
Kraus, Nicolai (2015) Truncation levels in homotopy type
theory. PhD thesis, University of Nottingham.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/28986/1/thesis.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

· Copyright and all moral rights to the version of the paper presented here belong to

the individual author(s) and/or other copyright owners.

· To the extent reasonable and practicable the material made available in Nottingham

ePrints has been checked for eligibility before being made available.

· Copies of full items can be used for personal research or study, educational, or not-

for-profit purposes without prior permission or charge provided that the authors, title
and full bibliographic details are credited, a hyperlink and/or URL is given for the
original metadata page and the content is not changed in any way.

· Quotations or similar reproductions must be sufficiently acknowledged.

Please see our full end user licence at:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/33573875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://eprints.nottingham.ac.uk/Etheses%20end%20user%20agreement.pdf
mailto:eprints@nottingham.ac.uk

TRUNCATION LEVELS

IN

HOMOTOPY TYPE THEORY

by

Nicolai Kraus

Thesis submitted to the University of Nottingham

for the degree of Doctor of Philosophy

July 2015

Summary

We present several original results in homotopy type theory which are related to
the truncation level of types, a concept due to Voevodsky. To begin, we give a
few simple criteria for determining whether a type is 0-truncated (a set), inspired
by a well-known theorem by Hedberg, and these criteria are then generalised to
arbitrary n. This naturally leads to a discussion of functions that are weakly con-
stant, i.e. map any two inputs to equal outputs. A weakly constant function does
in general not factor through the propositional truncation of its domain. How-
ever, the factorisation is (among other cases) always possible for weakly constant
endofunctions, which we use to define a propositional notion of existence. Further,
we present a couple of constructions which are only possible with the judgmental
computation rule for the truncation, for example an invertibility puzzle that seem-
ingly inverts the canonical map from N to ∥N∥.

One of the two main results is the construction of strict n-types in Martin-Löf
type theory with a hierarchy of univalent universes (and without higher induct-
ive types), and a proof that the universe Un is not n-truncated. The other main
result of this thesis is a generalised universal property of the propositional trun-
cation, using a construction of coherently constant functions. We show that the
type of such coherently constant functions from A to B is equivalent to the type
∥A∥ → B. In the general case the definition requires an infinite tower of condi-
tions, which exists if the type theory has Reedy limits of diagrams over ωop. If
B is an n-type for some given finite n, (non-trivial) Reedy limits are unnecessary,
allowing us to construct functions ∥A∥ → B in homotopy type theory without
further assumptions. To obtain these results, we develop some theory on equality
diagrams, especially equality semi-simplicial types. In particular, we show that
the semi-simplicial equality type over any type satisfies the Kan condition, which
can be seen as the simplicial version of the result by Lumsdaine, and by van den
Berg and Garner, that types are weak ω-groupoids.

Finally, we present some results related to formalisations of infinite structures.
For example, we show how the category ∆+ of finite non-empty sets and strictly
increasing functions can be implemented so that the categorical rules hold strictly.
In the presence of very dependent types, we speculate that this makes the “Reedy
approach” for the famous open problem of defining semi-simplicial types work.

i

Acknowledgements

First of all, I want to express my deep and honest gratitude to Thorsten Altenkirch.
It has been a privilege to be his PhD student. During the last years, he has always
given me freedom to pursue my own ideas, and offered me guidance whenever I
could benefit from it. When I encountered a problem, he always readily provided
suggestions and support (even at times when other things kept him busy as well).
He made it possible that I could visit the univalent foundations special year in
Princeton and many other interesting events. He is an excellent teacher of all sorts
of academic topics and an inspiring discussion partner for research ideas. Maybe
most importantly, he has always been a thoughtful and caring mentor for me.

Special thanks goes to Christian Sattler. In the last decade, I have learned far
more mathematics from him than from any of my professors. He is an exceptional
academic colleague and an invaluable friend.

I am thankful for many interesting discussions, especially with Martín Escardó
and Paolo Capriotti. Without all the ideas Martín and I have shared, the contents
and probably even the title of my thesis would be different today, which I believe
says it all. With Paolo, I could always discuss all sorts of questions, and I have
learned a lot from him and from all our reading groups. I also thank everyone else
for their interest and contributions to our regular meetings, in particular Venanzio
Capretta and, of course, Christian and Thorsten, but also Gabe Dijkstra, Ambrus
Kaposi, Nuo Li and, in the end, Manuel Bärenz.

My two thesis examiners, Julie Greensmith (internal examiner) and Steve
Awodey (external examiner) have both spent a lot of time with my thesis. I
truly appreciate their work, which has helped me in several ways. Their advice
has enabled me to improve the general style of the thesis and the readability of
multiple text passages, and, of course, to fix various smaller typographical mis-
takes. Steve’s comments on my research itself have been valuable and have led to
not only interesting ideas for future research, but also to a couple of remarks that
I have added in the current (final) version of the thesis.

I was very lucky that I happened to be a student at the same time as Ambrus
and Nuo. We have shared many interests, academic ones and non-academic ones.
In the early days of my PhD studies, I have received support from Andreas Abel
and Neil Sculthorpe. Already a decade before that, my interest for mathematics
was stimulated by my high school teacher Markus Jakob.

There are many more people who would deserve to be mentioned. I thank
the participants (especially the organisers, Steve Awodey, Thierry Coquand, and
Vladimir Voevodsky) of the special year in Princeton and all other meetings for
a lot of stimulating input, in particular Thierry Coquand and Michael Shulman.
The first has given me advice on several occurrences and I had the pleasure of
working with him, as well as with Martín and Thorsten, on a joint project. The
latter has inspired me a lot through his numerous amazing blog posts. I am also
grateful for the interesting remarks of Vladimir Voevodsky on one of my main

iii

results, and I thank Andrea Vezzosi for his contributions to one of the projects I
have worked on. Many people have given me feedback on my work, and I would
like to thank everyone who did, as this has been very valuable for me. Some of the
comments I could understand immediately, and others required (or still require)
me to spend some time before I could fully benefit from them. I explicitly want
to include the anonymous reviewers of the work that I have published during the
time of my PhD studies, who have all given very helpful feedback. In general, the
community of this research area is welcoming and friendly, making it easy for a
student to become a part of it.

I am also grateful to Venanzio Capretta for spending time with my work and
for making valuable suggestions during my annual reviews. Apart from Martín
and Thorsten, I especially thank Graham Hutton for his general support in many
situations. All the members of the functional programming lab in Nottingham
have made the last years truly enjoyable.

I want to restrict these acknowledgements to the mostly academic component.
I am not someone who likes to make details of his private life public. Nevertheless,
the support that many people (especially Irmgard and Norbert Kraus, and Jocelyn
Chen) have given me outside of the academic environment has been extremely
important, and I know they are aware of my thankfulness.

iv

Contents

Summary i

Acknowledgements iii

Contents v

1 Introduction 1

1.1 Historical Outline . 2
1.2 A brief introduction to truncation levels and operations 6
1.3 Overview over Our Results . 8
1.4 Computer-Verified Formalisations . 13
1.5 Declaration of Authorship and Previous Publications 15

2 Overview over Homotopy Type Theory and Preliminaries 17

2.1 Martin-Löf Type Theory . 18
2.2 Constructions with Propositional Equality 23
2.3 Homotopy Type Theory . 34
2.4 A Word on Ambiguity Avoidance and Readability 40

3 Truncation Level Criteria 43

3.1 Hedberg’s Theorem Revisited . 43
3.2 Generalisations to Higher Levels . 49

4 Anonymous Existence 51

4.1 Collapsible Types have Split Support 51
4.2 Populatedness . 56
4.3 Comparison of Notions of Existence 58

5 Weakly Constant Functions 69

5.1 The Limitations of Weak Constancy 69
5.2 Factorisation for Special Cases . 72

6 On the Computation Rule of the Propositional Truncation 79

6.1 The Interval . 80
6.2 Function Extensionality . 83

v

6.3 Judgmental Factorisation . 83
6.4 An Invertibility Puzzle . 85

7 Higher Homotopies in a Hierarchy of Univalent Universes 89

7.1 Background of the Problem . 89
7.2 The First Cases . 93
7.3 Pointed Types . 96
7.4 Homotopically Complicated Types 98
7.5 A Solution with the “Wrapping” Approach 101
7.6 Connectedness . 104
7.7 Combining the Results . 112

8 The General Universal Properties of Truncations 115

8.1 A First Few Special Cases . 119
8.2 Fibration Categories, Inverse Diagrams, and Reedy Limits 124
8.3 Subdiagrams . 128
8.4 Equality Diagrams . 130
8.5 The Equality Semisimplicial Type . 131
8.6 Fibrant Diagrams of Natural Transformations 135
8.7 Extending Semi-Simplicial Types . 137
8.8 The Main Theorem . 141
8.9 Finite Cases . 147
8.10 Elimination Principles for Higher Truncations 150
8.11 The Big Picture: Solved and Unsolved Cases 161

9 Future Directions and Concluding Remarks 167

9.1 The Problem of Formalising Infinite Structures 167
9.2 Semi-Simplicial Types . 168
9.3 Yoneda Groupoids . 178
9.4 Set-Based Groupoids . 183
9.5 Further Notes on Related Work and Conclusions 186

Bibliography 193

A○ Electronic Appendix

vi

http://www.cs.nott.ac.uk/~ngk/thesis-formalisation/agda-html/INDEX.html
http://www.cs.nott.ac.uk/~ngk/thesis-formalisation/agda-html/INDEX.html

Chapter 1

Introduction

Homotopy type theory is a new branch of mathematics. It forms a bridge between
seemingly very distant topics: Only ten years ago, very few, if any, type theorists
would have expected to get involved in algebraic topology or the theory of weak
ω-categories, and neither would researchers who feel at home when it comes to
the fundamental groups of spaces have believed that a significant amount of their
discoveries can be formalised and computer-verified in an elegant way, using a
foundation of mathematics that is based on something known as Martin-Löf type
theory.

This thesis presents several results on truncation levels, informally, the higher
homotopical structure of types. The important observation that this concept can
be formulated internally in type theory is due to Voevodsky [Voe10a]. The thesis
is subdivided into nine chapters. At the beginning of each chapter, we give a
very concise overview over its contents. In this introductory Chapter 1, we first
present a short historical outline (Section 1.1), and the ideas of truncation levels is
explained in Section 1.2. We then give a detailed overview over the contents of this
thesis and the results with their developments. In particular, a list stating which
results I consider my main contributions to the field of homotopy type theory
can be found at the end of Section 1.3. An important aspect of the considered
field of research are computer-verified formalisations. Because of this, the current
thesis has an electronic appendix with such formalisations, and some details are
described in Section 1.4. Finally, in Section 1.5, we provide additional information
on journal and conference publications that have been based on the contents of
this thesis. Much of the work has been done in collaboration, and we strive to
give a detailed statement on authorships.

There are many excellent introductions to homotopy type theory, both in terms
of its development and its concepts and results. Although some information is
provided in this thesis, in particular in Chapter 2, a beginner is advised to read
through an introduction that covers the basic concepts in higher detail. The ca-
nonical reference is certainly the book Homotopy Type Theory: Univalent Founda-
tions of Mathematics [Uni13], written by the participants of the 2012/13 Univalent

1

1. Introduction

Foundations Program at the Institute for Advanced Study, Princeton. Others in-
clude the overview by Awodey [Awo12], the notice of Awodey, Pelayo, and Warren
for the AMS [APW13], and the introduction by Pelayo and Warren [PW12].

1.1 Historical Outline

Martin-Löf type theory (MLTT), more precisely intensional Martin-Löf type the-
ory, and sometimes also referred to as Intuitionistic or Constructive type theory,
was introduced and pushed forward by Martin-Löf [ML98; ML75; ML82; ML84].
It constitutes a branch of mathematical logic with many applications in computer
science, especially in the theory of programming languages. At the same time,
it is powerful enough to serve as a framework for the formalisation of huge parts
of mathematics. These two, namely “programming” and “proving” (loosly speak-
ing), can indeed be viewed as the main applications of MLTT. Obviously, this
connection is based on the Curry-Howard Correspondence [How80] and one could
argue that the two concepts are the same thing; however, in praxis, someone using
MLTT for programming often has slightly different requirements than someone
who is trying to prove a theorem.

Among mathematicians, fairly well known is the proof assistant Coq which is
based on a variant of MLTT, the Calculus of Inductive Constructions [CH88]. Coq
has acquired much of its publicity when it was utilised by Gonthier and Werner
to formalise a proof of the famous Four Colour Theorem [Gon08] which says that
at most four colours are necessary to colour a map such that adjacent countries
do not have the same colour. For more recent work in Coq, we want to mention
the Feit-Thompson Odd Order Theorem [Gon+13] and the ForMath project.

Another implementation of MLTT is Agda [Nor07]. Of course, it can be used
as a proof assistant, and indeed, we have used it to formalise many of our res-
ults presented in this thesis. Yet, it is often viewed as a programming language,
even though there is in theory (close to) no difference between a dependently
typed programming language and a proof assistant. Programming in a depend-
ently typed language bears huge advantages. The rich type system can be utilised
to provide an immediate precise formal specification or correctness proof of a
program. Moreover, even though beginners of Agda who come from another func-
tional programming language such as Haskell can find the powerful type system
a burden, this opinion changes as they get accustomed to it. If a program does
not type check in Agda, something is wrong, and a second thought would be re-
quired in Haskell as well, the only difference being that Haskell would not tell the
programmer.

A core aspect of MLTT is computation: terms are identified with their normal
forms. For concrete implementations, such as Agda and Coq, this means that
we have an automatic simplification of expressions. For a programmer, this is an
obvious necessity. On the other hand, in a proof on paper, such a simplification
would have to be done manually by the mathematician, and we believe that the

2

1.1. Historical Outline

computational behaviour of type theory can be seen as one of its main features
that make it valuable for the mathematical community.

One more particularly interesting (and crucial) concept in MLTT is equality.
Type theory knows two different forms of equality: first, there is the so-called
definitional or judgmental equality, based on what we have just described: terms
are identified if they behave identically from the computational point of view,
meaning that they have the same normal form (that is, they are identical after be-
ing evaluated). In a more abstract sense, judgmental equality is a meta-theoretic
concept of MLTT that is used for type checking. In intensional type theory, judg-
mental equality, and thus type checking, is decidable, a demand that corresponds
to the very basic usage of proof assistants: if we have a potential proof p for a “pro-
position” P , the system should be able to check automatically whether p is indeed
a correct proof of P . Judgmental equality in concrete implementations typically
consists of β-equality and some forms of η-equality. If we want to express that a

and b are judgmentally equal, we write a ≡ b. If we further want to express that we
define a to be b, causing them trivially to be judgmentally equal, we write a ∶≡ b.

As we want judgmental equality to be decidable, it is clear that this is a very
strict notion of equality. Often, two mathematical objects are equal, but proving
so can be arbitrarily hard. The corresponding terms in type theory will generally
not be judgmentally equal, but only propositionally equal: for any two terms a

and b of the same type A, there is the type IdA(a, b) of proofs that a and b are
propositionally equal (as it is standard nowadays, we will later just write a =A b

or even a = b). Propositional equality is thus an internal concept, making the
formulation of mathematical theorems involving equality possible.

A caveat it required here. There is an extensional form of type theory with
the characteristic feature that it does not distinguish between judgmental and
propositional equality1 which makes type checking undecidable. Compared to
intensional type theory, the extensional variant has not received as much attention
in the literature due to its obvious weakness. In particular, it is of no interest for
us and when we talk about MLTT, we always implicitly mean intensional MLTT.

For some time, it was unknown whether uniqueness of identity proofs (UIP)
is derivable, i. e. whether, given p and q of type IdA(a, b), one can construct an
inhabitant of the type IdIdA(a,b)(p, q). This question was answered negatively by
Hofmann and Streicher, who observed that type theory can be interpreted in the
category of groupoids [HS96]. They also speculated that there might be models
using higher groupoids, and even ω-groupoids, but were lacking an appropriate
framework for the construction of such an interpretation.

UIP was often considered desirable: it was believed that a proof that a equals b
should be the mere information thereof, without containing additional data. The
homotopical view does not only show why UIP can not be derived nevertheless but
also helps to explain what its absence means. A type can be seen as a topological

1Altenkirch argues that the common name “extensional type theory” is a misnomer for type
theory with this so-called reflection rule, as “extensional” should better refer to equality that
identifies expressions that behave equally.

3

1. Introduction

space, and an equality proof can be understood as a path in this space; but paths
are, in general, not unique. However, there might be a path between paths,
traditionally called a homotopy, and higher homotopies between homotopies, and
so on, giving a space the structure of a weak ω-groupoid. As Lumsdaine [Lum09]
and, independently, van den Berg and Garner [BG11] explained, types do indeed
carry the structure of a weak ω-groupoid.

In his PhD thesis, Warren [War08] generalised the Hofmann-Streicher groupoid
model (see also his article [War11]). Instead of ordinary groupoids, he uses strict
ω-groupoids to model MLTT. He thereby proves that, for any n, the principle
UIPn can not be derived, where UIPn is (the judgmental version of) the statement
that, for any type A, iterating the process of taking two points and considering
their path space n − 1 times always leads to a type with unique identity proofs.
In particular, he shows that having UIPm for all types is strictly stronger than
UIPn if m < n. Voevodsky’s model in simplicial sets [Voe10a] can be understood
as a further improvement of Warren’s construction. Instead of strict ω-groupoids,
Voevodsky uses Kan simplicial sets, also known as weak ω-groupoids.

Let us discuss how a new variant of MLTT, because this is exactly what ho-
motopy type theory is, could have become so popular. While the mathematical
community seems to appreciate the existence of proof assistants in principle, their
practical usage is still mostly restricted to those subjects that are close to logic,
or, looking at the Four Colour Theorem, those cases that require a case analysis so
vast that it is unfeasible to do it by hand. Two reasons for that restriction are cer-
tainly the vast overhead that formalisations often require, and certain behaviours
of type theory that are not understood sufficiently.

However, some years ago, progress in the semantics of MLTT lead to a de-
velopment that has improved the situation with respect to both of these issues.
Traditionally, a number of different views on types existed, including types as sets
(Russel [Rus03]) or propositions (Curry and Howard [How80]); see [PW12] for a
discussion. In addition to these, Voevodsky [Voe06; Voe10a] and, independently,
Awodey and Warren [AW09] noticed that types may also be regarded as, roughly
speaking, topological spaces, with the space of paths between two points corres-
ponding to the identity type of two terms. This new interpretation, the details
of which needed some time to be worked out, has helped to explain a lot of the
behaviour of MLTT regarding equality.

As a side node, we want to remark that another connection between type
theory and topology was found much earlier. Very briefly, a set of elements of
a type (in whichever sense the notion might be appropriate in a specific setting)
can be seen as open if it is semi-decidable whether a given element is a member of
the set. In the same vein, if equality (again, in whichever sense it is appropriate)
is decidable, then every element forms an open (and closed) set, and the type
can be called discrete, see Proposition 3.1.1. A canonical reference is Vicker’s
textbook [Vic96] and various publications, e.g. [Vic99; Vic01; Vic05]. An early
and seminal contribution to the development was made by Scott (Continuous
Lattices, [Sco72]). Regarding more recent work which considers topology and type

4

1.1. Historical Outline

theory explicitly, there is various work by Escardó and Xu [XE13; Esc15a], Escardó
and Olivia, e.g. [EO10], and Escardó, e.g. [Esc15a; Esc15b].

The ingenious idea that equality proofs can be seen as paths, however, has
only come up around 2005 or 2006. In Voevodsky’s simplicial set model (present-
ation by Streicher [Str11], and Kapulkin, Lumsdaine and Voevodsky [KLV12a],
extending [KLV12b]) another interesting property is fulfilled: equivalences corres-
pond to equalities of types. Consequently, it is consistent to assume Voevodsky’s
univalence axiom, which implies that isomorphic structures are actually equal and
can directly be substituted for each other. Models that justify the univalence
axiom have been a topic of active research. The Hofmann-Streicher groupoid
model [HS96] can be seen as the first model of MLTT that had one univalent uni-
verse, although the terminology was not used at that time. Inspired by the ideas
of Awodey, Voevodsky, and Warren, several new models of MLTT with identity
types were discovered, and the construction of such models became a topic of very
active research. Apart from those already discussed, we want to mention Arndt
and Kapulkin’s work on Homotopy-theoretic models of type theory [AK11], Garner
and van den Berg’s Topological and simplicial models of identity types [BG12], and
Awodey’s Natural models of homotopy type theory [Awo14].

This seems to be a key concept if we want type theory to be usable by work-
ing mathematicians as a tool for formal verification, or even for actually finding
proofs, as mathematicians tend to identify isomorphic structures in informal proofs
all the time. Hoping that type theory would finally be more accessible for math-
ematicians outside of the logic spectrum as he used to be himself, Voevodsky
continued working on his univalent foundations program.

From the programmer’s point of view, univalence ensures a form of abstrac-
tion that has been absent so far. Consider a type, say, the natural number N,
is implemented in two different ways. One could be the standard way, using the
constructors zero and succ, while another implementation could use a dyadic (or
binary) representation of N. These definitions are equivalent (if performed prop-
erly) and every operation that works for one of them will also work for the other;
however, traditionally, it has been necessary to reimplement all required func-
tions. The univalence axiom makes the equality between those implementations
available internally and all algorithms for one representation can directly be used
for the other one as well. It probably should not go unmentioned that there are
still problems to be solved here, in particular Voevodsky’s canonicity conjecture,
see [Voe10a], but the recent development of a constructive model in cubical sets
by Bezem, Coquand, and Huber [BCH14] (see also the addition [Coq13] and vari-
ation [Coq14]) makes the community feel confident that this problem will be solved
soon.

