literature to represent all kinds of infinite wait or blockage of processes which prevent a 

program from normal termination. A race condition occurs when two or more processes 

nondeterministically access shared data and at least one process is updating the data. Other 
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anomalies which can be detected by static analysis of parallel programs have been discussed 

in [Taylor 80] and [Bristow 79]. 

The approaches for testing concurrent programs can be divided into static analysis and 

dynamic analysis. No actual program execution takes place in static analysis. Instead, the 

program code is transformed into a model and the model is then analyzed for detecting 

specific error states, perhaps, in addition to other useful information. For example, Taylor 

[Taylor 83a] models a program with flowgraphs, whereas Shatz [Shatz 88a] translates a 

program into a Petri net. Static analysis has the advantage that it is independent of the 

characteristics of the target machine and can be performed in relatively inexpensive and 

convenient environments. However, it suffers from a lack of program semantics that may 

lead to spurious error reports. In dynamic analysis, the program is executed on the target 

computer with selected input test data, and its behavior and output are examined. The 

insertion of debugging statements may alter the program behavior in dynamic analysis. This 

is referred to as the probe effect [Gait 86]. Static and dynamic analyses may be integrated to 

exploit the complementarities in both approaches [Osterweil 84]. A small number of tools 

have been reported for dynamic testing [Tai 89a] and static analysis [Shatz 89, 88a, 

McDowell 88]. 

The major testing techniques are illustrated in the next section. They point out the 

considerable difficulty in developing practical testing methodologies for concurrent software. 

These approaches suffer from several shortcomings. In particular, static analysis approaches, 

that have been based on the program's syntax, may give rise to spurious error reports because 

they fail to inhibit infeasible paths. Also, it does not seem that a practical method has been 

found to handle conditional loops when they include synchronization statements. Conditional 

loops may result in a very large program state space, which is impractical to analyze. 

The automatable testing approach presented in this paper is based upon static analysis of 

concurrent software using a Petri net model. It is concerned with the tasking behavior of Ada 

concurrent programs, namely with the detection of deadlock errors and data-usage anomalies. 
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Like other static analysis approaches, this work assumes that the sequential behavior of 

individual processes is tested by means of sequential techniques independently of testing the 

concurrency features. The model of communication and synchronization in Ada [DoD 81] is 

the rendezvous type, which is also adopted in a wide class of message-passing languages such 

as CSP [Hoare 78]. In this paper, Ada is chosen as a representative of this class of language 

notations for concurrent systems. 

Our approach is based upon Petri net modeling and reachability analysis, which has 

been previously used for deadlock detection [Shatz 88a, Murata 89a, Goel 90]. However, it 

extends the Petri net framework in order to reduce spurious error reports encountered in the 

previous static analysis approaches and to add other analysis capabilities. The model 

employed in our approach is an augmented high level Petri net called Augmented Predicate

Action Net (APrAN). The analysis is performed on a reachability graph augmented with sets 

of shared variables. APr AN allows the inclusion of program semantics in the analysis. This 

alleviates the problem of infeasible paths encountered in traditional Place-Transition Petri net

based static analysis, and helps in the detection of synchronization errors caused by incorrect 

predicates in decision statements. The extended model also allows a simple and useful way 

for handling finite conditional loops containing tasking statements, which have not been dealt 

with in the previous approaches. APrAN is augmented with data usage and hence anomalies 

of race conditions on shared variables can be detected. All these enhancements and additions 

are offered in a unified and coherent framework. Implementation notes are also included. 

The paper is organized as follows. The next section presents a brief survey of most of 

the known testing techniques. Section 3 introduces Petri nets and Ada tasking constructs. In 

Section 4, The APr AN -based approach is presented and illustrated by an example. In Section 

5, implementation issues are presented. Section 6 contains conclusions. 
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2. PREVIOUS WORK 

A number of approaches have been proposed for testing concurrent programs. Most of 

them have used Ada's rendezvous as a model for synchronization and communication. These 

testing approaches are either static, which are based upon code analysis, or dynamic, which 

require actual program execution. Dynamic analysis usually refers to debugging techniques 

also, but such techniques are not considered here. 

Some of the issues and difficulties encountered in testing concurrent programs are the 

same as those for sequential programs, such as the combinatorial explosion problem in path 

selection, whereas others are specifically related to concurrent programs, such as the 

reproducibility problem. The main issues in dynamic testing of concurrent software are 

forcing the execution of a synchronization sequence to address the reproducibility problem, 

the selection of the synchronization sequence, the selection of input data, the management of 

the combinatorial explosion problem in selecting sequences and test data and the 

measurement of test coverage. The main issues and difficulties in static analysis are the 

reduction in the size of the model used to represent the synchronization behavior of the 

program, the reduction in the time complexity required by the analysis which has been shown 

to be NP-complete [Taylor 83b], the handling of conditional loops which aggravate the 

combinatorial problem in statically testing parallel programs, the elimination of infeasible 

paths from the program's state space and hence the prevention of spurious error reports, and 

the handling of dynamic operations such as recursion and dynamically-created objects related 

to synchronization. 

