

A programming-language extension for distributed real-time
systems
Citation for published version (APA):
Hooman, J. J. M., & Roosmalen, van, O. S. (1997). A programming-language extension for distributed real-time
systems. (Computing science reports; Vol. 9702). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/59b48f94-7a07-4911-baac-0ffdd63d95c3

Eindhoven University of Technology
Department of Mathematics and Computing Science

A Progrannning-Language Extension for
Distributed Real-Time Systems

ISSN 0926-4515

All rights reserved
editors: prof.dr. R.C. Backhouse

prof.dr. J.C.M. Baeten

Reports are available at:
http://www.win.tue.nllwinlcs

by

J. Hooman and O. van Roosmalen

Computing Science Reports 97/02
Eindhoven, January 1997

97/02

A Programming-Language Extension for Distributed
Real-Time Systems

Jozef Hooman and Onno van Roosmalen

Dept. of Computing Science, Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: wsinjh@win.tue.nl and wsinonno@win.tue.lll

November 25, 1996

Abstract

In this paper we propose a method for extending programming languages that enables the spec­
ification of timing properties of systems. The way time is treated is not language specific and
the extension can therefore be included in many existing programming languages. The presented
method includes a view on the system development process. An essential feature is that it enables
the construction of (hard) real-time programs that may be proven correct independently of the prop­
erties of the machines that are used for their execution. It therefore provides a similar abstraction
from the execution platform as is normal for non-real-time languages. The aim of this paper is to
illustrate the method and demonstrate its applicability to actual real-time problems. To this end
'We define a simple programming language that includes the timing extension. We present a formal
semantics for a characteristic part of the language constructs and apply Jormal methods to prove
the correctness of a small example program. We consider in detail a larger example, namely the
mine-pump problem known from the literature. lVe construct a real-time program for this problem
and describe various ways to map the program to an implementation for different platforms.

1

1 INTRODUCTION 2

1 Introduction

Including time in programming languages in a proper way, i.e. a way that is syntactically con­
cise) semantically simple and that allows formal verification of programmed timing behavior, is
a longstanding issue. If one considers current practice in programming of real-time systems and
the languages that most frequently are being used there (e.g. Ada, C), it seems that this issue
has not yet been satisfactorily resolved. This is in spite of the fact that much research has been
devoted to this subject and at present a number of proposals for language constructs expressing
real-time constraints exist, particularly in the realm of object-oriented programming languages
and methods.

The interest in the combination of object orientation and real time stems from the current
popularity of object-oriented languages in non-real-time programming and should not be taken
as a sign that a proper approach has already been found for non object-oriented languages. We
think that that is not the case and that the lack of a sound basis for real-time programming causes
programming languages to evolve without a co-evolution in possible real-time extensions. Object
orientation places particular emphasis on composability and reusability of program components.
These principles are also important in the construction of real-time software and must be taken
into consideration in the search for proper real-time constructs. However, apart from that, object
orientation and real-time issues are largely independent and should be considered separately.

The real-time programming approach presented in this paper has first been introduced in the
object-oriented programming language Deal that was developed in the context of the Dependable
Distributed Operating System (Dedos) project at Eindhoven University [13]. In the present pa­
per we do not use Deal. Instead we introduce a simple concurrent language that is augmented
with timing constructs. We do this for the following reasons: (1) the timing extensions that we
will discuss are more generally applicable, and (2) we want to provide insight in the basic ideas
underpinning our approach to real-time programming without the danger of creating confusion
with typical object-oriented issues and (3) it is easier to give a formal semantics for this simple
language. Object-oriented languages are in general more complex and some problems with making
such languages concurrent, such as inheritance anomalies [21], are still being discussed. A well­
defined semantics is needed in then present context to be able to demonstrate that correctness of
real-time programs can be established independent of the execution platform.

2 Composability and reusability of real-time programs

It is generally recognized that problem decomposition and stepwise refinement [25, 9] are impor­
tant programming strategies. When only functional aspects of programs are considered, there are
no major problems in applying these strategies: the functional behavior of a component can be
made to depend strictly on the explicitly declared interfaces offered by others. Thus, based on the
interface properties, functionality can be combined to form more complex behavior. This com­
posability property is essential to enable software reuse and the efficient construction of complex
systems. In contrast, if one considers timing behavior of a program component, implementation
details of other, concurrently executing components may become important. e.g. in a multitasking
system the time required to complete a certain computation is sensitive to claims on the proces­
sor(s) made by other program parts that solve completely independent concerns. We will refer to
these other program parts as the context. The hidden coupling, i.e. coupling that is not explicitly
on the interface between components, is called context dependence here. Thus, timing aspects
of a program or program part, in particular execution durations, may be context dependent. In
addition timing behavior usually depends on the execution platform. A platform is characterized
by the processor types, their configuration, and the operating system with its execution protocol.

Non-real-time programming approaches provide a context and platform independent way of
describing algorithms. That is, the design decisions and the resulting program are not influenced
by details of context and execution platform but solely depend on the specification of the system
or subsystem that is to be constructed. This abstraction from platform and context, which is so

3 PLATFORM-INDEPENDENT REAL-TIME PROGRAMMING 3

typical in non-real-time, is also desired for real-time problems. It is a prerequisite for composability
and reusability.

We distinguish two types of context and platform dependencies: (1) those that can be explicitly
identified in the program text (2) those that implicitly influence program design.

An example of first type are hard coded process priorities. Priorities are selected relative to
other, functionally independent processes (context), and also depend on the employed scheduling
regime (platform). Another example is the selection of commensurable periods of control loops
that are functionally independent but are included to obtain a program that is schedulable off
line. If independent program parts are combined in other ways, frequencies must be reconsidered
and possibly changed. Also, if one considers the present practicOe in distributed (fault-tolerant)
algorithms, which often also must satisfy timing constraints, one observes that the solutions are
usually very much tuned to a particular property of the platform (such as lock step synchrony).
To understand an algorithm or to prove its correctness the platform properties must be made
explicit and described separately. It is not sufficient to consider just the algorithm to prove that
the specification is satisfied.

An example of implicit dependencies (e.g. dependencies introduced through a programming
approach) is the realization of timing constraint of a program by introducing additional constraints
(i.e. constraints that do not follow directly from the specification) on execution durations of sub­
programs. The latter constraints can often only be sensibly chosen if the programmer has some
information available about the platform and such constraints will restrict the number of platforms
or platform configurations that can properly execute the program.

3 Platform-independent real-time programming

The real-time programming approach described in this paper offers a solution to the previously
mentioned problems. In particular, the approach has the following properties:

• Timing and functional aspects are integrated in one language;

• Program semantics is context and platform independent;

• It yields composability and enables abstraction and stepwise refinement of timing behavior;

• Correctness of a program or a program part can be formally established.

To obtain these properties we distinguish two phases in real-time software development: (1) a
completely platform independent programming phase, and (2) a system generation phase where all
platform and context dependencies are addressed. The platform independence in the programming
phase is achieved by extending the programmil)g language with timing annotations that enable
the specification of timing behavior without describing the implementation. With the timing
annotation it is possible to limit the programmed timing constraints to those ones that are implied
by the problem specification. No additional constraints need to be programmed to "implement"
the timing specification.

In the system generation phase it must be established that the program can be realized on
the selected platform, i.e. that the platform is powerful enough to satisfy the timing constraints
that are expressed in the program. In addition mechanisms must be offered by the platform
to implement the expressed behavior. This usually comes down to scheduling the application
appropriately. The main difference between such a system generation phase and the compilation
step in non-real-time system development is the possibility for the system generator to conclude
that no implementation can be found for the selected platform, (i.e. a feasible schedule cannot be
found).

Thus, the listed properties are obtained through a number of measures on three different but
interdependent aspects of software development:

1. the development strategy: the strict separation of concerns during the programming phase
and the platform dependent implementation phase,

4 A SIMPLE PARALLEL PROGRAMMING LANGUAGE 4

2. the programming style: prescriptions on how the timing annotation should be employed, for
instance avoiding the introduction of constraints that are not implied by the specification,

3. the programming language: i.e. the syntax of the timing extensions.

It is important to note that software components can be programmed independently. Their
behavior, including the timing behavior, is constrained only by the specification of the problem
or sub-problem they address. Verifying system behavior is split into two distinct activities corre­
sponding to the two phases: (1) Establishing program correctness against the functional as well
as the timing specification, possibly separately for each component. This provides a result inde­
pendent of the context and the platform. (2) Establishing the existence of a feasible and correct
schedule (i.e. one that satisfies the constraints expressed in the program) to execute the system
components in composition on a specified platform. If step (2) fails the software designer can
change the platform or change the program. Naturally, the change in the program should be con­
fined to using more efficient algorithms (with lower computational complexity), or finer grained
concurrency, in a way that keeps platform considerations out of the program design. (Concurrency
optimizations can also be done automatically during system generation, thus avoiding the danger
of introducing concurrency that is not strictly inspired by the specification of the real-time prob­
lem that is being solved [24].) The hope is that the envisaged system generation can be automated
to a large extent. Real-time system-development tool kits that are presently available justify such
hope.

The main purpose of this paper is to illustrate our approach by an example, show its practical
implications and argue for its feasibility. For these purposes we introduce a simple programming
language and use a simple example application known from the literature, the "mine pump"
system. First we describe the language and its semantics, motivate the language design choices
and show how verification of programs can be carried out (sections 4 to 5). Next we give an
informal specification of the mine pump problem (sections 6 to 7). We provide a program that
constitutes a solution to this problem (sections 8 to 9), and describe how it can be implemented
on various platforms through a system generation step (sections 10 to 12). After that we will
discuss our approach and compare it with various other proposals for including timing constraints
in programming languages (section 13 to 14).

4 A simple parallel programming language

Gligor and Luckenbaugh [10] have published general requirements that should be met by methods
for the construction of real-time systems. They divided these requirements into four groups, two
of which are of particular interest to real-time and two are more general:

1. Control requirements

2. Timing requirements

3. Distributed systems requirements

4.)) Good programming" requirements

Because we focus on constructs for expressing timing constraints only item (2) and (4) are relevant
in the present context.

Concerning item (2) Gligor and Luckenbaugh do not say more about language constructs, than
that they must enable the programmer to specify desired response time and specify strict upper
bounds on the number of executions of all loops and program paths. Indeed, t,he most common
requirements on real-time systems, which are at the same time most difficult to guarantee, are
hard deadlines for programmed responses on external stimuli. However, in addition to deadlines,
there are other timing requirements on systems which are less difficult to guarantee, but must also
be taken into account when writing a program, e.g. the requirement that a particular response
should take place after a certain time. A real-time programming language should deal with all

4 A SIMPLE PARALLEL PROGRAMMING LANGUAGE 5

timing aspects in a syntactically uniform and concise manner. This latter requirement falls in
category (4), for which [10] describes the following requirements:

• The number of language primitives should be kept small.

• The primitives should be orthogonal (i.e., two or more primitives should not duplicate func­
tionality).

• The principle of "separation of concerns" should be followed in designing the language prim­
itives (e.g. , avoid primitives like the Monitor construct which combines synchronization,
communication and data abstraction).1

• Each primitive should have a simple semantics definable by Hoare-like aXIOms or Mills'
functions.

• Each primitive and each statement must have a formal definition.

In section 13 we will evaluate our language extension with respect to these requirements.

4.1 Syntax

OUf starting point is a normal imperative concurrent programming language with asynchronous
message passing along channels. We add an annotation to statements which contains timing
information expressed using timing variables. We also introduce special device variables which
enable communication with devices. Let VAR be a nonempty set of program variables, RTVAR
be a non empty set of timing variables, DEV be a nonempty set of device variables, CHAN be a
nonempty set of channel names, and CONST be a domain of constants. The variables in VAR are
all local (no global variables exist in this language).

The syntax of our programming language is given in table 1, with n EN, x, Xl, ••. ,Xn E VA R,
m, m" ... , mn E RTVAR, d, d" ... , dn E DEV, c, c" ... , Cn E CHAN, f.t E CONST, and R a
binary relation symbol (such as =, <, 2, etc).

Value Expression

Boolean Expression

Moment Expression

Timing Annotation

Primitive Statement

Statement

Process

e ::::::;:

b .. -

me ::::::;:

TA::=

P5::=

5··=

f.t I x I e, + e, I e, - e, I e, x e,
e, = e, I e, < e, I not bib, or b, I b, and b,

f.t I m I (me) I me, +me, I me,-me, I me, X me,

m := me I ?m I R me ITA,; T A,

skip I x:= e I in(d, x) I aut(d, e)
P5 I P5[TA] I
send(c, e, [!me]) I receive(c, x, [?m]) I f1ush(c) I
if b then S, else 52 fi I while b do 5 od I
select receive(Cl, Xl, [?ml]) do 8 1 od

or receiver c" x" [?m,]) do S, od

or receive(cn , X n , [?mn]) do Sn od
endselect I

5, ; 5,
P .. - 5 I P, II P,

Table 1: Syntax of the Parallel Programming Language

1 Interestingly enough, exactly this kind of mixing of concerns is what results in the phenomenon of concurrency
anomalies in object oriented languages.

4 A SIMPLE PARALLEL PROGRAMMING LANGUAGE 6

4.2 Informal semantics

For programs without timing annotations we use the conventional untimed semantics in which no
assumptions are made about the speed of actions. Timing annotations are used to restrict the set
of possible behaviors and they can be seen as constraints on the implementation/scheduler. Since
there is no notion of platform in the programming phase, the definition of time units is provided by
the problem domain. Therefore, we describe the timing behavior of a program from the viewpoint
of an external observer with his own clock. Thus, although parallel components of a system might
have their own, physical, local clock, the observable behavior of a system is described in terms
of a single, conceptual, global clock. Since this global notion of time is not incorporated in the
distributed system itself, it does not impose any synchronization upon processes. In this paper we
use the non-negative reals as our (dense) time domain: TIME = {r E IR I r 2: OJ. All times are
taken relative to the start of the program, taken at time O.

Informally, the statements of our programming language have the following meaning, using ==
to denote syntactic equality.

• skip has no effect, i.e. does not change any of the variables.

• Assignment x := e assigns the value of expression e to the variable x.

• in(d, x) denotes reading a device variable (register) d and assigning the obtained value to
the variable x.

• out(d, e) denotes writing the value of expression e into the device register d.

• To describe the meaning of an annotated primitive statement P S[TAl we first define the
execution moment of a primitive statement PS, denoted byem(PS). The execution moment
of PS is a point in time between (or possibly at) the start and the termination time of PS.
It usually corresponds to the moment at which the state change that is the result of the
statement is effectuated. P S[TAl has the following meaning:

If T A == m := me then the value of the moment expression me is assigned to m. This
is called a timing assignment.
If TA =.?m then the execution moment of statement PS, em(PS), is assigned to m.
This is called a time measurement.
Henceforth we identify relation symbol R and its interpretation.
If T A == R me then we have emf P S) R me. This is called a timing requirement.

if T A == TAl; T A2 then we have the sequentially combined effect of TAl and T A 2.
(If this leads to false the timing constraint can never be satisfied and an implementation
of the program cannot be constructed. For instance skip[< 5; > 5] has an unsatisfiable
constraint.)

Thus, we have three types of statements in the annotation: (1) timing assignments, that
enable the manipulation of timing variables (2) time measurements which can be used to
record the execution moment of the annotated program statement, (3) timing requirements,
which expresses a timing constraint on the execution moment of the annotated statement.

• send(c, e, [!me]) denotes an asynchronous send action, that is) the value e is transmitted
along channel c. Further, moment expression me is communicated to the receiver (conceptu­
ally, i.e.) this need not be implemented). We assume that messages are stored in an infinite
FIFO buffer.

• receive(c, x, [?m]) denotes a receive action which receives a value from channel c, namely
the first available message in the FIFO buffer of this channel, and assigns this value to x.
Further a timing value is received (conceptually) and assigned to m. This statements waits
until a message is available.

4 A SIMPLE PARALLEL PROGRAMMING LANGUAGE 7

• flush(c) denotes an action by which all messages in the buffer of channel c are removed and
discarded.

• if b then 51 else 8 2 fi denotes the usual conditional choice construct.

• while b do Sod, the traditional while statement.

• select receiver Cj, Xl, [?m1 D do Sl od
or receiver C2, X2, [?m2 D do S2 od

or receiver cn , Xn , [?mn D do Sn od
endselect
is a select statement. This statement waits until a message is available on one of the channels
el, ... 1 en· Then a channel on which a message is available is selected, the message is received,
and the corresponding statement is executed. The selection of the channel along which a
message is received is non-deterministic, with the restriction that it should be fair. That is,
if there is a message in the FIFO queue of a channel, then this message should be received
eventually.

• 51 ; 82 indicates sequential composition.

• PI II P2 denotes parallel composition of processes PI and P2·

We use if b then S fi as an abbreviation of if b then S else skip fi and [TA] as an abbre­
viation of skip[T A]. For a send action we use send(c, e), send(c, [!me D, and send(c) if moment
expression and/or value expression are irrelevant. Similarly, we use receive(c, x), receive(c, [?rn]),
and receive(c). In the following we will treat the constant true as a boolean expression, so that
we can write while true do, to denote a non-terminating repetition.

Given a particular program, all execution traces are allowed that satisfy the specified timing
constraints. Also we assume progress and finite variability, i.e. each message will ultimately
arrive and any finite amount of progress in the program's execution will happen within a finite
amount of time. Apart from this nothing is known about progress of statement execution or time
required for the delivery of messages. If a program has passed a feasibility test for the execution
platform at hand, which implies that the platform can implement the program, it is guaranteed
that the execution mechanism satisfies the semantics of the program including the assumed liveness
property.