Soon after Awodey, Warren and Voevodsky made their ideas public, many
researchers from fields that were considered very different from type theory, such
as higher dimensional category theory and abstract topology, became fascinated
by the surprising connection that allowed to transfer intuition, or even results,
from one field to another. Traditional type theorists got excited because of the

5

1. Introduction

striking consequences of the univalence axiom, some of which had been considered
feasible (but hard to realise) before. These direct consequences of univalence
include function extensionality (considered, e. g., in [Alt99]) and (as described
above) an extensional universe [HS96]. The homotopical view later induced the
idea of higher inductive types (HITs), yielding very well-behaved quotient types (as
previously considered in [Men90; Hof95; AAL11]) as a special case. In particular,
the wish for properties that previously led to the development of observational
type theory [AM06; AMS07] are naturally satisfied, or conjectured to be satisfied,
in type theory with the univalence axiom. Due to the homotopical nature of the
type theory of interest, the broader topic became known as homotopy type theory
(HoTT). The first public mentioning of this name was possibly Awodey’s talk title
at PSSL862 in 2007. The names homotopy type theory and univalent foundations
have often been used synonymously. However at present, it appears that univalent
foundations refers mainly to Voevodsky’s research program of developing a system
to formalise mathematics in.

During the following years, various meetings took place, including a workshop
in Oberwolfach [Awo+11]. The steady growth of interest culminated in the year-
long special program on univalent foundations at the Institute for Advanced Study
in Princeton 2012/13, co-organized by Awodey, Coquand and Voevodsky, with
around 60 participants, long- and short-term visitors, with myself being one of
them. This was also where Homotopy Type Theory: Univalent Foundations of
Mathematics [Uni13] was collaboratively written, in the community often referred
to as “the HoTT book” or even as “the book”, which will serve as our main reference
for the basic properties of HoTT that we present in Chapter 2.

Especially during the program in Princeton, but also before and after, a lot
of progress was made. In particular, the formalisation of classical homotopy-
theoretical theorems was pushed forward. The formalised part of homotopy theory
includes the calculation of some homotopy groups of spheres, the van Kampen
theorem, the Freudenthal suspension theorem, a restricted form of Whitehead’s
theorem, the Blakers-Massey theorem, and others, mostly reported in [Uni13].

1.2 A brief introduction to truncation levels and

operations

One important aspect that plays a role for nearly everything done in HoTT are
the truncation levels of types. These are, in effect, an internalised version of the
property UIPn that a single specific type can satisfy. We say that a type X is (−2)-
truncated, or contractible, if we know a point x0 ∶X, its centre, and we know that
every other point is equal to this point. Of course, we here refer to propositional
equality.

2The 86th edition of the Peripatetic Seminar on Sheaves and Logic, Institut Élie Cartan,
Nancy

6

1.2. A brief introduction to truncation levels and operations

A type is (−1)-truncated, or propositional, if for any two of its inhabitants the
path space is contractible. An equivalent way to express this is to say that any
two inhabitants are equal, which often is expressed by saying that it has at most
one inhabitant. In general, a type is (n + 1)-truncated if all its path spaces are
n-truncated, for n ≥ −2. It is easy to prove that a type satisfies UIP if and only if
it is 0-truncated, and such types are called sets. In general, an n-truncated type
is also called an n-type.

The notion of n-types, or n-truncatedness, comes from topology and related
areas. A primary example are topological spaces: a space is called a homotopy
n-type if all homotopy groups above degree n are trivial. Similarly, an ω-groupoid
can be called n-truncated if it is an n-groupoid. It was Voevodsky who realised that
this concept can be expressed in type theory [Voe10a]. Voevodsky’s terminology
differs slightly from ours, by speaking of h-levels (homotopy levels) and starting
to count at 0. In contrast, we use the terminology that is introduced in our main
reference [Uni13], that is, truncation levels which start at −2, which matches the
traditional numbering of topology. Thus, contractible types can be said to be
of truncation level −2 or of h-level 0, and in general, the statement that a type
is an n-type (or n-truncated) is identical to the statement that it is of (or has)
h-level (n + 2); the only difference is terminological. Several fundamental results
on h-levels are also due to Voevodsky [Voe10a; Voe10b; Voe13b]. These include
the fact that h-levels can be used to characterise functions, in particular (“weak”)
equivalences. In addition, he has proved that his univalence axiom implies weak
function extensionality (dependent function spaces preserve h-levels), and that
weak function extensionality implies “naive” function extensionality (which has
always been subject to discussions in intensional type theory). Voevodsky also
shows that “naive” function extensionality implies strong function extensionality,
stating that the canonical map (which, for any functions f and g, shows that f = g

implies f(x) = g(x) for all x) is an equivalence.
The truncation level of a type tells us something about its higher homotopical

structure. An n-type does not have any interesting structure above level n. It
turns out that, in HoTT, we can directly talk about the k-th loop space of a type,
and thereby indirectly about its k-th homotopy group. If k > n, the k-th loop space
and homotopy group of an n-type are trivial.

An interesting detail is hidden in the previous paragraph: we said that an
n-type does not have any interesting structure above level n. Indeed, the reason
is that for any number m > n, any n-type is also an m-type. From a topologist’s
point of view, this might be surprising at first sight. For example, let us pick m = 0

and n = −1. As we just said, a type is (−1)-connected if any two of its inhabitants
are equal. Topologically, this looks as if it was path-connected. However, a path-
connected space does not necessarily have the additional property of being simply
connected, which does not seem to match our claim that a (−1)-truncated type
is also 0-truncated. The solution to this lies in the observation that everything
we express type-theoretically is automatically stated in a continuous way. And
indeed, given a space, if we know that any two of its points are connected by a path,

7

1. Introduction

and this function which assigns a path to any two point is continuous in a way
that is straightforward to define, then that type is simply connected. Similarly,
one can convince oneself that all higher homotopy groups must be trivial as well.

Of particular interest is often the property of being propositional, i.e. (−1)-
truncated. As stated above, it means that a type has at most one element. Such a
type is often called proof irrelevant, although one has to be careful as this notion
is slightly ambiguous. In any case, propositional types (or simply propositions)
correspond to what is called a “proposition” in traditional mathematics, where one
does usually not distinguish between different proofs. For example, it is a very
subtle question to ask whether there “is an element” in some given type. From the
traditional propositions as types-point of view, the corresponding type-theoretic
statement would simply be the type itself. This means, for a positive answer, one
would have to provide an inhabitant of the type, which seems to be more than
one was asked for. Similarly, if one asks whether there exists an element of a type
fulfilling some given predicate, this would be translated as a a Σ-type. However,
one can argue that a Σ-type is more than a simple “exists”, as an element also
provides a concrete “choice”. As a consequence, the set-theoretic axiom of choice
becomes under this translation the so-called “type theoretic axiom of choice” which
is a tautology (Lemma 2.2.12). However, for propositional types, this mismatch
disappears. There is no non-trivial “choice” involved, as one cannot distinguish
between two different inhabitants, and giving an inhabitant is therefore appropri-
ate if one is asked to prove that there is an element in a type. Motivated by these
considerations, squash types (the NuPRL book [Con+86]), and similar, bracket
types (Awodey and Bauer [AB04]) were introduced in different versions of type
theory. These allow to “turn a type into a proposition”, namely the proposition
that the type is inhabited. Homotopy type theory calls this concept propositional
truncation or (−1)-truncation. More generally, given any number n ≥ −1, HoTT
offers an operation to trivialise (“cut off”) its higher structure. These operations
are useful when one is not interested in equalities on higher levels and wants
to keep them simple. For example, the homotopy groups are defined to be the
0-truncation of the corresponding loop spaces. This is not only a matter of con-
venience: it can happen that it is impossible to develop a certain theory about
some “raw” types while it is possible, and totally sufficient, to develop the same
theory for an appropriate truncation of those.

In this thesis, we will present several original results about the truncation
properties of types.

1.3 Overview over Our Results

Let us first describe the contents of this thesis in some detail.
The name of Chapter 2 (Overview over Homotopy Type Theory and Prelim-

inaries) is self-explanatory. We mostly work in the formal system (or a fragment
thereof) that is presented in our main reference, the textbook on homotopy type

8

1.3. Overview over Our Results

theory [Uni13]. We give a very brief introduction to the system, but our presenta-
tion is certainly non-exhaustive. We refer a beginner to [Uni13] for a much better
introduction. An experienced reader will surely want to skip most of the chapter,
possibly apart from our explanation of the proving strategy that we call Equival-
ence Reasoning (Section 2.2.5), and the short clarification regarding terminology
in Section 2.4.

In Chapter 3 (Truncation Level Criteria), we recall Hedberg’s Theorem which
says that any type with decidable equality is a set. We give several versions of
assumptions that are weaker than decidable equality and still sufficient, deriving
a variety of conditions which are equivalent to saying that a type is a set, or
locally a set (in the sense that all path spaces starting from a fixed base point are
propositional). In the second part of that chapter, we formulate the corresponding
principles in a way that allow us to use them together with higher truncation
levels, and we formulate our Generalised Local Hedberg Argument (GLHA). This
statement is straightforward to prove. We still consider it a nice result as it has
the potential to overcome technical difficulties when trying to prove that a type,
in particular a higher inductive type, is n-truncated. We will see a justification for
that claim much later in the (first) proof of Lemma 8.10.10, where this argument
plays a crucial role.

Chapter 4 (Anonymous Existence) deals with weakly constant endofunctions,
where we say that a function is weakly constant if it maps any two points to equal
points. We show that the type of fixed points of such a map, properly defined, is
propositional. We can conclude that a type has a weakly constant endofunction if
and only if it is stable with respect to the projection map of the truncation, i.e.
if and only if it has split support. This allows us to define a new propositional
notion of anonymous existence which we call populatedness. Four different forms of
expressing the inhabitance of a type, namely usual pure inhabitance, truncation,
populatedness, and double negation, are carefully defined and statements about
their relationships are proved.

We devote Chapter 5 (Weakly Constant Functions) to the question whether it is
possible to factor a weakly constant function f ∶X → Y through the propositional
truncation. In the previous chapter we had seen that this is always possible if X
and Y are the same type. We give some intuition why it should not be expected
to be possible in the general case. We then show why it can be done if Y is a set,
which also serves as an appetizer for Chapter 8. Finally, we show that a weakly
constant function f ∶ X → Y can be factored if X is the sum of two propositions,
implying that the truncation of the sum of two propositions has the universal
property of the join (which is usually defined as a higher inductive type) even in
a weaker theory without higher inductive types.

Chapter 6 (On the Computation Rule of the Propositional Truncation) shows a
couple of possibly surprising consequences of the judgmental β-rule of the propos-
itional truncation. Not only does it imply that ∥2∥ is the interval, which is known
to be enough to conclude function extensionality, it also allows us to factor a func-
tion judgmentally through its propositional truncation, assuming that we know

9

1. Introduction

how to factor it in any propositional way. The most counter-intuitive construction
is the term myst which, together with univalence, allows us to seemingly reverse
the projection map of the truncation for a non-trivial class of types, including the
natural numbers: we have (myst ○ ∣−∣) =N→N idN, something that is only possible
because ○ is here the dependent function composition operator.

In Chapter 7 (Higher Homotopies in a Hierarchy of Univalent Universes) we
prove that, in MLTT with a hierarchy U0 ∶ U1 ∶ U2 ∶ . . . of univalent universes, the
universe Un is not an n-type. At the same time, we construct (for any fixed n) a
type that is “strictly” an (n+1)-type, i.e. is (n+1)-truncated and not n-truncated,
without using higher inductive types. This had been an open problem of the
special year program at the Institute for Advanced Study in 2012/2013, where I
have originally presented the solution. Our construction shows that in particular
Un is such a strict (n + 1)-type if we restrict it to n-types. In the presentation
of the proof, we develop some fairly simple theory of pointed types. Important
ingredients are the observations that the loop space operator Ω commutes in some
sense with (pointed versions of) Π and Σ. This leads to (among others) our
local-global looping principle, which says that a loop in a universe with a type
X as basepoint corresponds to a family of loops with basepoints in X. These
lemmata also make it possible to complete an alternative approach (due to Finster,
Lumsdaine, and Voevodsky) that was discussed at the special year program and
which was (to the best of my knowledge) until now not known to work. However,
the results that are obtainable from this approach are necessarily weaker compared
to those of our own approach. We also show how we can control the connectedness
properties of a type with a rather straightforward and technical construction. In
total, this allows us to present a type of which only and exactly the n-th homotopy
group is non-trivial, constructed without using higher inductive types.

Chapter 8 (The General Universal Properties of Truncations) establishes a
strong connection between constancy and the propositional truncation, something
that is to some extend already foreseen in Chapter 5. The usual universal property
tells us that ∥A∥ → B is equivalent to A→ B, but with the condition that B needs
to be propositional. This can make it hard to define a map ∥A∥ → B if the latter
condition is not met. Weakening the assumption on B, we derive an equivalence of
∥A∥ → B and a type of coherently constant functions, depending on the truncation
level of B. For the general case in which we do not know anything about B, we need
the theory to support Reedy ωop-limits in the sense of Shulman [Shu15] (“infinite
Σ-types”) to formulate the type of constant functions with an infinite tower of
coherence conditions. Intuitively, this type corresponds to the type of natural
transformations between two presheaves over the index category ∆

op
+ , in other

words, two semi-simplicial types. We can then prove that this type is equivalent
to ∥A∥ → B. In fact, our construction can be seen as a “universal form” of the usual
approach of defining a function ∥A∥ → B by finding a propositional type Q “in the
middle”, i.e. such that A → Q and Q → B (see [Uni13, Chapter 3.9]). We do all
of this without making use of higher inductive types, even though we will explain
that these give an alternative way to derive the finite special cases, corresponding

10

1.3. Overview over Our Results

to the construction of the Rezk completion [AKS15]. However, we do not think
that the general result can be obtained with this alternative approach unless one
makes very strong assumptions on the theory (intuitively, higher inductive types
with an infinite number of constructors).

The last part of this thesis is Chapter 9 (Future Directions and Concluding
Remarks). It contains several results and discussions which are loosely related to
the problem of formalising structures such as weak ω-groupoids in HoTT, which
(in the theory we consider) is likely to be impossible. Most of the work in this
chapter gives rise to potential future research projects. We start by discussing
the challenge of defining semi-simplicial types. More generally, we describe the
“Reedy”-approach of defining a functor from an inverse category into a universe.
It then turns out that it is beneficial if associativity in the index category is strict,
and we show that this can be achieved in the case of ∆+, which is needed for semi-
simplicial types. Further, we think that it should be possible to derive elimination
principles for higher truncations, similar to those proved in Chapter 8. However,
in this thesis, we only derive a special case and show that functions from the n-
truncation of a type A into some (n + 1)-type B correspond to functions A → B

which are weakly constant on the (n + 1)-st path spaces. We give two different
proofs for this, one of which uses higher inductive types and is somewhat related to
the Rezk completion [AKS15]. The next topic is on what we call Yoneda groupoids,
an attempt to construct a class of weak ω-groupoids using that the universe already
has such a structure. While this works, it does not seem to be particularly helpful
as not many interesting ω-groupoids can actually be defined in that way. Further,
we analyse an idea by Altenkirch that we call set-based representation of groupoids.
The question is whether one can translate between 1-types and groupoids that are
represented by giving their set of points and a family of sets of morphisms. We
prove that it is not possible to do what Altenkirch had originally hoped for, but
we show how a slightly weaker construction can in some cases be achieved.

After outlining these potentially interesting projects of future research, we
make some additional notes on related work and summarise the contents of the
thesis.

I consider my two main contributions to the field of homotopy type theory to
be

• Theorems 7.4.7 and 7.4.8, our results that the univalent universe Un in MLTT
is not an n-type, and Un

n (which is Un restricted to n-types) is a strict n+ 1-
type.

• Theorem 8.8.5, the General universal property of the propositional trunca-
tion, which says that the type (∥A∥ → B) is equivalent to the type of coher-
ently constant functions from A to B, written (A ω

Ð→ B), in any type the-
oretic fibration category with Reedy ωop-limits. Related is Theorem 8.9.6
which shows the finite version of the statement in standard MLTT with
propositional truncations: if B is n-truncated, then the type (∥A∥ → B)

11

1. Introduction

is equivalent to the type of functions (A → B) which are constant with n

coherence conditions.

Apart from these, selected original results that I prove in this thesis are the fol-
lowing, in order of occurrence:

• Theorem 3.2.1, the Generalised Local Hedberg Argument : a very simple, but
powerful statements that helps to analyse the truncation property of a type,
in particular a higher inductive type.

• Main Lemma 4.1.1, the Fixed Point Lemma which says that the type of fixed
points of a weakly constant endofunction is propositional, and its immedi-
ate consequence Theorem 4.1.4, proving that a type has a weakly constant
endofunction if and only if it has split support.

• Theorem 5.2.6, which proves that the truncation of the sum of two proposi-
tions has the universal property of the join, even in a theory without higher
inductive types.

• Theorem 6.4.6, the Myst Puzzle which seems to yield an inverse that cannot
exist, using the computational properties of the truncation in a clever way.

• Main Lemma 7.4.2, our Local-Global Looping Principle, expressing that an
(n + 2)-loop in the universe with base point X is the same as a family of
(n + 1)-loops in X.

• Theorem 7.5.4, an alternative construction of a strict (n + 1)-type of which
we know the n-th loop space explicitly.

• Theorem 7.7.1, the construction of a type that has exactly one non-trivial
homotopy group on level n from univalence alone.

• Main Lemma 8.5.1, showing the (intuitive but technically tedious) fact that
the projection from the n-dimensional tetrahedron, built out of paths of level
0 to n, to any of its horns is an equivalence.

• Theorem 8.10.2, which shows that the function space (∥A∥n → B) for any
(n + 1)-type B is equivalent to the type of functions from A to B which are
weakly constant on the n-th loop space.

• Proposition 9.2.1, a short observation that the category of finite sets and
(strictly) increasing functions can be implemented such that the categorical
laws hold strictly, provided that we have η for Σ-types.

• Theorem 9.4.7, a simple but nice statement that types with braided loop
spaces are reduced set-based representable. This means such a type can be
“split” in a set of points and, for every point, a type representing its loop
space.

12

1.4. Computer-Verified Formalisations

1.4 Computer-Verified Formalisations

This thesis is supplemented by an electronic appendix containing formalisations
of all results that are marked with the symbol A in Agda [Nor07].3 We want to
use this section to give some details.

One important virtue of MLTT and HoTT are that they provide possible found-
ations of mathematics which can be implemented directly, allowing the computer-
supported and machine-checked development of proofs. Agda is the implement-
ation of an MLTT-style type theory that we use to approximate the theory that
we are working.

Not all of our results can be formalised in this way. We call a statement
internal if it can be expressed and proved in the formal system itself. Some of our
results are purely internal, especially those of Chapters 3 to 5. Similarly, all basic
lemmata listed in Chapter 2 are internal. Almost all of these internal results are
formalised in the electronic appendix.

In contrast, the results of Chapter 6 are of meta-theoretic nature, at least in
the form in which we have presented them. This means that they are statements
about the type theory “from the outside”. In the theory itself, we cannot talk
about these results, and consequently, we cannot formalise them in the style of
internal results. However, Agda can still help us to check whether some equality
holds judgmentally by testing whether refl makes it type-check. This allows us
to include these results in the electronic appendix as well; for details, see the
beginning of Chapter 6.

The main result of Chapter 8, and parts of the contents of Chapter 9, are meta-
theoretic as well. We would be very happy if we could express them completely
in the theory we work in; however, we strongly believe that this is impossible.
Sometimes, it is possible to construct a family of internal results; for example, for
every natural number n, we can construct the type of n-truncated semi-simplicial
types (see Chapter 9). These “families of internal constructions” are often uniform
enough to be generated mechanically, in the sense that it is possible to write
a program (in any language) that takes an element of the indexing type and
produces the Agda code of the corresponding internal statement. In the case
of semi-simplicial types, we have written and experimented with such a short
program in Haskell [Kra14a]; for some more details, see Proposition 9.2.1 and the
discussion proceeding it. What we can not do (or believe to be impossible) is
constructing a function in the theory which maps any natural number n to the
type of n-truncated semi-simplicial types.

Chapter 7 has a special status. Technically, it also contains a family of internal
results, indexed over N. However, Agda allows us to quantify over universe levels,
and even to eliminate into the type of universe levels. This is not possible in
homotopy type theory, but it allows us to formalise the results of Chapter 7 which

3 A stands for electronic Appendix, and can alternatively be read as Agda.

13

1. Introduction

would not be possible in this form otherwise. Details can be found in Remark 7.1.2.
We do not take advantage of this possibility in any other chapter.

A further potentially controversial feature which Agda formalisations typic-
ally use is the judgmental η-rule (or uniqueness principle) for Σ-types that Agda
implements; i.e. (fst(x), snd(x)) is for Agda judgmentally equal to x if x is an
inhabitant of Σ (a ∶ A) .B(a). This does not seem to be crucial in any way for our
formalisation, i.e. very minor modifications would be sufficient to make the form-
alisation type-check if we had a version of Agda without the judgmental η-rule
for Σ-types. The corresponding propositional equality can be proved easily, and it
seems to be a rather arbitrary choice of [Uni13] to not include the judgmental rule.
Indeed, in Appendix A.2.5, the authors state: “Notice that we don’t postulate a
judgmental uniqueness principle for Σ-types, even though we could have”. Unlike
Agda, Coq does not implement these judgmental rules.

One further difference between the theory we work in and the theory Agda
implements concerns the treatment of universes (see Section 2.1.4). While HoTT
universes are cumulative, i.e. A ∶ U and U ∶ U ′ imply A ∶ U ′, Agda requires explicit
lifting. A sour consequence of this is the following: the univalence axiom (see
Section 2.3.1) implies (A = B) =Uk+1 (A ≃ B) for types A,B ∶ Uk. Note however
that this cannot be stated in Agda, the reason being that A = B lives in Uk+1,
while A ≃ B lives in Uk. We can still make this statement by first lifting A ≃ B

to the universe Uk+1. Fortunately, this difference does not affect us, apart from
the formalisation of Chapter 7. In that part, we strive to represent (pointed) type
equality by (pointed) equivalence wherever possible in the formalisation so that
we can avoid manifold instances of lifting which would make the formalisation
unreadable.4 In a theory with proper cumulativity of universes, both versions
work equally well.