Most of the dynamic testing work has been based on deterministic execution testing 

(DET) [Tai 89a, 87, 86, 85, Carver 86]. The DET approach is geared towards solving the 

reproducibility problem. An input test case in DET consists of data, x, and a synchronization 

sequence, S. In the language-based implementation, the program is transformed by inserting 

statements, which pass synchronization requests to a control task, to force the execution of the 

program according to S. The output is correct if it is valid with respect to specifications and if 
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S proves feasible. In [Taylor 86], structural testing is proposed based on a concurrency state 

graph derived by static analysis of the program. Several coverage metrics are described and it 

is suggested that only the selection of some interesting paths in the concurrency graph may be 

practical. The use of a controllable scheduler to force the execution of a path is proposed and 

the difficulties in coverage measurement and test data generation are also discussed. Weiss 

[Weiss 88] has suggested a formal framework for the study of testing. To reduce the number 

of tests to a practical level, the assignment of levels of importance to shared variables and 

intertask communication is proposed. Serializations for sufficiently important shared 

variables and communication statements can then be generated for testing. 

The first static analysis approach appeared in [Taylor 83a]. This approach is based on 

flowgraph models of concurrent tasks. A directed graph of concurrency states is then derived 

from the flowgraphs where a state represents the control state of the parallel tasks, including 

synchronization information. A path in the graph, called a concurrency history, represents a 

sequence of synchronization events. Deadlock errors are detected by searching the 

concurrency state graph for terminal states occurring while some tasks are still active. With 

some post-processing, the anomaly of concurrent updating of shared variables may be 

revealed. In [Young 88], this static concurrency analysis is combined with symbolic 

execution so that the concurrency analysis acts as a path selection mechanism for symbolic 

execution and the symbolic execution prunes infeasible paths in the concurrency graph 

A similar analysis approach to that of Taylor's appears in [Shatz 88a, 89] but within a 

Petri net framework. In [Shatz 88a], a procedure and its implementation are described for 

translating a concurrent Ada program to a Petri net model. A separate 'general-purpose' tool 

[Morgan 87] is then employed to derive the reachability graph, which represents all possible 

synchronization sequences for the Petri net. This tool is also used to analyze the reachability 

graph. The analysis results include information about deadlock states and the tasking 

behavior of the program, such as the maximum number of rendezvous requests queued for a 

task and the rendezvous that can occur while a task is waiting to rendezvous with another 
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task. Within the Petri net framework, [Murata 89a] presents algorithms based on structural 

and reachability analysis to detect inconsistency and circular deadlocks. A concurrent Ada 

program is translated to a Petri net model. Then place and transition invariants of the Petri net 

and their supports are computed This structural information is used to guide a selective 

generation of the reachability graph leading to reduction in the time and space required for 

deadlock detection. 

Other approaches for static analysis of concurrent programs have recently appeared in 

the literature. A task interaction graph (TIG) is proposed in [Long 89] as a model for tasks. 

A TIG represents a task as a set of regions and a set of interactions between regions, and thus 

its division of a task is based on interactions not on control flow. A task interaction 

concurrency graph (TICG) is then derived from the TIGs of tasks, where a vertex represents a 

state and an edge represents the start and end of a rendezvous. The number of states in a 

TICG has been found to be smaller than that for control flow-based models for a number of 

programs. In this approach, deadlock is detected if a task is waiting for a rendezvous and no 

other task is able to rendezvous at a certain point. [McDowell89, 88] derives a reduced state 

concurrency history graph (CHG) from the control flowgraphs of the program, where some 

states represent merged sets of states. Merging is possible when parallelism in the program is 

a result of parallel execution of multiple copies of the same task. A state in CHG represents a 

set of task states, values of shared variables and local variables that derive their values 

directly from the synchronization operations. In this approach, deadlock and the anomaly of 

parallel update of shared variables can be detected. In [Wileden 88] and [Avrunin 86] a 

different static analysis approach is taken, which is based on constrained expressions. A 

constrained expression corresponds to strings of a language where these strings represent 

possible program behavior, such as a rendezvous request. In this approach, program design is 

translated into constrained expressions. 

To reduce the number of infeasible paths, Carver and Tai [Carver 88] suggest the 

derivation of feasibility constraints from the syntactic as well as the semantic information of a 
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concurrent program. These constraints restrict the ordering of synchronization events and 

hence yield a better approximation of the set of feasible synchronization sequences. The 

constraints are derived from semantics-graphs of tasks. A semantics graph represents control 

flow in addition to 'relations' between variables, where these relations extract semantics 

information from predicates in decision statements and loops. Based on this approach, 

deadlock detection is expected to contain less spurious error reports. 

Symbolic execution is used in the formal verification of Ada tasking programs in 

[Dillon 88a, 88b] and [Harrison 88]. Most of the issues and difficulties which have been 

discussed for other approaches above are also relevant for symbolic execution. Dillon [Dillon 

88a] highlights issues such as exponential growth in the size of the execution tree, possible 

infeasible paths when loop invariants do not capture the relation between variables in different 

tasks and infinite tree size if loops contain communication statements. Another method for 

symbolic execution of concurrent programs is proposed in [Ghezzi 89] and [Morasca 89]. It 

is based on a Petri net formalism, called Environment/Function (EF) nets. Symbolic 

execution algorithms are presented. The modeling power of EF nets and the utility of the 

algorithms are discussed and illustrated by means of a case study. 
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3. PRELIMINARIES 

In this section, a description is given of some basic concepts utilized throughout this 

paper. The description includes Petri nets, the rendezvous model of synchronization and 

relevant Ada programming constructs. 