To solve a real-time programming problem, it is normally not necessary for the programmer
to fix or consider the execution moment or duration of every statement in the program. Almost
always requirements only exist for the execution moment of statements that are related to some
(observable) external event. Hence, the timing annotations, usually, only refer to execution mo­
ments of a few relevant statements. There is no need to explicitly consider the execution duration
of all statements in between: this can be deferred to the system generation phase.

4.3 Syntactic restrictions

Programs should satisfy the following syntactic restrictions

• Channels connect two processes, that is, for a given channel c at most one parallel process
may contain statements of the form send(c, e, [tme]) and at most one other process may
contain statements of the form receive(c, x, [?m]).

• Processes cannot share variables, i.e., for a (sub)program PI II P2 a variable x may not occur
in both PI and P2 . We sometimes use variables with the same name in different processes.
It is always assumed that such variables can be distinguished for instance by labeling them
with the process name in which they are used. In the following we will list variable names for
each process. Constants are global and their names may appear anywhere in the program,
they are given by the set const C CaNST. The variables used in a program P are given by
the sets var(P) C V AR, rtvar(P) C RTV AR and dev(P) C DEV.

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS 8

• Expressions in the annotations are syntactically isolated from the rest of the program by
using square brackets. We distinguish time domain variables (variables Ilsed in between
square brackets, RTVAR) and program domain variables (variables used outside the brackets:
the other variable sets). The scope of variables is restricted to one domain only.

The reasons for the last syntactic restriction are twofold. First, separability of real-time constraints
and functional aspects is achieved this way. Second, it becomes syntactically impossible to intro­
duce data dependencies in the timing requirements, i.e. values of variables in the program domain
cannot be used to formulate timing constraints. Only time measurements, i.e. observations of the
execution moments of statements, yield new values for time domain variables that can be used in
timing constraints. This feature enables the static (off-line) analysis of timing constraints which
is required to prove correctness and to construct off-line schedules that satisfy the constraints.

5 Formal verification of time-annotated programs

In a couple of steps, we illustrate how formal verification of time annotated programs can be car­
ried out. We present a formal, axiomatic, semantics of (part of) the language by formulating proof
system which express when a program satisfies a certain specification. First the specifications are
introduced, using an extended and modified version of Hoare triples (program, precondition, post­
condition), similar to [14]. Next the proof system is given by formulation a set of compositional
rules and axioms. Compositionality implies that one can reason with the specifications of compo­
nents without knowing their program text. Program verification is illustrated by a small example
of a water level control program. We give the top-level specification of this example and refine it
towards an implementation. The correctness proof of the resulting program will be outlined. De­
tails of the proof are given in a appendix A. This example will be relevant in the full mine-pump
problem that will be considered in the next sections. A number of program design decisions that
will be taken there can be better understood after this section.

5.1 Specifications

Specifications have the form ((A A term)) S ((C)) where A is an assertion called assumption, S a
program, and C an assertion called commitment. In the assertions we use program variables, such
as x, y, etc., and two special variables em and term. These terms are only used for local reasoning
of a sequential program and are not part of the external interface of a component. They have the
following meaning.

• In A, x represents the value of program variable x in the state before the execution of S. If
S terminates, then in C it represents the value of x in the final state of S.

• em denotes the execution moment; in A the execution moment of the statement preceding
S (0 if there is no such statement) and in C the execution moment of the last executed
primitive statement of S.

• term is a boolean variable denoting termination; in A termination of the statement preceding
S (true if there is no such statement) and in C it denotes whether S terminates.

In addition to these terms for sequential reasoning, components usually have an external interface,
that is, a set of externally observable events. Since we deal with real-time systems, the timing
of these events is important. Further we can introduce axioms to express the assumptions about
the relation between sending and receiving. A description of these axioms is not needed for the
example that we present and is outside the scope of the current paper.

In addition to message passing, the programming language offers device registers for compo­
nents to communicate with their environment. A device register can either be set by the environ­
ment or be set by the process, but not both. In the former case the state of the environment will
be reflected in the value obtained by a read action, in the latter the program will determine the
state of the device. The following primitives are added to the assertion language.

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS

• read(d, v) at t to express that value v is read from d at time t, and

• set(d, v) at t to express that d is set to value v at time t.

To abstract from read or written values, two abbreviations are introduced.

• read(d) at t == 3v : read(d, v) at t

• set(d) at t == 3v: set(d,v) at t

Further we introduce the notation

• d(t) to represent the value of register d at time t.

9

Henceforth, frequently (d = v) at t is used as another notation for d(t) = v. For a predicate P at t
and a set (usually an interval) I C;; TIME, we use the abbreviations

• P during I == Vi E I : P at t,

• P in I == 3tEI: Pat t.

The next axiom expresses that the value read corresponds to the actual value of of the device
register) d:

read(d, v) at t -> d(t) = v (READAX)

Further, if a process writes a device register d, the value of d equals the last written value (or the
initial value at 0), that is,

d(t) = v <-+ (3to ""t: set(d,v) atto/l,set(d) during (to,tJ)V
(v = d(O) /I ,set (d) during [0, tJ)

We postulate that at most one value is written at any point in time.

set(d, v,) at t /I set(d, V2) at t -> v, = v,

(SETAX)

(UNIQUEAX)

Finally, only a finite number of write actions can be performed in a finite amount of time such
that there always is a last write in any finite period I.

set(d) in I -> 3tEI: set (d) at t /I (,set(d)) during {to E lito> t)

5.1.1 Examples Specifications

First a simple example:

((x = 4 /I em = 5 /I read(d" 2) at 3))
out(d" x + 2)

((x = 4 /I em > 5/1 read(d" 2) at 3 /I set(d" 6) at em)).

We can generalize specifications by using logical variables. For instance,

((x = v /I em = t /I read(d" 2) at 3))
out(d" x + 2)

((x = v /I em > t /I read(d" 2) at 3 /I set(d2 , v + 2) at em)).

The following program never terminates, but sets d infinitely often.

((em = 0)) while true do out(d,O) od ((,term II \It, 3t > t, : set(d) at t)).

Termination might also depend on a value read.

((ern = O/lx = 1))
while not(x = 0) do in(d" x); out(d" x + 1) od

((\Iv, t, : read(d" v) at t, -> 3t, ::: t, : set(d2 , v + 1) at t,/I
((3t : read(d" 0) at t /I term)V (\It: ,read(d" 0) at t II ,term)))).

(FINITEAX)

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS 10

5.2 Proof system

We briefly present the rules and axioms for our programming language and refer to [14J for more
explanation. First in section 5.2.1 we axiomatize the programming language by giving rules and
axioms for the primitive statements and the compound programming constructs. Next we give in
section 5.2.2 rules and axioms that are generally applicable to any statement. We assume that all
logical variables which are introduced in the rules are fresh.

5.2.1 Axiomatization of Programming Constructs

Let A[exp/x] denote the assertion obtained by substituting expression exp for all free occurrences
of variable x.

Rule 5.1 (Skip) A[to/ em] II term II em ;:: to -+ C

{{A II term}} skip ((C})

As mentioned above we assume that to does not occur free in C. Note that execution of the skip
statement may take 0 time (it is possible that em = to). An equivalent formulation is:

«'It;:: em : Crt/em] II term)} skip ((C})

Similarly, rules for assignment and access to device registers are formulated.

Rule 5.2 (Assignment) A[to/em, v/x] II term II x = e[v/x] II em;:: to -+ C

«A II term)} x := e ((C})

An equivalent formulation for this rule is:

«'It;:: em: C[e/x,t/em] II term)} x:= e «C})

Rule 5.3 (Read)

A[to/em, v/x] II term II read(d, xl at em II (,read(dl) during (to, em) II em> to -+ C

«A II term}} in(d,x) «C»

Remember that x is a local variable (syntactic constraint).

Note that in rules above and below, em > to has been used instead of em 2: to to express that
these statements take some time.

Rule 5.4 (Set)

Alto/em] II term II set(d, el at em II (,set(d)) during (to, em) II em> to -+ C

«A II term)} out(d, e) ((C})

which holds because e does not contain global variables (syntactic constraint).

Next follow some rules for the stamemets that influence flow-of-control.

Rule 5.5 (If-then-else) ((A lib)} 51 «(C}) , «A II ,b)} 52 «C})

«(A}) if b then 51 else 52 fi «C})

Rule 5.6 (If-then) ((A lib)} 5 (C}), A II ,b -+ C

«A}) if b then 5 fi ((e})

Rule 5.7 (While)

((I II term lib)} 5 ((I}),

Vt l 3t, > tl : I[t2/em] -+ h, loc(h) = 0, term does not occur in h
«1 II term)} while b do 5 od «(I II term II ,b) V (I II ,term) V (II II ,term»)

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS

The rule for the while statement with a true boolean guard immediately follows from this.

Rule 5.8 (While true)

«I II term)) S «(1)),

'It, 3t, > t, : I[tdem]-+ h, loe(h) = 0, term does not occur in I,

«(1 II term)) while true do S od «(I II ,term) V (h II ,term)))

11

Note that there are two cases here: either I includes termination ofS and the commitment reduces
to 11/\ -,term or I does not state termination of S and the commitment reduces to -,ierm/\ (IV II)'
Finally we consider sequential composition.

Rule 5.9 (Sequential Composition) «A)) S, «B)), «B)) S, «C))
«A)) S,; S, «C))

N ext a few rules to reason about timing annotations. Since a timing annotations is not a
statement (recall that the statement [T A] is an abbreviation of skip[TAD, we introduce some
auxiliary notation. For a timing annotation we use «(A))) [TA] «(C))).

Axiom 5.1 (Timing Assignment) «(C[me/m]))) [m := me] «(C)))

Axiom 5.2 (Time Measurement) «(C[em/m]))) [?m] «(C)))

Axiom 5.3 (Timing Requirement) «(A))) [R me] «(A II em R me)))

Rule 5.10 (Timing Annotation Sequential Composition)

«(A))) [TAd «(B))), «(B))) [TA,] «(C)))

«(A))) [TA,;TA,]((C)))

Rule 5.11 (Tillling Annotation Introduction) «A)) S «B)), «(B))) [TA] «(C)))

«A)) S[TA] «C))

With these rules we can derive, for instance) formulae of the form

«term)) S, [?m,] ; S,[?m,] ; if b then S3[:S m, + 0,] else S4[:S m, + 0,] Ii
«m,:s m,:s m, + max(o, , 0,)))

5.2.2 General Rules and Axioms

The proof system contains several general rules. We only list the rules pertaining to the particulars
of our real-time language, and refer to [14] for other rules. The first axiom expresses that a
terminating program takes only a finite amount of time.

Axiom 5.4 (Finite Time) «em = to II term)) S ((term -+ 30 2: 0 : em :S to + 0))

For a statement S, let writerS) be the set of shared variables that might be set by S, i.e. the
set of variables d such that out(d, e) occurs in S. Similarly, read(S) is the set of shared variables
that might be read by S, i.e. the set of variables d such that inC d, x) occurs in S.

Axiom 5.5 (Read Invarianee) (em = to)) S ((~read(d)) during (to, ern]))

provided d rt read(S).

Axiom 5.6 (Write Invariance) ((em = to)) S «(,set(d)) during (to, em]))

provided d rt writerS).

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS 12

5.3 Verification of a simple control system

We will specify, implement and verify the control program of the following system. A water vessel
has limited but unknown influx of water. A pump with a larger capacity than this influx is installed
to be able to remove water from it. Activation or deactivation of a pump must prevent that the
vessel overflows or runs dry. A device measuring the water level is installed. Critically low and
high water levels are selected. The response time d for the control system to swit.ch the pump on
or off, tolerable for this system is related to the maximal flow in and out of the vessel, the critical
levels and the response deadline.

As a starting point we take the following control requirements:

1ft" t2 : (water critically high) during [t!, t2J -; (pump is on) during [t! + d, t2J

1ft" t2 : (water critically low) during [tl, t2J -; (pump is off) during [tl + d, t2J

For simplicity we assume that two device variables, water and pump, represent the water level
and the pump state instantaniously. Assume pump ranges over {on, off}. The aim is to design a
control system satisfying

1ft" t2 : (water> high) during [t" t2J -; (pump = on) during [t, + d, t2J

1ft" t2 : (water < low) during [t" t2J -; (pump = off) during [t, + d, t2J

First note that the statements are trivially true if t1 + d > t 2 . Hence the above specification is
equivalent to

CT L, == 1ft" t2 : t, + d ::; t2 A (water> high) during [t" t2J -; (pump = on) during [t, + d, t2J

CT L2 == 1ft" t2 : t, + d ::; t2 A (water < low) during [t" t2J -; (pump = off) during [t, + d, t2J

That is, the aim is to design a control system Contr such that

«em = 0)) Contr « CTL)),

where CTL == CTL 1 1\ CTL 2 . The program must keep the pump in the correct state. It can do

so by setting the variable pump. Assuming 1ft: pump(t) E {on, off}, axiom (SETAX) leads to the
following properties.

CA, == Ifi : (::ito::; t : (pump = on) at io A (,sei(pump, off)) during (to, iJ) ~ (pump = on) at i

CA 2 == 1ft: (::ito::; t : (pump = off) at to A (,set(pump, on)) during (to, tJ) -; (pump = off) at t

Therefore it is sufficient to set the pump at selected moments. Let CA == CA, A CA2. Then the
top-level specification can be replaced by

C P, == 1ft" t2 : i, + d ::; t2 A (water> high) during [t" i2J -;
::it3 ::; t, + d: (pump = on) at t3 A (,set(pump, off)) during (t3, t2J

CP, == 1ft" t2 : t, + d ::; t2 A (water < low) during [t" i2J -;
::it3 ::; i, + d: (pump = on) at i3 A (,set(pump, off)) during (i3, i2J

Let CP == CP,ACP2. Then CAACP -; CTL, since (pump = on) at t3A(,set(pump, off)) during
(t3, i,J implies by CA, that (pump = on) during [i3, t2J, and with t3 ::; i, + d this leads to
(pump = on) during [i, + d, t2J. Hence it remains to implement Contr such that

«em = 0)) Contr « CP)).

Next reading the value of water is made explicit. By axiom (READAX) we have

CS == 1ft: read(water, v) at t -; water(t) = v

Now define

readperiod(i" i 2, v) == (i, < i 2) A read(water, v) at i2 A (,read(waier)) during (i" i,)

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS

with abbreviations

readperiod(tl' t2) == 3v : readperiod(tl' t 2, v)

and

readperiod(tl' t 2, high) == 3v : v > high II readperiod(tJ, t2, v)

readperiod(tl' t 2, low) == 3v : v < low II readperiod(tl' t 2, v)

The control program is now specified by

CCI == Vt 3tl, t2 : tl < t :S t2 < t + d II readperiod(tl' t 2)

CC2 == Vtl, t2 : readperiod(tl' t 2, high) -> (pump = on) in [t2' tl + dJ
CG3 == Vt : set(pump, off) at t -> 3t l , t2 : t E [t2' tl + dJ II readperiod(tJ, t 2, low)1I

13

(Vt3, t. : t. E (t2' tJ II readperiod(t3, t., high) -> set(pump, on) in (t, t3 + dJ)
In addition CC4 and CCs are required, which describe the symmetric case, with high and low,
and also on and off, interchanged.

Let GG == GG1 II GG2 II GG3 II GG. II GG5 . Then we have the following lemma.

Lemma 5.1 low:S high II GS II GG -> GP.

Proof of lemma:
By symmetry it is sufficient to show CPl. Lets assume that the premiss of the implication in C PI
is satisfied and there exists a i l and t2 with

tl + d :S t2 II (water> high) during [tl' t2J

By GGI we know that the water level was read in [tl' tl + dJ and obtain t l1 , t21 and v with

tl1 < tl :S t21 :S tl + d II readperiod(il1 , t2[' v)

(1)

(2)

The read action implied by readperiod at t21 E [iI, tl + dJ falls within the period that the water
is assumed high in (1), and thus using (READAX) we obtain v > high. Thus we have

readperiod(il1 ' i21, high)

By GG2 we obtain pump = on in [i21' tl1 + dJ and we can obtain a t3 with

tl :S i21 :S t3 :S il1 + d : pump = on at i3'

This implies GPI if (~set(pump, off)) during (i3, t2J.

(3)

(4)

Next suppose that (set(pump, off)) in (t3, t2J. We show that also in this case GP1 holds. Con­
sider the last set(pump, off) action in the interval (t3, t 2], which exists according to (FlNlTEAX).
Thus there exists a t. with:

sei(pump, off) at i. II t. E (t3, i2J II (~set(pump, off)) during (i3, t2J. (5)

The sei(pump, off) action in (5) matches the premiss of GG3 and we conclude that a i l2 and in
exist with

i. E [in, tl2 + dJ II readperiod(tI2' tn, low). (6)

Equations (5) and (6) state that both i. E [in,iI2 + dJ and i. E (t3,t2J. We conclude t22 :S t2'
However, since a low value was read at tn, (1) and (READAX) imply

(7)

Consider the following events: read low water at in; beginning of period where water is known to
be high at it; read high water at t21; set pump on at t3; and set pump off at t 4. Their precedence
relations can be inferred from (7), (2), (4) and (5), respectively:

(8)

5 FORMAL VERIFICATION OF TIME-ANNOTATED PROGRAMS 14

In addition to (6) the conclusion of eGa expresses a consequence that holds for all readperiod(ml,
m2, high) with m2 E [t22,/4]. It states that if a high water level is read after the read action at t 22 ,
the corresponding switching on of the pump must take place after the action on the pump at t4 _

From (3) and (8) we know that there is such a readperiod with m, = t11 and m, = t 21 . Therefore
CC3 implies

set(pump, on) in (t4' t11 + dJ.
Using (5) and t11 < t, (see (1)) we again obtain the conclusion of CP" namely

3t : set(pump, on) at tilt < t, + d II (~set(pump, off)) during [t, t2].