The formalisations in the electronic appendix type-check with Agda 2.4.2,
which in particular uses the implementation of without-K by Cockx, Devriese,
and Piessens [CDP14]. We make use of the community’s Agda library [Hagda];
however, for compatibility and convenience, we include all the relevant files in the
electronic appendix so that no further material is needed to check the results. We
also include a browser-viewable version, produced with Agda’s html feature. We
have given our best to produce a formalisation that is as readable as possible,
hopefully even for non-experts. The reader who is not familiar with Agda, or who
simply does not have an Agda installation at hand, is invited to look at the html

4Another possibility to resolve all issues related to non-matching universe levels would have
been Agda’s optional flag type-in-type, which, for example, Licata’s Agda library [Lic12] uses.
This flag allows the judgment Ui ∶ Ui, which enables the user to work completely in the lowest
universe U0. The price is, of course, that one works in an inconsistent theory. In many cases it
seems to be clear that the type-in-type flag is only used for convenience, and the proofs could
be translated into Agda without this option turned on. However, it seems questionable whether
a result that is formalised in such a setting can really be considered “formally verified”, and all
statements that involve any form of impredicativity become necessarily highly suspicious. We
therefore refrain from turning on type-in-type.

14

1.5. Declaration of Authorship and Previous Publications

version of the formalisation. It allows to read the completely hyperlinked code
without any specialised tools; all that is necessary is a web browser.

1.5 Declaration of Authorship and Previous

Publications

I want to stress that many of the results have been found in collaboration with
fellow researchers. I have published Section 3.1 and Chapter 4 together with
Martín Escardó, Thierry Coquand, and Thorsten Altenkirch as Generalizations

of Hedberg’s Theorem [KECA13] at Typed Lambda Calculi and Applications
(TLCA) 2013.

As a contribution to TLCA’s special issue, we have submitted the largely
extended article Notions of Anonymous Existence in Martin-Löf Type

Theory [KECA14] to Logical Methods in Computer Science (LMCS), which ad-
ditionally includes most of Chapters 5 and 6 (except some minor additions such
as Example 5.2.5).

The main contents of Chapter 7, authored together with Christian Sattler,
have been published as Higher Homotopies in a Hierarchy of Univalent

Universes [KS15] in Transactions on Computational Logic (TOCL).
Finally, the main results of Chapter 8 (the contents up to Section 8.8) are to

appear in the TYPES’14 post-proceedings as The General Universal Property

of the Propositional Truncation [Kra14b].
The remaining work in this thesis has not been published, but I want to say

that early attempts to define semi-simplicial types (described in Section 9.2) have
been done mostly together with Nuo Li. Further, several contents and discussion
especially in Sections 8.10 and 9.2 are joint work with (or come from discussions
with) Paolo Capriotti. This is in particular true for Theorem 8.10.2, for which we
give two proofs. The second one is based on an argument found by Andrea Vezzosi
(see Section 8.10.2). Of course, details and acknowledgements of contributions
from researchers different from myself will always be given in the relevant parts of
the thesis.

During my time as a PhD student, I have obviously benefited much from
countless discussions with numerous people, especially with my supervisor Thor-
sten Altenkirch, Paolo Capriotti, Martín Escardó, Ambrus Kaposi, Nuo Li, and
Christian Sattler, but also other current or former members of the functional pro-
gramming lab in Nottingham, participants of the univalent foundations special
year program of the Institute for Advanced Study in Princeton 2012/13, members
of the semantics of proofs and certified mathematics thematic trimester at the
Institut Henri Poincaré, and researchers at various other events. Many of these
discussions have certainly influenced various results in this thesis more than I am
aware of.

15

1. Introduction

Parts of the Agda formalisations in the electronic appendix are based on form-
alisations that originally served to supplement the publications described above,
and these parts are thus joint work as well.

16

Chapter 2

Overview over Homotopy Type

Theory and Preliminaries

The first part of this chapter serves as a rough overview over the formal system
that is often referred to by Martin-Löf type theory. We keep it very concise as an
excellent extensive introduction of exactly the material that we want to present
already exists in our standard reference [Uni13, Chapter 1]. We are aware that
our presentation can not serve as an introduction to type theory for a newcomer;
our main aim here is to clarify which theory we work in. Should there remain any
ambiguities, the appendix of the mentioned reference can be consulted as it con-
tains a formal presentation of the specific type theory we use. In particular, we do
not elaborate on contexts, substitutions, typing judgments, formation, introduction
and elimination rule of types, and similar notions. Instead, we refer to Hofmann’s
introduction [Hof97]. We also do not give details about the assumed computation
rules, but the ones we use are standard and can, again, be found in [Uni13] if
required. Following the terminology of that reference, we call the non-dependent
elimination principle of a type its recursion principle, and the dependent one its
induction principle.

Although shortly introduced as a concept of MLTT, we devote the second part
of this chapter to propositional equality. We explain the groupoidal structure that
the equality type carries, together with many related constructions. The crucial
notions of truncation levels and loop spaces are discussed in slightly higher detail.
We also explain what we call equivalence reasoning, a very simple (and obvious)
proving technique that is far more powerful that one might think. In this thesis,
this technique will be used numerous times.

In the third part of the current chapter, we introduce univalence, higher in-
ductive types, and in particular truncation operations.

Finally, in Section 2.4, we explain how we treat some notions that, in the
context of HoTT, could potentially be ambiguous.

17

2. Overview over Homotopy Type Theory and Preliminaries

2.1 Martin-Löf Type Theory

The most basic and most important statement in type theory is as simple as

a ∶ A, (2.1)

meaning that the term a is of type A. We give a brief introduction to the basic
types and type formers of MLTT.

Let us shortly repeat possible semantics that we mentioned in Section 1.1.
As [PW12] recalls, (2.1) was understood as “a is an element of the set A” by
Russel [Rus03], and as “a is a solution to the problem A” by Kolmogorov [Kol32],
later refined to “a is a proof of the proposition A”. The latter is known as the
famous Curry-Howard isomorphism [How80]. This interpretation allows us to say
that we have proved a statement if we actually have constructed an inhabitant of
a type. We will discuss below what the type formers that we introduce stand for
under this view.

2.1.1 The Unit Type

The unit type, written 1, could be viewed as the most basic type: it has exactly
one inhabitant ⋆ ∶ 1. If we have to find an inhabitant of a type and we can
show that this type is equivalent or isomorphic (the concrete meaning of which
will be introduced below) to 1, we are done, as we always have the inhabitant
⋆. On the other hand, having an element of 1 as an assumption is a particularly
useless information. The unit type is neutral (in some appropriate sense) in many
situations. As trivial as it may sound, showing that a type is equivalent (see
Section 2.2.2) to 1 is a very powerful proving technique, as we will see plenty of
times. Under the propositions-as-types view, the unit type corresponds to the
statement that is always true, independent of any other assumptions.

2.1.2 The Empty Type

Written 0, the empty type is from some point of view the opposite of the unit
type: under the propositions-as-types interpretation, 0 stands for the statement
that is always false. Having an inhabitant of the empty type can be understood
as having found a contradiction, from which we can construct an inhabitant of
any given type (including 0). This principle is known as ex falso quodlibet, “from
a falsehood, anything follows”, or as 0-elimination. Technically, this principle is
the empty type’s non-dependent elimination, i.e. its recursion principle, but the
dependent one hardly ever occurs naturally and can be derived (using that 0 is
propositional in the sense of the definition given in Section 2.3).

18

2.1. Martin-Löf Type Theory

2.1.3 Function Types

Given types A and B, there is the type of functions from A to B, written A→ B.
→ can, under the propositions-as-types view, be read as implies. Thus, if we have
to construct an element of A → B, we may say that we have to show that A

implies B. If we have a term t, depending on a variable a of type A, we get a term
λa.t ∶ A→ B (“introduction rule” for the function type). On the other hand, given
f ∶ A→ B and some a ∶ A, we get f(a) ∶ B (“elimination rule”).

Going back to our explanation of 0, we can now express what we meant in the
informal description above. For any type A, the recursion principle of 0 gives us
a term 0→ A.

If we want to apply the introduction rule, but do not want to give an explicit
name to the bound variable, we may write λ_.t instead of λa.t; this can sometimes
improve readability. Instead of A→ 0, we write ¬A, “not A”.

2.1.4 Universes

In (our version of) MLTT, types can be seen as terms, living in some universe. At
the same time, we want to view a universe as a type again, and it should therefore
live in a universe itself. However, if a universe lived in itself, we could derive a
contradiction (Russel’s Paradox). MLTT therefore uses a hierarchy of universes,

U0 ∶ U1 ∶ U2 ∶ . . . , (2.2)

where every universe Un lives in the next universe Un+1. We do not assume that
there is a universe U∞. Our universes are cumulative in the sense that if we have
A ∶ Uk and Uk ∶ Um, we also have A ∶ Um. Most of the time, we will write U for the
universe that we are talking about, symbolising that we use a generic universe,
or, for simplicity, just the lowest universe U0. In principle, U could stand for any
“type of types” which is closed under all type formers, not only for the primitives
of the type theory.

We can now introduce the notion of a dependent type, or type family, which
is just a term B ∶ A → U for some type A. Note that this notion can also be
considered in a theory without universes, but, having universes at hand, it becomes
considerably simpler.

2.1.5 Dependent Functions

The type former for dependent functions, written Π, is a generalisation of the
type former →. Given a type A ∶ U and a family B ∶ A → U , we have the type
Πa∶AB(a) ∶ U . An inhabitant is a function f such that f(a) ∶ B(a) for all a ∶ A.
The elimination and introduction rules correspond to those of →.

We sometimes write ΠAB instead of Πa∶AB(a), taking care that we only do so
if it does not cause confusion and improves readability. Under the propositions-as-
types view, Πa∶AB(a) may be understood as “for all a, the statement B(a) holds”,

19

2. Overview over Homotopy Type Theory and Preliminaries

and therefore, we also write ∀(a ∶ A).B(a) or even ∀a.B(a), depending on the
context, if we think that it improves the readability.1

2.1.6 Products or Pairs

Given types A and B, we write A × B for their (cartesian) product. This type
is also called the type of pairs arising from A and B. In order to construct an
element of that type, we can (using the product’s introduction rule) separately
find an inhabitant of A and an inhabitant of B. At the same time, the induction
principle of this type former tells us that, if we are given x ∶ A ×B, we can treat
x as if it was such a pair. In particular, we get fst(x) ∶ A and snd(x) ∶ B.

Under the propositions-as-types view, the product corresponds to a conjunc-
tion. We also observe that 1 can be understood as a product with zero components
(the nullary product type).

2.1.7 Dependent Pairs

Dependent pairs generalise pair types in a similar way as dependent functions
generalise function types. The difference is that the second component may depend
on the first. Let A be a type and B ∶ A → U be a type family. Then, we
write Σ (a ∶ A) .B(a) for the corresponding dependent pair type. Concerning the
introduction rule, we can construct an element of Σ (a ∶ A) .B(a) by giving a ∶ A
together with b ∶ B(a). Turning this around, the induction principle tells us that,
given x ∶ Σ (a ∶ A) .B(a), we may assume that x is a pair of an a ∶ A and a b ∶ B(a).

Note that we do not call these types “dependent products”. This would be
highly ambiguous as that name is also used for what we call “dependent function
types”. We also abstain from using the description “dependent sums”. While the
latter would not be problematic, we think that “dependent pairs” is the most
accurate naming. A potential explanation for the name clashes follows from the
discussion in Section 2.1.12.

The symbol Σ can be understood as a strong existential quantifier. We can
read Σ (a ∶ A) .B(a) as “there is an a ∶ A such that B(a)”.

Note that, notationally, we treat Π and Σ very differently. While we follow the
notation of [Uni13] for Π and write Πa∶AB(a), we do not follow [Uni13] with respect
to the notation of Σ, as we do not want to write Σa∶AB(a). This is because we
view Σ as the dependent version of × (again, see Section 2.1.12 for an alternative
view), with two parts of the same value. In particular, we will often consider
nested Σ-types with more than two components, which we want to write in the
form

Σ (a ∶ A) .Σ (b ∶ B(a)) .Σ (c ∶ C(a, b)) .D(a, b, c), (2.3)

and it would be very bad with respect to the intuition if we wrote all apart from
the very last component as subscripts. In some cases, it will be helpful to have a

1Caveat: ∀ does not indicate propositional truncation!

20

2.1. Martin-Löf Type Theory

name for the last component of a Σ-type, in which case we may write

Σ (a ∶ A) .Σ (b ∶ B(a)) .Σ (c ∶ C(a, b)) . (d ∶D(a, b, c)) (2.4)

2.1.8 Coproducts

For types A and B, their coproduct A+B (sometimes called their disjoint union or
sum) is the type of elements which either come from A or from B. More precisely,
we have two functions

inl ∶A→ A +B (2.5)
inr ∶B → A +B, (2.6)

where we keep the type information, that inl and inr should technically be annot-
ated with, implicit. On the other hand, if we are given an element of a coproduct,
we may always do the two cases separately. We may regard 0 as the coproduct with
zero components, which both explains its elimination principle and the absence of
its introduction rules.

Under the propositions-as-types view, the coproduct can be understood as a
disjunction.

2.1.9 Booleans

2, the type of booleans, has exactly two inhabitants, written 02 and 12. It could
be defined as 1+1 but we choose to give it a separate name because of its frequent
usage. If we are given x ∶ 2, we may always assume the two cases that x is 02 or
x is 12 separately.

2.1.10 Natural Numbers

The natural numbers type N ∶ U is probably the simplest type with an infin-
ite number of pairwise distinguishable inhabitants. As usual, we present it as
the inductive type that is generated by 0 ∶ N and succ ∶ N → N. Its recursion
principle is powerful enough to define all the standard function such as addition
(which we write as + if there is no risk of confusing it with the coproduct of
types), and its induction principle is probably the most famous version of induc-
tion: for a given family P ∶ N → U , it is enough to construct p0 ∶ P (0) and a term
ps ∶ Πn∶NP (n)→ P (succ(n)) in order to construct an inhabitant of ΠNP .

In standard implementations of MLTT, exactly one of the two expressions
n + 1 and 1 + n is judgmentally equal to succ(n), depending on whether addition
is defined by recursion on the first or the second argument. We prefer to use the
latter version as it allows us to replace the somewhat clumsy expression succ(n)
by n + 1, and the latter looks slightly more natural than 1 + n from the point of
view of traditional mathematical style.

21

2. Overview over Homotopy Type Theory and Preliminaries

2.1.11 Identity Types

In MLTT, we can express that two inhabitants of the same type are propositionally
equal, a concept that is not to be confused with judgmental equality. For any given
type A ∶ U , we have a type family

IdA ∶ A ×A→ U , (2.7)

and we call an inhabitant of IdA(a1, a2) a proof of equality (or a path, as explained in
the section about HoTT below) between a1 and a2. Instead of IdA(a1, a2), we write
a1 =A a2 and, if the type A can be inferred or plays no role, often just a1 = a2, which
corresponds to the terminology of many authors in the area of HoTT. Instead of
¬(a1 = a2) (which is already a short-hand notation for a1 = a2 → 0), we may write
a1 /= a2.

The equality or identity type in MLTT is an inductive type which has only one
constructor (for every type). Given A ∶ U and a point a ∶ A, we get refla ∶ a = a.
If a can be inferred, we allow ourselves to write refl ∶ a = a. Its dependent elimin-
ation (or induction) principle reflects the fact that there is only one constructor.
However, as the equality type IdA is parametrised twice over the type A, while
the constructor refl takes only one argument, the situation is very different from
the situation of other inductive types such as N. In fact, the equality type is the
simplest (and certainly by far the most interesting) case in which this situation
occurs.

The dependent elimination principle for equality, traditionally called J (al-
though we will follow [Uni13] and call it path induction which matches the rest
of our terminology better and, we hope, is intuitively clearer), says that whenever
we have a type A and a predicate

P ∶ (Σ (a1, a2 ∶ A) . a1 = a2)→ U , (2.8)

it is enough to construct
Πa∶AP (a, a, refla) (2.9)

in order to get an inhabitant of

Πa1,a2∶AΠp∶a1=a2P (a1, a2, p). (2.10)

We will elaborate more extensively on some basic constructions of the identity
type Section 2.2 below.

2.1.12 Generalisations Graph

As we have mentioned above, the type 2 can be constructed as 1 + 1. What is
potentially more interesting is that some type formers can be expressed in terms
of others. Assuming that 2 is given, the complete graph for the type formers
discussed above looks as follows, where † ⇢ ‡ means that † can be defined using

22

2.2. Constructions with Propositional Equality

‡. However, note that the judgmental properties of the derived type former can,
depending on the precise formulation of the theory, be weaker than those that we
expect:

→ × +

Π Σ

It is clear that “→” is a special case of Π. To see that “×” is also a special case,
assume types A and B are given. Define C ∶ 2→ U by C(02) ∶≡ A and C(12) ∶≡ B

and note that A ×B is equivalent to Π2C.
Then again, it is immediate that “×” is a special case “of Σ”, where we only

need to take the second component to be the constant type family. Regarding
“+”, given A and B, define C as above and observe that A + B is equivalent to
Σ (x ∶ 2) . C(x).

2.2 Constructions with Propositional Equality

In addition to the possible semantics of type theory that we repeated at the be-
ginning of the above Section 2.1, we can interpret the statement

a ∶ A (2.11)

as “A is (some kind of) a topological space, and a is a point in this space”. As said
in Section 1.1, this possibility was described first by Awodey and Warren [AW09]
as well as Voevodsky [Voe10a]. An inhabitant of a1 = a2 can then be seen as a
path from the point a1 to the point a2, and for “paths on higher levels”, it makes
sense to speak of homotopies.2

2.2.1 Basic Functions

If B ∶ A → U is a type family, we interpret it as a fibration. That is, we think of
B being a bigger space “over” the smaller space A, with a map from the bigger
to the smaller space that has the topological property of a fibration (see [Hat01]).
If a is a point in A then B(a) ∶ U corresponds exactly to the inverse image of a
under this fibration.

Having this interpretation in mind, it is easy to understand what path in-
duction really does. Suppose we have a type family that depends on a triple

2Of course, a path in topology is nothing else than a homotopy between two functions which
have the one-point space as their domain, and a homotopy in general may be called a path in
some appropriate function space.

23

2. Overview over Homotopy Type Theory and Preliminaries

(a1, a2, p) ∶ Σ (a1, a2 ∶ A) . a1 = a2, and assume we are given such a triple. In the
semantics we sketched, this triple is a pair of points and a path in between. Just
by “shrinking” the path and “pulling” the second endpoint a2, we can continuously
transform it to the triple corresponding to (a1, a1, refla1).

What we have just described, namely that we can leave one endpoint fix and
move only the second point, motivates a very useful alternative formulation of
path induction. It was originally given by Paulin-Mohring [PM93], who observed
that an eliminator for equality can be stated locally at a fixed point a0 ∶ A. We
call the corresponding principle based path induction: given a0 ∶ A and a predicate

Q ∶ (Σ (a ∶ A) . a0 = a)→ U , (2.12)

it is enough to construct an inhabitant of Q(a0, refla0) in order to get an inhabitant
of

Πa∶AΠp∶a0=aQ(a, p). (2.13)

Path induction and based path induction can be derived from each other, as shown
by Altenkirch and Goguen (see [Uni13, Chapter 1.12.2]). More often than not,
the latter is slightly easier to apply.

There is a very useful special case of path induction. Assume again that
B ∶ A→ U is a family indexed over A. We then claim

Πa1,a2∶A(a1 = a2)→ B(a1)→ B(a2), (2.14)

and the proof of this substitution property is immediate by path induction: the
type family we use is P (a1, a2, p) ∶≡ B(a1) → B(a2) which is independent of the
actual path. Following the notation of [Uni13], we write transportB for the derived
term, and we usually omit the two points a1 and a2. Thus, for p ∶ a1 = a2 and
b1 ∶ B(a1), we would write transportB(p, b1) ∶ B(a2). If B is clear from the context,
we also write p∗ ∶ B(a1)→ B(a2) and p∗(b1) ∶ B(a2), respectively. Homotopically,
transportB does not more than using the property that we regard the type family
B as a fibration. b1 ∶ B(a1) lies “over” a1 and we have a path p in the base space,
so we can construct transportB(p, b1) ∶ B(a2).

As Hofmann and Streicher have described [HS96], the identity type carries the
structure of a groupoid, i.e. a category in which every morphism is an isomorphism.
For p ∶ a1 = a2, we have an inverse p−1 ∶ a2 = a1, and, if we additionally have
q ∶ a2 = a3, we can compose p and q to get p q ∶ a1 = a3, with refl acting as
the neutral element. The corresponding groupoid laws between them, such as
associativity, hold again up to propositional equality.3 For any two paths we have
again a path space, giving types the structure of weak ω-groupoids [Lum10; BG11].

As [Uni13, Chapter 2.2] emphasises, functions play the role of functors under
this view. If we have a function f ∶ A → B and points a1, a2 ∶ A, we can define a
function

apf ∶ (a1 =A a2)→ (f(a1) =B f(a2)) (2.15)
3Depending on the exact definitions, some laws will typically hold judgmentally.

