15 research outputs found

    Univalence for free

    Get PDF
    We present an internalization of the 2-groupoid interpretation of the calculus of construction that allows to realize the univalence axiom, proof irrelevance and reasoning modulo. As an example, we show that in our setting, the type of Church integers is equal to the inductive type of natural numbers

    Functions out of Higher Truncations

    Get PDF
    In homotopy type theory, the truncation operator ||-||n (for a number n > -2) is often useful if one does not care about the higher structure of a type and wants to avoid coherence problems. However, its elimination principle only allows to eliminate into n-types, which makes it hard to construct functions ||A||n -> B if B is not an n-type. This makes it desirable to derive more powerful elimination theorems. We show a first general result: If B is an (n+1)-type, then functions ||A||n -> B correspond exactly to functions A -> B which are constant on all (n+1)-st loop spaces. We give one "elementary" proof and one proof that uses a higher inductive type, both of which require some effort. As a sample application of our result, we show that we can construct "set-based" representations of 1-types, as long as they have "braided" loop spaces. The main result with one of its proofs and the application have been formalised in Agda.Comment: 15 pages; to appear at CSL'1

    The General Universal Property of the Propositional Truncation

    Get PDF
    In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least 1, Sigma, Pi, and identity types), we define the type of constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of constant function is equivalent to the type ||A|| -> B. If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in Homotopy Type Theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a proposition Q with A -> Q and Q -> B

    Modeling Martin Löf Type Theory in Categories

    Get PDF
    International audienceWe present a model of Martin-Lof type theory that includes both dependent products and the identity type. It is based on the category of small categories, with cloven Grothendieck bifibrations used to model dependent types. The identity type is modeled by a path functor that seems to have independent interest from the point of view of homotopy theory. We briefly describe this model's strengths and limitations

    Truncation levels in homotopy type theory

    Get PDF
    Homotopy type theory (HoTT) is a branch of mathematics that combines and benefits from a variety of fields, most importantly homotopy theory, higher dimensional category theory, and, of course, type theory. We present several original results in homotopy type theory which are related to the truncation level of types, a concept due to Voevodsky. To begin, we give a few simple criteria for determining whether a type is 0-truncated (a set), inspired by a well-known theorem by Hedberg, and these criteria are then generalised to arbitrary n. This naturally leads to a discussion of functions that are weakly constant, i.e. map any two inputs to equal outputs. A weakly constant function does in general not factor through the propositional truncation of its domain, something that one could expect if the function really did not depend on its input. However, the factorisation is always possible for weakly constant endofunctions, which makes it possible to define a propositional notion of anonymous existence. We additionally find a few other non-trivial special cases in which the factorisation works. Further, we present a couple of constructions which are only possible with the judgmental computation rule for the truncation. Among these is an invertibility puzzle that seemingly inverts the canonical map from Nat to the truncation of Nat, which is perhaps surprising as the latter type is equivalent to the unit type. A further result is the construction of strict n-types in Martin-Lof type theory with a hierarchy of univalent universes (and without higher inductive types), and a proof that the universe U(n) is not n-truncated. This solves a hitherto open problem of the 2012/13 special year program on Univalent Foundations at the Institute for Advanced Study (Princeton). The main result of this thesis is a generalised universal property of the propositional truncation, using a construction of coherently constant functions. We show that the type of such coherently constant functions between types A and B, which can be seen as the type of natural transformations between two diagrams over the simplex category without degeneracies (i.e. finite non-empty sets and strictly increasing functions), is equivalent to the type of functions with the truncation of A as domain and B as codomain. In the general case, the definition of natural transformations between such diagrams requires an infinite tower of conditions, which exists if the type theory has Reedy limits of diagrams over the ordinal omega. If B is an n-type for some given finite n, (non-trivial) Reedy limits are unnecessary, allowing us to construct functions from the truncation of A to B in homotopy type theory without further assumptions. To obtain these results, we develop some theory on equality diagrams, especially equality semi-simplicial types. In particular, we show that the semi-simplicial equality type over any type satisfies the Kan condition, which can be seen as the simplicial version of the fundamental result by Lumsdaine, and by van den Berg and Garner, that types are weak omega-groupoids. Finally, we present some results related to formalisations of infinite structures that seem to be impossible to express internally. To give an example, we show how the simplex category can be implemented so that the categorical laws hold strictly. In the presence of very dependent types, we speculate that this makes the Reedy approach for the famous open problem of defining semi-simplicial types work