3.1 PETRI NETS 

A system can be modeled by a Petri net (PN), which becomes a mathematical 

representation of the system [Murata 89a, Peterson 81]. Analysis of the Petri net, then, yields 

information about the structure and the behavior of the system. The type of Petri nets 

employed throughout this paper is the Place-Transition (PT) type. PT nets are defined below. 

Description of their analysis is integrated into subsection 4.3, where the analysis of the 

augmented model used is presented. 

Definition: APT net is a 5-tuple, PN = (P, T, I, 0, Mo), where 

P = {p~o ... , Pml is a fmite set of places, 

T = {t1, ... , tn} is a finite setoftransitions, 

I ~ PxT is a set of transition input arcs, 

0 !: TxP is a set of transition output arcs, 

Mo: P --> ( 0, 1 } is the initial marking, 

PnT = f and PUT= f. 

For the purpose of this paper, it is assumed that the weight on every arc is 1 and that the 

maximum capacity of a place is 1. A graphical representation is depicted in Figure 3.1(a), 

where bars represent transitions and circles represent places. 

Enablin& Conditions 

• A transition ti is enabled if each of its input places contain a token, i.e. 
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(a) Before (b) After 

Figure 3.1 APT net before and after firing a transition. 
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for all Pj e I(t;.) , M(pj) = 1 , 

for all Pj e 0( 4) , M(pj) = 0 

Transition Firin& Rules 

• When a transition 4 fires, tokens are removed from input places and placed in output 

places, i.e. 

for all Pj e 1(4), M(pj) = M(pj)- 1 , 

for all Pj e 0(4) , M(pj) = M(pj) + 1 , 

Figure 3.1, shows an example of a PN before and after fning a transition. The state of a 

PN is given by the marking of the places, M, which changes by firing enabled transitions. 

One way of analyzing PN s consists of determining different reachable states and, then, 

extracting information out of the state space, called the reachability graph. Reachability 

analysis is explained in subsection 4.3. 

3.2 THE RENDEZVOUS MODEL OF SYNCHRONIZATION AND ADA 

The rendezvous is a message-passing mechanism for process synchronization and 

communication. Two processes are engaged in a rendezvous when one process makes a 

rendezvous request and the other accepts the rendezvous. If one of the two processes arrives 

at its rendezvous activity frrst, it is suspended until the other process performs the matching 

activity. After rendezvous-ing, the two processes may proceed concurrently. The rendezvous 

model is the basis of interprocess communication in CSP [Hoare 78] and its variants. 

Ada [DoD 81] also adopts the rendezvous model and it is used in this work as a 

representative concurrent programming language, as is the case in most of the literature on 

concurrent program testing. In Ada, tasks are equivalent to processes. Tasks enter a 

rendezvous when one task makes an entry call to another task and the called task accepts the 

entry. An entry call specifies that the calling task is ready for a rendezvous with another task 
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that has this entry. The called task is ready to accept an entry call when its execution reaches 

a corresponding accept statement, which also specifies the action to be done. A task reaching 

an entry call or an accept statement may not proceed until a rendezvous has been made. After 

the completion of the rendezvous, both tasks may continue their execution concurrently. The 

Ada constructs for rendezvous request and accept are illustrated in a simple example in Figure 

3.2. 

Moreover, the Ada language includes a nondeterministic select statement this 

statement provides a mechanism for a called task to select among alternative entry calls. An 

example is given in Figure 3.3. It should also be noted that in Ada, concurrent tasks are 

allowed to access shared global variables in addition to communication by rendezvous. 
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1 Task body SENDER is 

2 story : integer; 

3 begin 

4 create (story); 

5 RECEIVER. takemessage (story); 

6 z := story + w, 

7 endSENDER 

8 Task body RECEIVER is 

9 y : integer; 

10 begin 

11 accept takemessage (message : in integer) do 

10 z : = message + y; 

13 end, 

14 z := message - w; 

15 end RECEIVER 

Figure 3.2 An example illustrating Ada constructs for rendezvous. 

(Variables z and w are assumed to be global) 
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select 

or 

accept storemessage (message : in messageformat) do 

consume (message); 

end; 

accept retrievemessage (message : in messagefonnat) do 

consume (message); 

end; 

end select; 

Figure 3.3 An example illustrating the select statement. 
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4. EXTENDED PETRI NET-BASED TESTING APPROACH 

As discussed above, the Petri net model which has been used to represent concurrent 

programs is of the Place-Transition (PI) type [Shatz 88a, Murata 89a, Goel 90]. It is based 

entirely on program syntax. Hence, its analysis may produce spurious error reports due to the 

inability to prune infeasible paths. Furthermore, the previous Petri net-based approaches have 

not incorporated analysis capabilities for detecting race conditions on global variables and 

have not dealt with conditional loops that contain synchronization statements. 

In this section, an extension is presented to the previous Petri net framework for testing 

the tasking behavior of Ada concurrent programs. The extension is based upon a high-level 

Petri net model called Predicate-Action net and is introduced to overcome shortcomings of 

previous approaches by providing enhanced capabilities in a coherent and unified fashion. 

The model consists of a place-transition net with a predicate-action extension attached to 

transitions. Predicates correspond to decision statements. Actions correspond to updating of 

those variables, which affect synchronization, and accessing of shared global variables 

between two transitions. The predicate-action extension represents addition of information of 

program semantics to the model. It allows the detection and pruning of infeasible paths and 

helps in detecting synchronization errors caused by incorrect predicates in decision 

statements. The action of accessing shared data is represented by augmenting transitions with 

read and write sets of global variables for detecting anomalies of race conditions. 