24

2.2. Constructions with Propositional Equality

by path induction. This also exists if B ∶ A → U is a type family and f ∶ ΠAB a
dependent function. We then get

apdf ∶ Πp∶a1=a2p∗(f(a1)) =B(a2) f(a2). (2.16)

Note that the codomain of apdf involves transporting along p. The reason is that it
has to be the type of paths “lying over” p. In [Uni13, Chapter 6.2], the terminology
of a type of paths lying over a given path is introduced, and for a1, a2 ∶ A, p ∶ a1 = a2
and b1 ∶ B(a1), b2 ∶ B(a2), they write

(b1 =Bp b2) ∶≡ (p∗(b1) =B(a2) b2) , (2.17)

which we will adopt in some situations when it increases the readability. Note
that the type B gets moved to the upper right corner of the equality sign to make
space for the path p. Using this terminology, (2.16) becomes

apdf ∶ Πp∶a1=a2f(a1) =Bp f(a2). (2.18)

The functions apf , apdf and transportR behave functorial in the appropriate
sense. For details, we refer to [Uni13, Lemma 2.2.2 and all Lemmata in Chapter
2.3]. The following result is also very useful. It tells us how transportation of a
path along another path works:

A Lemma 2.2.1 ([Uni13, Theorem 2.11.3], [KECA13]). Let A,B ∶ U be two
types. Assume h, k ∶ A → B are two functions, a1, a2 ∶ A points and t ∶ a1 =A a2 as
well as p ∶ h(a1) =B k(a1) paths. Then, transporting p along t can be expressed as
a composition of paths:

t∗(p) = (apht)−1 p apkt. (2.19)

Proof. This is immediate by path induction on t, using the functoriality of all
involved functions.

Even if the latter proof is trivial, the statement is essential. For example, in
the proof of Main Lemma 4.1.1, we need a special case in which a1 and a2 are
(judgmentally) the same. However, this special version cannot be proved directly.

2.2.2 Type Equivalences

Given types A and B, let us mimic the traditional mathematical definition of what
it means if two spaces are homotopy equivalent. It turns out that it corresponds
exactly to the definition of an isomorphism between A and B in MLTT, that is a
4-tuple with four components

f ∶ A→ B (2.20)
g ∶ B → A (2.21)
η ∶ Πa∶Ag(f(a)) = a (2.22)
ε ∶ Πb∶Bf(g(b)) = b. (2.23)

25

2. Overview over Homotopy Type Theory and Preliminaries

In particular, we could say that f is an isomorphism if we are able to “fill in”
the other three components. However, this type is not very well-behaved in the
sense that it is generally not propositional. We therefore add a fifth component
which makes sure that the components η and ε “fit together”.

Given a function f (as in (2.20)), we define the type stating that f is an
equivalence, written isequiv(f), to be the (nested) dependent pair type with four
components. The first three of those components are (2.21 - 2.23), and the last is

τ ∶ Πa∶Aapf(ηa) = ǫ(f(a)). (2.24)

In particular, we say that A and B are equivalent, written A ≃ B, if there is some
f that is an equivalence:

(A ≃ B) ∶≡ (Σ (f ∶ A→ B) . isequiv(f)). (2.25)

The crucial property of this definition is that for any f between any two types, the
type isequiv(f) is propositional. An important result is that f is an equivalence
if and only if it is an isomorphism in the weaker sense above, that is, if and only
if we can find the first three components: an “inverse” g and two proofs that they
are really mutually inverse [Uni13, Theorem 4.2.3].

We give two examples for equivalences: first, for any type A, we have

id-equiv ∶≡ (idA, eid) ∶ A ≃ A, (2.26)

where eid is the canonical (and, up to propositional equality, unique) proof that the
identity function is an equivalence. Second, we have a function swap ∶ 2→ 2 defined
by swap(02) ∶≡ 12 and swap(12) ∶≡ 02. It is easy to see that swap is self-inverse
and to construct eswap ∶ isequiv(swap), yielding one of the simples non-identity
equivalences:

swap-equiv ∶≡ (swap, eswap) ∶ 2 ≃ 2. (2.27)

Similar to how equality induces a (higher) groupoid structure on any type,
equivalence induces a groupoid structure on the universe.

A thorough analysis of the different ways that equivalences can be defined is
given in [Uni13, Chapter 4]. They call the above definition half-adjoint equival-
ence [Uni13, Chapter 4.2]. There are other possible definitions of equivalences
that are well-behaved as well (in the sense that those definitions lead to proposi-
tional types). Having multiple such notions between which we can switch provides
technical advantages, but we refer to the mentioned reference for a deeper going
introduction.

2.2.3 Truncation Levels

If a type A has a certain truncation level n, or is an n-type, or is n-truncated (all
notions used synonymously), that means its higher homotopical structure (above
the given level n) is trivial. We start with the lowest case: A is contractible if

26

2.2. Constructions with Propositional Equality

there is a point a0 ∶ A (sometimes called the centre) such that all points are equal
to a,

isContr(A) ∶≡ Σ (a ∶ A) .Πb∶Aa = b. (2.28)

For n ≥ −2, the statement that A is an n-type is defined as follows. For n ≡ −2, we
take isContr(A) as the definition. Otherwise, the meaning is that all path spaces
over elements of A are of truncation level one lower,

is-(−2)-type(A) ∶≡ isContr(A) (2.29)
is-(n + 1)-type(A) ∶≡ Πx,y∶A is-n-type(x =A y). (2.30)

For n ≡ −1 and n ≡ 0, there are very common synonyms to “n-type” and “n-
truncated”. By a standard lemma, A is a (−1)-type if and only if all its inhabitants
are equal, i.e. if Πa,b∶Aa = b is inhabited. Such a type is called a proposition and
has the property of being propositional. This implies that a type is contractible if
and only if it is both propositional and inhabited. Further, a 0-type is a type with
unique identity proofs; those types are called sets. For n ≡ −2,−1,0, instead of
is-n-type(A), we will therefore write isContr(A), isProp(A), isSet(A), respectively.
As the hierarchy of truncation levels starts by convention with −2 (in order to
match the notion in homotopy theory), it is convenient to introduce a type N−2 of
numbers starting with −2.

There are some very basic standard lemmata that we want to list here. The
proofs can be found in the referenced literature. The second was already mentioned
in Section 1.1.

A Lemma 2.2.2 (Truncation levels are upwards closed [Uni13, Theorem 7.1.7]).
For any type A and numbers n ≥m ≥ −2, we have

is-m-type(A)→ is-n-type(A). (2.31)

Further, Σ preserves truncation level. A similar statement about Π does how-
ever require function extensionality (Lemma 2.2.6).

A Lemma 2.2.3 (Σ preserves truncation level [Uni13, Theorem 7.1.8]). For a
type B that may depend on some type A, if A and all B(a) with a ∶ A are n-
types, then so is Σ (a ∶ A) .B(a). In particular, the product of two n-types is an
n-type.

If we have some n ≥ −2 and a universe U , we can consider its “subuniverse” of
n-types:

A Definition 2.2.4 (Un). For n ≥ −2 and a universe U , we write

Un ∶≡ Σ (X ∶ U) . is-n-type(X) (2.32)

for the type of n-types in U .

27

2. Overview over Homotopy Type Theory and Preliminaries

Note that Un is not a universe in the sense that it is a basic component of the
theory, it is simply a defined type (living in any universe that U lives in). However,
it is in an appropriate sense closed under Σ (Lemma 2.2.3) and Π (Lemma 2.2.6).
In [Uni13, Chapter 7.1], Un is written n−Type. We do not use this notation as it
fails to refer to the universe U , which especially in Chapter 7 will be important
for us.

If we are given K ∶ Un, we keep application of the first projection implicit
whenever we want to refer to the underlying type. That is, we talk of the type K,
ignoring the second component (the proof that the first component is n-truncated).
Therefore, we write Σ (x ∶K) .M(x) instead of Σ (x ∶ fst(K)) .M(x).

Definition 2.2.4, combined with the hierarchy of universes as introduced in Sec-
tion 2.1.4, allows us to consider a two-dimensional hierarchy. For any m,n ≥ 0, we
have a universe Um

n : the index n refers to the size, while m refers to the truncation
level. Lemma 2.2.2 tells us that the collection of universes Um

n is cumulative with
respect to m, and therefore cumulative with respect to both indices.

2.2.4 Function Extensionality

Given A ∶ U ,B ∶ A → U and two dependent functions f, g ∶ Πa∶AB(a), it is reason-
able to think of them as being equal if they take equal values everywhere. However,
in plain MLTT, the implication

(Πa∶Af(a) =B(a) g(a))→ f =ΠAB g (2.33)

is not derivable. As is was considered feasible, it was often added as an axiom,
which we call Naive Function Extensionality. The resulting loss of canonicity
(see Section 2.3) was discussed and solved by Altenkirch using a setoid model of
MLTT [Alt99], requiring a setting that guarantees uniqueness of identity proofs.

In this thesis, we generally do assume naive function extensionality:

Axiom 2.2.5. Given dependent functions f, g ∶ Πa∶AB(a) as before, if f and g

are pointwise equal, then f and g are equal; that is, we postulate an inhabitant
(typically called funext) of (2.33).

Sometimes we may consider MLTT without function extensionality and note
that it is not required for some statement, in particular if we want to prove that
another assumption implies function extensionality.

As we are not only interested in whether a path space is inhabited or not, but
in the structure of the path space, we could require that all equalities f = g “come
from” a pointwise equality. More precisely, we could ask for the function

happly ∶ (f =ΠAB g)→ Πa∶Af(a) =B(a) g(a), (2.34)

defined using apd (or directly by path induction), to be an equivalence, resulting
in

(f =ΠAB g) ≃ (Πa∶Af(a) =B(a) g(a)). (2.35)

28

2.2. Constructions with Propositional Equality

We call this principle Strong Function Extensionality (see [Uni13, Chapter 2.9]).
Yet another very related principle is that “a family of contractible types is

contractible”. The statement

(Πa∶A isContr(B(a)))→ isContr(ΠAB) (2.36)

is called Weak Function Extensionality [Uni13, Definition 4.9.1].
It turns out that these three versions of function extensionality are pairwise

logically equivalent, i.e. imply each other. The proof that weak implies strong
function extensionality is given in [Uni13, Theorem 4.9.5], the other parts are
simple. In HoTT, these principles are a consequence of the univalence axiom (see
Section 2.3.1 below), as proved in [Uni13, Chapter 4.9], and thus in many cases
do not need to be treated as axioms themselves.

An easy consequence of the formulation (2.36) is the following:

A Lemma 2.2.6 (Π preserves truncation level [Uni13, Theorem 7.1.9]). For any
types A and B (where B depends on A), if B(a) is an n-type for every a ∶ A, then
ΠAB is also an n-type.

We also have the following very useful property (relying on function extension-
ality):

A Lemma 2.2.7 (Level properties are propositional [Uni13, Theorem 7.1.10]).
For any type A and any n ≥ −2, the type is-n-type(A) is propositional.

2.2.5 Equivalence Reasoning

What we call equivalence reasoning is a trivial but powerful proving technique.
The name is inspired by equational reasoning which describes an analogously work-
ing well-known principle, and which is a term that is often used in the Haskell
community (I do not know where it has its origins). We will see later that, with the
univalence axiom (Section 2.3.1), equivalence reasoning is essentially equational
reasoning for types.

Assume we want to prove that two types A and B are equivalent. The most
straightforward way is certainly to give functions f ∶ A → B and g ∶ B → A and
prove that they are inverses of each other, and this also seems to be the strategy
that is used most often by far. However, I believe that a (conceptually and in
terms of readability) better style is to split the equivalence into small steps. In
the same way as one proves an equality by “transforming” an expression step by
step, we can prove A ≃ B by finding a chain

A ≃ C1 ≃ C2 ≃ . . . ≃ Ck ≃ B (2.37)

in such a way that every step is easily seen to be a type equivalence, for example
because it is an instance of a more general well-known equivalence.

29

2. Overview over Homotopy Type Theory and Preliminaries

I want to emphasise that this principle is completely trivial but it is surprising
how far one gets with only a couple of “building blocks”. It seems that most (or all?)
equivalences that one would want to prove (or that have already been proved before
in the “two functions”-style) can be derived like this in a natural way, and most of
the time it leads to very clean, understandable proofs. In particular, it makes it
unnecessary to rely on judgmental computation rules to simplify expressions. For
example, it will be unnecessary to assume the judgmental computation rule of the
propositional truncation. Equivalence reasoning is thus as simple as powerful and
we will see it frequently in this thesis. Explicit examples of equivalence reasoning
can be found in particular in Chapter 8: see Propositions 8.1.2 and 8.1.3, but also
Theorem 8.8.5. However, it is only a byproduct that I demonstrate how powerful
equivalence reasoning is, and I will (usually) not mention explicitly that I am using
it. More theoretical considerations and a streamlined presentation of the strategy
are potential future work. I have first learned from Paolo Capriotti and Christian
Sattler how useful this proving principle is. Only then, I have recognised it as a
principle that is worth paying attention to, and reformulated some of my earlier
proofs. Formalised proofs in Agda benefit a lot from equivalence reasoning when
it comes to readability, which we exploit heavily in the electronic appendix of this
thesis.

Important “building blocks” (i.e. basic equivalences) are given in the lemmata
below. Let us begin with the fact that constructions which include families of
contractible types can often be simplified:

A Lemma 2.2.8 (Neutral contractible families). If B is a type depending on A

and B(a) is contractible for all a, then the equivalences

(i) Σ (a ∶ A) .B(a) ≃ A [Uni13, Lemma 3.11.9 (i)]

(ii) Πa∶AB(a) ≃ 1

hold.

An analogous statement holds if the base type (resp. the “exponent”) is equi-
valent to 1:

A Lemma 2.2.9 (Neutral contractible base/exponent). Let A be a contractible
type with center a0, and let B be a family indexed over A. We then have the
equivalences

(i) Σ (a ∶ A) .B(a) ≃ B(a0) [Uni13, Lemma 3.11.9 (ii), Exercise 3.20]

(ii) Πa∶AB(a) ≃ B(a0).

A further standard lemma tells us that an equality between pairs corresponds
to a pair of equalities. We record it here for later reference:

30

2.2. Constructions with Propositional Equality

A Lemma 2.2.10 (Equality of pairs is pair of equalities [Uni13, Theorem 2.7.2]).
If (x1, y1) and (x2, y2) are both of type Σ (x ∶X) . Y (x), then

(x1, y1) = (x2, y2) ≃ Σ (u ∶ x1 = x2) . u∗(y1) = y2. (2.38)

In the case of a non-dependent product X × Y , this equivalence simplifies to

(x1, y1) = (x2, y2) ≃ (x1 = x2) × (y1 = y2). (2.39)

Moreover, we have the following basic property:

A Lemma 2.2.11 (Equivalences preserve path spaces [Uni13, Theorem 2.11.1]).
If f ∶ A→ B is an equivalence and a1, a2 ∶ A are two points, then

(a1 =A a2) ≃ (f(a1) =B f(a2)). (2.40)

The following statement is often called the [type theoretic] axiom of choice, as
it corresponds to the axiom of choice from set theory under the “propositions as
types” view. However, it is by no means an axiom but a simple tautology in type
theory. Moreover, it is not the correct formulation of choice when one has the
homotopical interpretation in mind.

A Lemma 2.2.12 (Distributivity law for Σ and Π / type theoretic axiom of
choice). If A is a type and B ∶ A → U as well as C ∶ (Σ (a ∶ A) .B(a)) → U type
families, then the equivalence

(Πa∶AΣ (b ∶ B(a)) . C(a, b)) ≃ (Σ (g ∶ ΠAB) .Πa∶AC(a, g(a))) (2.41)

holds. More precisely, the canonical functions in both directions are equivalences:
from left to right f ↦ (fst○f, snd○f); and from right to left (f, g)↦ λa.(f(a), g(a)).

A Remark 2.2.13. As a side note, the two different compositions of the canon-
ical functions in Lemma 2.2.12 are even judgmentally equal to the two identity
functions, if the theory supports the judgmental η-law for dependent pair types
(in addition to the judgmental η-law for dependent function types). We do not
assume this η-law, but Agda does, which allows us to check the claim explicitly in
the electronic appendix.

One very important concept which needs to be recorded are singletons. If A is
a type with a point a0 ∶ A, we say singleton for a type of the form

Σ (a ∶ A) . a = a0 (2.42)

or
Σ (a ∶ A) . a0 = a. (2.43)

The following lemma is a statement that we will make use of numerous times,
usually in combination with one of the other lemmata above:

31

2. Overview over Homotopy Type Theory and Preliminaries

A Lemma 2.2.14 (contractible singletons [Uni13, Lemma 3.11.8]). All types of
the form (2.42) or (2.43) are contractible.

A caveat is required here. Our main reference uses the term singleton for
any type that is contractible [Uni13, Definition 3.11.1], which differs slightly from
our usage. When we talk of singletons, we explicitly mean types that are given
by expressions of the form (2.42) or (2.43). As these type expressions turn up
frequently, it is helpful to be able to refer to them directly. Lemma 2.2.14 shows
that our terminology is not in direct conflict with the terminology of [Uni13], we
simply use the term more sparely.

Another “basic equivalence” is the correspondence between type families and
“fibrations”. This however requires the univalence axiom, so we state it below as
Lemma 2.3.1.

2.2.6 Pointed Types

If A is a type and a ∶ A one of its elements, then (A,a) is called a pointed type
with underlying type A and basepoint a. Let us write U● for the type of pointed
types with underlying type living in U [Uni13, Definition 2.1.7], that is,

U● ∶≡ Σ (A ∶ U) .A. (2.44)

We call U● the universe of pointed types as this matches the intuition. Note,
however, that it is really just a defined type, rather than a primitive of the theory
as the universes Uk are. If (A,a) and (B, b) are pointed types, a pointed function
consists of a map f ∶ A→ B and a proof of f(a) = b, showing that the basepoint is
preserved. If additionally f is an equivalence, we speak of a pointed equivalence.
Further, we call a pointed type n-truncated (or an n-type, or say that it has
truncation level n) if its underlying type has that property.

The following simple definition will be fairly useful later:

A Definition 2.2.15 (Pointed family, see [Uni13, Definition 5.8.1]). For a poin-
ted type A ≡ (A,a), a pointed family is a type family P ∶ A → U where the type
over the basepoint is again pointed:

Fam●A ∶≡ Σ (P ∶ A→ U) . P (a). (2.45)

Extending the notion of truncatedness from types to families, we say that the
pointed family (P, p) is n-truncated if P is a family of n-types.

Remark 2.2.16. The definition of a pointed family is identical to that of a poin-
ted predicate [Uni13, Definition 5.8.1]. However, we want the reader to think of
actual families, and predicates are usually understood as “logical” (propositional)
properties. Note that a pointed type can always be seen as a pointed family over
the trivial pointed type (1,⋆).

32

2.2. Constructions with Propositional Equality

2.2.7 Loop Spaces

Let (A,a) ∶ U● be a pointed type. Its loop space [Uni13, Chapter 2.1] the pointed
type

Ω(A,a) ∶≡ ((a =A a), refla) ∶ U●, (2.46)

the elements of which are called loops. As Ω is thus an endomorphism on U●, it
can be composed with itself. This gives us the n-fold iterated loop space

Ω0(A,a) ≡ (A,a) (2.47)
Ωn+1(A,a) ≡ Ωn(Ω(A,a)). (2.48)

To gain intuition for Ωn+1(A,a), we can unfold the definition. This shows imme-
diately that the underlying type is reflna = reflna , while the point is the canonical
inhabitant of the underlying type, namely refln+1a .

It is well-known that, in order to say something about the higher homotopical
structure of a type, it is enough to look at its loop spaces. We give a sketch of a
proof that, we think, is more direct than the one in the reference we cite.

A Lemma 2.2.17 ([Uni13, Theorem 7.2.9]). For every n ≥ −1, a type A is an
n-type if and only if Ωn+1(A,a) is contractible for all a ∶ A.

Proof sketch. The statement is clear for n ≡ −1. Assume n ≥ 0. By definition, A
is an n-type if and only if, for all a, b ∶ A, the type a = b is an (n − 1)-type. By
the induction hypothesis, this is (for all a, b) the case if and only if Ωn(a = b, p) is
contractible for all p ∶ a = b. By path induction on p, this is equivalent to requiring
Ωn(a = a, refla) to be contractible for all a in A.

Even if not explicitly mentioned, it is straightforward to see that this can be
stated with two indices in the following form:

Lemma 2.2.18. Given A ∶ U and m > k ≥ −1. Then, A is an (m + k)-type if and
only if Ωm(A,a) is a k-type for all a ∶ A.

From the second version, we can recover the original form by putting m ∶≡ n+1
and k ∶≡ −1. The apparent mismatch is made up for by the fact that any proposi-
tional pointed type is indeed contractible.

We will develop some further properties of U● and the interactions between Ω

and certain type formers in Section 7.3.

2.2.8 Classical Principles

A principle that we do not assume to hold in general, but which is sometimes
interesting to consider, is the law of excluded middle, formulated only for propos-
itions.

33

2. Overview over Homotopy Type Theory and Preliminaries

A Definition 2.2.19 (Law of excluded middle, see [Uni13, Chapter 3.4]). For a
universe U , we say that the law of excluded middle holds if the type

LEM−1 ∶≡ ΠP ∶U isProp(P)→ (P + ¬P) (2.49)

is inhabited. Further, we say that we have excluded middle with choice if

LEM∞ ∶≡ ΠA∶U (A + ¬A) (2.50)

is inhabited.

We do not assume either of them; quite the contrary, we sometimes use that, if
from some assumption we can prove one of them, then that assumption cannot be
derivable. Note that LEM∞ contradicts the univalence axiom (see Section 2.3.1 be-
low), while LEM−1 does not, and we want to emphasise that LEM−1 is the “correct”
assumption if we want to reason classically in HoTT.

2.3 Homotopy Type Theory

Compared to the fundamental formulation of MLTT, HoTT essentially only in-
troduces two new principles (at least in the presentation we give): univalence and
higher inductive types.