    Truncation levels in homotopy type theory

    Get PDF
    Homotopy type theory (HoTT) is a branch of mathematics that combines and benefits from a variety of fields, most importantly homotopy theory, higher dimensional category theory, and, of course, type theory. We present several original results in homotopy type theory which are related to the truncation level of types, a concept due to Voevodsky. To begin, we give a few simple criteria for determining whether a type is 0-truncated (a set), inspired by a well-known theorem by Hedberg, and these criteria are then generalised to arbitrary n. This naturally leads to a discussion of functions that are weakly constant, i.e. map any two inputs to equal outputs. A weakly constant function does in general not factor through the propositional truncation of its domain, something that one could expect if the function really did not depend on its input. However, the factorisation is always possible for weakly constant endofunctions, which makes it possible to define a propositional notion of anonymous existence. We additionally find a few other non-trivial special cases in which the factorisation works. Further, we present a couple of constructions which are only possible with the judgmental computation rule for the truncation. Among these is an invertibility puzzle that seemingly inverts the canonical map from Nat to the truncation of Nat, which is perhaps surprising as the latter type is equivalent to the unit type. A further result is the construction of strict n-types in Martin-Lof type theory with a hierarchy of univalent universes (and without higher inductive types), and a proof that the universe U(n) is not n-truncated. This solves a hitherto open problem of the 2012/13 special year program on Univalent Foundations at the Institute for Advanced Study (Princeton). The main result of this thesis is a generalised universal property of the propositional truncation, using a construction of coherently constant functions. We show that the type of such coherently constant functions between types A and B, which can be seen as the type of natural transformations between two diagrams over the simplex category without degeneracies (i.e. finite non-empty sets and strictly increasing functions), is equivalent to the type of functions with the truncation of A as domain and B as codomain. In the general case, the definition of natural transformations between such diagrams requires an infinite tower of conditions, which exists if the type theory has Reedy limits of diagrams over the ordinal omega. If B is an n-type for some given finite n, (non-trivial) Reedy limits are unnecessary, allowing us to construct functions from the truncation of A to B in homotopy type theory without further assumptions. To obtain these results, we develop some theory on equality diagrams, especially equality semi-simplicial types. In particular, we show that the semi-simplicial equality type over any type satisfies the Kan condition, which can be seen as the simplicial version of the fundamental result by Lumsdaine, and by van den Berg and Garner, that types are weak omega-groupoids. Finally, we present some results related to formalisations of infinite structures that seem to be impossible to express internally. To give an example, we show how the simplex category can be implemented so that the categorical laws hold strictly. In the presence of very dependent types, we speculate that this makes the Reedy approach for the famous open problem of defining semi-simplicial types work

    On Induction, Coinduction and Equality in Martin-L\uf6f and Homotopy Type Theory

    Get PDF
    Martin L\uf6f Type Theory, having put computation at the center of logicalreasoning, has been shown to be an effective foundation for proof assistants,with applications both in computer science and constructive mathematics. Oneambition though is for MLTT to also double as a practical general purposeprogramming language. Datatypes in type theory come with an induction orcoinduction principle which gives a precise and concise specification of theirinterface. However, such principles can interfere with how we would like toexpress our programs. In this thesis, we investigate more flexible alternativesto direct uses of the (co)induction principles.As a first contribution, we consider the n-truncation of a type in Homo-topy Type Theory. We derive in HoTT an eliminator into (n+1)-truncatedtypes instead of n-truncated ones, assuming extra conditions on the underlyingfunction.As a second contribution, we improve on type-based criteria for terminationand productivity. By augmenting the types with well-foundedness information,such criteria allow function definitions in a style closer to general recursion.We consider two criteria: guarded types, and sized types.Guarded types introduce a modality ”later” to guard the availability ofrecursive calls provided by a general fixed-point combinator. In Guarded Cu-bical Type Theory we equip the fixed-point combinator with a propositionalequality to its one-step unfolding, instead of a definitional equality that wouldbreak normalization. The notion of path from Cubical Type Theory allows usto do so without losing canonicity or decidability of conversion.Sized types, on the other hand, explicitly index datatypes with size boundson the height or depth of their elements. The sizes however can get in theway of the reasoning principles we expect. Our approach is to introduce newquantifiers for ”irrelevant” size quantification. We present a type theory withparametric quantifiers where irrelevance arises as a “free theorem”. We alsodevelop a conversion checking algorithm for a more specific theory where thenew quantifiers are restricted to sizes.Finally, our third contribution is about the operational semantics of typetheory. For the extensions above we would like to devise a practical conversionchecking algorithm suitable for integration into a proof assistant. We formal-ized the correctness of such an algorithm for a small but challenging corecalculus, proving that conversion is decidable. We expect this development toform a good basis to verify more complex theories.The ideas discussed in this thesis are already influencing the developmentof Agda, a proof assistant based on type theory
    corecore