The analysis is preformed on a reachability graph derived from the augmented 

predicate-action net (APr AN). The nodes of the reachability graph are augmented with sets of 

global variables. The paths in the augmented reachability graph (ARG) are generated or 

pruned depending upon the boolean values of the predicates attached to transitions. Detection 

of deadlock errors and potential race conditions is done by searching the ARG state nodes. 

The APrAN model of concurrent software is used here for Ada's rendezvous model of 

interprocess communication. However, the modeling and analysis approach is not language

dependent. 
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The APrAN-based approach for testing concurrent software is explained in the 

following subsections. APrAN and the modeling procedure are presented first, then the 

analysis is illustrated. 

4.1 PREDICATE-AC'fiON NET MODEL OF TASKING PROGRAMS 

A Predicate-Action net (PrAN) model, introduced by Keller [Keller 76] for the formal 

verification of parallel programs, consists of a PT net [Peterson 81, Murata 89b] with 

predicates and actions incorporated in the enabling conditions and firing rules of transitions. 

Definition: A Predicate-Action Net is an 8-tuple, PrAN = (P, T, I, 0, Mo. V, PR, ACT) 

where 

V = { v lt ... , vk} is a set of program variables and constants, 

PR = {pr1, ... , prn} is a set of predicates, 

pr: EXP -->{TRUE, FALSE} is a (partial) function, 

EXP = set of expressions, where an expression is defmed over V. The grammar 
defining the expressions has the usual arithmetic and relational operators as 
terminal symbols. 

ACf = {act~> ... , actn} is a set of actions, 

act = V --> EXP is a (partial) function 

P T = OandPUT=O, 

and the other symbols are as explained in subsection 3.1. 

It should be noted that V is the subset of the program variables that affect the 

synchronization behavior, as will be discussed later in this subsection, and that is assumed 

that the weight on every arc is 1 and that the maximum capacity of a place is 1. A graphical 

representation is depicted in Figure 4.1. The enabling conditions and the firing rules are 

modified as follows. 
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pl p2 

< prl,actl> 

p3 

Figure 4.1 Predicate-Action Net. 
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Enabling Conditions 

• A transition 4 is enabled if each of its input places contain a token and the associated 

predicate is true, i.e. 

for all Pj £ 1(4) , M(pj) = 1 , 

for all Pj £ O(l:i) , M(pj) = 0 

and pri(V) = TRUE 

Transition Firing Rules 

• When a transition ti fires, tokens are removed from input places and placed in output 

places and the associated action is invoked to update the relevant program variables, 

i.e. 

for all Pj £ l(tJ , M(pj) = M(pj) - 1 , 

for all Pj £ 0( tV , M(pj) = M(pj) + 1 , 

and aclj(V) is invoked. 

Figure 4.2 shows an example of a PrAN before and after firing a transition, assuming 

the predicate evaluates to TRUE. The ~ of a PrAN is given by the marking of the places, 

M, and by the state of the subset, V, of the program variables. 

Translation of Pmgram into PrAN 

An Ada tasking program can be transformed to a PrAN model by translating its 

statements into PrAN subnets and then connecting them together. The statements of interest 

are the tasking statements and the control statements that affect the tasking bahavior by 

including rendezvous statements within their direct scope of control. Both types of statements 

determine the structure of a corresponding PrAN and directly determine the movement of 

tokens. They are henceforth referred to as tasking-related (IR) statements. Other statements 
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(a) Before 

v 
a= -5 
y=z+4 
x=O 

(b) After 

v 
a= -5 
y=z+4 
x = z+4+1 

Figure4.2 A PrAN before and after firing a transition. 
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of interest are assignment statements that affect the tasking behavior by updating program 

variables and control statement that do not include TR statements in their scope of control but 

include relevant assignment statements. These are also considered, although in a different 

way, and will be referred to as indirectly taskin&-related. (ITR) statements. Specifically, the 

TR statements to be translated into PrAN subnets are rendezvous statements (entry call, or 

entry call accept), nondeterministic select statements and control statements (if, loops) with 

rendezvous statements within their body. The conditions in the if-statements appear as 

'predicates' associated with transitions. The ITR assignment statements that follow a TR 

statement, until the next TR statement, appear as 'action' associated with the transition 

corresponding to the first TR statement. The ITR control statements are also translated into 

PrAN subnets like the TR control statements. The PrAN subnet models are defined in a semi

formal way in Figure 4.3. S, Sl, S2 and S3 in Figure 4.3 are assumed to be a collection of 

ITR assignment statements, included for illustration purposes. The terminal components of 

all subnets, as shown in Figure 4.3, must be places. All places within a task are called 

sequential places. Places extending to other tasks, in rendezvous statements, are called 

syncbronization plaga. Compatible terminal places in subnets are merged to form a PrAN 

model for the tasking behavior of a concurrent program. In the total model, subnets may be 

nested or combined in any way that reflects the structure of the program. 

The PrAN model of a tasking program is finite since it is constructed by components 

(subnets) equivalent to TR statements in the program. Thus, the size of the model is linearly 

proportional to the number of TR statements. The PrAN model of each task is connected 

because the consecutive subnets can always be connected by merging terminal sequential 

places. The PrAN model is safe since the arcs weight is one, the place capacity is one token 

and none of the subnet structures allows an accumulation of tokens that exceeds the capacity 

of the places. 