End Proof

Hence the control program, Contr, should satisfy the following specification

((em = 0)) Contr ((CC)).

(9)

(10)

We can consider two simplifications in the specification which correspond to design decisions for
the example program. First, the condition pump = on in CC, can be trivially satisfied through
the action set(pump, on). Thus we obtain a stronger version of CC2

CC; = 'It" t, : readperiod(t, , t2, high) -> set(pump, on) in [t2' t, + dJ

We can also introduce a stronger version of eG3 expressing the additional requirement that
a read may not take place between a set(pump, off) action and the last read(water, low). It will
become clear from the example program that this implies non-interleaving read and set sequences.

CC~ = 'It : set(pump, off) at t -> 3t" t, : t E [t2, t, + dJ II readperiod(t" t2, low)1I
(~read(water) during (t2' t]

We will continue for now with this stronger specification. We provided the proof of the original,
weaker, one because it is more general and similar to what is used for the mine-pump example
that will be discussed in the next sections.

We propose the following program as one that satisfies the commitments eel, CC~, ee~, ec~
and CCt :

Pvater_level
\\rtvar
\\var
\\dev
\\const

01

02
03

04
05
06
07
08
09
10

11
12

{t1, t2}
{x}

{vater. pump}
{on, off, high, low, true, d}

[t1 ,=0] ;
while true do

[t2,=t1] ;

od

in (water , x) [<t2+d; ?t1];
if high < x then

out (pump , on) [<t2+d]
else

if x < low then
out (pump,off) [<t2+d]

fi
fi

6 INFORMAL SPECIFICATION MINEPUMP 15

The program should be read as follows. Initially t1 is set to 0 (line 1). On the first sweep of
the repetition t2 obtains this value in the first annotated statement (line 3). The first time the
in statement (line 4) is executed it is done so before time d, and il records the actual execution
moment. If subsequently a pump action is required, i.e. either the condition tested in line 5 or
line 8 evaluates to true, the state change corresponding to the relevant out statement (line 6 or 9
respectively) is realized before the deadline d. In the next sweep t2 assumes the old value oft! (line
3) and it records the execution moment of the next in statement that inspects the environment.
A possible response to the obtained value must now take place before t2 + d, i.e. within time d
from the one but last inspection. And so on for all the following sweeps.

Considering the specification this program can be motivated as follows. CC! is satisfied by
allowing at most a time d to pass between two consecutive sensor readings. This is expressed
in the annotation of line 4. The maximum readperiod that ends at a particular reading extends
backward to the moment of the previous reading. Thus, CC~ is realized by imposing a deadline
d on the out(pump, on) statement counted from the execution moment of the one but last water­
level inspection. Because with every read(water, high) there corresponds a set(pump, on) and vice
versa, CC~ is also satisfied. A formal prove that this program satisfies the specification is given
in appendix A.

The mine-pump problem that is introduced in the next section involves control requirements
that can be expressed similarly to the requirements that were taken as starting point of this small
example. We will use the insights that were obtained in this section also for constructing the
solution to this larger problem but we will omit formal proves from now on.

6 Informal specification minepump

We apply our full approach to the mine pump system as described by [6]. In this section we
describe this system and give an accurate but informal specification.

The mine-pump system is intended for regulating the ground-water level in a mine through
the programmed control of a water pump. This pump must not be operating if the methane-gas
level in the mine is too high because of the risk of explosions. Also other gases in the mine are
monitored by the system and an operator is provided with information on the conditions in the
mine and is given limited control over the pump. In this paper we will not consider the complete
system as described in [6] but only the part that is concerned with the pump control. In particular
we will omit the interaction with the operator and the monitoring of gases other than methane
since they have no impact on the pump operation.

In general, problems like the mine pump involve four parts, namely (1) the environment (i.e.
the mine), (2) the devices (sometimes called ironware; an example is the pump), (3) the program­
execution platform (or hardware), and (4) the software. The problem is assumed to originate from
the desire to control the environment. The part of the specification that expresses the properties
of the environment that the control system must realize is referred to as the top-level requirement
specification. Choices with regard to the implementation of the control solution are made during
the subsequent design phase. Initially the solution must be designed as a whole: devices, execution
platform and software, because dependencies between these parts exist they cannot be considered
as entirely separate problems. For example, the nature of the selected devices will influence
the functional as well as the timing requirements on the software and through this the available
processing power may interfere with the selection of devices.

However, we will consider the present design and implementation problem to pertain only to
the configuration of the hardware and software and we assume that the particulars of the devices
are already fixed. In that spirit we will refer to the combination of hardware and software as the
system or the control system. The control system is obtained in two phases: (1) t.he construction
of the program and (2) the selection of the platform configuration and system generation.

The top level specification and the device choices lead to the system requirements.

1. Top-level specification: A system must be installed to ensure that the water level in the
mine is not getting too high. If there are conditions under which the control system cannot

6 INFORMAL SPECIFICATION MINEPUMP 16

operate safely the water level is allowed to rise indefinitely but other measures must be taken
that are outside the scope of the system.

2. Device implementation choice: It is known that there always is a bounded non-negative influx
of water. Thus, the amount of water remains the same or increases if no countermeasures
are taken. Therefore, the top-level specification is satisfied using a pump with a limited but
large enough capacity to outperform influx of water. When the pump is Oll, the amount of
water is decreasing. The pump should not run dry, i.e. the water level should not decrease
below a certain level, or the pump should be off.

3. Device implementation choice: To detect the water level two sensors are present: a high
sensor at a point that is called A for the moment, and a low sensor at a point B. The
high and low water sensors will signal to the control system when the water level reaches a
sensor: the high-water sensor on the transition from dry to wet and the low-water sensor on
the transition from wet to dry.

4. Requirement on the pump control: To prevent the water from exceeding certain high and
low levels, some timing requirements on the response time of the system must be satisfied,
If the water-level is on or above the high point A in the entire time interval [t 1, t2] then the
pump should be on in [t1 + dh, t2]. Similarly, if the water-level is on or below the low point
B in the interval [t1, t2] then the pump should be off in [t1 + dl, t2]. If the water is between
A and B the pump may be either on or off. Because the pump has finite capacity and the
influx of water is limited, there is a minimal amount of time, dlh, required for the water to
increase from B to A or to decrease from A to B. It may be assumed that dlh » hi and
dlh» dh.

(Comment: we will take into account that high signals may be given without low signals
in between, because the pump may be switched off at any time. Values suggested by [6]:
dl = dh = lOsee, dlh = 100see.)

5. Consequence of device implementation choice and safety requirement: In the mine methane
may be present. If the local methane concentration at the pump exceeds a critical level
then the pump should be off, otherwise the risk of an explosion becomes unacceptably high.
Satisfaction of his requirement has priority over the pump-control requirements.

6. Device implementation choice: A methane sensor is used to measure the concentration of
methane in the mine atmosphere near to the pump. The methane level increases or decreases
with a maximum rate. Therefore some response time remains when the methane level is still
sub-critical by a certain amount. This response time is called dc. The device must be polled
by the control system.

(Comment: values suggested by [6]: de = 30msee.)

7. Requirement on the pump control: If the methane level is above the previously mentioned
sub-critical value in [t1, t2] then the pump should be off in [t1 + de, t2] no matter what the
water level is. If the methane level falls under this sub-critical level, then the pump can be
switched on again. Thus, the condition under which the pump must be on changes into: if
water on or above high and methane under the sub-critical value in the entire interval [tl, t2]
then the pump must be on in [t1 + dh, t2].

8. Consequence oj unreliable pump-device: Measures should be taken to inspect proper func­
tioning of the pump. Having the pump on for longer then df while it in not functioning
correctly is dangerous and should at all times be avoided (higher priority than water-level
control). Fault-hypothesis: the pump may fail. If it fails it generates a lower water flow than
when it is functioning properly and is switched on. The residual flow is under a value min.
If the pump is faulty it remains so forever.

7 INTERACTION WITH THE ENVIRONMENT 17

9. Device implementation choice: A (reliable) water flow sensor is installed to check the correct
operation of the pump. This sensor must be polled. On inspection it provides the value for
the flow of water. If the pump is on and the water flow is less than min, the pump is faulty.

10. Requirement on the pump: If the pump is faulty and on it should be switched off. The pump
should remain in off position forever. It must be ensured that: if pump faulty and on in
[t1, 11 + dJJ then pump off in [tl + dJ, inf)o

(Comment: value suggested by [6J: dJ = 100msec.)

Since fault tolerance is not an issue in this paper we will assume that the platform has no
failures.

7 Interaction with the environment

The way the control system interacts with the environment that it controls, in particular the
programmer's view of such interaction, is an important issue that must be addressed before we
discuss a program for the mine-pump problem.

Here we distinguish two modes for receiving information from the environment: polling of
sensor values and signal (interrupt) based handling of sensor information. The former mode can be
included in our programming model through the introduction of special variables (device registers)
that can only be inspected (i.e. a read-only variables). We will adopt this view and assume that
reading'such a variable yields a particular sensor value at the very moment of inspection. This
assumption is for simplicity and does not affect the essence of our approach.

The latter mode, interrupt based interaction, is fundamentally more problematic. In practice
interrupt-handling mechanisms are employed that may result in loss of interrupts if previous ones
are not handled timely. Our experience with the case study presented in this paper is that loss of
messages may cause problems with the program semantics if it is not under explicit control of the
program. To avoid such problems we have intentionally introduced infinite FIFO message buffers
and we assume that the interaction between devices and software processes can be described using
regular message passing via special" device channels". Devices can thus be viewed as "physical"
processes that are connected to software processes through such channels. This model has the
advantage that a device is equivalent to, and can be specified through) a software process that
yields the same set of possible communication behaviors as the device.

Infinite buffers obviously can not be implemented, and part of guaranteeing the existence of an
implementation is an analysis of the resource requirement of a program and showing that it can
be satisfied. Thus, obviously, not only timeliness is a concern during scheduling, but also resource
availability and utilization.

A specification of the possible behaviors of the environment that has to be controlled must be
input for program construction as well as system generation. The programmer requires a specifi­
cation of possible environment behavior to be able to construct a solution to the control problem.
The scheduler must use the same information to establish feasibility of an implementation of this
solution on the provided platform. We mentioned before that the environment may be consid­
ered equivalent to a software process and its behavior can be described using our programming
language. Since programs do not refer to any execution mechanism they can specify the behav­
ior of the environment in an abstract fashion. The scheduler, naturally, does not schedule the
environment but uses this specification as input to obtain a schedule for the control program.

As an illustration of this, consider the high/low water senSOIS described in the previous section.
We can view these sensors as one "physical" process with two communication channels that has
the same set of communication behaviors as the following process:

Pphysical

\\rtvar = {t}

7 INTERACTION WITH THE ENVIRONMENT

\\var
\\canst
\\chan

{random}

{a,true, dlh, delta}
{high_sensor, low_sensor}

[t: =-dlhl ;
while true do

od

while random do

od;

[>t;?t]; II water surface reaches high sensor
sendChigh_sensor,[!t)):
[<t+deltal

[t: =t+dlhl ;
while random do

od;

[>t;?t]; II vater surface reaches low sensor
send(low_sensor,[!t]):
[<t+delta]

[t: =t+dlh]

18

The behavior of this process follows from the program semantics. Nothing of its execution speed
is known: progress should be considered arbitrary for as far as it is not specified. (As mentioned
before we assume, however, liveness.) To express the nondeterministic nature of the environment
a boolean variable random yields at inspection an arbitrary choice between true and false.

The timing parameter t that is written with a sent message, represents the moment at which
the water actually reaches the level communicated in the message. It is import;mt to understand
the nature of this timing parameter. This program does not imply that the time value is included
in the message at run-time. Timing parameters are part of the annotation which just describe
the timing behavior of the program. If the run-time system does not need this information or only
a compiled version of it, timing parameters will not actually be sent.

The interpretation of the timing parameter (the fact that it corresponds to the moment a
certain water level is reached) must be used by the programmer to construct his control program
(just like a programmer needs to interpret the variable x in a function call sin(x) as a particular
angle in radians to be able to construct a meaningful program). During system construction this
interpretation is not relevant and only the environment specification as it stands must be supplied
(e.g. to the scheduler or schedulabilty analyzer).

Thus the above program corresponds to the following behavior of the environment: When
the control system is started the water will reach one of the sensors) say the high one, after an
unknown period of time. This results in a message on the high-sensor's channeL Subsequently the
water-level will pass the sensor an arbitrary number of times in succession, with an unspecified
rate. This is due to the fact that the pump may be switched off at arbitrary times: to keep
the system robust and more generally applicable we assume very little about the behavior of the
environment. A message will be sent at each passage and messages from the sensor may, therefore,
be arbitrary in number and rate. If the water surface subsequently reaches the low sensor there
is at least an amount of dlh time between the last high-sensor crossing and low-sensor crossing,
because the water has to decrease in level substantially. Then, the low-sensor can be triggered
an arbitrary number of times after which, again, the high sensor will be triggered at least a dlh
amount of time after the last low-sensor passage. This sequence of events continues indefinitely.

Note that there is some information on the device latency in this program. Whether this should
be included and how large it is, depends on where the interface with the control system and the
environment is envisaged. Here it is assumed that in addition to a delay in the high_sensor and
low_sensor channels, which are assumed part of the control system, there is a device latency that
is maximally delta: the sensors place a message onto the channel within delta time, where delta
is a given constant. In the following we will make the simplifying assumption that delta = 0+.

The specification leaves room for a large number of possible message sequences with their
timing. Naturally, the control program must respond appropriately to all of the allowed behaviors

8 DESIGN DECISIONS 19

of the environment. In particular it must be shown that a program exists which, among other
things, can handle the arbitrarily high number of messages that may occasionally arrive, and
it lIlllst be shown that a feasible implementation of the program exists on a given platform.
The latter is the task of the system generator. It must obtain the environment specification
as input in addition to the control program and platform specification to determine whether
an implementation of the control program is feasible and to generate this very implementation.
Typically the system generator must know the (maximal) delay of the message in the channels
(platform specification) and the latency of the device (environment spec), e.g. to compute if the
system can satisfy a possible deadline on the response.

8 Design decisions

During the design phase decisions have to be made on the division of the program into parallel
processes and the assignment of subtasks to each of them. In the following we describe the
rationales that have led to the choices made to arrive at the implementation that is presented
in this paper. At this stage we have no systematic method to derive real-time programs from a
specification. Development of such a real-time programming method is considered an interesting
subject for future research.

The only externally observable effect of the program is that the pump is being switched on
and off at appropriate moments. There are three aspects of the environment that have their
bearing on the pump: (1) the water level, (2) the methane level, and (3) failures of the pump.
These physical processes are made visible to the control software by the sensors. The nature of the
environmental conditions determines if and how urgently a response of the system is required. The
measurements of the conditions are independent problems both in their function as well as timing.
Thus we shall introduce a separate process for monitoring each sensor. These processes determine
from the sensor state if an action should be taken on the pump. Thus we have sensor processes
Pmethane, Pwater and P flow. Pwater is message driven, i.e. it is triggered by messages passed
to the control system by the environment. It is therefore not of the form of the example described
in section 5.3. The other involve polling loops that are likely similar to what we described there.

Although the handling of each sensors is an inherently independent activities, the resulting
actions on the pump must be coordinated. Because we only have local device registers in our
programming language there can be only one process that switches the pump, and it must make
decision to that effect on the basis of messages passed by the processes that monitor the sensors.
Therefore a process that sets pump, Ppump, is introduced.

Ppump must be informed by the sensor processes about the following relevant conditions in
the environment:

• the water level may be too high,

• the water level may be too low,

• the methane level is too high,

• the methane level is ok,

• the pump has failed.

Note that the condition "the water level may be too high" is true after the high sensor has
been reached and cannot be denied until the low sensor is reached, then it is replaced by "the
wat,er level may be too low". If the former condition holds, the pump should be on, if the latter
holds, it should be off (within the response time margin).

To enable an implementation of the control condition we introduce in Ppurnp (boolean) pro­
gram variables that have the same value as the corresponding assertions about the environment
at least within the appropriate reaction time. e.g. :

9 IMPLEMENTATION 20

"the water level may be too high" during [t1, t2]
-----> (water _may_be_too_high = true) during [t1 + d, t2]

On the basis of the value of these variables a decision is taken with regard to the action on the
pump. The control specification implies that the following assertion) P, must hold within the
deadline of each change in the relevant environmental condition:

where

and

P = ((water_may_be_too_low or .safe) -----> pump = off) and
((water_may_b<-tooJdgh and safe) -----> pump = on),

Ppump will have to maintain the state of the boolean variables and set the pump variable to satisfy
assertion P. Thus Ppump will he able to receive messages from all the processes monitoring a
sensor and will implement a response. The messages can be annotated with the response time for
the condition that is communicated.