2.3.1 Univalence

Given types A,B ∶ U as above, there is a canonical map

idtoeqv ∶ (A =U B)→ (A ≃ B), (2.51)

defined by path induction. Voevodsky’s univalence axiom says that this function
is an equivalence itself. More precisely, we say that the universe U is univalent
if, for any of its types A and B, the correspondingly defined function idtoeqv

is an equivalence. In HoTT, we assume that all our universes U0,U1,U2, . . . are
univalent.

It is a well-known result by Voevodsky the univalence axiom implies function
extensionality [Uni13, Chapter 4.9].

Adding the univalence axiom to the theory destroys canonicity : there are
closed terms of type N that are not in normal form. It is conjectured that some
form of canonicity relative to propositional equality can be recovered. While many
formalisations of mathematical theorems have already been performed, many of
them could have been easier if there had been an appropriate computation rule for
the univalence axiom. As discussed in the introduction, one of the most important
open problems in HoTT is currently to find proper computation rules for the
univalence axiom. We do not further discuss this problem in this thesis, however,
we touch it in Chapter 9.

34

2.3. Homotopy Type Theory

If we combine the univalence axiom with Lemma 2.2.10 we see that, for pointed
types X and Y , the type of pointed equivalences between them is equivalent to
the type of equalities X =U● Y .

Univalence allows us to make the connection between type families and “fibra-
tions” in type theory concrete. As every function is a “fibration”, this becomes
very simple:

Lemma 2.3.1 (type families and fibrations [Uni13, Theorem 4.8.3]). For any type
A of a univalent universe U , we have the type equivalence

A→ U ≃ Σ (B ∶ U) . (B → A). (2.52)

Proof. Given f ∶ A → U , we get the type Σ (a ∶ A) . f(A), together with the first
projection. From any type B with a function g ∶ B → A, we can get a map A→ U
by mapping any point to the corresponding fibre of g, i.e. we get the function
λa.Σ (b ∶ B) . (b = f(a)). It is standard to check that both maps are inverses to
each other. In fact, each of the two ways of composing the maps is easily seen to
be equal to the identity map if we use Lemma 2.2.14, as each way essentially adds
a singleton.

2.3.2 Higher Inductive Types

The other major new addition that HoTT makes are Higher Inductive Types
(HITs). They are discussed extensively in [Uni13, Chapter 6]. In case of ordinary
inductive types, we give constructors to construct points of that type. For HITs,
we can also have constructors to generate a new path inside the corresponding
type. We choose to present a simple but yet interesting example, the cirlce S1,
generated by one constructor

base ∶ S1 (2.53)

and one constructor
loop ∶ base =S1 base. (2.54)

Its recursion principle says: if we are given a type B with a point b0 ∶ B and a
loop around that point, i.e. l ∶ b0 = b0, we get a function f ∶ S1 → B satisfying
f(base) ≡ b0 and apf(loop) =b0=b0 l. Note that the first equality holds judgment-
ally, the second only propositionally. The induction principle is somewhat more
involved. Suppose we have a type family B ∶ S1 → U (for example defined using
the just presented recursion rule). We then definitely need a point b0 ∶ B(base).
However, a loop b0 =B(base) b0 is not the right thing, as that would be a path in
the fibre over b0. Instead, we want a path over loop, that is we ask for

l ∶ b0 =Bloop b0. (2.55)

Then, we get a function f ∶ ΠS1B with f(base) ≡ b0 and apdf(loop) = l.

35

2. Overview over Homotopy Type Theory and Preliminaries

2.3.3 Truncations

Truncations (or truncation operators), for which we have already given intuition in
Section 1.2, can be viewed as a special sort of higher inductive types. This is how
at least the higher truncations are introduced in the standard reference [Uni13,
Chapter 7.3]. In our setting of intensional MLTT, we are especially interested in
propositional truncations, or (−1)-truncations [Uni13, Chapter 3.7]. If (a version
of) MLTT has propositional truncations, it means that for any type X, there is a
propositional type ∥X∥, intuitively representing the statement that X is inhabited.
The rules are that if we have a proof of X, we can, of course, get a proof of ∥X∥,
and from ∥X∥, we can conclude the same statements as we can conclude from X,
but only if the actual representative of X does not matter.

When we talk about a general “type theory” in the following definition or in
any of the later chapters, we always mean (a version of) intensional Martin-Löf
type theory which has at least the components of Section 2.1.

A Definition 2.3.2. We say that a type theory has weak propositional trunca-
tions [for a universe U] if there is a function ∥−∥ ∶ U → U such that, for every X ∶ U ,
the type ∥X∥ ∶ U represents the proposition that X is inhabited. More precisely,
we have4

1. a function (or “constructor”) ∣−∣ ∶X → ∥X∥

2. a proof htr ∶ isProp(∥X∥)

3. a “recursion principle” rectr ∶ ∀(P ∶ U−1). (X → P)→ ∥X∥ → P.

Definition 2.3.2 axiomatizes the propositional truncation. It characterises ∥X∥
in the sense of the following universal property, which is especially useful when we
apply the equivalence reasoning style:

Lemma 2.3.3 (Universal property of the propositional truncation [Uni13, Lemma
7.3.3]). If a theory has function extensionality and weak propositional truncations,
then, for any type X and any proposition Y , the canonical map

(∥X∥ → Y)→ (X → Y), (2.56)

defined by g ↦ g ○ ∣−∣, is an equivalence.

Proof. Function extensionality implies that the domain and codomain type of
the function are both propositional. It is therefore sufficient that the recursion
principle gives a function in the other direction.

4Recall the convention that we keep the first projection implicit when we have P ∶ Un, so
that we may write x ∶ P instead of x ∶ fst(P).

36

2.3. Homotopy Type Theory

The axioms of Definition 2.3.2 imply that, in a sense that we do not make
precise here, the operator ∥−∥ is the reflector for the category of propositions,
viewed as a subcategory of the category of types. Therefore, it could also be
justified to call it the propositional reflection.

Adopting the terminology of [Uni13, Chapter 3.10], we say that X is merely
inhabited if ∥X∥ is inhabited. We may also say that (the statement) X merely
holds. However, we try to always be precise by giving the type expression to
support the statement that is given in “natural language”.

Note that ∥−∥ is functorial in the sense that any function f ∶ X → Y gives
rise to a function ∥f∥ ∶ ∥X∥ → ∥Y ∥, even though the proof of ∥g ○ f∥ = ∥g∥ ○ ∥f∥
requires function extensionality.

The non-dependent eliminator (or recursion principle) rectr implies the depend-
ent one (the induction principle):

A Lemma 2.3.4 (see [Uni13, Exercise 3.17]). The weak propositional truncation
admits the following induction principle: Given a type X, a family P ∶ ∥X∥ → U
with a proof h ∶ ∀(z ∶ ∥X∥). isProp(P (z)), a term k ∶ ∀(x ∶ X). P (∣x∣) gives rise to
an inhabitant of ∀(z ∶ ∥X∥). P (z). We call this term (for an implicitly given type
X)

indtr ∶ ΠP ∶∥X∥→U−1 (Πx∶XP (∣x∣))→ (Πz∶∥X∥P (z)) . (2.57)

Proof. We have a map j ∶ X → Σ (z ∶ ∥X∥) . P (z) by λx.(∣x∣, k(x)). Observe that
the codomain of j is a proposition, combining the fact that ∥X∥ is one with
h. Therefore, we get ∥X∥ → Σ (z ∶ ∥X∥) . P (z), and this is sufficient, using that
y =∥X∥ z for any y, z ∶ ∥X∥.

A Remark 2.3.5. In the standard reference [Uni13], the propositional truncation
is introduced with the judgmental computation rule

rectr(P,h, f, ∣x∣) ≡β f(x). (2.58)

This fits into the general pattern that β-rules of inductive types hold judgmentally.
In this case, one might also require the theory to have the induction principle indtr
with a judgmental computation rule,

indtr(P,h, f, ∣x∣) ≡β f(x). (2.59)

Note that we did not require this rule to hold in Definition 2.3.2, and that is why
we added the attribute “weak”. The equivalence reasoning style (Section 2.2.5)
makes it unnecessary to depend on computational rules, so we simply do not
need it for our proofs (not even for convenience). However, in Chapter 6, we
will discuss a couple of consequences of the computation rule which do definitely
not hold without it. A practical advantage of not assuming (2.58) is that the
truncation can be implemented in existing proof assistants more easily. Of course,
this “computation” (or β-) rule holds propositionally as both sides of the equation
inhabit the same proposition.

37

2. Overview over Homotopy Type Theory and Preliminaries

Recall that there is a type expression that is equivalent to propositional trun-
cation, its impredicative encoding :

A Proposition 2.3.6. For any given X ∶ U , we have

∥X∥ ←→ ∀(P ∶ U). isPropP → (X → P)→ P. (2.60)

Due to function extensionality, the logical equivalence is even an equivalence.

A potential problem with the expression on the right-hand side is that it is not
living in universe U . This size issue is the only thing that keeps us from using it
as the definition for ∥X∥. All other properties of the above Definition 2.3.2 are
satisfied (including even the computation rule (2.58)), at least under the assump-
tion of function extensionality. Voevodsky (see the Coq library [Voe10b; Voe13b])
uses resizing rules to get rid of the problem.

Proof. The direction “→” of the statement is not more than a rearrangement of the
assumptions of property (3). For the other direction, we only need to instantiate
P with ∥X∥ and observe that the properties (1) and (2) in the definition of ∥X∥
are exactly what is needed. For the last claim of the statement, we observe that
the right-hand side is propositional under function extensionality.

Making use of the propositional truncation, we can formulate the axiom of
choice properly. Compared with Lemma 2.2.12, the following definition involve no
choice.

Definition 2.3.7 (Axiom of choice [Uni13, Chapter 3.8]). Let a set X, a family
of sets A ∶ X → U0, and a family of propositions P ∶ (Σ (x ∶X) .A(x)) → U−1 be
given. The axiom of choice is (for any such X, A, P) an inhabitant of the type

AC−1 ∶≡ (Πx∶X ∥Σ (a ∶ A(x)) . P (a, x)∥)→ ∥Σ (g ∶ Πx∶XA(x)) .Πx∶XP (x, g(x))∥.
(2.61)

A useful equivalent formulation ([Uni13, Lemma 3.8.2]) is the following: The axiom
of choice holds if and only if, for any set X and family of sets Y ∶ X → U0, the
type

(Πx∶X ∥Y (x)∥)→ ∥Πx∶XY (x)∥ (2.62)

is inhabited.

Note that we do not assume the axiom of choice. It is simply a type that may
be inhabited, but does not need to be, and is only called an “axiom” to make the
correspondence to the set theoretic principle clear.

Although the propositional (or (−1)-) truncation is certainly the most import-
ant incarnation, homotopy type theory allows us to truncate a type at any level
n ≥ −1.5 The n-truncation can be introduced in the following way.

5Technically, there is no reason to disregard the case (−2), although the (−2)-truncation of
any type will be contractible. One could argue that ∥−∥−2 might still be interesting because of
its computational behaviour. However, if I am not mistaken, the computational behaviour of
∥A∥−2 that one would expect would not be very different from that of ∥1 +A∥−1 anyway.

38

2.4. A Word on Ambiguity Avoidance and Readability

Definition 2.3.8 (General truncation, [Uni13, Chapter 7.3]). We say that a type
theory has weak general truncations [for a universe U] if, for any number n ≥ −1
and for any type X ∶ U , we have a type ∥X∥n ∶ U together with

1. a function (“constructor”) ∣−∣n ∶X → ∥X∥n, where ∣−∣n(a) is written ∥a∥n;
2. a proof t ∶ is-n-type(∥X∥n);
3. an induction principle

indtr ∶ ΠP ∶∥X∥n→U
n (Πx∶XP (∣x∣n))→ (Πz∶∥X∥n

P (z)) . (2.63)

4. which satisfies

ΠP ∶∥X∥n→U
nΠf ∶Πx∶XP (∣x∣n)

indtr(P, f, ∣n∣n) =P (∣x∣n) f(x). (2.64)

Remark 2.3.9. Of course, we do not want to distinguish between ∥−∥ and ∥−∥−1.
We will use the first whenever propositional truncation is the only truncation that
we consider, and the second otherwise.

As before, one can (but by default, we do not) require item 4 to hold judg-
mentally. This is done in the standard reference [Uni13, Chapter 7.3]. In other
words, indtr(n,A,P) is “judgmentally a section” of the canonical map

(Πx∶∣n∣AaP (x))→ (Πa∶AP (∣n∣Aa)). (2.65)

As before, our arguments in this thesis would not benefit from the judgmental
computation rule as we can avoid all “computational overhead” by using the equi-
valence reasoning style. Instead, we make crucial use of the following property,
for which we omit the proof. It is analogous to (and generalises) Lemma 2.3.3.

Lemma 2.3.10 (Universal property of the general truncation, [Uni13, Lemma
7.3.3]). If a theory has function extensionality and weak general truncations, then,
for all n, A and any n-type B, the canonical map

(∥A∥n → B)→ (A→ B) (2.66)

is an equivalence.

Remark 2.3.11. For inductive types,

• the induction principle

• the recursion principle plus a uniqueness (i.e. η) rule

• the universal property

can be derived from each other. This has been stated and proved by Awodey,
Gambino, and Sojakova [AGS12] for homotopical W-types, that is “ordinary” in-
ductive types (without judgmental computation rules) in homotopy type theory.
Sojakova [Soj15] has proved the same statement for specific classes of higher in-
ductive types. The logical equivalence of the three points holds (if carefully for-
mulated) in particular for truncations.

39

2. Overview over Homotopy Type Theory and Preliminaries

2.4 A Word on Ambiguity Avoidance and

Readability

In homotopy type theory, certain “key words” are reserved. We try to be very
careful with the denomination of statements. The usage of the terms definition,
remark, example and corollary is self-explanatory. We state a result as a lemma if
it is of technical nature and useful for the proceeding constructions. We follow the
standard convention and call a result a proposition if it is neither a main result nor
has the “auxiliary” character of a lemma. However, a caveat is required: this does
not necessarily mean that the corresponding statement is a propositional type in
the sense of HoTT. The terms principle and claim will not be used very often,
and if they are used, their meaning will be clear.

In contrast to other authors, we strive to minimise the usage of the term the-
orem and we only use it for results that we either consider main contributions of
this thesis, or (even though they might be very easy to prove) core insights that
potentially have powerful applications. If such a statement is of fairly technical
nature, we call it a main lemma; however, to immediately revoke the last sen-
tence, we admit that the difference is fairly non-objective, as well as the pairwise
difference between propositions, lemmata, theorems, and main lemmata.

One might argue that the word property should also be reserved in the same
way as proposition. However, we do not consider this term critical, and we will say
property to attributes that might not be propositional. If we want to emphasise
that they are, we call them propositional properties.

Being an equivalence is a precisely defined term that can only refer to a function
f ∶ X → Y , and begin equivalent can only refer to two types (or more than two,
in which case it has to be read as “pairwise equivalent”). Often in mathematics, a
statement will start with the sentence “The following are equivalent”, a very useful
expression that is tempting to use. We do not use this expression if it interferes
with the HoTT meaning of equivalence. Sometimes, the statements (or types) of
which we want to prove that they pairwise imply each other are propositional, and
in that case, we do not hesitate to use the above expression as it is fully justified.
If the statements are not all propositional, but still equivalent as types, the usage
of that expression would cause no conflict, but in that case we believe that it is
worth to emphasise that fact. However, more often than not, the statements in
question are not equivalent as types, but they simply imply each other. In this
case, what we write is “The following are logically equivalent”.

In the terminology of the textbook [Uni13], the word merely refers to the
propositional truncation, and we use it in this sense (see the explanations in Sec-
tion 2.3.3).

One further potentially dangerous issue regarding notation is that we have
to deal with many equality-like concepts: the internal propositional equality of
type theory, internal equivalence of types, judgmental equality of type theoretic
expressions, as well as isomorphism of objects in a category that we sometimes

40

2.4. A Word on Ambiguity Avoidance and Readability

consider in the meta-theory, isomorphism or equivalence of categories, and strict
equality of morphisms. Our convention is that internal concepts are written using
“two-line” symbols, coinciding with the notation of [Uni13]: we write a = b for the
internal equality type Id(a, b), and A ≃ B for the type of equivalences between A

and B. Non-internal concepts are denoted (if at all) using “three-line” symbols: we
write a ≡ b if a and b denote two judgmentally equal expressions, and we use ≡ for
other cases of strict equality in the meta-theory. x ≅ y means we want to express
that x and y are isomorphic objects of a category (in the meta-theory). Equality
of morphisms of a category is sometimes expressed with ≡, but usually by saying
that some diagram commutes, and if we say that some diagram commutes, we
always mean that it commutes strictly, not only up to homotopy. Other notions
of equality are written out.

41

Chapter 3

Truncation Level Criteria

An important property of a type that one would often like to know is whether it
is of some truncation level. For example, it is crucial to know the higher homo-
topical structure of a type X if we want to construct a function from a certain
higher inductive type H into X, especially if H is a truncation itself. Moreover, if
X is n-truncated, we immediately get that all higher loop spaces and homotopy
groups (starting from the ones at level (n + 1)) are trivial. On the other hand,
even though there is no clear distinction between the two topics, truncation levels
are also important for a programmer who does not care about the formalisation of
mathematics. For example, for a set (a 0-truncated type), Streicher’s K eliminator
is justified, making it (essentially) possible to replace all equality proofs by reflex-
ivity. In an appropriately designed programming language, this then allows a more
powerful form of pattern matching.1 From a more mathematical perspective in the
context of HoTT, sets have been studied in depth by Rijke and Spitters [RS14].

Section 3.1 only deals with the criteria for whether a type is a set. In the begin-
ning, we only consider basic MLTT, and add weak propositional truncations after
a short motivation. In the same way, we mention explicitly if function extension-
ality is needed to prove a result. We have published most of its contents together
with Escardó, Coquand and Altenkirch ([KECA13], [KECA14]). Those results
are also contained in the HoTT standard reference [Uni13, Chapter 7.2]. The
(straightforward but useful) generalisations to higher truncations, as presented in
Section 3.2, have not been published before.

3.1 Hedberg’s Theorem Revisited

A classic such criterion for the truncation level of a type was given by Hedberg:

1In Agda, such a powerful form of pattern matching is possible for all types by default, which
contradicts the Univalence Axiom. The without-K flag can be used to prevent this.

43

3. Truncation Level Criteria

A Proposition 3.1.1 (Hedberg [Hed98]). Every type with decidable equality is
a set,

discreteX → isSetX. (3.1)

Here, a type X is said to have decidable equality, written discreteX (which we
have referred to in the introduction, page 4), if the equality of any two points is
decidable,

discreteX ∶≡ ∀(x1 x2 ∶X). (x1 = x2) + ¬(x1 = x2). (3.2)

Before we give the proof, we introduce several useful notions.

A Definition 3.1.2. Given two types X,Y and a function f ∶ X → Y , we say
that f is weakly constant if it maps any inputs to equal values,

constf ∶≡ ∀(x1 x2 ∶X). f(x1) = f(x2). (3.3)

We further say that a type with a weakly constant endofunction is collapsilbe,

collX ∶≡ Σ (f ∶X →X) . constf , (3.4)

and it is path-collapsible if all its path spaces are collapsible,

pathCollX ∶≡ ∀(x1 x2 ∶X). coll(x1 = x2). (3.5)

For convenience, we drop the attribute “weakly” when talking about weakly
constant function, and call a function just constant if it satisfies (3.3). We will see
later (especially in Chapters 5 and 8) why this notion of constancy is not entirely
satisfying.

Hedberg’s original proof of Proposition 3.1.1 consists of two steps which we
present in the following two lemmata.

A Lemma 3.1.3. If a type has decidable equality, it is path-collapsible,

discreteX → pathCollX. (3.6)

Proof. Given inhabitants x1 and x2 of X, we get by assumption either an inhab-
itant of x1 = x2 or an inhabitant of ¬(x1 = x2). In the first case, we construct the
required constant function (x1 = x2) → (x1 = x2) by mapping everything to this
given path. In the second case, the identity function is trivially constant.

A Lemma 3.1.4. If a type is path-collapsible, it is a set,

pathCollX → isSetX. (3.7)

Proof. Assume f is a parametrised constant endofunction on the path spaces,
meaning that, for any x1, x2 ∶X, we have a constant function

fx1,x2
∶ (x1 = x2)→ (x1 = x2). (3.8)

44

3.1. Hedberg’s Theorem Revisited

Let p be a path from x1 to x2. We claim that

p = (fx1,x1
(reflx1

))−1 fx1,x2
(p). (3.9)

By path induction, we only have to give a proof if the triple (x1, x1, p) is in
fact (x1, x1, reflx1

), which is one of the groupoid laws that propositional equality
satisfies. Using the fact fx1,x2

is constant, the right-hand side of the above equality
is independent of p, and in particular, p is equal to any other path of the same
type.

Hedberg’s proof is the concatenation of the two lemmata. We want to present
a slightly more direct (but essentially equivalent) proof [Hcoq], [Kra12]:

Second proof of Proposition 3.1.1. Assume that, for any x1, x2 ∶X, we have

decx1,x2
∶ (x1 = x2) + ¬(x1 = x2). (3.10)

Given any x1, x2 and p ∶ x1 = x2, we know that decidablex1x2 is of the form inl q.
Further, we know that decidablex1x1 is of the form inl r. We claim

p = r−1 q, (3.11)

which is trivial by path induction because we have q ≡ r in case of x1 ≡ x2. Again,
the argument is that the right-hand side of (3.11) is independent of p.

Let us analyse the ingredients of the original proof. Lemma 3.1.3 uses the
rather strong assumption of decidable equality. In contrast, the assumption of
Lemma 3.1.4 is equivalent its conclusion, so that there is no space for a strength-
ening. We include a proof of this simple claim in Proposition 3.1.10 below and
concentrate on weakening the assumption of Lemma 3.1.4. Let us first introduce
the notions of stability and separatedness.