The correspondence between PrAN models and concurrent programs is not one-to-one. 

In spite of this, we argue that the PrAN model is suitable to represent the structure of a 
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entry 
call 

entry 
acknowledged 

(a) Rendezvous request 

kwledge entry 
(b) Rendezvous accept 

¢1,53> -t!')- (c) select 

0 
¢,51>-t- "i- <not(c),52> 

(d) if c then Sl; .. else S2; .. endif 

when cl acceptl ; S3; ... 
or accept2 ... . 
or accept3 ... . 

end select 

< i>=N,S > 

(e) while i<N do S; ..... endwhile 
(Sis expected to include i:=i+k) 

Fig 4.3 PrAN subnets for programming constructs. 
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concurrent program. The argument about the correctness of the PrAN model within this 

framework is supported by the validation results of the implementation of previous Petri net

based approaches [Shatz 89, Goel 90]. A similar modeling technique has previously been 

used to demonstrate the equivalence of a Petri net and a Turing machine in terms of 

computational power [Petersen 81]. 

4.2 AUGMENTING THE PrAN MODEL WITH USAGE OF GLOBAL VARIABLES 

The PrAN model is augmented with the usage of global variables so that its analysis 

will also reveal the anomalies of conflicting access of shared variables by more than one task 

concurrently. The resulting model is henceforth referred to as augmented PrAN (APr AN). 

A transition in the net is augmented with a Read set and a Write set of global variables 

in the transition's concurrency zone, which is defined as follows. 

Definition: A concurrency ~ of a transition is a sequence of program statements that 

includes and follows the statement corresponding to the transition. The last statement in the 

zone is that preceding the statement corresponding to the next transition in the net. 

A Read set (RS) contains the global variables that occur on the right hand side of assignment 

statements in the concurrency zone. The Write set (WS) consists of the global variables that 

are updated. 

Each task is divided into concurrency zones. Zones in one task succeed each other. 

Concurrency zones in different tasks may be concurrent or not depending upon their position 

with respect to the rendezvous (synchronization) points in the tasks. Zones in different tasks 

are said to be concurrent if the statements lying in these zones can be executed concurrently. 

for example, if two tasks T1 and T2 synchronize at point S 1 (referring to the two 

corresponding program statements), a zone in Tl before Sl cannot be concurrent with a zone 

in T2 after Sl. For illustration, a program may be represented by a graph. The nodes of the 

graph represent zones, vertical edges refer to the sequencing relationship between two 
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Figure4.4 Graph of concurrency zones for the program in Fig. 3.2. 

(RS and WS sets are shown next to the relevant nodes) 
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contiguous successive zones in one task and horizontal edges refer to potential concurrency 

between two zones in different tasks. An example of such a graph is shown in Figure 4.4, 

which shows the concurrency zones of the program given in Figure 3.2. Note, for example, 

that since task SENDER is suspended at statement 5 until task RECEIVER executes statement 

13 (acknowledging end of rendezvous), zones 5-6 and 11-12 are not concurrent and hence no 

horizontal edge is shown in the graph between them. The sets of variables shown in Figure 

4.4 next to the graph nodes are RS and WS sets in the respective concurrency zones. RS and 

WS sets are shown in Figure 4.5 augmenting the PN's transitions that correspond to the zones. 

The access of shared variables is considered part of the 'action' associated with a 

transition in APrAN. The following additions to the PrAN model are required. 

Definition: An Augmented PrAN is a 10-tuple 

APrAN = (P, T, I, 0, Mo. V, SV, PR, ACf, SACf) 

where SV V is a set of shared variables, 

SACf = {sact~o ... , sactn} is a set of actions on shared variables and sacq is a (partial) 

function on SV that places a shared variable either in RS or WS of q. 

Graphically, APrAN appears in Figure 4.6. 

The following is added to the firin& tules: 

When a transition 4 fires, sacq(SV) is invoked. That is, the shared variables in q's 

concurrency zone are accessed (read or write) and hence the sets RS and WS are formed. 

The defmition of a~ of an APrAN at an instant also includes the sets RS and WS of 

all tasks at that instant 

With these additions to the firing rules and the definition of APrAN state, the formation 

of RS and WS sets is incorporated in a coherent way in the program modeling procedure. 

4.3 ANALYSIS OF APr AN MODEL 

The APrAN model of a tasking program is executed to generate a reachability graph 
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Figure 4.5 Augmented Petri net model for the program in Figure 3.2. 
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augmented with sets of shared variables, referred to as augmented reachability graph (ARG). 

This graph is then analyzed to examine the tasking behavior of the underlying program. Most 

importantly, deadlocks and potential race conditions on shared variables are considered. The 

concepts involved in the generation and analysis of the ARG are briefly presented in this 

subsection. First, some definitions are given informally. They are simple extensions to the 

definitions related to PT nets [Peterson 81], adapted here for APrAN. ARG generation and 

analysis is then illustrated. 

Definition: An APr AN .swc. (m, VS, SVS) is defmed by a marking M of the net, a state VS of 

the subset of program variables V and a collection of pairs of RS and WS sets, denoted as 

SVS, with one pair for every concurrent task. 

Definition: A firin& seqyence FS (subset ofT) is an ordered sequence of transitions th ld, ... , 

tk such that after fning tb £ FS, a new state of APrAN is reached at which the enabling 

conditions for the immediate successive transition in FS are satisfied. 