There is one additional complication. Although measuring water flow of the pump and estab­
lishing failure of the pump is an activity that is in principle independent from the pump-control,
the water flow measurements are only necessary when the pump is on and the the measurements
must be synchronized with Ppump to be sure that the pump state is known at the moment the
flow is measured. After all it must be established that if no flow is measured this is not sim­
ply due to the switching off of the pump. This problem will be appropriately addressed in the
implementation discussed in the next section.

9 Implementation

In this section we will present an implementation of the mine pump control program. The processes
are sometimes obtained in several steps. Whenever we write P = .. we describe the final version of
a particular process. On the other hand when we write P .-v .. we are discussing an intermediate
verSIOn.

The following channels and constants will be present (all local entities will be mentioned with
the corresponding process).

chan
canst

{methane, water, check, check_flow, high_sensor, low_sensor}
{O, true, false, high, low, too_high, ok_again, max, min, on, off,
dh, dl, dlh, dc, df}

9 IMPLEMENTATION 21

9.1 Process handling CH4 sensor

The process Pmethane determines from a sensor reading if the methane level becomes too high
for safe operation of the pump or if it reaches an acceptable level after having been too high. A
boolean variable high_methane is updated to record the state of the environment. Whenever this
boolean changes a message is sent to the pump process. The message contains a timing parameter
prescribing the deadline within which the messages must be handled.

Pmethane

Ilrtvar =

Ilvar
Iidev

{tl,t2}
{methane_level, high_methane}
{methane_sensor}

[tl,=OJ;
high_methane := false;
while true do

od

[t2,=tlJ;
in (methane_sensor , methane_level} [<t2+dc; ?t1J;
if (methane_level<max) and Chigh_methane=true) then

high_methane := false;
send(methane, ok_again. [!t2+dh])

else if not Cmethane_level<max) and Chigh_methane=false)
high_methane := true;
send(methane. too_high, [!t2+dc])

fi
fi

Note that this timing annotation pattern is similar to the one described in section 5.3, apart from
some (not unimportant) change in detail: (1) only one critical level exists, (2) the actions on the
pump are achieved through sending a message, (3) the state is recorded (variable high_methane)
and only changes in this variable give rise to actions on the pump, (4) there are two different
response deadlines related to the level becoming too high and acceptable respectively. The deadline
on the pump action is passed as a timing parameter in the message. The message is handled by
the receiving process which will continue the sequence of actions and realize a proper response
within this specified deadline. Note, that the deadline on the sensor inspection is t2 + de which
is the minimum of t2 + dc and t2 + dh because it must always be possible to verify the methane
condition within the shortest response deadline.

9.2 Process handling high and low water level messages

Because the monitoring of the water level is message driven, the process is quite different from the
polling loop of the methane process and the example of section 5.3. Pwater alternately expects
the water to be high and low. Since it is assumed that the pump is off initially the water will be
rising. Therefore the first message that may arrive is one idicating high water. Both assertions
the water may be too low and the water may be too high may assumed to be initially false.

As soon as a high water level is detected a message is sent to Ppump indicating this condition
and a response must occur within the deadline dh. In general, only the first low message after a
high one is relevant and requires a response and all other low-messages can be discarded. Thus,
the buffer that keeps messages from the low sensor is flushed before the water can reach t,he low­
sensor to make sure that only a relevant new message to this effect will cause a response. Such a
low-sensor message is handled in a similar fashion as the high one but with a different deadline,
namely dl.

Pwater

9 IMPLEMENTATION

Ilrtvar = {t}
Ilvar {}

while true do

od

receiveChigh_sensor, [?t):
sendCwater, high, [!t~dh]);

flush(low_sensor);
[<t+dlh] ;
receive (low_sensor , [?t]):
send(water, low, [!t+dl]);
flush(high_sensor);
[<t+dlh]

22

It is interesting to note that in the implementation of this program only one-place buffers that
retain the oldest message are required for the device channels, even though message rates from
the environment can be arbitrarily high.

9.3 Process measuring pump faults

If we disregard the earlier assumed process structure one would, inspired by the example of section
5.3, attempt the following solution.

Pcheck
[tl:=O];
pump_is_faulty := false;
while true do

od

[t2:=tt];
in (pump , status} [<t2+df;?tl]:
if status=on then

fi

in(flow_sensor,x);
pump_is_faulty := (x<min);
if pump_is_faulty=true then

out (pump,off) [<t2+df]
fi

There are two problems with this implementation. First, the pump process is receiving messages
from the other processes and must be ready to do so. Thus, it is not possible to integrate the
above polling loop completely into this process. Second, we would like to place the pump and
flow sensor management in separate processes, to make the process structure reflect the physical
distribution of the system and separate the concerns of measuring the flow and controlling the
pump. A simple strategy to solve these problems is to cut the above process into three parts that
are allocated to Pcheck, P flow and Ppump, respectively. The relevant steps in the procedure,
(1) starting an iteration, (2) determining the pump state, (3) checking the flow and (4) switching
the pump off if necessary, are allocated to these processes and are always executed in succession
through the passing of messages.

Pcheck

l!rtvar {}
Ilvar {}

while true do
send(check)

od

9 IMPLEMENTATION

Pflow

Ilrtvar = {t}
Ilvar {x}

I/dev {flow_sensor}

while true do
receiveCcheck_flow);
in(flow_sensor, x);
send(flow, (x<min»

od

The third part must be integrated into Ppump:

Ppump
[t :=0] ;
pump_is_faulty := false;
while true do

od

receive(check);
[t:=t1+df] ;
in(pump. status) [<t; ?tl];

if status=on then

fi

send(check_flow);
recieve(flow, pump_is_faulty);
if pump_is_faulty=true then

out (pump, off) [<t]
fi

23

Note, that Pcheck does not contain any timing annotation. Still, the processes combined satisfy
the timing constraints, e.g. the constraint that the pump is checked within each interval df. This
implies (through the precedence constraints between the processes) that Pcheck sends a message
that initiates the checking procedure frequently enough.

9.4 Process handling pump

The pump process handles the messages from the three processes, Pmethane, Pwuier and Pcheck
and carries out the required pump actions within the specified deadlines. It must icorporate the
actions described in the previous subsection. The complete program is:

Ppump

Ilrtvar =
Ilvar

{t, tl}

{value, water_may_be_too_high, water_may_be_too_low,
methane_is_too_high. pump_is_faulty, status}

{pump}
II
Iidev

[tl:=O];
water_may_be_too_high := false;
water_may_be_too_lov := false;
methane_is_too_high := false:
pump_is_faulty := false:
while true do

select receive(vater, value, [?t])
do

if value=high then

10 SYSTEM GENERATION

II
II
II
II
II
II

od

od

water_may_be_too_high ;= true;
water_may_be_too_low ;= false;
if methane_is_too_high=false then

out (pump, on) [<t]
fi

else II value=low
water_may_be_too_low
water_may_be_too_high
out (pump, off) [<t]

fi

:= true;
;= false;

or receive(methane, value, [?t])

do

od

if value=too_high then
methane_is_too_high := true:
out (pump, off) [<t]

else //value=ok_again
methane_is_too_high := false;

fi

if water_may_be_too_high=true then
out (pump, on) [<t]

fi

or receive(check)
do

od;

[t:=t1+df] ;
in (pump ,status) [<t; ?tl];
if status=on then

fi

send(check_flow);
recieveCflow. pump_is_faulty);
if pump_is_faulty=true then

out (pump , off) [<tJ
fi

When a message is handled by this process the following assertion holds:

p «water_may_be_too_low or not safe) -> pump=off) and
«water_may_be_too_high and safe) -> pump=on) and
«safe = not (methane_too_high or pump_is_faulty » and
not Cwater_may_be_too_high and water_may_be_too_low)

24

Note that for clarity we have introduced the variable water_may_be_too_high as well as the variable
water_may_be_too_Iow

l
while only one is actually required.

The present implementation of the pump process solves the synchronization problem mentioned
before: the only process that can change the state of the pumpl Ppump, is blocked during the
flow measurement. Thus, it is known that the pump is on when the flow of the pump is being
measured by P flow.

10 System generation

In the following sections we will give examples of implementations of the mine-pump control
program on several platforms. By platform we mean the processors and their interconnection as
well as the execution mechanism that is employed. In each case we give the conditions under

11 OFF-LINE SCHEDULING 25

which the program is feasible. We give no formal proof of this feasibility.
We consider two models:

1. Off-line (static) scheduling. We consider two cases, maximum and minimum parallelism. We
assume a minimal but sufficient number of (bidirectional) communication lines to allow for
direct process to process message passing.

2. On-line preemptive priority scheduling. We will only consider the most interesting case of
minimum parallelism for this model.

We will describe each of these models in detail.
First we analyse the programs process and scheduling block structure) and find critical exe­

cution paths in the program. On the basis of this analysis we study the two cases: maximum
and minimum parallellism. The on-line scheduling approach will also benefit from the analysis
done for the off-line case. The schedulability will be studied for both approaches and a numerical
example will be given.

11 Off-line scheduling

We assume the following execution model. An off-line calculated schedule is passed with the
executable image of each process to an on-line dispatcher. The task of the off-line scheduler is
(1) to divide a process in scheduling blocks and (2) to assign to each process a number of time
slots for execution. The dispatcher will deal with these slots as follows. At the moment the time
slot for a process is reached, execution of this process will start or resume, but only if it is ready
to run. If the process is not ready, i.e. an awaited message has not yet arrived, the time slot
will be relinquished. When the end of an executing block is reached, execution will be suspended
until the next time slot for that process. At the end of a block the control will be returned to the
dispatcher either through a blocking statement contained in the program (i.e. receive statement) or
a preemption instruction that is inserted in the machine code during system generation. Although
in general this model requires several refinements that describe how alternatives in block sequences
are handled, the present level of detail is sufficient for the problem at hand.

The off-line scheduler cannot predict variations of behavior of the environment that remains
within the environment specification. The schedule must therefore be based on worst case as­
sumptions. It must, e.g. , be taken into account that messages from the water-level sensor may
arrive at times and rates described by the program in section 7.

We will proceeed by analyzing the program in several steps and infer schedules for the maximum
and minimum parallellism cases.

11.1 Program analysis: process structure

In Figure 1 we have depicted the process structure of the minepump program. The processes, com­
munication channels and device variables are drawn. The channels are directed arrows indicating
the directions in which the messages are send.

11.2 Program analysis: scheduling blocks

For scheduling purposes the minepump program it is divided into beads. Beads are the smallest
program parts that must be analyzed on their execution duration. To reduce the size of the
scheduling problem, the off-line scheduler will compute time slots for groups of such beads which
are the previously mentioned scheduling blocks. We will not address the problem of recognizing
and grouping beads, nor how a schedule may be found. It is possible that a block contains
alternative groups of beads, but, naturally, the worst-case behavior must be taken into account.

New bead starts at either the beginning of a process, at a time measurement, at an earliest
start-time requirement or the reception of a message. A bead ends at the sending of a message, at

11 OFF-LINE SCHEDULING

0---

high.....sensor (--) ,
, '
I pphysical I , , , ,

methane chock

water

pump

flow

Pflow ----0
flow_sensor

Figure 1: The process graph for the mine pump.

26

a deadline requirement or the end of a process. When beads are combined into scheduling blocks,
earliest start times may be moved to the beginning of the block and deadlines may be moved to
the end. Because time measurements may be used to compute both deadlines as well as earliest
start times they must be known more precisely. However, it is in practice very difficult to dispatch
a bead exactly at the position of the measurement. Therefore we assume that for a bead in a
block preceeding such a measurement, colored black in the figure, a best and worst case execution
time is known. If these times are not equal constraints involving the measurement may not always
be satisfiable. For simplicity we assume here that these times may be considered equal by the
scheduler. The scheduler can then straightforwardly infer the value of a time measurement from
the placement of a scheduling block. Blocks have a structure as depicted in Figure 2.

1

Figure 2: An example of a scheduling block that contains a time measurement at the end of the
first bead (indicated by?) and a constraint on the end of the second (indicated by!).

Blocks in a process are labeled. Beads in a block have the same label with an additional
subscript to distinguish them. Time measurements or requirements on a bead-boundary are indi­
cated by question and exclamation marks) respectively. We denote execution durations of beads
as follows:

• duration of bead preceeding a measurement: Tbo = duration(bo)

• maximum duration of regular bead: Tbn = max_duration(bn)

• maximum duration of total block: Tb = Tbo + ... + Tbn

Figure 3 shows the bead and block structure of the various processes in the program. All processes
consist of an initiallization part and a cyclic part. This cyclic part in some processes is triggered by

11 OFF-LINE SCHEDULING 27

a message (e.g. P flow), or several messages in sequence (e.g. Pwater) or message alternatives (e.g.
Ppump). Some processes send a message or have the option to send a message during execution
of a block. Optional messages or message alternatives are indicted by dotted lines. Two processes,
Pmethane and Pcheck 1 have a cyclic part that is not triggered by a message. Their rate of
execution is arbitrary but such that timing constraints are satisfied.

Code analysis should provide maximum execution durations of the various beads. To find
tight upper bounds for such durations for realistic programs and modern processors is not a
simple problem. However 1 some encouraging research has been done in this regard. We will not
further address this issue here.

11.3 Program analysis: critical paths

To investigate possible schedules, the timing constraints are considered in more detail. We can
discern critical execution paths) i.e. sequences of statements across processors that correspond to
worst case execution times towards a deadline. These paths are depicted in Figure 4. In fact there
are four such paths: one corrseponding to the response to a critical or sub critical methane level,
two corresponding to detection of high and low water, and one corresponding to failure detection
of the pump.

In our search for a feasible schedule we will consider situations where the blocks of the cyclic
parts of the processes are dispatched strictly periodically, starting from some offset. Note that there
are many alternatives to a strictly periodic schedule: the program does not state any preference
and a periodic schedule is strictly an implementation choice. It is not required for correctness.

As can be seen from the figure, the periods determine how much time remains for the processes
to make their deadlines and thus they are very important in the scheduling analysis. Each critical
path in Figure 4 yields a constraint that corresponds to meeting the deadline during normal
periodic execution. Another requirement is that the initialization block of each process must be
executed within this offset. Thus, constraints can be inferred for meeting the deadlines after
initialization. These are not depicted in the figure.

We consider the constraints per process, first the initialization constraint and then the con­
straint(s) corresponding to the cyclic execution. The latter ones can be directly compared with the
figure. For each message a message-passing time is introduced, M x with x the channel name (no
distinction between individual messages on a channel needs to be made here). This passing time
is the time between the sending of the message and the moment the receiving block is dispatched.

Prnethane
Start times
Constraints

Initial:
Cyclic:

Pwater
Start times
Constraints

im + x * T'm with x E N

im + Tmlo + Tml, + Mm + Tp20 $ dc
rm +Tm1, + Mm+ Tp20 $ de

Initial: iw + Twlo + Mw + Tplo $ dh
iw + Tw10 + TwI, $ dlh

Cyclic: Mh + Twlo + Mw + Tplo $ dh
MI + Tw20 + Mw +Tplo $ dl
Mh+Twlo+Twl, $dlh

Peheek
Start times
Constraints

MI + Tw20 + Tw2 , $ dlh

ic +x*T'c with x E 1\1

11 OFF-LINE SCHEDULING

Pmethane

Pwater

Pflow

Pcheck

ppump

mO

wO

,; methane

?! ,

methane_sensor

, ,

4 wruer

ITI

checkjlow ' , ".. / flow

4 water

w2 ~IJ

ififOJ-'f-------...:GJ:J-

pO

check methane

flow_sensor

check

checIcflow flow
pump

, , , ,
water

p2

,
, ,
,;

Figure 3: Block structure of the processes

pump

28

11 OFF-LINE SCHEDULING

Fpump

Pmethane

Ppump

Pwater

Pcheck

Fpump

PHow

,

?! ?!

rump

cib
,(

" 'methane

I ml I 1----· I ml I' I

6

!~ pump

crlJ
~,rec

~

nn

, ,

<de

!~ pump

crlJ
k·rec

Etl
,t

? ,," high_sensor ?.:' low_sensor
"

«il
<dlh <dIh

01-------0
eh~ ?! chec~ ?!_~
~ ~ '1p411

pump 6 pump 6 ""'~<Ck_flow flow ~ pump

<df

Figure 4: The critical paths through the program.

29

11 OFF-LINE SCHEDULING

Initial:
Cyclic:

Pflow
Start times
Constraints

Initial:

Ppump
Start times

Constraints
Initial:

i, + Tel + Me + Tp3 0 + Tp3 , + max(M ef + Tflo + M f, Tp3,) + Tp4 0 :S df
r, + Tp3 , + max(M ef + Tflo + M f, Tp3,) + Tp4 0 :S df

if + x * r, with x EN

if +Tflo + Mf + Tp40 :S df

ip! + X * Tw with x E N
ip ' + x * rm with x E N
ip3 + x * Tc with x E N
ip4 +x*rc with x E N

ipl + Tplo :S dh
ip ' + Tp20 :S de
ip3 + Tp3 0 + Tp3 , + max(M ef + Tflo + M f,p3,) + Tp40 :S df
ip4 + Tp40 :S df

30

Note that the message handling parts of P flow and Ppump have periods that correspond to the
periods of the processes that send the messages. Their contribution to the cyclic activities is
already contained in the expressions for these sending processes. Only initialization constraints
remain for these processes.

11.4 Off-line scheduling and maximum paralleIlism

The hardware configuration for the maximum parallelism case is given in Figure 5. A separate
processor is allocated to each device. The communication channels are positioned to allow for the
required communication between the processes handling the devices. The allocation of processes
to processors follows naturally in this hardware configuration.