A Definition 3.1.5. For any type X, define

stableX ∶≡ ¬¬X →X, (3.12)
separatedX ∶≡ ∀(x, y ∶X). stable(x = y). (3.13)

We can see stableX as a classical condition, similar to decidableX ≡ X + ¬X,
but strictly weaker. Indeed, we get a first strengthening of Hedberg’s Theorem as
follows:

A Proposition 3.1.6 ([Uni13, Corollary 7.2.3]). Any separated type is a set if
function extensionality holds,

separatedX → isSetX. (3.14)

45

3. Truncation Level Criteria

Proof. There is, for any x, y ∶X, a canonical map (x = y)→ ¬¬(x = y). Composing
this map with the proof that X is separated yields an endofunction on the path
spaces. With function extensionality, the first map has a propositional codomain,
implying that the endofunction is constant and thereby fulfilling the requirements
of Lemma 3.1.4.

We remark that full function extensionality is actually not needed here. In-
stead, a weaker version that only works with the empty type is sufficient.

The core of Proposition 3.1.6 is that the condition separatedX allows us to
conclude x = y from a proposition, where function extensionality is exactly used
to make sure that ¬¬(x = y) is propositional. In fact, any proposition with the
appropriate property allows us to replicate the argument. The statement in the
following form is sometimes attributed to Egbert Rijke:

A Lemma 3.1.7 ([Uni13, Theorem 7.2.2]). Let R be a reflexive propositional
relation on a type X, that is

R ∶X ×X → U (3.15)
∀x1 x2. isProp (R(x1, x2)) (3.16)
∀x.R(x, x). (3.17)

Suppose further that R implies identity in the sense of

∀x1 x2.R(x1, x2)→ x1 = x2. (3.18)

Then X is a set and R(x1, x2) is equivalent to x1 = x2 for all x1, x2 ∶X.

Proof. The argument is essentially the same as for Proposition 3.1.6. For any two
points, we get a map

(x1 = x2)→ R(x1, x2), (3.19)

using path induction with the fact that R is reflexive. Composition with the
map (3.18) yields a witness that X is path-collapsible.

Remark 3.1.8. Our original publication [KECA13] included Lemma 3.1.7 only
for the fixed choice of R(x1, x2) ∶≡ ∥x1 = x2∥.

Comparing Proposition 3.1.6 and Lemma 3.1.7, we might say that

R(x1, x2) ∶≡ ¬¬(x1 = x2) (3.20)

is an attempt to find a reflexive and (assuming function extensionality) propos-
itional relation that is in some sense universal. However, it is not completely
satisfactory: it is in general not the case that ¬¬(x1 = x2) allows us to conclude
R(x1, x2) for any other reflexive propositional relation R. The right choice re-
quires the theory to have weak propositional truncation. In that case, we set
R(x1, x2) ∶≡ ∥x1 = x2∥. Whenever we have another reflexive propositional relation

46

3.1. Hedberg’s Theorem Revisited

Q, it is easy to see that ∥x1 = x2∥ will imply Q(x1, x2): using the recursion prin-
ciple, we may assume x1 = x2, and by path induction, all that is needed to show
is Q(x1, x1), which is given by the fact that Q is reflexive.

Completely analogously to the notions of stability and separatedness, we can
therefore define what it means for a type to have split support or to be h-separated :

A Definition 3.1.9. For any type X, define

splitSupX ∶≡ ∥X∥ →X, (3.21)
hSeparatedX ∶≡ ∀(x, y ∶X). splitSup(x = y). (3.22)

We observe that hSeparatedX is a strictly weaker condition than separatedX.
Not only can we conclude isSetX from hSeparatedX, but the converse holds as
well. We summarize the discussion up to now in the following statement.

A Proposition 3.1.10. For a type X in MLTT, the following properties are
equivalent:

1. X is a set

2. X is path-collapsible

3. X has a reflexive propositional relation that implies identity

4. X is h-separated (obviously, this point requires the theory to support propos-
itional truncation).

Proof. “(2)⇒ (1)” is Lemma 3.1.4. For “(1)⇒ (3)”, we may define the required
relation as R(x1, x2) ∶≡ (x1 = x2) which is propositional by the assumption. The
argument of “(3)⇒(2)” was implicitly used in the proof of Lemma 3.1.7: assume
that the relation R is given and construct an endomap on (x1 = x2) which factors
over R(x1, x2). This map is constant because R is propositional.

Finally, the equivalence of (3) and (4) follows directly from the fact that
R(x1, x2) ∶≡ ∥x1 = x2∥ has the universality property discussed before.

We observe that using propositional truncation in some cases makes it unne-
cessary to appeal to functional extensionality: in Proposition 3.1.6, we have given
a proof for the simple statement that separated types are sets in the context of
function extensionality. This is not provable in plain MLTT. Let us now drop func-
tion extensionality and assume instead that propositional truncation is available.
Every separated type is h-separated - more generally, we have

(¬¬X →X)→ (∥X∥ →X) (3.23)

for any type X -, and every h-separated space is a set. Notice that the mere
availability of propositional truncation suffices to solve a gap that function exten-
sionality would usually fill.

47

3. Truncation Level Criteria

We want to mention that there is a slightly stronger version of the Hedberg’s
Theorem which applies to types where equality might only be decidable locally.
In fact, nearly everything we stated or proved so far can be done locally, and thus
made stronger. In the proof of Lemma 3.1.3, we have not made use of the fact
that we were dealing with path spaces at all: any decidable type trivially has a
constant endofunction. Concerning Lemma 3.1.4, we observe:

A Lemma 3.1.11 (Local form of Lemma 3.1.4). A locally path-collapsible type
locally satisfies UIP. This means, for a pointed type (X,x0), we have

(∀x. coll(x0 = x))→ ∀x. isProp(x0 = x). (3.24)

Proof. The proof is identical to the one of Lemma 3.1.4, with the only difference
that we need to apply based path induction instead of path induction.

This enables us to prove the local variant of Hedberg’s Theorem:

A Proposition 3.1.12 ([Pal12],[Kra12]; Local form of Proposition 3.1.1). A
locally discrete type is locally a set: for any pointed type (X,x0),

(∀x.decidable(x0 = x))→ ∀x. isProp(x0 = x). (3.25)

In the same simple way, we immediately get that the assumption of local
separatedness is sufficient.

A Proposition 3.1.13 (Local form of Proposition 3.1.6). Under the assumption
of function extensionality, a locally separated type locally is a set: given a pointed
type (X,x0),

(∀x. stable(x0 = x))→ ∀x. isProp(x0 = x). (3.26)

Similarly, the local forms of the characterizations of Proposition 3.1.10 are still
equivalent. The following statement is not included in the electronic appendix;
however, it is essentially a special case of Theorem 3.2.1 in the next subsection
which is formalised and can be found in the appendix.

Proposition 3.1.14 (Local form of Proposition 3.1.10). For a pointed type (X,x0)
in MLTT, the following are equivalent:

1. for all x ∶X, the type x0 = x is propositional

2. for all x ∶X, the type x0 = x is collapsible

3. there is family of propositions Q ∶X → U−1 which implies identity, that is

∀x.Q(x)→ x0 = x (3.27)

together with a point q0 ∶ Q(x0).

48

3.2. Generalisations to Higher Levels

4. for all x ∶ X, the type x0 = x has split support (requiring that the theory
supports propositional truncation).

3.2 Generalisations to Higher Levels

One way of generalising Proposition 3.1.14 is to formulate the criteria in a way
that allows them to be applied if we want to show that a type has truncation
level n, for some n > −2, rather than just truncation level 0. We call the following
statement the Generalised Local Hedberg Argument (GLHA):

A Theorem 3.2.1. In MLTT, let X be a type, x0 ∶ X a point, and n ≥ −1 an
integer. The following are logical equivalent (note that in general only the first two
points are propositional types):

1. Ωn+1(X,x0) is contractible

2. there is a pointed family of (n− 1)-types that implies local identity, that is a
family Q ∶X → Un−1 with q0 ∶ Q(x0) such that

f ∶ ∀x.Q(x)→ x0 = x (3.28)

3. ∀(x ∶X). is-(n − 1)-type(x0 = x)

4. assuming that the theory has (weak) general truncations, we have

∀x. ∥x0 = x∥n−1 → x0 = x. (3.29)

Further, X is n-truncated if and only if these statements hold for all x0 ∶X.

Proof. We first prove the logical equivalence of the first three points, without refer-
ring to truncations. For (1)⇒(2), observe that the condition isContr(Ωn+1(X,x0))
implies that x0 = x is (n−1)-truncated. To show (2)⇒(3), let x ∶X be any point.
Consider the triangle

(x0 = x)

Q(x)

(x0 = x)

sx rx

id

where the function sx ∶ x0 = x → Q(x) is defined by path induction, sx0
∶≡ q0, and

rx ∶ Q(x) → x0 = x is defined as rx(q) ∶≡ f(q0)−1 f(q). By path induction, the
diagram commutes, making x0 = x a retract of the (n − 1)-type Q(x). By [Uni13,

49

3. Truncation Level Criteria

Theorem 7.1.4] (a retract of an m-type is an m-type), x0 = x is then (n − 1)-
truncated as well. The implication (3)⇒ (1) is easy and standard. It follows by
induction on n.

Concerning (4), we can see (1)⇒(4) in the same way as we saw (1)⇒(2), and
(4)⇒(2) is trivial as we only need to choose Q(x) ∶≡ ∥x0 = x∥n−1.

Moreover, (1) for all x0 ∶ X is well-known (Lemma 2.2.17) to be equivalent to
the statement that X is n-truncated.

Remark 3.2.2. The proof of Theorem 3.2.1 is entirely trivial. However, I think
the statement itself is still very valuable and worth keeping in mind as a technical
tool. I have presented it as such a tool at the first HoTT-Day in Leeds (February
2014). One concrete case where I found it useful is when one needs to prove the
truncation level of a higher inductive type, which can turn out to be somewhat
involved if one tries to apply the definition directly. Such an application will be
presented in the “HIT proof” of Theorem 8.10.2.

Steve Awodey has pointed out to me that Theorem 3.2.1 can be seen as a
solution to an open problem that was discussed during the special year program in
Princeton (2012/13), the question of how Hedberg’s argument can be generalised
to higher levels. This open problem does not seem to be documented.

50

Chapter 4

Anonymous Existence

We have already discussed shortly that ∥X∥ is a way of saying that X is inhabited
without giving an explicit element. Instead, an element of ∥X∥ can be understood
as an anonymous inhabitant of X. Similarly, we can read a proof of ¬¬X as a form
of weak existence. Both ∥X∥ and ¬¬X have the property of being propositional
(under function extensionality). In this Chapter, we will define a new notion of
anonymous existence, namely ⟨⟨X⟩⟩ which says that every constant endofunction
on X has a fixed point, and we will see that this is also a propositional property
of X. We will prove that it lies in between of ¬¬X and ∥X∥. In particular,
⟨⟨X⟩⟩ is strictly stronger than ¬¬X and, at the same time, a definable property
(while ∥X∥ is a notion that we need to add to the theory unless we want to use
impredicativity).

The theory that we work in is basic MLTT, with the additional principles of
function extensionality, propositional truncation and (in the last part) univalence
explicitly mentioned whenever they are used.

We start by generalising the results of Section 3.1 in a different direction than
we did in Section 3.2, which will inspire the notion of populatedness.

The main results of this chapter have been published before in [KECA14] and
partially in [KECA13].

4.1 Collapsible Types have Split Support

If we unfold the definitions in the statements of Proposition 3.1.10, they all involve
the path spaces over some type X. Recall from Definition 3.1.2 that we call a
function f ∶X → Y constant (dropping the attribute weakly for convenience) if

constf ∶ ∀(x1 x2 ∶X). f(x1) = f(x2). (4.1)

Recall from the same definition that we say that a type X is collapsible if it has
a constant endomap,

coll(X) ∶≡ Σ (f ∶X →X) . constf . (4.2)

51

4. Anonymous Existence

The logically equivalent statements on X as given in Proposition 3.1.10 are:

1. ∀(x1 x2 ∶X). isProp(x1 = x2)
2. ∀(x1 x2 ∶X). coll(x1 = x2)
3. there is

R ∶X ×X → U−1 (4.3)

such that
∀(x ∶X).R(x, x) (4.4)

and
∀(x1 x2 ∶X).R(x1, x2)→ (x1 = x2) (4.5)

4. ∀(x1 x2 ∶X). ∥x1 = x2∥ → (x1 = x2).
As we have shown, these statements are logically equivalent. We think it is a
natural question to ask whether the properties of path spaces are required. The
possibilities that path spaces offer are very powerful and we have used them heav-
ily. Let us try to formulate the above properties for an arbitrary type Y instead
of path types. In (1), (2) and (4), we just replace (x1 = x2) by Y to see what hap-
pens. In case of (3), this is not possible and we need to be slightly more careful:
it can be read as saying that R(x1, x2) is logically equivalent to (x1 = x2), and we
get:

1. isProp(Y)
2. coll(Y)
3. there is R ∶ U−1 such that Y ←→ R

4. ∥Y ∥ → Y .

Here, we notice immediately that (1) is significantly stronger than the other three
properties. It says that Y is propositional, which trivially implies the other three
statements. In a theory with propositional truncation, the logical equivalence
of (3) and (4) is obvious, and they clearly imply collapsibility of Y as the compos-
ition of the maps Y → R and R → Y is a constant endofunction on Y (where R is
taken to be ∥Y ∥ in (4).

However, the strength of (2) is less clear. Is a constant endofunction on Y

sufficient to get from ∥Y ∥ to Y ? More generally, for types Y and Z, is a constant
function from Y to Z enough to derive ∥Y ∥ → Z? Somewhat surprisingly, the
answer to the first question is positive, while the answer to the second one is very
likely to be negative in the light of Chapter 8. In particular, Theorem 8.8.5 states
that a constant function does factor through the propositional truncation if the
constancy proof satisfies an infinite tower of coherence conditions. We will also
discuss the second question in Section 5.1, while the positive answer for the first
question is a consequence of the following crucial fixed point lemma.

52

4.1. Collapsible Types have Split Support

A Main Lemma 4.1.1 (Fixed Point Lemma). Given, for some type X, an
endofunction f ∶X →X, we define the type of its fixed points as

fixf ∶≡ Σ (x ∶X) . x = f(x). (4.6)

If f is constant, then fixf is propositional.

Before we can give the proof, we need to formulate the following observation
that we consider a key insight for the Fixed Point Lemma:

A Lemma 4.1.2. Let X and Y be two types. If f ∶ X → Y is constant and
x1, x2 ∶ X are points, then apf ∶ (x1 =X x2) → (f(x1) =Y f(x2)) is constant. In
particular, apf maps every loop around x (that is, path from x to x) to reflf(x).

Proof. If c is the proof of constf , then apf maps a path p ∶ x1 = x2 to

c(x1, x1)−1 c(x1, x2). (4.7)

This is easily seen to be correct for (x, x, reflx), which is enough to apply path
induction. As the expression is independent of p, the function apf is constant.
The second part follows from the fact that apf maps reflx to reflf(x).

With this lemma at hand, we give a proof of the Fixed Point Lemma:

Proof of Main Lemma 4.1.1. Assume f ∶ X → X is a function and c ∶ constf is a
proof that it is constant. For any two pairs (x, p) and (y, q) ∶ fixf , we need to
construct a path connection them. Figure 4.1 illustrates the situation.

x

f(x)

y

f(y)

p q

c(x, y)

Figure 4.1: Two elements (x, p) and (y, q) of fixf

First, we simplify the situation by showing that we can assume x ≡ y. The
composition p c(x, y) q−1 shows x = y. By Lemma 2.2.10, a path between pairs is
a pair of paths. If we take the trivial paths as the second component, we get that
(x, p) and

((y, transportλz→z=f(z)(p c(c, y) q−1, p)) (4.8)

are equal. Let us write r for the second component of (4.8); then, we need to
prove (y, r) = (y, q), which is the claimed simplification.

Again, such a path can be constructed from a pair of paths for the two com-
ponents. Let us assume that we use some path t ∶ y = y for the first component.
We then have to show that t∗(r) equals q.

53

4. Anonymous Existence

By Lemma 2.2.1, with the identity for h and f for k, the path t∗(r) is equal to
t−1 r apf t. With Lemma 4.1.2, that term can be further simplified to t−1 r. What
we have to prove is now just t−1 r = q, so let us just choose t to be r q−1, thereby
making it into a straightforward application of the standard lemmata.

A more elegant but possibly less revealing proof of the Fixed Point Lemma was
given by Christian Sattler. It uses the principle of equivalence reasoning that we
have described in Section 2.2.5. The electronic appendix contains a formalisation
of both the proof we gave above and Sattler’s argument.

Second Proof of Main Lemma 4.1.1 (Sattler). Given f ∶ X → X and c ∶ constf as
before, assume (x0, p0) ∶ fixf . For any x ∶X, we have an equivalence of types,

f(x) = x ≃ f(x0) = x, (4.9)

given by precomposition with c(x0, x). Therefore, we also have the equivalence

Σ (x ∶X) . f(x) = x ≃ Σ (x ∶X) . f(x0) = x. (4.10)

The second of these types is a singleton and thereby contractible, while the first is
just fixf . This shows that any other inhabitant of fixf is indeed equal to (x0, p0).

We will exploit Main Lemma 4.1.1 in different ways. For the following corollary
note that, given an endomap f on X with constancy proof c, we have a canonical
projection

fst ∶ fixf →X (4.11)

and a function

ǫ ∶X → fixf (4.12)
ǫ(x) ∶≡ (f(x) , c(x, f(x))) . (4.13)

A Corollary 4.1.3. In basic MLTT, for a type X with a constant endofunction
f , the type fixf is a proposition that is logically equivalent to X. In particular, fixf
has all the properties that ∥X∥ has, i.e. satisfies the axioms of Definition 2.3.2:

• the function X → fixf is given by (4.12)

• isProp(fixf) is shown in Main Lemma 4.1.1

• the recursion principle is given by composition with (4.11).

Therefore, the weak propositional truncation of collapsible types is actually defin-
able. If ∥−∥ is part of the theory, ∥X∥ and fixf are equivalent.

This has the following direct consequence:

54

4.2. Populatedness

A Theorem 4.1.4. A type X is collapsible, i.e. has a constant endomap, if and
only if it has split support in the sense that ∥X∥ →X.

We want to add the remark that collX is actually still more than required to
get from ∥X∥ to X. The following statement (together with Theorem 4.1.4) shows
that is is enough to have f ∶X →X which is merely constant:

A Proposition 4.1.5. For a type X, the following are logically equivalent:

1. X is collapsible

2. X has an endofunction f with a proof ∥constf∥.
The first direction is trivial, but its reversibility is interesting. We do not think

that ∥constf∥ implies constf .

Proof of the non-trivial direction of Proposition 4.1.5. Assume f is an endofunc-
tion on X. From Main Lemma 4.1.1, we know that

constf → isProp(fixf). (4.14)

Using the recursion principle with the fact that the statement isProp(fixf) is a
proposition itself yields

∥constf∥ → isProp(fixf). (4.15)

Previously, we have constructed a map

constf → ∥X∥ → fixf. (4.16)

Let us write this implication as

∥X∥ → constf → fixf. (4.17)

This trivially implies

∥X∥ × ∥constf∥ → constf → fixf. (4.18)

We assume ∥X∥ × ∥constf∥. From (4.15), we conclude that fixf is a proposition.
Therefore, we may apply the recursion principle of the truncation and get

∥X∥ × ∥constf∥ → ∥constf∥ → fixf, (4.19)

which, of course, gives us
∥X∥ → fixf (4.20)

if we assume ∥constf∥. Composing ∣−∣ with (4.20) and with the first projection,
we get a constant function g ∶X →X.

Note that, in the above proof, we could have used the induction principle
(Lemma 2.3.4) instead of the “trick” of duplicating the assumption ∥constf∥.

Further, it seems to be impossible to show that the constructed function g is
equal to f . On the other hand, it is easy to prove the truncated version of this
statement:

∥∀x. f(x) = g(x)∥. (4.21)

The detailed formalised proof can be found in the electronic appendix.

55

4. Anonymous Existence

4.2 Populatedness

The results on constant endofunctions enable us to define a notion of anonymous
existence, similar to but weaker than propositional truncation. It crucially depends
on the Fixed Point Lemma (Main Lemma 4.1.1). Let us start by discussing another
perspective of what we have explained in Section 4.1.

Trivially, for any type X, we can prove the statement

∥X∥ → (∥X∥ →X)→X. (4.22)

By Theorem 4.1.4, this is equivalent to

∥X∥ → collX →X, (4.23)

and hence
collX → ∥X∥ →X, (4.24)

which can be read as: If we have a constant endomap on X and we wish to get
an inhabitant of X (or, equivalently, a fixed point of the endomap), then ∥X∥ is
sufficient to do so. We can additionally ask whether it is also necessary: can we
replace the first assumption ∥X∥ by something weaker? Looking at formula (4.22),
it is tempting to conjecture that this is not the case, but it is. In this section, we
discuss what it can be replaced by, and in Section 4.3.2, we give a proof that it is
indeed weaker.

For answering the question what is needed to get from splitSupX to X, let us
define the following notion:

A Definition 4.2.1 (populatedness). For a given type X, we say that X is
populated, written ⟨⟨X⟩⟩, if every constant endomap on X has a fixed point:

⟨⟨X⟩⟩ ∶≡ ∀(f ∶X →X). constf → fixf, (4.25)

where fixf is the type of fixed points, defined as in (4.1.1).