It should be emphasized that fui.ng a transition, with associated predicate-action, alters 

not only the marking of the net, but also the state of V and the sets RS and WS. The 

conjunction of predicates associated with transitions in a fui.ng sequence is what is known in 

symbolic execution literature as path condition. 

Definition: A reachability set RS(M, VS, SVS, FS) is the set of all states reachable from state 

(M, VS, SVS) connected by transitions q £ FS such that if (M1, VS~t SVSt) £ RS then (M2, 

VS2, SVS2) £ RS for for some transitions in FS. 

Definition: An augmented reachability ifRPh (or tree) ARG is the set of all reachability sets 

RS(Mo, VSo, SVSo, FS) for all possible firing sequences FS. Mo is the initial marking of the 

net VSo is given by initial values of variables. SVSo is given by empty RS and WS sets. 

Graphically, a state (or node) in ARG is represented by a marking augmented with RS and 
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WS sets for all tasks. An arc between two nodes is labeled by the corresponding fired 

transition. 

It should be noted that a path in ARG corresponds to a sequence of synchronization 

events, i.e. rendezvous, in the program. The procedure for generating an ARG for APrAN is 

similar to that for PT nets. However, it takes into account the sets of shared variables and 

makes use of symbolic evaluation to minimize infeasible paths and to account for conditional 

loops. The ARG generation procedure starts at an initial state (Mo. VSo, SVSo), as defmed 

above, and repeats a basic step until no more nodes, i.e. states, can be generated. The basic 

step in the generation procedure is the determination of all enabled transitions at a given state. 

The enabling conditions of a transition include both the availability of tokens in the input 

places and the (symbolic) evaluation of the associated predicate to 'TRUE' in a given state of 

the variables in V. The enabled transitions will then be fired in all possible permutations. 

Each time a transition, which belongs to a task subnet, is fired a new token marking is 

reached, an update of variables in V may take place and a new concurrency zone in the 

relevant task may be entered. A new concurrency zone for a task yields new RS and WS, 

possibly empyt, augmenting the generated node. A transition whose predicate evaluates to 

'FALSE' cannot be frred and hence the corresponding path in the ARG is pruned. Such paths 

are infeasible and would have been allowed in the reachability graph of a PT net. 

The generation procedure terminates and yields a finite ARG because ARG corresponds 

to a fmite APr AN and the reachability graphs of the component subnets of APrAN are ftnite. 

APr AN is fmite since it models finite tasking operations in the program. Of particular interest 

are subnets of conditional loops, as translated by APrAN. Subnets representing the body of a 

loop can be executed only once. This is sufficient to detect deadlocks resulting from 

misordering of rendezvous statements. In addition, a symbolic comparison is performed on 

the loop counters to ensure a match between the number of entry calls and rendezvous 

accepts. Therefore, a ftnite number of nodes in ARG is produced by loops. Handling of 
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loops is explained in Section 5. 

A terminal node in ARG corresponds to either a valid termination state or to a deadlock 

state. Yalid.... tennination indicates that all tasks have performed their synchronization and 

communication operations and are no longer active. Its determination in terms of net 

markings is an implementation issue. A deadlock .state is a terminal state that does not 

represent valid termination. 

The analysis of ARG is carried out by searching all nodes for deadlock errors and 

anamolies of shared data usage. A deadlock error is reported when a deadlock state is found. 

Potential race conditions on shared data are reported when more than one task may conflict 

over the access of shared variables in one state. A race condition on a variable x occurs when 

pairwise comparisons of RSi and WSi sets, augmenting a node, for all tasks i detect the 

membership of x in RSi and WSj or WSi and WSj of at least two different tasks (i.e. i f j). 
To illustrate the basic concepts in this approach, an example is given by the program in 

Figure 4.7 and its corresponding PrAN and RG in Figures 4.8 and 4.9. Shared variables are 

not included in the program because it is not possible to show them in the figures. 
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1task A is 8 task body A is 22 task body B is 
2 end A; 9 begin 23 begin 

10 ifa<bthen 24 acceptE; 
4 task B is 11 B.E; 25 endB; 
5 entry E; 12 else 
6 endB; 13 c :=b+ 1; 

14 endif; 
15 ifa>=bthen 
16 B.E; 
17 else 
18 b:=a; 
19 endif; 
20endA; 

Figure4.7 An Ada program that does not contain a deadlock. 
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Figure4.8 APr AN model of the program in figure 6. 
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5. IMPLEMENTATION ISSUES 

A block diagram of a structured tool system implementing the APrAN-based testing 

approach is shown in Figure 5.1. The system may consist of four modules. The Modeling 

(MOD) module produces an Augmented Petri Net (APN) model of the tasking-related 

program statements. The Augmented Reachability Graph Generator (ARGO) module 

constructs the augmented reachability graph (ARG) of the APN. The Reachability Graph 

Analyzer (RGA) module may be composed of various procedures that analyze the 

information offered by the ARG about the underlying concurrent program. The User 

Interface (UI) module may use X-Windows software to facilitate interaction with users. The 

Ul module may offer a menu-driven user friendly environment, where a user can select one of 

several analysis options by clicking a mouse and can view multiple results simultaneously. 

Implementation issues for the four modules and for dealing with conditional loops are 

illustrated in the following subsections. 