,h5
, , , ,

, ,
I

sensors

,hI
,h4

J_~ ... 0r5 -0
01"

flow_sensor

'hl

pump

Figure 5: The maximal hardware configuration.

11 OFF-LINE SCHEDULING 31

Ppump ~ prl checLflow ~ chI
Pmethane ~ pr2 methane ~ ch2
Pcheck ~ pr3 flow ~ ch3
Pwaier ~ pr4 water ~ ch4
Pflow ~ pr5 check ~ ch5

high..sensor ~ ch6
low...sensor ~ ch6

In the previous section we have already made the assumption that a schedule for each process
is strictly periodic. The message delays used in the formulae presented there, included the time
for the receiving blocks to be dispatched. We will search for a schedule where these times are
minimal: blocks that handle an incoming message can be dispatched as soon as a message has
arrived at the processor. Under this assumption, all message delays M x become equal to the delay
M on the channel (this delay is assumed to be the same for all channels). The only messages for
which this is not possible are the high and low water messages which are not under the control
of the scheduler. The worst case handling delay must be assumed here: M h = M 1 = M + Tw.

The condition that the blocks receiving a message must be dispatched immediately leads to the
following constraints on the period off-sets:

ipl=iw+Twlo+M,
ip2 = im + Tmlo + Tml} + M,
ip3 = ic +Tc1 + M,
ip4 = ip3 + Tp30 + Tp3} + max(2M + Tflo, Tp3,)
if = ip3 + Tp30 + Tp3} + M,

and we have to show now that choices for the parameter iml Tml i Wl TWl iCl TCl if and ipll ip2l ip3

exist such that the scheduling blocks can be accomodated. The only problem in the maximum
parallellism case is the proper interleaving of the blocks of the pump process. This requires periods
Tml Tw and Tc that are commensurate and that at worst all three branches of the pump process
must be accomodated within a period lcd(Tml TWl Tc). In such a period we handle the methane
messages first and the water messages last , because the dealines are shortes for the former and
longest for the latter. The slots for the respective blocks of Ppump are chosen contiguous, yielding
the additional conditions:

3x, YEN
ip3 = ip2 + X * Icd(Tml TCl Tw) + Tp2
ip} = ip3 + Y * lcd(Tm, To, Tw) + Tp30 + Tp3} + max(2M + Tflo, Tp3,)

A schedule of this type is depicted in Figure 6.
The only remaining conditions for the decribed schedule to be feasible is that each of the

processors can handle the blocks within their periods. This yields the following requirements.

Prnethane im 2: TmO
rm ~ Tml

PwateT iw 2: TwO
Tw ~ max(Twl, Tw2)

Pcheck

11 OFF-LINE SCHEDULING

m
pr5 Q

if
pO

pd Q
ip

rnO
pi.1 p

im
cO

p,3 n ,
ic

wO
p,4 :'

iw

P flow

Ppump

p2

' " if
ml'
• I,

• • on

f1

"cr
f1
cp

I I

• no

. '
Figure 6: A schedule for the maximum parallellism case.

if :2: TfO
rf :2: Tfl

ip2 :2: TpO

32

•

lcd(rm , r" rw) :2: Tp2 + Tp30 + Tp3 l + max(M cf + Tflo + M f, Tp3 2) + Tp4 + Tpl

All these conditions combined must be solvable for periods and off sets. To be able to persue a
quantitative schedulability analysis we choose explicit numbers for the above mentioned durations
in arbitrary units u. Changing this unit results in some scaling with regard to processor speed.
The choosen durations are roughly proportional to the number of statements in each bead.

TmO = 2u Tmlo = lu Tmll = 5u TmI,=lu
TwO = lu Twlo = lu Twll = lu Tw20 = lu Tw2l = lu
TeO = Ou Tel = 2u
TfO = lu Tflo = lu TflJ = 3u
TpO = 6u Tplo = 6u TplJ = lu Tp20 = 5u Tp2l = lu
Tp30 = 2u Tp3 l = 2u Tp32 = lu Tp40 = 2u Tp4l = I·u

The channel delay is taken to be M = 2u.
With the times as given in the specification (in rns) and the assumed execution times in exe­

cution units u the following conditions on the periods remain:

(I) 7u :s rm :s 30 - 12u
(2) 2u:S rw :s 10000 - llu
(3) 4u :s r, :s 100 - 9u
(4) 25u:S lcd(rm,r"rw)

and the conditions on the off sets are:

(5) 2u :s im :s 30 - 13u
(6) u:S iw :s 10,000 - 9u
(7) i, :s 100 - 15u

Typically, the lower bounds stem from the limits on the processor loads, and the upper bounds
from the critical path to deadline. The off-sets that are not mentioned here follow straightfor­
wardly from the scheduling assumptions and are not subjected to additional constraints. The

12 ON-LINE PREEMPTIVE PRIORITY SCHEDULING

off-set matching, however) results in two more equations:

(8) 3x E N U {O} : i, = im + IOu + x * Icd(Tm, To, rw)
(9) 3y EN U {O} : iw = i, + IOu + y * Icd(Tm, To, Tw)

33

It is best to take common divider of the periods) as well as the periods themselves as large as
possible, thus rm = Icd(Tm,T"Tw). From the constraints (I) and (4) we can compute the bound
on the processor speed to make the described schedule feasible: u 'S 30/37mB. The other equations
can also be solved for these values of u.

11.5 Off-line scheduling and minimum parallelism

In this case all processes are mapped on a single processor. Logical channels will require no
physical communication channels and we assume that message passing costs no time (M = 0).
Again we will construct a strictly periodic schedule. Since all blocks must be allocated to the
single processor some tighter condition on the processor speed is expected. The schedule will be
a merge of the maximum parallelism situation where we will complete all blocks of a transaction
before an other transaction is carried out. Thus starting times will be:

• the block sequence mO, cO, JO,pO, wO at t = 0;

• the sequence ml,p2 at t = im + x * Tm with x E N U {O};

• the sequence cl,p3,fI,p4 at t = i, + x * T, with x E N U {O};

• and the sequence wl,pl or w2,pl at t = iw + x * rw with x E N U {O}.

The conditions on the off-sets and periods are now:

(I) Tm 'S 30 - llu
(2) rw 'S 10000 - IOu
(3) r, 'S 100 - 9u
(4) 36u 'S Icd(rm,r"Tw)
(5) IOu'S im 'S 30 - 12u
(6) iw 'S 10,000 - 8u
(7) i, 'S 100 - 13u

Again, the lower bounds stem from the limits on the processor capacity, and the upper bounds
from the critical path to deadline. The off-set matching results in following equations:

(8) 3x E N U {O} : i, = im + 13u + X * Icd(Tm, r" rw)
(9) 3y E N U {O} : iw = i, + 14u + y * Icd(rm, To, Tw)

Again, the bound on u follows from equations (I) and (4), u 'S 30/47mB, and for these values the
schedule is feasible.

12 On-line preemptive priority scheduling

In this case we employ a model similar to [7] in which processes are given an attribute periodic
or sporadic and shared objects are present on which transactions are carried out. Since our
programming model is simpler and does not contain the concept of objects we will introduce in
addition to periodic and sporadic processes a third process class, shared, that has a very similar
role as the shared objects in [7]. The execution of processes in this model goes as follows.

Periodic processes are each given a period. This period must be inferred from timing require­
ments. The periodic processes are timer triggered and released at the beginning of each period.

12 ON-LINE PREEMPTIVE PRIORITY SCHEDULING 34

They are suspended after initialization and subsequently after each execution of the body of their
while true do loop.

Sporadic and shared processes are message triggered, they become ready to run as soon as a
message arrives. They are suspended when they attempt to receive a message from an empty
buffer. The difference between sporadic and shared processes is that (usually) shared processes
receive messages from several channels, originating from more than one process. Sporadic processes
typically receive messages from a single channel originating from the environment. Sporadic and
shared processes are treated differently in the schedulability analysis.

Periodic and sporadic processes have a number of attributes that have to be assigned during
system generation: a priority P, a deadline D and a period T. Shared processes handle the message
from the highest priority sender first, and they run at the priority of the highest priority sender
that has a buffered or executing message. This mechanism is called priority inheritance and solves
problems with priority inversion. Because a shared process must finish handling a message before a
next message can be accepted, the progress of high priority processes can be blocked ternporarily
by the handling of a message from a lower priority process. To limit the blocking time to the
minimum, the shared process runs at the priority of the mentioned highest priority sender.

To enable a schedulability analysis, worst-case execution times must be computed for the
periodic and sporadic processes. For shared processes a separate worst-case execution time must
be computed for the handling of messages out of each incoming channel.

The following table gives the attribute assignment for the mine-pump processes.

process type Ti Di worst-case execution times
Pmethane periodic Tm dc-Tm Cmethane

Pcheck periodic T, df -T, Ccheck

Pwater sporadic dlh min(dh, dl) Cwater

Ppump shared Cpump,check, Cpump,water, Cpump,methane

Pflow shared

From the critical path analysis it follows that the specified deadline for response to a criti­
cal condition that must be met by a periodic processes (e.g. df for Pcheck) corresponds to the
execution of a period after a measurement plus the response time after the next measurement.
Thus, after each release only the deadline minus period, as indicated in the table, remains in the
present model. The notation for the relevant worst case execution times are also indicated in the
table. These entities must be computed using detailed knowledge of the platform. The execution
times for the periodic and sporadic processes include the execution of a complete transaction that
is initiated by these processes, so they include the invocation of the corresponding pump action.
The indicated executions durations for message handling in the shared processes are required for
computing the blocking-time for other transaction on the shared resource managed by them. Al­
though, both the processes Ppump and P flow are shared processes, P flow only handles messages
on behalve of Ppump, and for all schedulability considerations message handling time of P flow
can be incorporated into Ppump.

To analyze schedulability, the following recursion relation can be derived for the relevant re­
sponse times along the lines of [7] (taking into account that Ppump is effectively the only shared
process):

rR"l = Ci + L _t Cj + .ma~ Cpump,j .
. h (.) 1) JElp(')

JE P t

Here, the process-label i only runs over the periodic and sporadic processes:

i E {methane, check, water}

and the sets hp(i) and Ip(i) are the processes with a higher or lower priority than process i,
respectively. If the recursion relation has a fixed point R?+l = Ri for some n, then the response
time of process i is given by ~ = Ri. This response time must be smaller than the deadline Di

13 DISCUSSION 35

for that process. This formula is only valid if the deadline for each process does not exceed the
period.

To illustrate the use of this schedulabilty formula, we consider the numerical example. With a
rate-monotonic priority assignment and worst-case execution times as given in section 11, we get
the following relevant values to be plugged into this formula:

C; Cpump,i D; T; P;
Pmethane 13u 6u 30-Tm Tm 3
Pcheck 14u 12u 100 - T, T, 2
Pwaier 9u 7u 10,000 100,000 1

Because Pmethane has the highest priority the equation for Rm can directly be solved:

Rm = 25u, Tm = 30(msec) - 25u ::0: 25u

Taking the largest possible value of u = 0.6 msec and the largest possible value for Tm and To,
the result of the analysis is:

Rm = 15 msec, Tm = 15 msec,

Rc = 28.2 msec, Tc = 71.8 msec

Rw = 29.4 msec

This satisfies the deadlines as given in the table. With the present approximation the system is
guaranteed schedulable for u ::; 0.6, but cannot be guaranteed if u is higher.

Note that this bound on u is slightly worse than the on found for the off-line scheduling on one
processor. However, in the present analysis we have made some more conservative estimations on
the location of measurements and responses in the program. Also some worst-case assumptions on
possible blocking due to Ppump were made here. In the off-line scheduling approach such blocking
can be avoided.

13 Discussion

13.1 Satisfying "good programming" requirements

In chapter 4 we have listed the" good programming" requirements that have to be satisfied by
programming languages as published by Gligor and Luckenbaugh [10]. We will now discuss some
of the typical features of our approach in the light of these requirements.

The language extension we have proposed includes only a small number of new primitives which
provide expressiveness through the numerous ways they can be combined. However, the type of
timing constraints that can be formulated is restricted by carefully chosen syntactical rules. For
example, only events (execution instances of primitive statements) that are "causally connected"
can have an explicit timing relation. (By" causally connected" we mean here the transitive clo­
sure of the sequential precedence of statement-executions and the message-send/receive relation.)
Timing annotations do not introduce new causal precedences. This separation of timing and syn­
chronization primitives is an intentional language design choice inspired by the orthogonality and
"separation of concerns" requirements of [10].

1. Orthogonality: concurrent programming languages already contain primitives for synchro­
nization. Duplication of functionality should be avoided.

2. Separation of concerns: synchronization and timing are treated as completely separate issues
(synchronization must also be offered in languages without timing constraints). Primitives
should not combine such independent aspects.

But is also introduced because of analyzability.

13 DISCUSSION 36

3. Analyzability: a timing constraints can be verified (statically or dynamically) by considering
time bounds (upper and/or lower) on sequences of causally related actions. Whether the
constraints are realized by employing synchronized clocks or by enforcing upper and lower
bounds on actions connecting the events, either statically Of dynamically, is unimportant at
the language level. It is a system implementation issue.

In this paper we have demonstrated that the timing primitives can be formally defined and have
a simple semantics, two other important requirements mentioned by [10}. More importantly, we
have demonstrated how these formal definitions can be employed to prove correctness of programs.

13.2 Abstraction and refinement

Another requirement on approaches to real-time programming that we mentioned in sections 2
and 3, is support for abstraction and refinement of timing behavior. Our approach supports event
abstraction. Event abstraction is extensively discussed in the context of distributed systems,
particularly in distributed debugging. Many publications are available on the subject. For an
interesting overview and references see [17]. With our present approach we have attempted to make
an explicit connection between this field and real-time programming. However, in contrast with
most work on timed events in distributed systems, where only logical time stamps are considered
[18J that indicate the order of events, we attach real-time values to, possibly abstract, events. We
will henceforth speak of timed-event abstraction. Although it is already present in our language,
the scope and power of this form of abstraction becomes more manifest when procedures are
introduced in our simple language.

We illustrate this with the following example. Our language contains an instruction to read
form a device register, in(d, x). The purpose of such a read-instruction is to obtain information on
the state of the environment. In our mine-pump example we have made the simplifying assumption
that when a device register is read, the value obtained corresponds to that state at the execution
moment of the instruction. This is too simple a view: in practice a value can only be obtained
after the device has received notice that a measurement must be taken. Also, data will not
be immediately available but some time is required by the device to collect and supply a value.
Instead of performing a simple read action on a register, we sketch the following, more appropriate
procedure that supplies both a value and a time, t at which this value holds. For t,his, we introduce
timing parameters that may be supplied with a procedure. These parameters are similar to the
timing parameters attached to the asynchronous messages.

//dev = { dl,d2 }
//const ; {indicate. epsilon. delta, scale, offset}

procedure read_device(var x, [?t])
begin

end

out(dl, indicate) [?tl]j
in(d2,x) [>tl+delta ; t:=tl+epsilon];
x :; x*scale + offset

A request to collect a value must be written to the device in register dl. The device requires at
least some time delta to obtain a value and make it available in register d2. The value supplied is
actually taken from the environment at time epsilon after the request was indicated to the device.
Both the value and this time, t = tl + epsilon, are returned to the caller. We assume that epsilon
and delta are constants that are characteristic for the device, and 0 < epsilon < delta. Note that
this procedure can transparently replace our naive time-annotated read action (where a single
register, d, is sufficient).

in(d,x) [?t];

14 COMPARISON WITH OTHER APPROACHES 37

Note, that all the device particulars are contained in this procedure (information hiding) and that
platform dependent execution durations of statements are irrelevant in formulating this procedure.
In our approach, abstraction amounts to hiding the detailed timing of a set of events to obtain
a single, timed, abstract event. Procedures like the one above provide control over, or allow
inspection of, execution moments of relevant (possibly abstract) events. The timing abstraction
provided by the procedure in the example is similar to the assumed functional abstraction: the
time of the moment of inspection of the environment as well as the obtained value require some
device dependent adjustment to make them adhere to the abstraction level of the caller.

Also note, that in the example it is not useful to consider the start time and/or end time of
the procedure read1ievice. They would only provide bounds on the moment of occurrence of the
actually interesting event, and the strictness of these bounds depend on the execution speed of
the platform as well as possible preemption of the procedure's execution.

The approach of refining abstract events contrasts with abstraction from execution durations
often used in the literature. Consider the following procedure.

procedure f

begin

end

Here the execution duration of f is (larger than) the sum of the execution duration of g and h.
In that sense, f abstract from the details of the duration of 9 and h separately. Event abstraction
is more useful at the programming stage than duration abstraction for the following reasons .

• It is often not necessary and even undesirable to consider and formulate constraints on all
execution durations of sub-procedures separately .

• If a procedure is used that contains no timed events, e.g. a procedure that implements a
standard non-real-time algorithm, it can be incorporated as-is: no timing constructs need to
be added.

13.3 The nature of timing parameters

Timing annotations and the timing parameters contained therein are programming concepts. They
need not be present in the generated executable code. They are introduced to express the allowed
executions of a program for as far as it concerns timing. The allowed execution trace that is
ultimately selected by the platform and details of the selection procedure are not a concern of the
programmer. It is therefore possible that timing parameters are not used or exchanged by processes
at run-time. Instead, e.g. scheduling directives (priorities) may be used. Consider the mine pump
example: statically it is verified that the timing constraints are satisfied and no explicit reference
to them is required during run-time (no timing values need to be passed with the messages). This
was true in the on-line as well as off-line scheduling case that we presented.