This definition allows us to comment on the question risen above. If ⟨⟨X⟩⟩ is
inhabited and X is collapsible, then X has an inhabitant, as such an inhabitant
can be extracted from the type of fixed points by projection. Hence, ⟨⟨X⟩⟩ instead
of ∥X∥ in (4.24) would be sufficient as well. Therefore,

⟨⟨X⟩⟩→ (∥X∥ →X)→X. (4.26)

At this point, we have to ask ourselves whether (4.26) is an improvement over
(4.24). But indeed, we have the following property:

A Proposition 4.2.2. Any merely inhabited type is populated. That is, for any
type X, we have

∥X∥ → ⟨⟨X⟩⟩. (4.27)

56

4.2. Populatedness

Proof. Assume f is a constant endofunction on X. The claim follows directly from
Corollary 4.1.3.

We will see later (Section 4.3.2) that ⟨⟨X⟩⟩ is in fact strictly weaker than ∥X∥.
Note that from (4.26), Theorem 4.1.4 and Proposition 4.2.2 we immediately get
the following:

A Corollary 4.2.3. For any type X, the following statements are logically equi-
valent:

1. X is collapsible,
Σ (f ∶X →X) . constf (4.28)

2. X has split support,
∥X∥ →X (4.29)

3. X is inhabited if it is populated,

⟨⟨X⟩⟩→X. (4.30)

In particular, if X is a proposition, (2) is always satisfied and we may conclude
⟨⟨X⟩⟩→X.

In the presence of propositional truncation, we give an alternative character-
isation of populatedness.

A Lemma 4.2.4. In MLTT with propositional truncation, a type X is populated
if and only if the statement that it merely has split support implies that it is merely
inhabited, or equivalently, if and only if the statement that X has split support
implies X. In formula, the following types are logically equivalent:

1. ⟨⟨X⟩⟩
2. ∥∥X∥ →X∥ → ∥X∥
3. (∥X∥ →X)→X.

Proof. We have already discussed (1)⇒ (3) above, see (4.26). (3)⇒ (2) follows
from the functoriality of the truncation operator. For (2)⇒(1), assume we have
a constant endofunction f on X. This implies ∥X∥ → X, thus ∥∥X∥ → X∥ and,
by assumption, ∥X∥. But ∥X∥ is enough to construct a fixed point of f by Corol-
lary 4.1.3.

One more characterisation of populatedness, and a strong parallel to mere
inhabitance, is given by the following statement.

A Proposition 4.2.5. In MLTT, any given type X is populated if and only if
any proposition that is logically equivalent to it holds,

⟨⟨X⟩⟩ ←→ ∀(P ∶ U). isPropP → (P →X)→ (X → P)→ P. (4.31)

57

4. Anonymous Existence

Note that the only difference to the type expression in Proposition 2.3.6 is that
we only quantify over sub-propositions of X, i.e. over those that satisfy P → X,
while we quantify over all propositions in the case of ∥X∥. This again shows that
∥X∥ is at least as strong as ⟨⟨X⟩⟩.
Proof. Let us first prove the direction “→”. Assume a proposition P is given,
together with functions X → P and P → X. Composition of these gives us a
constant endomap on X. But then ⟨⟨X⟩⟩ makes sure that this constant endomap
has a fixed point, and thus an inhabitant of X. Using X → P again, we get P .

For the direction “←”, assume we have a constant endomap f . We need to
construct an inhabitant of fixf . In the expression on the right-hand side, choose
P to be fixf , and everything follows from Corollary 4.1.3.

The similarities between ∥X∥ and ⟨⟨X⟩⟩ do not stop here. The following state-
ment, together with the direction “→” of the statement that we have just proved,
is worth to be compared to the definition of ∥X∥ (that is, Definition 2.3.2):

A Proposition 4.2.6. For any type X, the type ⟨⟨X⟩⟩ has the following proper-
ties:

1. X → ⟨⟨X⟩⟩
2. isProp(⟨⟨X⟩⟩) (if function extensionality holds).

Proof. The first point follows immediately from the (stronger) statement of Pro-
position 4.2.2. For the second, we use once more that fixf is a proposition and that,
by function extensionality, truncation levels are closed under Π (Lemma 2.2.6).

4.3 Comparison of Notions of Existence

Let us now compare the various notions of inhabitance we have encountered. We
have, for any type X, the following chain of implications:

X Ð→ ∥X∥ Ð→ ⟨⟨X⟩⟩ Ð→ ¬¬X. (4.32)

The first implication is trivial and the second is given by Proposition 4.2.2. Maybe
somewhat surprisingly, the last implication does not require function extensional-
ity, as we do not need to prove that ¬¬X is propositional: to show

⟨⟨X⟩⟩→ ¬¬X , (4.33)

let us assume f ∶ ¬X. But then, f can be composed with the canonical function
from the empty type into X, yielding a constant endofunction on X, and obvi-
ously, this function cannot have a fixed point in the presence of f . Therefore, the
assumption of ⟨⟨X⟩⟩ would lead to a contradiction, as required.

58

4.3. Comparison of Notions of Existence

Under the assumption of LEM−1, all implications of the chain (4.32) except the
first can be reversed as it is easy to show

∀(X ∶ U). (∥X∥ + ¬∥X∥)→ ¬¬X → ∥X∥. (4.34)

Of course, if we even assume LEM∞, then the four conditions in the chain (4.32)
become logically equivalent by the same argument: (4.34) remains true if we remove
the truncation operators.

Constructively, none of the implications of (4.32) should be reversible. To make
that precise, we use taboos, showing that the provability of a statement would imply
the provability of another, better understood statement, that is known to be not
derivable. As a second technique, we use models. In this section, we present the
following discussions:

1. If the first implication could be reversed, i.e. we had ∀(X ∶ U). ∥X∥ → X, it
would immediately follow from Proposition 3.1.10 that all types are sets, an
inconsistent assumption in HoTT. We will show the less trivial consequence
that all equalities would be decidable, even in a minimalistic version of
MLTT. In the same minimalistic setting, we show that a form of choice
that does not belong to intuitionistic type theory would be implied.

Moreover, we observe that ∥X∥ →X can be read as “the map ∣−∣ ∶X → ∥X∥ is
a split epimorphism” (where the latter notion requires to be read with care),
and we show that already the weaker assumption that it is an epimorphism
implies that all types are sets.

2. General reversibility of the second arrow is logically equivalent to a certain
weak version of the axiom of choice.

3. If the last implication could be reversed, LEM−1 (and thereby AC−1) would be
derivable. Assuming function extensionality, it is in fact the case that LEM−1
can be shown to be logically equivalent to the type ∀(X ∶ U).¬¬X → ⟨⟨X⟩⟩.

These results, and in particular the lack of a more suspicious consequence in the
second case, again yield some evidence that the differences between ∥X∥ and ⟨⟨X⟩⟩
are fairly subtle, and that mere inhabitance and populatedness are closer to each
other than any two of the other notions of existence that we consider.

4.3.1 Inhabited and Merely Inhabited

Let us discuss certain consequences of the assumption

∀(X ∶ U). ∥X∥ →X. (4.35)

First, using Theorem 4.1.4, this assumption is clearly equivalent to

∀(X ∶ U). collX, (4.36)

59

4. Anonymous Existence

or, in words, “every type has a constant endofunction.” Note that latter formula-
tion means that, for any type X, we have a proposition that is logically equivalent
to X, namely the type of fixed points of the given constant endofunction (Corol-
lary 4.1.3). This is the case even in a type theory without propositional truncation.

From a constructive type of view, (4.36) is an interesting statement. It clearly
follows from LEM∞: if we know an inhabitant of a type, we can immediately
construct a constant endomap, and for the empty type, considering the identity
function is sufficient. Intuitively, (4.36) seems to be related to the assumption
that every type is either empty or inhabited, but it does not tell us in which case
we are.

Of course, (4.36) is an inconsistent in HoTT as it implies that all types are
sets. Already without univalence it is very easily seen to imply the axiom of
choice (Definition 2.3.7). If we have univalence for propositions and set quotients,
this allows us to use Diaconescu’s proof of LEM−1 ([Dia75], see [Uni13, Theorem
10.1.14]).

Let us instead consider a very minimalistic type theory without univalence,
without function extensionality (and without truncations). We do not think that
LEM∞ can be derived in this minimalistic setting. However, what we can conclude
is the ∞-version of excluded middle for all path spaces, i.e. that all types are
discrete, see Lemma 4.3.1 and Proposition 4.3.2 below.

A Lemma 4.3.1. In basic MLTT without extensionality, without truncation, and
even without a universe, let A be a type and a0, a1 ∶ A two points. If for all x ∶ A
the type (a0 = x) + (a1 = x) is collapsible, then a0 = a1 is decidable.

Before giving the proof, we state an immediate corollary (which does involve
a type universe):

A Proposition 4.3.2. In basic MLTT, if every type has a constant endofunction
then every type has decidable equality,

(∀(X ∶ U). collX)→ ∀(X ∶ U).discreteX. (4.37)

Proof of Lemma 4.3.1. For (technical and conceptual) convenience, we regard the
elements a0, a1 as a single map

a ∶ 2→ A (4.38)

and we use
Ex ∶≡ Σ (i ∶ 2) . ai = x (4.39)

in place of the type (a0 = x) + (a1 = x). This is justified by the fact that the
property of being collapsible is clearly closed under type equivalence. In a theory
with propositional truncation, the image of a can be defined to be Σ (x ∶ A) . ∥Ex∥

60

4.3. Comparison of Notions of Existence

[Uni13, Definition 7.6.3]. By assumption, we have a family of constant endofunc-
tions fx on Ex, and by the discussion above, we can essentially regard the type

E ∶≡ Σ (x ∶ A) .fixfx, (4.40)

which can be unfolded to

Σ (x ∶ A) .Σ ((i, p) ∶ Ex) . fx(i, p) = (i, p), (4.41)

as the image of a. It is essentially the observation that we can define this image
that allows us to mimic Diaconescu’s argument. Clearly, a induces a map

r ∶ 2→ E (4.42)
r(i) ∶≡ (ai, ǫ(i, reflai)). (4.43)

Using that the second component is an inhabitant of a proposition, we have

r(i) = r(j) ←→ ai = aj. (4.44)

The type E can be understood as the quotient of 2 by the equivalence relation ∼,
given by i ∼ j ≡ ai = aj. If E was the image of a in the ordinary sense [Uni13,
Definition 7.6.3], the axiom of choice would be necessary to find a section of r

(see [Uni13, Theorem 10.1.14]). In our situation, this section is given by a simple
projection,

s ∶ E → 2 (4.45)
s(x, ((i, p), q)) ∶≡ i. (4.46)

It is easy to see that s is indeed a section of r in the sense of ∀(e ∶ E). r(s(e)) = e.
Given (x, ((i, p), q)) ∶ E, applying first s, then r leads to (ai, ǫ(i, reflai)). Equality
of these expressions is equality of the first components due to the propositional
second component. But p is a proof of ai = x. From that property, we can conclude
that, for any e0, e1 ∶ E,

e0 = e1 ←→ s(e0) = s(e1). (4.47)

Combining (4.44) and (4.47) yields

ai = aj ←→ s(r(i)) = s(r(j)), (4.48)

where the right-hand side is an equality in 2 and thus always decidable. In par-
ticular, a0 = a1 is hence decidable.

In the same minimalistic setting, we want to show that (4.36) further implies
a form of choice that does not pertain to intuitionistic type theory. In order to
formulate and prove this, we need a few definitions.

We say that a binary relation R ∶X ×X → U is propositionally valued if

∀(xy ∶X). isProp(R(x, y)). (4.49)

61

4. Anonymous Existence

The R-image of a point x ∶X is

Rx ∶≡ Σ (y ∶X) .R(x, y). (4.50)

We say that R is functional if its point-images are all propositions:

∀(x ∶X). isPropRx. (4.51)

We say that two relations R,S ∶X ×X → U have the same domain if

∀(x ∶X).Rx ←→ Sx, (4.52)

and that S is a subrelation of R if

∀(xy ∶X). S(x, y)→ R(x, y). (4.53)

A Proposition 4.3.3. If all types are collapsible, then every binary relation has
a functional, propositionally valued subrelation with the same domain.

Proof. Assume that R ∶ X ×X → U is given. For x ∶ X, let kx ∶ Rx → Rx be the
constant map given by the assumption (4.36) that all types are collapsible. Define
further

S(x, y) ∶≡ Σ (a ∶ R(x, y)) . (y, a) = kx(y, a). (4.54)

Then S is a subrelation of R by construction. We observe that Sx is equivalent
to fix(kx) and therefore propositional (by Main Lemma 4.1.1), proving that S is
functional. Together with Corollary 4.1.3, this further implies

Rx ←→ fixkx ←→ Sx, (4.55)

showing that R and S have the same domain.
What remains to show is that S(x, y) is always a proposition. Let s, s′ ∶ S(x, y).

As Sx is propositional we know (y, s) =Sx
(y, s′). This type corresponds to a

dependent pair type with components

p ∶ y =X y (4.56)
q ∶ p∗(s) =S(x,y) s′. (4.57)

In our case, as every type is a set, we have p = refly, and q gives us the required
proof of s =S(x,y) s′.

Instead of (4.36), let us now consider the assumption in the logically equivalent
formulation (4.35). Note that a map h ∶ ∥X∥ → X is automatically a section of
∣−∣ ∶X → ∥X∥ in the sense of

∀(z ∶ ∥X∥). ∣h(z)∣ = z (4.58)

as any two inhabitants of ∥X∥ are equal. Therefore, we may read (4.35) as:

For any type X, the map ∣−∣ ∶X → ∥X∥ is a split epimorphism. (4.59)

62

4.3. Comparison of Notions of Existence

We want to consider a weaker assumption, namely

For any type X, the map ∣−∣ ∶X → ∥X∥ is an epimorphism, (4.60)

where we call e ∶ U → V an epimorphism if, for any type W and any two functions
f, g ∶ V →W , we have the implication

(∀u. f(eu) = g(eu))→ ∀v. f v = g v. (4.61)

Of course, under function extensionality, e is an epimorphism if and only if, for all
W,f, g, we have

f ○ e = g ○ e→ f = g. (4.62)

A caveat is required. Our definition of epimorphism is the direct naive translation
of the usual 1-categorical notion into type theory. However, the category of types
and functions with propositional equality is not only an ordinary category, but
rather an (ω,1)-category. The definition (4.61) makes sense in the sub-universe
of sets [Uni13, Chapter 10.1], where equalities are propositional. However, the
property of being an epimorphism in our sense is not propositional and it could
rightfully be argued that it might not be the “correct” definition in a context where
not every type is a set, similarly as it can be argued that LEM∞ is a problematic
version of the principle of excluded middle (see [Uni13, Chapter 3]). Despite of
this, we use the notion as we think that it helps providing an intuitive meaning
to the plain type expression (4.61).

A Lemma 4.3.4. Let Y be a type. If the map ∣−∣ ∶ (y1 = y2) → ∥y1 = y2∥ is an
epimorphism for any points y1, y2 ∶ Y , then Y is a set.

Proof. Assume Y, y1, y2 are given. Define two functions

f, g ∶ ∥y1 = y2∥ → Y (4.63)

by

f(q) ∶≡ y1, (4.64)
g(q) ∶≡ y2, (4.65)

that is, f and g are constant at y1 and y2, respectively.
With these concrete choices, our assumption (4.61) with e ≡ ∣−∣ becomes

(y1 = y2 → y1 = y2)→ (∥y1 = y2∥ → y1 = y2) (4.66)

which, of course, implies
∥y1 = y2∥ → y1 = y2. (4.67)

The statement of the lemma then follows from Proposition 3.1.10.

In the following statement, we include the theorem about decidable equality
from above again to directly compare it with the just established result:

63

4. Anonymous Existence

A Proposition 4.3.5. In basic MLTT with weak propositional truncation,

1. if ∣−∣ ∶ X → ∥X∥ is a split epimorphism for every X, then all types have
decidable equality

2. if ∣−∣ ∶X → ∥X∥ is an epimorphism for every X, then all types are sets.

Proof. The first part is a reformulation of Proposition 4.3.2, while the second part
is a corollary of Lemma 4.3.4.

4.3.2 Merely Inhabited and Populated

Assume that the second implication can be reversed, meaning that we have

∀(X ∶ U). ⟨⟨X⟩⟩→ ∥X∥. (4.68)

Repeated use of the Fixed Point Lemma leads to a couple of interesting logically
equivalent statements.

In the previous subsection, we have discussed that we cannot expect every type
to have split support. However, a weaker version of this is provable:

A Lemma 4.3.6. For every type X, the statement that it has split support is
populated,

∀(X ∶ U). ⟨⟨∥X∥ →X⟩⟩. (4.69)

To demonstrate the different possibilities that the logically equivalent formu-
lations of populatedness offer, we want to give three different proofs. We have
formalised all three proofs in the electronic appendix. The first one uses Defini-
tion 4.2.1:

First proof. Assume we are given a constant endofunction f on ∥X∥ →X. We need
to construct a fixed point of f , or correspondingly, any inhabitant of ∥X∥ → X.
By Theorem 4.1.4, a constant function g ∶X →X is enough for this. Given x ∶X,
we may apply f on the function that is everywhere x, yielding an inhabitant of
∥X∥ →X. Applying it on ∣x∣ gives an element of X, and we define g(x) to be this
element. The proof that that f is constant immediately translates to a proof that
g is constant.

Alternatively, we can use the logically equivalent formulation of populatedness,
proved in Proposition 4.2.5:

Second proof. Assume P is a proposition and we have a proof of

P ←→ (∥X∥ →X). (4.70)

Applying Proposition 4.2.5, it suffices to show P . The logical equivalence above
immediately provides an inhabitant of X → P , and, by the rules of the proposi-
tional truncation, therefore ∥X∥ → P . Assume ∥X∥. We get P , thus ∥X∥ → X

with the above equivalence, and therefore X (using the assumed ∥X∥ again). This
shows ∥X∥ →X, and consequently, P .

64

4.3. Comparison of Notions of Existence

For yet another and possibly the most elegant proof, we may use that ⟨⟨−⟩⟩ can
be written in terms of ∥−∥.
Third proof. Using Lemma 4.2.4 (direction (3)⇒ (1)), the statement that needs
to be shown becomes

(∥∥X∥ →X∥ → ∥X∥ →X)→ (∥X∥ →X) , (4.71)

which is immediate.

The assumption that populatedness and mere inhabitance are equivalent has
a couple of “suspicious” consequences, as we want to show now.

A Proposition 4.3.7. In MLTT with weak propositional truncation, the follow-
ing are logically equivalent:

1. every populated type is merely inhabited,

∀(X ∶ U). ⟨⟨X⟩⟩→ ∥X∥ (4.72)

2. every type merely has split support,

∀(X ∶ U). ∥∥X∥ →X∥ (4.73)

3. every proposition is projective in the following sense:

∀(P ∶ U). isPropP → ∀(Y ∶ P → U). (Πp∶P ∥Y (p)∥)→ ∥ΠP Y ∥ (4.74)

(note that this is the axiom of choice AC−1 (Definition 2.3.7) for propositions,
without the requirement that Y is a family of sets)

4. ⟨⟨−⟩⟩ ∶ U → U is functorial in the sense that

∀(X Y ∶ U). (X → Y)→ (⟨⟨X⟩⟩→ ⟨⟨Y ⟩⟩), (4.75)

where the terminology functorial is justified at least in the presence of func-
tion extensionality which implies that ⟨⟨X⟩⟩→ ⟨⟨Y ⟩⟩ is propositional, ensuring
⟨⟨g ○ f⟩⟩ = ⟨⟨g⟩⟩ ○ ⟨⟨f⟩⟩.

Proof. We show all the implications that we know nice arguments for, and those
are sufficient (and even more than necessary) to prove the theorem.

The equivalence of the first two points follows easily from what we already
know. (1)⇒ (2) is an application of Lemma 4.3.6, while (2)⇒ (1) follows easily
from Lemma 4.2.4.

Regarding the equivalence of the first and the last point, (1)⇒(4) is immediate
by functoriality of ∥−∥. Turned around, if (4) holds, the map ∣−∣ gives rise to a
function ⟨⟨X⟩⟩ → ⟨⟨∥X∥⟩⟩, and for any propositional P , the types P and ⟨⟨P ⟩⟩ are
equivalent.

65

4. Anonymous Existence

Let us now show (1)⇒ (3). Let P be some proposition and Y ∶ P → U some
family of types. If we assume (1), it is then enough to prove

Πp∶P ∥Y (p)∥ → ⟨⟨ΠP Y ⟩⟩. (4.76)

By Lemma 4.2.4, it is enough to show

Πp∶P ∥Y (p)∥ → (∥ΠP Y ∥ → ΠP Y)→ ΠP Y. (4.77)

We can reorder the assumptions of this type. In particular, we may move the very
last assumed point in P to the beginning and thus transform the type (4.77) into

Πp0∶P (Πp∶P ∥Y (p)∥ → (∥ΠP Y ∥ → ΠP Y)→ Y (p0)). (4.78)

Recall the principle of the neutral contractible exponent, Lemma 2.2.9. It allows
us to replace ΠP Y by Y (p0) and Πp∶P ∥Y (p)∥ by ∥Y (p0)∥, and (4.78) becomes the
trivially inhabited type

Πp0∶P (∥Y (p0)∥ → (∥Y (p0)∥ → Y (p0))→ Y (p0)). (4.79)

(3)⇒ (2) can be seen easily by taking P to be ∥X∥ and Y to be constantly
X.

We conjecture that Proposition 4.3.7 can be used to show that

∀(X ∶ U). ⟨⟨X⟩⟩→ ∥X∥ (4.80)

is not derivable in MLTT with weak propositional truncation. Consider the third
of the four statements that we prove to be logically equivalent. When Y (p) is a
set with exactly two elements for every p ∶ P , this amounts to the world’s simplest
axiom of choice [FŠ82]. There are details that have yet to be checked, but we
think that this principle fails in some toposes that model MLTT.

4.3.3 Populated and Non-Empty

If we can reverse the last implication of the chain, we have

∀(X ∶ U).¬¬X → ⟨⟨X⟩⟩. (4.81)

To show that this is not derivable, we show that it would imply LEM−1, a con-
structive taboo.