5.1 MODELING MODULE 

The MOD module translates an Ada source code into an APN model. It also yields 

useful byproducts which are a source program with line numbers, referred to as numbered 

statement list (NSL), and a list of tasking-related statements, referred to as intermediate 

program (IP). Other useful data structures are a table of subnets cOITesponding to Ada 

language constructs, a table of task names and identification numbers (ID), a table of 

rendezvous information involving all synchronization points, a table of concurrency zones 

involving shared variables in different sections of the tasks, a predicate dependence tree (from 

which path conditions can be extracted) and trees of symbolic expressions for variables in TR 

and ITR statements. 

Translation of source code into APN considers directly only TR statements, that is IP. 

ITR statements are utilized, when necessary, through the symbolic expression trees. The 

translation strategy consists of using Ada subnets as templates or building blocks and 
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Figure 5.1 A block diagram of a tool system for implementing 
APr AN-based testing approach. 
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connecting these subnets based on either the sequential location of the corresponding 

statement or information derived from rendezvous tables. Translation can be done by 

scanning IP statements in sequence, fetching corresponding templates in a table look-up 

fashion, labeling the places and transitions of the subnets with identification information for 

later analysis, augmenting the subnets with pointers to predicates and actions, connecting the 

subnets by combining compatible sequential and synchronization places, and building 

necessary tables and data structures. 

The MOD module may consist of three phases. In phase 1, the source code is scanned 

and filtered to produce an IP. Also NSL may be produced for later reference in error 

reporting. In phase 2, IP is scanned to construct tables and data structures needed for the next 

phase. In phase 3, another pass through IP is made to build the APrAN model of the 

underlying program. An outline of the three phases is given below. 

Pbase 1: 

• Read the source code and assign line numbers to statements for producing NSL. 

• Identify statements that are tasking-related and construct IP. 

• Identify global variables, by differentiating them from locally declared variables, in each 

task with the numbers of the statements to which they belong and determine whether they 

occur as Read or Write variables. 

• Identify variables in the predicates of the control statements affecting tasking, and the 

numbers of these statements. 

• Build a data dependency graph (DDG). 

• Build a predicate dependency tree (PDT), where a node consists of the statement number 

and the variables involved. 

Phase2: 

• ScaniP. 
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• Create a Task Table, which is a list of all tasks in the program with an assigned unique 

integeriD. 

• Construct a Rendezvous Table, which consists of IDs of tasks requesting rendezvous, IDs of 

tasks accepting rendezvous, entry points in the accept statements and the line numbers of 

these statements. 

• Construct a Concurrency Zones Table. A concurrency zone corresponds to statements in the 

source program that lie between two statements in IP, including the IP statement that occurs 

fmt and excluding the second one (which becomes the first statement in the next zone). 

Each row in the table corresponds to a concurrency zone in a task. A row consists of the 

task ID, the start statement number of the zone, the fmish statement number of the zone, the 

Read set of global variables in the zone and the Write set of global variables. The number of 

the start statement of a concurrency zone is used as the index of the table. 

• Using DDG and PDT, build trees of symbolic expressions for variables occurring in TR 

predicates. Each variable can have several indices to expressions, where each index will 

actually be related to a path condition. These trees of expressions will be used for the 

symbolic evaluation of predicates, within a path, in the next module. 

• Using DDG, build trees of symbolic expressions for varialbes in statements that occur 

between 2 successive TR predicates. These trees will be short and are used as actions when 

firing transitions. 

Pbase3: 

•PurgeDDG. 

•ScaniP. 

• For each statement, look up the corresponding template subnet 

• Link predicates and actions, as specified by trees of expressions built in phase 2, to 

transitions by pointers/indices. 

• Augment transitions with Read and Write sets of shared variables determined from the 
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corresponding row in the table of concurrency zones. 

• Label synchronization places with the name of the task involved and the synchronization 

status (e.g. entry, accept, end). Also, label transitions with the type and line number of the 

statement it corresponds to (in NSL). The labels are used in connecting subnets and in error 

reporting by UI module. This step uses the rendezvous table. 

• Store in the data structures of places (resp. transitions) unique IDs, the number of input and 

output transitions (places) and the number of tokens (initially zero). 

• Connect subnets by merging compatible terminal sequential places in consecutive subnets, 

within the same task, and by merging compatible synchronization places of rendezvous 

subnets in different tasks. This step uses the rendezvous table and place labels (to detect 

compatibility). 

• Finally, assign single tokens to the begin-places of all tasks to prepare APN for the 

construction of the reachability graph. 

5.2 AUGMENTED REACHABIUTY GRAPH GENERATOR MODULE 

As explained in Section 4.3, an ARG is formed of nodes and arcs. A state node 

represents a marking of the net and is augmented with RS and WS of shared variables. An arc 

represents a frred transition which leads to a new state. The ARG generation strategy is based 

upon firing all enabled transitions in all possible combinations at any given state of the 

APrAN. A depth-first generation procedure is presented below. The input to the procedure is 

an APrAN and its output is an ARG. Nodes of the ARG can be assigned unique node IDs, a 

level (from the root) number, the IDs of the input and output arcs (i.e. APrAN transitions) and 

pointers to RS and WS sets for all tasks. Other useful data structures are a list of unexplored 

ARG nodes, UNEXPLORED, a list of token-enabled transitions, TRENABLED, and a stack 

of predicates, PREDSTACK. A valid termination node is determined by the presence of 

tokens in end-places of all tasks. 
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Pmced.ure 

• Root node of ARG corresponds to the state resulting from the presence of tokens in the 

begin-places of all tasks and from the augmenting RS and WS sets of the frrst concurrency 

zone in all tasks. Initially UNEXPLORED contains only the root node. 