14 Comparison with other approaches

There are a number of survey papers on languages that can be applied to development of real­
time systems [8, 11, 12]. From these studies Ada appears as the better languages for real-time
programming. RT-Euclid is also a notable language. We will confine our comparison to these
latter two languages and a couple of recent proposals that were not considered in the mentioned
surveys.

In the next couple of subsections we briefly describe the features with regard to timing of Ada
[1, 4], RT-Euclid [16], and the object oriented languages DROL [23], RTC++ [15], FLEX [20]
and Sina (with real-time extensions) [3, 5]. After that we discuss the major differences with our
approach.

14 COMPARISON WITH OTHER APPROACHES 38

14.1 ADA

The Ada language [4] was developed to supply the US Department of Defense with a programming
language for embedded applications. Presently DoD contractors are required to use Ada. It has
become an international (ISO and ANSI) standard and is widely used for the implementation of
real-time software. Numerous changes have been incorporated in the language's current version
Ada 95 [1].

The language supports modular concurrent programming through constructs like subprograms,
packages and tasks. Packages and subprograms constitute reusable components with well defined
interfaces. Concurrency is provided by tasks. Various synchronization and communication primi­
tives are offered, like rendezvous, semaphores and shared variables. The introduction of a limited
form of inheritance and dynamic binding in Ada 95 enable an object-oriented programming style.
The real-time-systems annex contains mechanisms for dealing with priority inversion, for selecting
scheduling policies, for task abortion, for dynamic priorities, and the like. Ada 95 also supports
distribution.

We are mainly interested in how Ada deals with timing requirements. There are essentially
three features in this regard:

• Facilities to define and manipulate task priorities

• A proper (since Ada 95) delay statement that can be used to release tasks at desired instances.

• A timed-entry-call with which a statement block can be abandoned after a certain time has
expired.

The timed-entry-call is a method to decide on flow of execution on the basis of the amount
of time that has expired. It appears that Ada does not provide means for explicitly specifying
deadlines. Only release-times can be expressed using the delay statement. Process priorities are
offered, but are indirect means for realizing deadlines. They are in some situations sufficient to
give timeliness guarantees [7], but the timeliness requirements have to be recorded and maintained
separately from the program. We have already mentioned the context dependence and the resulting
reduced reusability of program components with hard-coded priorities.

Ada could be considerably improved if primitives were offered for specifying timing constraints
and language implementation mechanisms were provided to (1) detect such constraints and (2)
direct effort to realizing them.

Because of its intended wide applicability, Ada must offer sufficient flexibility to programmers.
This resulted in a high number of primitives. Therefore, a formal definition of the language would
be exceedingly difficult to generate and probably useless in any practical application.

The reader may be interested to compare the minepump problem as implemented in Ada 95 [7]
with the solution presented in this paper. We observe the following features of this implementation
that contrast with our version.

• Strictly periodic release-times for the periodic processes are specified in the Ada 95 program.
This requires additional design choices, e.g. the constraint on the interval between successive
measurements of the methane level must be divided into a period and a deadline. When this
period is made smaller, the system load is increased, when it is made larger the available
time to the deadline is tighter and the number of platforms that can execute the program
is reduced. Thus, the programmer is enticed to take platform properties into consideration.
In our approach such decisions are moved to the system generation phase and the program
is kept more general.

• Although in the Ada 95 program actions are specified when certain deadlines are expired,
the deadlines themselves are not syntactically recognizable. Timing variables are normal
program variables and there are no syntactic restrictions on their use.

• The Ada tasks contain hard coded priorities and are therefore context dependent.

14 COMPARISON WITH OTHER APPROACHES 39

• Important deadlines have to be recorded outside the program for later use in the schedula­
bility analysis. The authors provide a table.

The observed properties hamper reusability of components and reduce the number of execution
platforms that can be used. It is interesting to note that timing parameters (as regular parameters
of procedures) are used in the Ada program and the previously mentioned event abstraction is
employed to a certain extent.

14.2 Real-Time Euclid

Real-time Euclid [16] is a language derived from Pascal. It supports modularity and concurrency,
but it does not support distribution. The authors address through their work on RT-Euclid issues
on real-time and reliability and they do this in a very straightforward and coherent manner. The
language is intended for the hard-real-time domain where it is necessary to provide timeliness
guarantees at all costs and provide a high degree of reliability. In that light, language features
are offered to (1) address hard-real-time requirements and (2) address reliability issues. The most
important features falling in the first category are:

• Timing constraints. Frames are attached to processes. A frame is an activation window
available for executing the process. Time constraints can be specified as attributes of such
frames.

• Language restrictions to guarantee termination of all statements and to limit resource usage.
In particular there is no dynamic process creation, there are no dynamic data structures)
there is no recursion, and iterations and synchronizations are time bound.

• Program structure to enable schedulability analysis. In particular there is an initialization
section to each module) which is executed before (often cyclic) execution of processes defined
in the module, starts.

A feature in the second category is:

• Exception handling.

Although RT Euclid seems simple enough to provide a formal definition of language primitives
we have not been able to find it in the literature.

We like to mention that it is not necessary to address limitations on execution time and
resource usage by introducing language primitives. Programs in Real-Time Euclid are guaranteed
not to exceed certain time bounds but this may be at the expense of functional correctness.
e.g. a repetition that is abandoned too early because the limit on the number of iterations has
been exceeded may yield an unpredictable and undesired result. Program correctness requires
both functional correctness and timeliness. It must be established that a repetition yields an
acceptable result and that it terminates timely. Therefore) an explicit bound on the number of
iterations through a repetitions should only indicate before when the repetition is guaranteed to
arrive at the correct result, and it should have no implications at run-time. The only reason to
have the programmer specify it is that such information is usually hard to deduce at compile time
but is required to perform the timing analysis.

14.3 DROL

DROL [23] is a programming language for distributed object-oriented real-time systems with a
run-time system that is implemented on the ARTS kernel. It obtains the facilities to implement
a distributed system from this kernel. There are a couple of problems in the realm of real-time
object-oriented computing which the authors want to specifically address in their work:

• Flexibility: The authors aim at the implementation of systems that can handle highly dy­
namical environments.

14 COMPARISON WITH OTHER APPROACHES 40

• Proper handling of exceptions: They particularly emphasize the necessity to check for timing
failures at both the client as well as the server side. This is required in case communication
is not reliable or not time-bounded.

• Specification of timing requirements: They argue that it is not possible to encapsulate timing
information in a single object because in a distributed environment timing constraints must
be met through the combined effort of objects at different sites.

The D RO programming model is an extension of C++. The extensions are in the areas of
distribution and concurrency) concurrency control, real-time and exception handling.

In addition to C++ objects, DRObject are introduced which are large grained objects that
can be distributed. DRObjects consists of one base object, that implements the functional be­
havior and two meta-level objects that govern the communication and synchronization between
DRObjects. An object's public member functions can be called by other objects. In addition, it
is possible to define" active" member functions which are periodically invoked automatically. A
DRObject does not handle more than one invocation concurrently. The communication protocol
can be shaped by the programmer to his needs using the two meta-level objects, e.g. by specifying
synchronous, and asynchronous invocation handling, reliable communication, handling of timing
exceptions and commitment or abortion of transactions at the meta-level.

There are various constructs that have been introduced to enable specification of timing prop­
erties of the DRObjects. e.g., active members can be given a period and deadline, member func­
tions of DRObjects can be given a worst-case execution time within which an invocation is likely
to finish without raising exceptions and clients may specify the available time for an operation.
Summarizing, the following types of timing constraints are offered:

• duration constraints on object invocations,

• periods and deadlines of active members,

• the definition of timing exceptions through timeout specification and

• time-polymorphism.

Time polymorphism is a feature that allows the definition of alternative degrees of service with
different worst-case time consumption and a dynamic selection of this degree based on the available
time.

OROL is based on the principle of best effort and least suffering. Timing constraints are not
guaranteed. The mechanisms that are employed to achieve as best a timing behavior as possible
are twofold.

• Scheduling and time polymorphism. Each object invocation is dynamically scheduled and
dynamically bound to the implementation that will best meet the available time as provided
by the client. (These mechanisms achieve what the authors call "best effort").

• Handling of timing failures. It can be specified how timing exceptions should be handled.
Thus, propagation of timing failures through the system can be avoided. (This achieves
what the authors call "least suffering").

The DRO Language is rather complex. A formal definition of the semantics is likely very hard
to provide. However, according to the authors DROL is very well suited to deal with very dynamic
systems. It is flexible with regard to synchronization and exception handling. However, the" best
effort" approach can not result in guarantees on timing behavior. Composabilityand abstraction
of timing behavior of DRObjects is not explicitly addressed.

14 COMPARISON WITH OTHER APPROACHES 41

14.4 RTC++

RTC++ [15] is also implemented on the ARTS kernel. The ARTS/RTC++ platform is an envi­
ronment for the development of distributed object oriented real-time systems. It differs form the
DROL language in that it focuses almost exclusively on the issues that are directly addressed by
the kernel. It has a lesser complexity and abstraction level then DROL. (e.g. distribution and the
problems related to reliability and timing are not addressed by the authors.) The ARTS object
model and issues dealt with by this kernel are reflected in the language and its primitives.

The ARTS kernel provides a multi-threaded object model (intra-object concurrency), enables
remote object invocations with timing constraints and offers mechanisms to deal with the prob­
lem of priority inversion. Object-invocations are only synchronous (client waits for completion).
Invocations to an object can be given priorities to influence the order in which they are handled.
The timing constraints on invocations are managed through the so called "time-fence" protocol.
In RTC++ some linguistic handles to these kernel facilities are offered. The ARTS kernel sched­
ules an application on-line (no off-line scheduling) and uses rate-monotonic scheduling for HRT
threads. The RTC++ program must be analyzed on its schedulability and is designed to suit this
approach. This emphasis on schedulability analysis explains the relative importance that is given
to priority inversion in the ARTS/RTC++ literature.

As the name suggests RTC++ is a real-time extension of C++ Typically, a distinction
between real-time objects and normal C++ objects is made. The real-time objects are active and
are mapped on light-weight concurrent ARTS run-time objects. These ARTS objects are the units
of distribution. Real-time objects may have timing constraints and the object activities may be
given priorities. We can distinguish the following principle real-time features in the language:

• Real-time objects with master (periodic) and slave (call handling) threads. Slave threads
inherit the priority from the caller.

• Constraints on periodic threads (e.g. period and deadline).

• Constraints on the duration of (member) functions.

• Timing constraint statement blocks.

• Exception handling mechanism for timing violations.

The division of some constraints into periods and deadlines for periodic threads is required when
this language is used. We already commented on this in our discussion of the Ada language.

The ARTS kernel employs rate monotonic scheduling of HRT tasks and the schedulability
analysis is based on this scheduling regime. In this way it is possible to guarantee timeliness for
certain applications.

14.5 FLEX

FLEX [20] is a real-time language developed in the Concord project at the University of Illinois.
It focuses on programming of systems that can operate in very dynamic environments. In this
sense it aims at similar applications as the DROL language. It is derived form C++ and obtains
object-oriented features from this language. FLEX does not have primitives for distribution or
parallel programming. Hence the only additions to the C++ language pertain to timeliness. In
order to express timing constraints and satisfy them as best as possible a number of primitives
and mechanisms are offered in FLEX:

• constrained blocks)

• imprecise computation,

• performance (time) polymorphism.

14 COMPARISON WITH OTHER APPROACHES 42

Imprecise computation and performance polymorphism are techniques to exchange precision
or resource usage for time. These techniques are also encountered in other approaches and are not
interesting in the present context. We will not further discuss them.

Timing and resource constraints can be formulated in FLEX using a constrained block con­
struct. This language construct enables the definition of constraints on a block of statements
together with an exception handler that is invoked when, at run-time, the constraint is not satis­
fied. Various attributes of such blocks can be employed to formulate the constraints: start I finish I

duration, periods and priority. Attributes of other blocks can be used in the formulation of a
constraint imposed on a particular block. There are two possible ways to successfully execute a
constrained block: by satisfying the constraint or by calling the exception handler. This leads to
ambiguities on semantics which the authors identify: when a constraint is not satisfied either an
exception handler can be called or the execution can be suspended until the constraint becomes
satisfied. However, this ambiguity is solved in a rather confusing manner by letting this choice de­
pend on subtle differences in notation. We are not aware of any formal definition of the constraint
block.

Although the authors state that there are no provisions for concurrency in FLEX, they provide
a couple of examples that only make sense in a concurrent system. We see, however, two major
problems with the proposal when concurrency is used. (1) It is not clear what the scope rules for
block attributes are or should be. (2) There may be several invocation instances of a block, each
with different values for the attributes. The block label is not sufficient to distinguish between
such instances and constraints may be ambiguous.

14.6 Sina

Sina [2J is an object oriented, concurrent programming language, suitable for distribution. Object
are essentially abstract data types that hide implementation. With the use of so called composition
filters typical object oriented mechanisms like inheritance and delegation are realized. Sina offers
both inter- as well as intra-object concurrency. Inter-object messages are either directly handled
or queued in a) conceptually infinite, message queue of the receiving object. The order and way
in which messages are handled is expressed in the filter construct. Real-time filters for Sina are

introduced in [3, 5], they are used to express timing constraints on invocation (message) acceptance
and completion. Filters incorporate the following features for timing purposes.

• Timing constraints can be attached to messages. For every message an earliest start time
can be specified) a deadline) after which it should not be serviced) and a period. Such times
can be specified absolutely, or relative to the moment the message passes the first filter.
(There is a sequence of filters that a message must pass before acceptance.)

• Real-time filters can manipulate message constraints. In particular) new constraints rnay be
added to the ones already specified in the message.

• Filters can specify policies for dispatching queued messages. Messages are scheduled accord­
ing to the applicable constraints.

• Timed-out messages can be removed from the queue. In hard-real-time systems it often does
not make sense to execute a message for which the execution deadline has expired.

In addition to real-time filters it is possible to specify so called time frames for the execution of
(periodic) tasks. Sina is the only language for which we have found a formally defined semantics.

14.7 Comparison

A distinction can be made between real-time systems that must cope with very dynamic environ­
ments, where in general no guarantee can be given that timing requirements are satisfied in all
circumstances, and systems that operate in environments that are predictable enough to be able
to analyze all possible behaviors and provide timeliness guarantees. Although we believe that a

14 COMPARISON WITH OTHER APPROACHES 43

real-time programming language should in principle not be tailored to the application domain in
this sense, it is customary to make the distinction at the present. DROL, FLEX and Sina focus on
very dynamic systems. Real-time Euclid and RTC++ on predictable, provably correct systems.
Ada has been applied to both regimes. All the languages contain features that are valuable in the
intended application domain.

We note the following differences between our approach and the ones mentioned above.

1. Timing constraints are not attached to program blocks.
All languages that we considered, except for Ada which does not support constraints, for­
mulate timing constraints using either constrained blocks, or constrained met,hod/procedure
calls Of both. Constraints on procedures are usually on start and end times and very similar
to the block constraints. An advantage is, that constraints formulated in this way can be eas­
ily translated into scheduling directives for the block(s) of statements they are attached to.
It also has the advantage that timing violations during execution of a block can be handled
by a specified exception handler. (No language, however, provides desired features such as
atomicity of constrained blocks under timing failures.) We have intentionally departed from
formulating timing constraints (like durations, deadlines and earliest start times) on blocks
because they do not directly pertain to state transitions brought about by the computation.
In fact, block constraints specify restrictions on processor allocations, which only provide
bounds on the relevant state transitions. The accuracy of such bounds depend on typical
implementation issues like on whether such blocks are preemptable or not. When execution
moments of primitive statements are used) one can specify constraints on any state transi­
tion effectuated by the program in an accurate and simple way. Also, block attributes and
constraints on them have no direct relation with externally observable events. A system spec­
ification most often refers to such events. In our approach there is a direct relation between
the control requirements (expressing external conditions) and the annotations. Considering
execution moments of statements combines well with event abstraction.

2. Explicit scope rules for timing parameters.
Often, constraints need to be specified on blocks that are not in each others scope. Also
previous execution instances off blocks must sometimes be considered. Scope rules and
parameter passing mechanisms must be specified for block attributes. Whether or not such
rules and mechanisms are at all present in the considered languages is not made sufficiently
clear in the respective publications. Also over-specifications are introduced in the provided
examples that makes the absence of scope rules less urgent (e.g. splitting a single constraint
on the response of a periodic process in a period and a deadline within the period.

3. Restricted syntax of timing-constraint expressions.
In particular we have no data dependencies of timing variables. None of the other methods
contains syntactic restrictions that disable data dependent constraints. Such constraints are
most often impossible to verify without very detailed knowledge of the environment.

4. Formulation of timing requirements in an end-to-end fashion.
Usually timing requirements pertain to the control of observable events. In our approach
such timing constraints can be formulated without constraining unnecessarily sub-actions
carried out by the thread of execution connecting the events. Event abstraction is essential
for this. Although in other approaches event abstraction can probably also be used, we have
not found any systematic application of the principle.

5. Formal definition of timing constructs.
Hardly any of the investigated papers provided a formal or very precise description of syntax
and semantics. This makes it very difficult to understand the full extent and implications of
the various approaches.

15 CONCLUSION 44

14.8 The combination of real time with object orientation

With their work the authors of Sina advocate composition filters as a solution to the well known
concurrency anomalies [21J in concurrent object-oriented languages. They also claim that some
inheritance anomalies exist with regard to timing specification that are resolved using real-time
filters [3) 5]. The real-time anomalies result in a reduced reusability of code of classes under
inheritance. They claim that the specification of timing restrictions of classes result in a need to
redefine unnecessarily many methods of a superclass, or that the change of the method of a class
results in the need to redefine many methods of super- as well as subclasses. They indicate the
following causes for real-time inheritance anomalies:

• the definition of real-time constraints in method bodies,

• the specification of timing constraints that cannot be inherited separately from other features
of a class)

• the inability to formulate a constraint that pertains to all (or many) methods of a class.

We believe that such real-time anomalies are absent, or at least not problematic, if timed-event
abstraction is used. This is mainly so because only those parts of a constraint need to be specified
in a method that are characteristic for the abstract event as offered by the object. Superclasses
can offer control over (abstract) events that are not affected by added functionality in sub-classes.
Also refraining from over-specification of timing behavior helps to avoid the anomalies.

In [22J an object-oriented programming model is introduced in which timing constraints be­
tween invocations of an object or group of objects can be specified by the programmer in separate
entities, called synchronizers. It was deemed necessary to separate timing and synchronization
constraints from the functional part of a program to obtain flexibility and composability. We have
attempted to show that when event abstraction is employed, timing constraints can be formu­
lated without any reduction in composability compared to non-timed programs: a server provides
abstraction of and control over one, or several, execution event(s) and the caller determines the
constraints on the event(s) if he requires any. This provides maximum flexibility and context
independence. In our opinion timing and synchronization must be treated as separate issues.

15 Conclusion

We have described an extension for programming languages for including timing constraints. The
introduced syntax was just a vehicle to illustrate the approach and details of the syntax and
semantics are not essential. They may still depend on the particular application dornain for
which a real-time language is employed, e.g. hard/soft-real-time systems, dynamic/predictable
environments. We believe, however, that the following properties are essential for any successful
approach to real-time programming.

• Formal techniques are essential, at least to define a real-time programming paradigm. Many
current proposals are difficult to understand and apply because a formal semantics of new
constructs is not provided.

• A strict separation of concerns in the programming and system generation phases should be
used. All platform and context dependence should be addressed during system generation. In
this regard, the only difference with non-real-time programming is, that the system generator
may decide that there is no implementation of the program on the specified platform.

• Real-time programs can and should be designed and verified independently of an execution
platform.

• The proper way of dealing with abstraction and refinement of timing behavior in real-time
programs is, what we called timed-event abstraction.

REFERENCES 45

• Over-specification of timing behavior should be avoided. It is usually done on the basis of
platform considerations.

References

[1] "Ada 95 Reference Manual", International Standard ANSI/ISO/IEC-8652:1995, January 1995.

[2] M. Aksit, "On the design of the object-oriented language Sina", Ph.D. Thesis, University of
Twente, Enschede, The Netherlands, 1989.

[3] M. Aksit, J. Bosch, W. v.d. Sterren and L. Bergmans, " Real-Time Specification Inheritance
Anomalies and Real-Time Filters", Proc. of the ECOOP '94 Conference, LNCS 821, Springer
Verlag, pp 386-407, 1994.

[4] G. Booch, " Software Engineering with Ada" , Benjamin Cummings Publishing Company, Menlo
Park CA, 1983.

[5] L. Bergmans and M. Aksit, "Composing Synchronization and Real-Time Constraints",
ftp:jjftp.cs.utwente.nljpubjdocjTRESE.

[6] A. Burns and A.M. Lister, "A Framework for Building Dependable Systems", The Computer
Journal, Vol. 34, No.2, pp 173-181, 1991.

[7] A. Burns and A. Wellings, "Advanced Fixed Priority Scheduling", in "Real-time Systems;
Specification, Verification and Analysis" edited by M. Joseph, pp 32-96, Prentice Hall, London,
1996.

[8] A. Burns and A. Wellings, " Real-Time Systems and their Programming Languages", Addison­
Wesley, 1989.

[9] E.W. Dijkstra, "Notes on Structured Programming", Structured Programming, A.P.I.C. Stud­
ies in Data Processing No.8, pp 1-81, Academic Press, New York, 1972.

[10] V.D. Gligor and G.L. Luckenbaugh, "An Assessment of the Real-time Requirements for Pro­
gramming Environments and Languages" 1 Proceedings of the 1983 Real-Time Systems Sym­
posium, IEEE Computer Society Press, pp 3-19, 1983.

[11] W.A. Halang and A.D. Stoyenko, "Comparative Evaluation of High-Level Real-Time Pro­
gramming Languages") International Journal of Time-Critical Computing Systems, Vol. 2, No
4, pp 365-382, 1990.

[12] W.A. Halang and A.D. Stoyenko, "Constructing Predictable Real-Time Systems", Kluwer
Academic Publishers, Dordrecht-Hingham, 1991.

[13] D.K. Hammer et al., "Dedos: A Distributed Real-Time Environment" , Parallel & Distributed
Technology, IEEE Computer Society, Winter 1994.

[14] J. Hooman, "Extending Hoare Logic to Real-Time", Formal Aspects of Computing, 6A: 801-
825, 1994.

[15] Y. Ishikawa, H. Tokuda, and C.W. Mercer, "Object-Oriented Real-Time Language Design:
Constructs for Timing Constraints", Carnegie Mellon, 1990.

[16] E. Kligerman and A.D. Stoyenko, "Real-Time Euclid: A Language for Reliable Real-Time
Systems", IEEE Transactions on Software Engineering, Vol. SE-12, No.9, 1986

[17] T. Kunz, "Event Abstraction: Some Definitions and Theorems". Technical Report TI-lj93,
Technische Hochschule Darmstadt, Fachbereich Informatik, Darmstadt, Germany, February
1993, ftp:jjftp.th-darmstadt.dejpub j docsjtech-reportsjfb20jitij atjTHD-AT -1993-0 l.ps.Z

REFERENCES 46

[18] L. Lamport) "Time, Clocks, and the Ordering of Events in a Distributed System", Commu­
nications of the ACM, Vol. 21, No 7, pp203-217, 1978.

[19] I. Lee and V. Gehlot, "Language Constructs for Distributed Real-Time Programming", Pro­
ceedings of the 1985 Real-Time Systems Symposium, pp 57-66, IEEE Computer Society Press,
1985.

[20] K. Lin, J.W.S. Liu, K.B. Kenny and S. Natarajan, "FLEX: A Language for Programming
Flexible Real-Time Systems" , in M. van Tilborg and G.M. Koob(eds), Foundation of Real-Time
Computing (Formal Specifications and Methods) pp 251-289, Kluwer Academic Publishers,
1991.

[21] S. Matsuoka, K. Taura and Y. Yonezawa, "Highly Efficient and Encapsulated Re-use of
Synchronization Code in Concurrent Object-Oriented Languages", in Proceedings OOPS LA
'93, Sigplan Notices Vol. 28, No. 10, I'P 109-36, 1993.

[22] S. Ren, G. A. Agha and M. Saito, "A modular Approach for Programming Distributed Real­
Time Systems" 1 to appear in Journal of Parallel and Distributed Computing, preprint 1996.

[23] K. Takashio and M. Tokoro, "DROL: An Object-Oriented Programming Language for Dis­
tributed Real-Time Systems", Proceedings of the OOPS LA '92 Conference, ACM SIG PLAN
Notices, Vol. 27, No. 10, pp276-294, 1992.

[24] G. Yu and L.R. Welch, "Program Dependence Analysis for Concurrency Exploitation in
Programs Composed of Abstract Data Type Modules", Proceedings of the IEEE Symposium
on Parallel and Distributed Computing, pp 66-73, Oct. 1994.

[25] N. Wirth, "Programming Development by Stepwise refinement", Comm. of ACM, Vol. 14,
No.4, pp 221-227, 1971.

[26] N. Wirth, "Towards a Discipline of Real-Time Programming", Comm. of ACM, Vol. 20, No.
8, pp 577-583, 1977.

A PROOF OF THE WATER-LEVEL CONTROL PROGRAM 47

A Proof of the water-level control program

In this appendix we prove that the program from section 5.3 satisfies the specification provided
there. We repeat the program using mi for execution moments in the program, to avoid confusion
with timing variables in the specification:

P:
[m, := 0];
while true do [m,:= m,] ;

in(water, x)[< m, + d, ?m,l ;
if high < x then out(pump, on)[< m2 + d 1
else if x < low then out(pump, offl[< m, + d] fi fi

od

By symmetry, only eCl l CC~, and CC~ are proven, assuming the proof of CC.4 and CC~ proceeds
similarly.

A.1 Prove of CCI

To prove CC" that is,

where

readperiod(tl' t,) <-+ tl < t2 A read(water) at t, A (,read(water)) during (tl, t2)

Define

CC, (t) '= 3t, ,t, : t I <:: t <:: t, <:: t + d A readperiod(t I, t,)

The procedure followed will entail a prove for CCI(t) for unbound increasing values oft. Starting
with 1ft < a : CC,(t) which is satisfied trivially because the domain of t are is formed by the
non-negative reals, we arrive at 'it : CC1(t) which is equivalent to CCI

We assume initially em = 0, representing the assumption that nothing is executed before this
program. The proof is based on the invariant

h '= term A ml <:: em <:: m, + dA ,read(water) during (ml' em)A 1ft < m, : CC,(t)

and the auxiliary assertions

Al '= term A m, <:: emA ,read(water) during (m2' em)A 1ft < m, : CC,(t)

Bl == term /\. m2 < em/\. -.read(water) during (m2' em)/\.
read(water) at em A 1ft < m, : CCI (t)

CI '= term A m2 < em < Tn, + dA ml = emA ,read(water) during (m" em)A
read(water) at ml A 1ft < m2: CC,(t)

DI '= term Am, < ml < emA ,read(water) during (m"em)A
read(water) at m, A 1ft < m, : CCI(t)

EI '= termA m, < m, < em < m, + dA ,read(water) during (m" em)A
read(water) at m, A 1ft < m, : CC,(t)

Motivated by the timing annotation introduction rule, the proof of ((A)) S[TA 1 ((C)) is repre­
sented by the proof outline ((A)) S((B)) TA ((C)).

A PROOF OF THE WATER-LEVEL CONTROL PROGRAM

The above assertions are used in the following proof outline.

((term /\ em = 0))
[m, := 0];
((term /\ m, = em = 0))
while true do ((1,))

od
((CC,))

[m, :=m,];
((A,))
in(water, x) ((B,)) [< m, + d, ?m,]; ((C,))
if high < x then ((C,)) out(pump, on) ((D,)) [< m, + d] ((E,))
else if x < low then ((Cd) out(pump, off) ((D,)) [< m, + d] ((E,)) fi fi

((I,))

48

There are two less trivial steps in this outline, namely (1) from E, to I, and (2) from 1, to CC,:

Step 1
We show that E, -> I,. Assume term/\m, :s m, < em < m,+d/\ ,read(water) during (m" em)/\
read(water) at m, /\ 'It < m, : CC,(t). Note that m, :s em < m, + d :s m, + d and that m, :s m,
leads to ,read(water) during (m" em).

It remains to prove 'It E [m"mt): CC,(t). Consider t E [m"mt). Let t, ="" and t, = mI.
Then t, :s t :s t, :s t + d, since m2 :s t :s m, < m2 + d :s t + d. We have m, < m"
read(water) at m" and (,read(water)) during (m" mt).

Since C 1 --+ E 1) also C 1 --+ h.

Step 2
The last step, the proof of CCI) follows from the "While True" rule, since h 1\ -derm is equivalent
to false and 'It, 3t, > t, : I, [tz/em] implies 'It, 3t, > t, t2 :s m, + d /\ 'It < m, : CC, (t).

We show that this leads to 'Ito: CC, (to). Consider a point of time to. Let t, = to + d. Then there
exists a t2 > t, such that t2 :s m, + d, and thus m, 2: t, - d > t, - d = to. i.e., to < m, which
leads to CC,(tO).

Finally note that 'Ito: CC,(to) implies CC,.

A.2 Prove of cq
Next we prove CC~, that is,

'It" t, : readperiod(t" t 2, high) -> set(pump, on) in [t2' t, + d].

Define

CC~(t2) == Vt , : readperiod(t" t" high) -> set(pump, on) in [t" t, + dj.

Then CC, == 'It, : CC~(t,). Note that CC~(t) holds at any point t where no read action takes
place. The prove proceeds similarly to the one for CC,. Let

I, == ferm/\ ,read(water) during (m" em)/\ (m, = 0 V read(water) at mt)/\ 'It < em : CC;(t)

and the auxiliary assertions

A2 == term/\ ,read(water) during (m" em)/\ (m, = 0 V read(water) at m2)/\Vt < em: CC~(t)

B2 == ferm/\ ,read(water) during (m" em)/\ (m, = 0 V read(water) at m,)/\
read(water, high) at ern/\ 'It < em: CC;(t)

C2 == ferm/\ m, = em/\ ,read(water) during (m" em)/\ (m, = 0 V read(water) at m2)/\

A PROOF OF THE WATER-LEVEL CONTROL PROGRAM

read(water, x) at emA 'It < em: Co;(t)

D2 == term A ml < emA ,read(water) during (m2' em)A (m2 = a v read(water) at m2)A
read(water, high) at mlA set(pump, on) at emA
'It < ml : Co;(i)A 'It, ml < t :::: em : Co;(t)

which are used in the following proof outline.

((term A em = 0»)
[ml := 01;
((term A ml = em = 0))
while true do ((I2))

od
((Co;»

[m2:= mil;
((A2))
in(water, x) ((B2)) [< m2 + d, ?mll; ((C2»)
if high < x then ((C2» out(pump, on) ((D2» [< m, + dl ((12»
else if x < low then ((I,)) out(pump, off) ((I2)) [< m2 + d] ((I2) fi fi

((I2))

Again there are two less trivial steps in the prove.

Step 1
D2 A em < m2 + d leads to h

Step 2

49

The last step, the proof of CC2l follows from the "While True" rule, since 12/\ ,term is equivalent
to false and Vt l 3i2 > i l : 12 [tzlem] implies Vt l 3i2 > tl 'It < i2 : CCW). Hence Vt l : Co;(tl),
thus CO;.

A.3 Prove of CC~

Finally we prove CC~, that is,

Vi: set(pump, off) at t -> 3t l ,i2 : i E [t2' i, +dJ A readperiod(il' t 2 , low) A

(,read(water» during (t2' i].

Define

Let

CC~(i) == set(pump, off) at i -> 3tl, i2 : i E [i2' i l + dJ II readperiod(il' i 2, low) A

(,read(water)) during (i2,t].

h == termA ,read(water) during (ml,em)AVt < em: CC;(i)

and the auxiliary assertions

A3 == iermA ,read(water) during (m2, em)AVi < em : CCW)

B3 == termA ,read(water) during (m2' em)Aread(water, x) at emA 'It < em: CCHi)

C3 == termA ml = emA ,read(water) during (m2' em)Aread(water, x) at emA
'It < em: CCW)

D3 == ierm Ami < emA ,read(water) during (m2' em)Aread(water, low) at mlA
'It < em: CCW)

E3 == term A ml < em/\ --,read(water) during (m2' em)/\read(water) low) at ml!\

A PROOF OF THE WATER-LEVEL CONTROL PROGRAM

set(pump, off) at emil 'It < em : CCW)

which are used in the following proof outline.

((term II em = 0))
[m1 := 0 l;
((term II m1 = em = 0))
while true do ((1,))

od
((CC~))

[m2 := m1l;
((A3))
in(water, x); ((E3)) [< m2 + d, ?m1l; ((C3))
if high < x then ((I3)) out(pump, on) ((Is)) [< m, + d 1 ((Is))
else if x < low then ((D3)) out(pump, off) ((E3)) [< m2 + d 1 ((Is)) fi fi

((I3))

50

The last step) the proof of CC~) follows from the "While True" rule, since 13 A. ,term is equivalent
to false and '1t1 3t, > t1 : J,[t,feml implies '1t1 3t 2 > t1 'It < t2 : CCHJ)· Thus 'It 1 : CCWd,
that is, CC~.

Computing Science Reports

In this series appeared:
93/01

93/02

93/03

93/04

93/05

93/06

93/07

93/08

93/09

93/10

93/11

93112

93/13

93/14

93/15

93/16

93/17

93118

93/19

93/20

93/21

93/22

93/23

93/24

93/25

93/26

93/27

93128

93/29

93/30

R. van Geldrop

T. Verhoeff

T. Verhoeff

E.H.L. Aarts
I.H.M. Karst
P.I. Zwietering

I.C.M. Baeten
C. Verhoef

J.P. Veltkamp

P.O. Moerland

J. Verhoosel

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

K.M. van Hee

I.C.M. Baeten
I.A. Bergstra

I,C.M. Baeten
I.A. Bergstra
R.N. Bol

H. Schepers
J. Haoman

D. Alstein
P. van der Stok

C. Verhoef

G-I. Hauben

F.S. de Boer

M. Codish
D. Dams
G. File
M. Bruynooghe

E. Poll

E. de Kogel

E. Poll and Paula Severi

H. Schepers and R. Gerth

W.M.P. van der Aalst

T. KIoks and D. Kratsch

F. Kamareddine and
R. Nederpelt

R. Post and P. De Bra

1. Deogun
T. Kloks
D. Kratsch
H. Muller

Department of Mathematics and Computing Science
Eindhoven University of Technology

Deriving the Aho-Corasick algorithms: a case study into the synergy of programming
methods, p. 36.