• Repeat until no more nodes in UNEXPLORED: 

(a) Find the first node in the list, UNEXPLORED. 

(b) For the new state, search in the neighborhood of places with tokens for enabled 

transitions (That is, not all APN needs to be searched). Create TRENABLED. In case 

of structural conflict (if-then-else) add both transitions to TRENABLED. 

(c) For each enabled transition, evaluate its predicate with respect to the path condition (i.e. 

conjunction of predicates) recorded so far. Hit evaluates to 'TRUE' rue the transition 

and push the index of the predicate onto the path condition stack, PREDSTACK, 

otherwise the path is pruned. This step requires symbolic evaluation (e.g. use simplex 

method) using the trees of expressions of variables constructed in the modeling 

module. 

(d) Add the new child state node, created by firing the transition to UNEXPLORED. 

(e) Go to (b). 

(f) When it is no longer possible to pursue a path any further (due to pruning, deadlock, 

etc.), pop PREDSTACK (i.e. backtrack one step along the path), search TRENABLED 

for transition token-enabled in this state and go to step (c). 

(g) Whenever a transition fires, change the number of tokens in the input and output places, 

update RS and WS corresponding to the fued transition in the specified task (by using 

table of concurrency zones with transition ID as index) and symbolically evaluate the 

variables specified by the attached action. 

(h) Delete nodes from UNEXPLORED if all their transitions in TRENABLED have been 

fired or if they enable no transitions. 

end-repeat 
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5.3 REACHABILITY GRAPH ANALYZER MODULE 

Analysis in the Reachability Graph Analyzer (RGA) module is done on the ARG. Most 

of the analysis information can be collected during the ARG generation, otherwise analysis is 

initiated when requests are made by the user through the UI module. Analysis of ARG may 

provide reports either about location of ell'OI'S, namely deadlock and concurrent updating of 

shared data, or for performance information, such as the number of rendezvous per task and 

the maximum possible number of rendezvous for a task. Performance analysis may provide 

insights into factors such as workload balancing and bottlenecks in the concurrent program. 

The inputs to the RGA module are ARG and user requests through the UI module. Its 

output is elTOl' and analysis reports directed to the user via the UI module. 

5.4 USER INTERFACE 

The User Interface (UI) module, in conjunction with the RGA module, indicates to the 

user the location and type of detected errors and anomalies and provides information that may 

be used for debugging and redesigning the program. The UI module may enable the user to 

request analysis information, display the results produced by the RGA module in a convenient 

format and allow the user to inspect important data structures. All these facilities can be 

provided with a button-click style of operation in an X-Window environment, which hides the 

complexity of a tool and makes it user-friendly. 

User requests can be menu-driven, where the user selects a function by clicking on the 

relevant entry. Analysis results and associated information can be displayed in multiple 

windows, so that complimentary information may be viewed simultaneously and different 

displays may be inspected or manipulated independently. As shown in Figure 5.1, the UI 

module interacts with the RGA module and has access to important data structures, such as 

APN, ARG and NSL. 
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5.5 HANDLING OF CONDmONAL LOOPS 

A simple strategy to partially handle conditional loops is presented in this subsection. 

This strategy precludes the generation of large numbers of nodes in ARG and is guided by the 

following: 

• Break the branch back arc in the loop template (Figure 4.3(e)) when generating ARG. This 

accounts for the tasking statements inside the loop once and hence guarantees the detection 

of misordering in the corresponding tasking statements or of the absence of a matching 

reciprocal statement. 

• Use the symbolic evaluator procedure to symbolically evaluate the number of iterations of 

loops enclosing the pair of reciprocal tasking statements (accept, entry). compare the 

number of iterations for the pair. H they do not match, we can be confident that this will 

generate a deadlock. H the symbolic comparator can not decide, this condition can either be 

ignored or reported to the user depending on the desired accuracy. 
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6. CONCLUSIONS 

An approach to testing Ada tasking programs has been presented in this paper. It is 

based on modeling a program by a Predicate-Action net augmented with sets of shared 

variables (APr AN). An augmented reachability graph (ARG) is then derived from APrAN so 

that its nodes can be searched for deadlocks and potential race conditions on shared variables. 

The predicate-action extension of the net captures some aspects of the dynamic behavior 

of a concurrent program. Therefore, it leads to a minimization of spurious error reports 

encountered in pure static analysis. This is achieved by pruning infeasible paths in the ARG 

when the conjunction of the predicates along a path becomes false. Other advantages of the 

APrAN-based approach are the detection of errors due to erroneous decision program 

statements and the partial handling of finite conditional loops in a simple and practical way. 

The APrAN-based approach suffers from combinatorial explosion for non-small scale 

programs. Possible ways to circumvent this problem are discussed in another paper [Goel 

90]. Moreover, the extended features of the APrAN model are not penalty-free. The boolean 

evaluation of predicates and the invocation of actions require expensive symbolic evaluation. 

However, the full cost of symbolic evaluation is not incurred because it can be used on 

demand basis and is limited to the evaluation of 'predicates' and 'actions' related to tasking. 

On the other hand, practical results will not be as good as the theoretical approach suggests 

due to the inherent imperfection of symbolic evaluation. More research is needed to weigh 

the advantages of the APrAN-based approach versus the costs incurred by symbolic 

evaluation. 
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