A continuous version of the Prisoner's Dilemma, p. 17

Quicksort for linked lists, p. 8.

Detenninistic and randomized local search, p. 78.

A congruence theorem for structured operational
semantics with predicates, p. 18.

On the unavoidability of metastable behaviour, p. 29

Exercises in Multiprogramming, p. 97

A Formal Detenninistic Scheduling Model for Hard Real-Time Executions in DEDOS, p.
32.

Systems Engineering: a Formal Approach
Part I: System Concepts, p. 72.

Systems Engineering: a Formal Approach
Part II: Frameworks, p. 44.

Systems Engineering: a Fonnal Approach
Part III: Modeling Methods, p. 101.

Systems Engineering: a Fonnal Approach
Part IV: Analysis Methods, p. 63.

Systems Engineering: a Formal Approach Part V: Specification Language, p. 89.

On Sequential Composition, Action Prefixes and
Process Prefix, p. 21.

A Real-Time Process Logic, p. 31.

A Trace-Based Compositional Proof Theory for
Fault Tolerant Distributed Systems, p. 27

Hard Real-Time Reliable Multicast in the DEDOS system,
p.19.

A congruence theorem for structured operational
semantics with predicates and negative premises, p. 22.

The Design of an Online Help Facility for ExSpect, p.21.

A Process Algebra of Concurrent Constraint Programming, p. IS.

Freeness Analysis for Logic Programs - And Correctness, p. 24

A Typechecker for Bijective Pure Type Systems, p. 28.

Relational Algebra and Equational Proofs, p. 23.

Pure Type Systems with Definitions, p. 38.

A Compositional Proof Theory for Fault Tolerant Real-Time Distributed Systems, p. 31.

Multi-dimensional Petri nets, p. 25.

Finding all minimal separators of a graph, p. 11.

A Semantics for a fine A-calculus with de Bruijn indices,
p.49.

GOLD, a Graph Oriented Language for Databases, p. 42.

On Vertex Ranking for Permutation and Other Graphs,
p. II.

93/31

93/32

93/33

93/34

93/35

93/36

93/37

93/38

93/39

93/40

93/41

93142

93/43

93/44

93/45

93/46

93/47

93/48

94101

94/02

94/03

94104

94105

94/06

94/07

94/08

94/09

W. Korver

H. ten Eikelder and
H. van Geldrop

L. Layens and 1. Moonen

I.CM. Baeten and
1.A. Bergstra

W. Ferrer and
P. Severi

J.C.M. Baeten and
I.A. Bergstra

1. Brunekreef
J-P. Katoen
R. Koymans
S. Mauw

C. Verhoef

W.P.M. Nuijten
E.H.L. Aarts
D.A.A. van Erp Taalman Kip
KM. van Hee

P.D.V. van def Stok
M.M.M.PJ. Claessen
D. Alstein

A. Bijlsma

P.M.P. Rambags

B,W. Watson

B.W. Watson

E.l. Luit
J.M.M. Martin

T. Kloks
D. Kratsch
1. Spinrad

W. v.d. Aa1st
P. De 8m
G.J. Hauben
Y. Komatzky

R. Gerth

P. America
M. van def Kammen
R.P. Nederpelt
O.S. van Roosmalen
H.C.M. de Swart

F. Kamareddine
R.P. Nederpelt

L.B. Hartman
K.M. van Hee

J.C.M. Baeten
I.A. Bergstra

P. Zhou
J. Hooman

T. Basten
T. Kunz
1. Black
M. Coffin
D. Taylor

K.R. Apt
R. Bol

O.S. van Roosmalen

I.C.M. Baeten
1.A. Bergstra

Derivation of delay insensitive and speed independent CMOS circuits. using directed
commands and production rule sets, p. 40.

On the Correctness of some Algorithms to generate Finite
Automata for Regular Expressions. p. 17.

lLiAS. a sequential language for para1lel matrix computations, p. 20.

Real Time Process Algebra with Infinitesimals, p.39.

Abstract Reduction and Topology, p. 28.

Non Interleaving Process Algebra, p. 17.

Design and Analysis of
Dynamic Leader Election Protocols
in Broadcast Networks, p. 73.

A general conservative extension theorem in process algebra. p. 17.

Job Shop Scheduling by Constraint Satisfaction. p. 22.

A Hierarchical Membership Protocol for Synchronous
Distributed Systems, p. 43.

Temporal operators viewed as predicate transfonners, p. 11.

Automatic Verification of Regular Protocols in prr Nets, p. 23.

A taxomomy of finite automata construction algorithms, p. 87.

A taxonomy of finite automata minimization algorithms, p. 23.

A precise clock synchronization protocol,p.

Treewidth and Patwidth of Cocomparability graphs of
Bounded Dimension, p. 14.

Browsing Semantics in the "Tower" Model, p. 19.

Verifying Sequentially Consistent Memory using Interface
Refinement, p. 20.

The object-oriented paradigm, p. 28.

Canonical typing and II-conversion, p. 51.

Application of Marcov Decision Processe to Search
Problems, p. 21.

Graph Isomorphism Models for Non Interleaving Process
Algebra, p. 18.

Fonnal Specification and Compositional Verification of
an Atomic Broadcast Protocol, p. 22.

Time and the Order of Abstract Events in Distributed
Computations, p. 29.

Logic Programming and Negation: A Survey, p. 62.

A Hierarchical Diagrammatic Representation of Class Structure, p. 22.

Process Algebra with Partial Choice, p. 16.

94110 T. verhoeff

941Il J. Peleska
C. Huizing
C. Petersohn

94/12 T. Kloks
D. Kratsch
H. Muller

94113 R. Seljee

94114 W. Peremans

94115 RJ.M. Vaessens
E.H.L. Aarts
J. K. Lenstra

94/16 R.e. Backhouse
H. Doornbos

94117 S. Mauw
M.A. Reniers

94/18 F. Kamareddine
R. Nederpelt

94/19 B.W. Watson

94/20 R. Bloo
F. Kamareddine
R. Nederpelt

94/21 B.W. Watson

94/22 B.W. Watson

94123 S. Mauw and M.A. Reniers

94124 D. Dams
O. Grumberg
R. Gerth

94125 T. Kloks

94126 R.R. Hoogerwoord

94127 S. Mauw and H. Mulder

94128 C,W.A.M. van Overveld
M. Verhoeven

94129 1. Hooman

94/30 J.C.M. Baeten
lA. Bergstra
Gh. Stefanescu

94/31 B,W. Watson
RE. Watson

94132 I.J. Vereijken

94133 T. Laan

94/34 R. Bloo
F. Kamareddine
R. Nederpelt

94/35 J.C.M. Baeten
S. Mauw

94/36 F. Kamareddine
R. Nederpelt

94137 T. Basten
R. Bol
M. Voorhoeve

94138 A. Bijlsma
C.S. Scholten

94/39 A. Blokhuis
T. Kloks

The testing Paradigm Applied to Network Structure. p. 31.

A Comparison of Ward & Mellor's Transfonnation
Schema with State- & Activitycharts, p. 30.

Dominoes, p. 14.

A New Method for Integrity Constraint checking in Deductive Databases, p. 34.

Ups and Downs of Type Theory, p. 9.

Job Shop Scheduling by Local Search, p. 21.

Mathematical Induction Made Calculational, p. 36.

An Algebraic Semantics of Basic Message
Sequence Charts, p. 9.

Refining Reduction in the Lambda Calculus, p. 15.

The perfonnance of single-keyword and multiple-keyword pattern matching algorithms, p.
46.

Beyond ,a-Reduction in Church's "-~, p. 22.

An introduction to the Fire engine: A C++ toolkit for Finite automata and Regular Ex­
pressions.

The design and implementation of the FIRE engine:
A C++ toolkit for Finite automata and regular Expressions.

An algebraic semantics of Message Sequence Charts, p. 43.

Abstract Interpretation of Reactive Systems:
Abstractions Preserving V'ClL*, 3CTL* and CTL*, p. 28.

On the foundations of functional programming: a programmer's point of view, p. 54.

Regularity of BPA-Systems is Decidable, p. 14.

Stars or Stripes: a comparative study of finite and
transfinite techniques for surface modelling, p. 20.

Correctness of Real Time Systems by Construction, p. 22.

Process Algebra with Feedback, p. 22.

A Boyer-Moore type algorithm for regular expression
pattern matching, p. 22.

Fischer's Protocol in Timed Process Algebra, p. 38.

A fonnalization of the Ramified Type Theory, p.40.

The Barendregt Cube with Definitions and Generalised
Reduction, p. 37.

Delayed choice: an operator for joining Message
Sequence Charts, p. 15.

Canonical typing and II-conversion in the Barendregt
Cube, p. 19.

Simulating and Analyzing Railway Interlockings in
ExSpect, p. 30.

Point-free substitution, p. 10.

On the equivalence covering number of splitgraphs, p. 4.

94/40

94/41

94142

94/43

94/44

94/45

94/46

94/47

94/48

94/49

94150

94151

94152

94153

95/01

95/02

95103

95/04

95/05

95/06

95/07

95/08

95/09

95/10

95/11

95112

D. Alstein

T. KIoks
D. Kratsch

J. Engelfriet
1.1. Vereijken

R.C. Backhouse
M. Bijsterveld

E. Brinksma
R. Gerth
W. Janssen
S. Katz
M. Poel
C. Rump

G.J. Hauben

R. Bloo
F. Kamareddine
R. Nederpelt

R. Bloo
F. Kamareddine
R. NederpeJt

J. Davies
S. Graf
B. Jonsson
a.Lowe
A. Poueli
J. Zwiers

Mathematics of Program
Construction Group

J.C.M. Baeten
l.A. Bergstra

H. Geuvers

T. Kloks
D. Kratsch
H. Muller

W. Penczek
R. Kuiper

R. Gerth
R. Kuiper
D. Peled
W. Penczek

1.1. Lukkien

M. Bezem
R. Bol
J.P. Groote

J.C.M. Baeten
C. Verhoef

1. Hidders

P. Severi

T.W.M. Vossen
M.G.A. Verhoeven
H.M.M. ten Eikelder
E.H.L. Aarts

a.A.M. de Bruyn
0.5. van Roosmalen

R. Bloo

J.C.M. Baeten
J.A. Bergstra

R.C. Backhouse
R. Verhoeven
O. Weber

R. Se1;ee

S. Mauw and M. Reniers

Distributed Consensus and Hard Real-Time Systems, p. 34.

Computing a perfect edge without vertex elimination
ordering of a chordal bipartite graph, p. 6.

Concatenation of Graphs, p. 7.

Category Theory as Coherently Constructive Lattice
Theory: An Illustration, p. 35.

Verifying Sequentially Consistent Memory, p. 160

Tutorial voor de ExSpect·bibliotheek voor "Administratieve Logistiek", p. 43.

The)"·cube with classes of tenns modulo conversion.
p.16.

On IT-conversion in Type Theory, p. 12.

Fixed-Point Calculus, p. 11.

Process Algebra with Propositional Signals, p. 25.

A short and flexible proof of Strong Nonnalazation
for the Calculus of Constructions, p. 27.

Listing simplicial vertices and recognizing
diamond-free graphs, p. 4.

Traces and Logic, p. 81

A Partial Order Approach to
Branching Time Logic Model Checking, p. 20.

The Construction of a small CommunicationLibrary. p.16.

Fonna1izing Process Algebraic Verifications in the Calculus
of Constructions, p.49.

Concrete process algebra, p. 134.

An Isotopic Invariant for Planar Drawings of Connected Planar Graphs, p. 9.

A Type Inference Algorithm for Pure Type Systems, p.20.

A Quantitative Analysis of Iterated LocaJ Search, p.23.

Drawing Execution Graphs by Parsing, p. to.

PreselVation of Strong NonnaJisation for Explicit Substitution. p. 12.

Discrete Time Process Algebra, p. 20

Mathlpad: A System for On-Line Prepararation of MathematicaJ
Documents. p. 15

Deductive Database Systems and integrity constraint checking, p. 36.

Empty Interworkings and Refinement

95/13

95/14

95/15

95116

95/17

95/18

95/19

95120

95/21

95122

95/23

95/24

95125

95/26

95/27

95/28

95/29

95/30

95/31

95/32

95/33

95/34

95135

96/01

96/02

96/03

96104

96/05

96/06

96/07

96/08

96/09

96/10

96/11

96/12

96/13

96/14

96115

96/16

Semantics of Interworkings Revised, p. 19.

B.W. Watson and G. Zwaan A taxonomy of sublinear multiple keyword pattern matching algorithms, p. 26.

A. Ponse, C. Verhoef, De proceedings: ACP'95, p.
S.F.M. Vlijrnen (eds.)

P. Niebert and W. Penczek On the Connection of Partial Order Logics and Partial Order Reduction Methods, p. 12.

D. Dams, O. Grumberg, R. Gerth Abstract Interpretation of Reactive Systems: Preservation of CTL*. p. 27.

S. Mauw and B.A. van der Meulen

F. Kamareddine and T. Laan

I.C.M. Baeten and I.A. Bergstra

F. van Raamsdonk and P. Severi

A. van Deursen

B. Arnold. A. v. Deursen, M. Res

W.M.P. van der Aalst

F.P.M. Dignum, W.P.M. Nuijten,
L.M.A. Janssen

L. Feijs

W.M.P. van der Aalst

P.D.V. van der Stok, J. van der Wal

W. Fokkink. C. Verhoef

H. Jurjus

1. Hidders, C. Hoskens, J. Paredaens

P. Kelb, D. Dams and R. Gerth

W.M.P. van der Aalst

J. Engelfriet and 11. Vereijken

I. Zwanenburg

T. Basten and M. Voorhoeve

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van der Aa1st

S. Mauw

T. Basten and W.M.P. v.d. Aa1st

W.M.P. van der Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra.,
I.T. de Munk

F. Dignum, H. Weigand, E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H.I. Bas and M.A. Reniers

M.A. Reniers and IJ. Vereijken

P. Hoogendijk and O. de Moor

Specification of tools for Message Sequence Charts, p. 36.

A Reflection on Russell's Ramified Types and Kripke's Hierarchy of Truths,
p. 14.

Discrete Time Process Algebra with Abstraction, p. 15.

On Normalisation, p. 33.

Axiomatizing Early and Late Input by Variable Elimination, p. 44.

An Algebraic Specification of a Language for Describing Financial Products,
p. 11.

Petri net based scheduling, p. 20.

Solving a Time Tabling Problem by Constraint Satisfaction, p. 14.

Synchronous Sequence Charts In Action, p. 36.

A Class of Petri nets for modeling and analyzing business processes, p. 24.

Proceedings of the Real-Time Database Workshop, p. 106.

A Conservative Look at term Deduction Systems with Variable Binding, p. 29.

On Nesting of a Nonmonotonic Conditional, p. 14

The Fonnal Model of a Pattern Browsing Technique, p.24.

Practical Symbolic Model Checking of the full ,u.-calculus using Compositional
Abstractions, p. 17.

Handboek simulatie, p. 51.

Context-Free Graph Grammars and Concatenation of Graphs, p. 35.

Record concatenation with intersection types, p. 46.

An algebraic semantics for hierarchical Pff Nets, p. 32.

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service
Station, p. 12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

Example specifications in phi-SOL.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

OOOB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Formal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Normalisation. p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The J 2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra. p. 139.

What is a data type?, p. 29.

96117

96/18

96/19

96/20

96/21

96122

96/23

96124

96/25

97/01

E. Boiten and P. Hoogendijk

P.D.V. van der Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graaf and G,J. Hauben

W.M.P. van dec Aalst

M. Voorhoeve and W. van dec Aalst

M. Vaccari and R.e. Backhouse

B. Knaack and R. Gerth

Nested collections and polytypism. p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time con­
straints, p. 71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concur­
rent Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes. p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Discretisation Method for Asynchronous Timed Systems.

	Abstract
	1. Introduction
	2. Composability and reusability of real-time programs
	3. Platform-independent real-time programming
	4. A simple parallel programming language
	4.1 Syntax
	4.2 Informal semantics
	4.3 Syntactic restrictions
	5. Formal verification of time-annotated programs
	5.1 Specifications
	5.1.1 Example Specifications
	5.2 Proof system
	5.2.1 Axiomatization of Programming Constructs
	5.2.2 General Rules and Axioms
	5.3 Verification of a simple control system
	6. Informal specification minepump
	7. Interaction with the environment
	8. Design decisions
	9. Implementation
	9.1 Process handling CH4 sensor
	9.2 Process handling high and low water level messages
	9.3 Process measuring pump faults
	9.4 Process handling pump
	10. System generation
	11. Off-line scheduling
	11.1 Program analysis: process structure
	11.2 Program analysis: scheduling blocks
	11.3 Program analysis: critical paths
	11.4 Off-line scheduling and maximum parallellism
	11.5 Off-line scheduling and minimum parallelism
	12. On-line preemptive priority scheduling
	13. Discussion
	13.2 Abstraction and refinement
	13.3 The nature of timing parameters
	14. Comparison with other approaches
	14.1 ADA
	14.2 Real-Time Euclid
	14.3 DROL
	14.4 RTC++
	14.5 FLEX
	14.6 Sina
	14.7 Comparison
	14.8 The combination of real time with object orientation
	15. Conclusion
	References
	A: Proof of the water-level control program