A Proposition 4.3.8. With function extensionality, the following implication
holds:

(∀(X ∶ U).¬¬X → ⟨⟨X⟩⟩) → LEM−1. (4.82)

66

4.3. Comparison of Notions of Existence

Proof. Assume P is a proposition. Then, so is the type P + ¬P : assume we have
two inhabitants. Each of them can either come from an inhabitant of P or from an
inhabitant of ¬P , giving us four cases. If both inhabitants come from P , they are
equal as P is propositional. The same argument works if both come from ¬P , as
¬P is propositional under function extensionality. In the remaining two cases, we
have a proof of both P and ¬P , yielding a contradiction. Therefore, the identity
function on P + ¬P is constant.

It is also straightforward to construct a proof of ¬¬(P + ¬P). By the assump-
tion, this means that P +¬P is populated, implying by definition that the identity
function has a fixed point. But finding a fixed point of the identity function is the
same as proving P + ¬P .

It is well-known that LEM−1 implies ¬¬P → P for any proposition. Using
Proposition 4.2.6, this shows the other direction of Proposition 4.3.8. Thus, we
have derived:

A Corollary 4.3.9. Under the assumption of function extensionality, LEM−1
holds if and only if all nonempty types are populated.

67

Chapter 5

Weakly Constant Functions

In this chapter, we will see why the attribute weak in the definition of constancy,
as given in Definition 3.1.2, is justified. Therefore, we do not always drop the
attribute any more, although weak constancy is still the only notion of constancy
that we consider.

In Theorem 4.1.4 we have seen that a weakly constant function f ∶ X → X

implies that X has split support. On the other hand, what we have done is
actually slightly more: the constructed map f ∶ ∥X∥ →X has the property that

f ○ ∣−∣ ∶X →X (5.1)

is pointwise equal to f .
It seems a natural question to ask whether the fact that f is an endofunction

is required: given a weakly constant function f ∶X → Y , can it be factored in this
sense through ∥X∥?

Some of our results need function extensionality, in which cases we try to
make that fact clear. Most contents of this rather short chapter are part of our
publication [KECA14].

5.1 The Limitations of Weak Constancy

Let us start by giving a precise definition.

A Definition 5.1.1. Given a function f ∶X → Y between two types, we say that
f factors (propositionally) through a type Z if there are functions f1 ∶X → Z and
f2 ∶ Z → Y such that

Πx∶X f2(f1(x)) =Y f(x). (5.2)

In particular, we say that f factors (propositionally) through ∥X∥ if there is a
function f ∶ ∥X∥ → Y such that

Πx∶X f(∣x∣) =Y f(x). (5.3)

69

5. Weakly Constant Functions

We only consider propositional factorisation in this chapter, and we will drop
the attribute propositionally and just say that a function factors. We will later
see that, assuming judgmental computation for ∥−∥, we can always construct a
judgmental factorisation from a propositional one (see Section 6.3).

We could indeed assume that a constant function f ∶ X → Y factors through
∥X∥ if we expect ∥X∥ to be a quotient of X in the more “traditional” sense. Before
the development of HoTT, the quotient X/R of X by a relation R ∶X×X → U was
defined to have an eliminator that allows to construct a function f ∶ (X/R) → Y

whenever a map f ∶X → Y with the property

∀(x, y ∶X).R(x, y)→ f(x) = f(y) (5.4)

is given (see [Hof95; AAL11; Li15]). If we want to view ∥X∥ as X divided by the
chaotic relation that relates each pair of elements of X, this elimination principle
amounts exactly to the extension of a constant function X → Y to a function
∥X∥ → Y . This is indeed the case under the assumption of unique identity proofs
as we will see later (Proposition 5.2.3).

However, the homotopical view suggests that it is unreasonable to expect
such an extension property in the general case precisely because we have no
way of knowing what happens on the (higher) path spaces. Consider the case
that X is the coproduct of three propositions, X ≡ P + Q + R. Let us write
in1 ∶ P → X, in2 ∶ Q → X, in3 ∶ R → X for the three embeddings. Assume that, for
some function f ∶X → Y , we have three “potential paths”

c12 ∶ Πp∶PΠq∶Qf(in1p) = f(in2q), (5.5)
c23 ∶ Πq∶QΠr∶Rf(in2q) = f(in3r), (5.6)
c13 ∶ Πp∶PΠr∶Rf(in1p) = f(in3r). (5.7)

A priori, we do not know which of P , Q and R are inhabited so we do not know
which of these paths actually exists. Exploiting that P , Q and R are propositional,
it is straightforward to construct a proof that f is constant out of this data.
Further, we get by the fact that ∥X∥ is propositional the proofs

h12 ∶ Πp∶PΠq∶Q ∣in1p∣ = ∣in2q∣, (5.8)
h23 ∶ Πq∶QΠr∶R ∣in2q∣ = ∣in3r∣, (5.9)
h13 ∶ Πp∶PΠr∶R ∣in1p∣ = ∣in3r∣. (5.10)

Let us now assume that there is a way to factor any generic constant function
through the propositional truncation.

In our situation, we then get f ∶ ∥X∥ → Y . If we are further given inhabitants
p ∶ P , q ∶ Q and r ∶ R, our situation is pictured in Figure 5.1. In that figure, the
arrows are the equality proofs, where we omit the arguments of cij and hij. The
three unlabelled lines which “connect” the outer and the inner triangle are given
by the fact that f and f ○ ap− are pointwise equal.

70

5.1. The Limitations of Weak Constancy

f(in1p)

f(in2q) f(in3r)

f(∣in1p∣)

f(∣in2q∣) f(∣in3r∣)

c12

c23

c13

apf(∣h13∣)

apf(∣h23∣)

apf(∣h13∣)

Figure 5.1: Factorising a non-coherently constant function

Further, note that h12 h23 = h13 is automatically satisfied since ∥X∥ is propos-
itional. Looking at the smallest triangle in the above diagram we can conclude
that it commutes due to the usual functoriality of ap (see [Uni13, Lemma 2.2.2]),
which means there is a proof of

apf(h12) apf(h23) = apf(h31). (5.11)

The large triangle will in general not commute as identity proofs are not necessarily
unique. If we only regard those parts of the diagram that do not mention the
element r, we get a quadrangle in the top-left part. A similar observation holds
for p and q so that we have three such quadrangles.

Let us go back one step. Assume that we are given the function f with the
cij and (only) two points p ∶ P and q ∶ Q. The path type f(in1p) = f(in2q) is
inhabited by c12(p, q). However, we should not expect to be able to construct an
inhabitant that is not propositionally equal to this one. If we regard P and Q as
two copies of the unit type, the only paths that we are able to construct are built
out of refl and the cij. We further argue that the terms c23 and c13 can not be
used for a generic R, as we can not know whether they actually provide any data

71

5. Weakly Constant Functions

(R could be empty). Therefore, if there is a way to construct the factorisation of
f , we expect it to not give us a “new” proof of f(in1p) = f(in2q), i.e. we expect
the quadrangle to commute, and the other quadrangles by analogous arguments.
However, this contradicts the observation that the large triangle will in general
not commute.

While this is not a rigorous argument, it hopefully provides some intuition.
It seems that such a factorisation would need to make some form of choice on
the path spaces if the constancy proof does not satisfy certain coherence laws. In
general, we cannot make such a non-canonical choice. We do not know whether
the assumption that every constant function factors through the propositional
truncation makes it possible to derive a clearer version of choice, such as LEM−1
or the axiom of choice AC−1 (see Definition 2.3.7). This question is still open (see
also the concluding remarks in the final chapter). A meta-theoretic proof sketch
that the factorisation is not possible was described to us by Shulman in an online
discussion [Hmail].

Remark 5.1.2. In later parts of this thesis, there are two more results that
are directly related to the concrete problem of factoring a constant function
f ∶ (P +Q +R)→ Y through the propositional truncation:

1. In Chapter 8, we will prove that coherently constant functions X → Y cor-
respond to functions ∥X∥ → Y . What we are given in the situation above is
only a weakly constant function, and what is lacking is exactly its coherence.

2. In Theorem 5.2.6, we will see that the factorisation of a weakly constant
function X → Y is possible if X is the sum of only two propositions.

The connection between (1) and (2), and the case X ≡ P +Q+R considered above,
is the following. In the case of (2), the general coherence conditions of (1) do not
hold automatically, but the proof of weak constancy can be replaced by a coherent
proof. This is essentially the idea of Theorem 5.2.6, see also the analysis at the
end of Chapter 5. In the case that X is the sum of three propositions, such a
coherent replacement is not possible in general. However, one single coherence
condition (the one given in Proposition 8.1.2) would be enough to construct such
a coherent replacement, and consequently the factorisation.

5.2 Factorisation for Special Cases

Even though we cannot factor weakly constant functions in general, we can do it
in some interesting special cases.

Constructing a function out of the propositional truncation of a type is some-
what tricky. A well-known [Uni13, Chapter 3.9] strategy for defining a map
∥X∥ → Y is to construct a proposition P together with functions X → P and
P → Y . We have already implicitly done this in previous sections. We can make

72

5.2. Factorisation for Special Cases

this method slightly more convenient to use if we observe that P does not need to
be a proposition, but it only needs to be a proposition under the assumption that
X is inhabited:

A Principle 5.2.1. Let X,Y be two types. Assume P is a type such that P → Y .
If X implies that P is contractible, then ∥X∥ implies Y . In particular, if f ∶X → Y

is a function that factors through P , then f factors through ∥X∥.

Let us shortly justify this principle. Assume that P has the assumed property.
Utilizing that the statement that P is contractible is propositional itself, we see
that ∥X∥ is sufficient to conclude that P is a proposition. This allows us to
prove ∥X∥ × P to be propositional. The map P → Y clearly gives rise to a map
∥X∥ × P → Y , and the map X → ∥X∥ × P is given by ∣−∣ and the fact that P is
contractible under the assumption X.

There are several situations in which this principle can be applied. The follow-
ing statement does not need it as it is mostly a restatement of our previous result
from Section 4.1.

A Proposition 5.2.2. A weakly constant function f ∶X → Y factors through ∥X∥
in any one of the following cases, of which the equivalent (3) and (4) generalise
all others:

1. X is empty, i.e. X → 0

2. X is inhabited, i.e. 1→X

3. X has split support, i.e. ∥X∥ →X

4. X is collapsible, i.e. has a weakly constant endofunction

5. we have any function g ∶ Y →X.

Proof. (1) and (2) both imply (3). Further, (5) implies (4) as the composition g○f
is a constant endofunction on X. The equivalence of (3) and (4) is Theorem 4.1.4.
Thus, it is sufficient to prove the statement for (3), so assume s ∶ ∥X∥ → X. The
required conclusion is then immediate as f is pointwise equal to the composition
of ∣−∣ ∶X → ∥X∥ and f ○ s.

Our next statement implies what we mentioned at the beginning of Section 5.1:
under the assumption of unique identity proofs, the factorisation is always possible.
This will be hugely generalised in Chapter 8.

A Proposition 5.2.3. Let X,Y be again two types and f ∶ X → Y a constant
function. If Y is a set, then f factors through ∥X∥.

73

5. Weakly Constant Functions

Proof. We use Principle 5.2.1 (or actually rather the comment preceding it, the
strengthened version is not needed here) and define

P ∶≡ Σ (y ∶ Y) . ∥Σ (x ∶X) . f(x) =Y y∥. (5.12)

We can see that f factors through P from the following diagram:

X Y

P

f

λx.(f(x), ∣x, reflf(x)∣) fst

Given two elements (y1, p1) and (y2, p2) in P , we want to show that they are
equal. Let us once more construct the equality via giving a pair of paths. For
the second component, there is nothing to do as p1 and p2 live in propositional
types. To show y1 =Y y2, observe that this type is propositional as Y is a set and
we may thus assume that we have inhabitants (x1, q1) ∶ Σ (x1 ∶X) . f(x1) =Y y1
and (x2, q2) ∶ Σ (x2 ∶X) . f(x2) =Y y2 instead of p1 and p2. But f(x1) = f(x2) by
constancy, and therefore y1 = y2.

In the setting of Proposition 5.2.3, we can say even more:

Proposition 5.2.4. Assuming function extensionality, the function

τ ∶ (Σ (f ∶X → Y) . constf) → (∥X∥ → Y), (5.13)

as constructed in Proposition 5.2.3, is an equivalence.

Proof. We claim that the inverse of τ is given by

σ ∶ (∥X∥ → Y) → (Σ (f ∶X → Y) . constf) (5.14)

σ(g) ∶≡ (g ○ ∣−∣ , λ(x1, x2 ∶ A).apg(h∣x1∣,∣x2∣)) , (5.15)

where h∣x1∣,∣x2∣ ∶ ∣x1∣ = ∣x2∣ comes from the axiom that ∥X∥ is propositional. Assume
f ∶ A→ B and c ∶ constf . We first need to show (f, c) = σ(τ(f, c)). By the assumed
function extensionality, the second components live in propositional types, and
equality of the first components is exactly the statement that we have factored f

through ∥X∥, i.e. Proposition 5.2.3.
The missing part is to show that τ(σ(g)) = g for any g ∶ ∥X∥ → Y , i.e. showing

that, if we factor g ○ ∣−∣ through ∥X∥, we get g. But if we factor g ○ ∣−∣ (with the
canonical constancy proof) through ∥X∥, we get a function which, when applied
on ∣x∣ for any x ∶ X, takes g(∣x∣) as value. This is enough by function extension-
ality and the induction principle of ∥−∥, using once more that equality in Y is
propositional.

74

5.2. Factorisation for Special Cases

Proposition 5.2.4 is the first non-trivial special case of the “general universal
property of the propositional truncation” that we present in Chapter 8. We will
see a different proof for the same statement in Proposition 8.1.2.

Let us mention the following application of Proposition 5.2.3:

Example 5.2.5 (Elimination rule for set-quotients). The operation of quotienting
by an equivalence relation was considered long before the development of HoTT,
in extensional (see [Con+86]) as well as in intenstional type theories [Hof95]. For-
mulated in the theory discussed here (see [Uni13, Chapter 6.10]), we can consider
a set A and a (propositional) equivalence relation ∼ ∶ A×A→ U−1. One can regard
a (propositionally-valued) family P ∶ A→ U−1 as an equivalence class if

isEquivClass(P) ∶≡ ∥Σ (x ∶ A) .∀(y ∶ A). (x ∼ y)↔ P (y)∥. (5.16)

Then, one may define the quotient A/ ∼ as Σ (P ∶ A→ U−1) . isEquivClass(P). This
type-theoretic version of the well-known construction via equivalence classes is
due to Voevodsky [Voe10b; Voe13b, file hSet.v] and requires the univalence ax-
iom at least for propositional types. Using Proposition 5.2.3, we can derive the
correct elimination principle. What we do is essentially Voevodsky’s construction
presented as an application of our lemma.

Let us assume that B is some set and f ∶ A → B a function that “respects”
the relation ∼, in the sense that ∀(xy ∶ A). x ∼ y → f(x) = f(y). The canonical
elimination property of the quotient that one would expect is then that f can be
extended to a function (A/ ∼)→ B:

A B

A/ ∼

f

a↦ (λy.a ∼ y , ∣a, λy.(id, id)∣)

This is indeed the case: assume P ∶ A→ U−1. There is a canonical function

(Σ (x ∶ A) .∀(y ∶ A). (x ∼ y)↔ P (y)) → B, (5.17)

given by composing the first projection with f . Using that f respects ∼, it is easy
to prove that the function (5.17) is weakly constant, and by Proposition 5.2.3 we
thus get isEquivClass(P)→ B. Summarised, we have (A/ ∼)→ B as required.

For more on quotients in intensional type theories, we refer to the PhD thesis
of Li [Li15].

Our last example of a special case in which the factorisation can be done is
more involved. However, it is worth the effort as it provides valuable intuition and
an interesting application, as we will discuss below.

75

5. Weakly Constant Functions

A Theorem 5.2.6. Assume that function extensionality holds. If f ∶ X → Y is
weakly constant and X is the coproduct of two propositional types, then f factors
through ∥X∥.

The following proof greatly benefits from the equivalence reasoning style, short-
ening it significantly compared to the argument that I had originally used. This
simplification was suggested by Sattler in a private communication with me in
July 2013.

Proof of Theorem 5.2.6. Assume X ≡ Q + R, where Q and R are propositional
types. Define P to be the following Σ-type with four components:

P ∶≡ Σ (y ∶ Y)
Σ (s ∶ Πq∶Q y = f(inl q))
Σ (t ∶ Πr∶R y = f(inr r))
(Πq∶QΠr∶R s(q)−1 t(r) = c(inl q , inr r)) .

(5.18)

The proof is done in the equivalence reasoning style. In order to apply Prin-
ciple 5.2.1 we need to construct a function P → Y and a proof that X implies that
P is contractible.

The function P → Y is, of course, given by a simple projection. For the other
part, let a point of X be given. Without loss of generality, we assume that this
inhabitant is inl q0 with q0 ∶ Q. While the “naive” approach of finding a point that
is equal to any other given inhabitant can be used to show that P is contractible,
the following construction of a chain of equivalences yields a much nicer proof.

Let us first use the property of neutral contractible exponents (Lemma 2.2.9):
instead of quantifying over all elements of Q, it suffices to only consider q0. Ap-
plying this twice shows that P is equivalent to the following type:

Σ (y ∶ Y)
Σ (s ∶ y = f(inl q0))
Σ (t ∶ Πr∶R y = f(inr r))
(Πr∶R s−1 t(r) = c(inl q0 , inr r)) .

(5.19)

The first two components together form a singleton, showing that this part is
contractible with the canonical inhabitant (f(inl q0), refl). Applying the principle
of neutral contractible base spaces (again Lemma 2.2.9), the above type further
simplifies to

Σ (t ∶ Πr∶R f(inl q0) = f(inr r))
(Πr∶R refl−1 t(r) = c(inl q0 , inr r)) .

(5.20)

We apply the distributivity law (Lemma 2.2.12) and use that refl is neutral and
self-inverse and neutral with respect to to make a further transformation to

Πr∶RΣ (t ∶ f(inl q0) =B f(inr r))
(t = c(inl q0 , inr r)) .

(5.21)

76

5.2. Factorisation for Special Cases

For any r ∶ R, the dependent pair part is contractible as it is a singleton, so that
function extensionality implies the required result.

Theorem 5.2.6 was inspired by a discussion on the homotopy type theory mailing
list [Hmail]. Shulman observed that, for two propositions Q and R, their join Q∗R
[Uni13, Chapter 6.8], defined as the (homotopy) pushout of the diagram

Q
fst
←Ð Q ×R

snd
Ð→ R, (5.22)

is equivalent to ∥Q +R∥. This means that, in the presence of higher inductive
types, the type ∥Q +R∥ has the (seemingly) stronger elimination rule of the join.
Escardó then asked whether higher inductive types do really improve the elimin-
ation properties of ∥Q +R∥ in this sense. This was discussed shortly before we
could answer the question negatively with the result of Theorem 5.2.6: its state-
ment about ∥Q +R∥ corresponds exactly to the elimination property of Q ∗ R.
Thus, the join of two propositions already exists in a minimalistic setting that
involves truncation but no other higher inductive types.

It is interesting to analyse how the factorisations that we have constructed in
Propositions 5.2.2 and 5.2.3 and Theorem 5.2.6 bypass the difficulties discussed in
Section 5.1. As we will prove in Chapter 8, in general we need an infinite tower
of coherence conditions in order to factor a weakly constant function through the
propositional truncation. In the cases that we have solved in the current chapter,
we can construct coherent constancy proofs for the following reasons:

1. If the codomain of a function is a set as in Proposition 5.2.3, the proof of
weak constancy is automatically coherent.

2. If, as in Theorem 5.2.6, the domain is the sum Q+R of two propositions, the
constancy proof is still not coherent in general. What we exploit is essentially
that it can be replaced by a coherent one: given f ∶ Q+R → Y and c ∶ constf ,
a coherent c′ ∶ constf can be constructed by mapping (inl q1, inl q2) to the
proof that is induced by the fact that Q is propositional, and similarly in
the case of (inr r1, inr r2). In the more interesting cases, (inl q, inr r) is sent to
c(inl q, inl r), and (inr r, inl q) to c(inl q, inr r)−1.

3. Consider a constant function f ∶X → Y together with any function g ∶ Y →X

as in Proposition 5.2.2. The function f does induce some form of asymmetry
on the type Y . Usually, this asymmetry seems to be too weak to be useful,
but the function g “sends it back” to the type X where it does allow us to
make a choice of a point, namely the fixed point of the composition.

77

Chapter 6

On the Computation Rule of the

Propositional Truncation

Homotopy type theory as introduced in the standard reference ([Uni13, Chapter
3.7]) has propositional truncations with the judgmental computation (β-) rule for
the recursor,

rectr(P,h, f, ∣x∣) ≡β f(x) (6.1)

for any function f ∶ X → P where x ∶ X and P is propositional with proof h, as
well as the analogous rule for the induction principle,

indtr(P,h, f, ∣x∣) ≡β f(x) (6.2)

(were P might now depend on ∥X∥, and so on). In our discussions, we did not
assume those two strict equations to hold so far. This is not because we think a
theory without them is to be preferred, it is because we simply did not need them.
We agree with the very common view (see the introduction of [Uni13, Chapter 6])
that judgmental computation rules are often advantageous, not only for trunca-
tions, but for higher inductive types (see Section 2.3.2) in general. Without them,
some expressions will involve a ridiculous amount of transporting, just to make
them type check, and the “computation” will have to be done manually in order to
simplify terms. An interesting aspect is that the propositional induction principle
follows from the propositional recursion principle (Lemma 2.3.4), but an induction
rule with the desired judgmental behaviour can (I believe) not be derived even if
(6.1) holds. In particular, the term constructed in Lemma 2.3.4 does not have the
expected judgmental computation rule.

Having said this, the judgmental computation rules do have some other con-
sequences which we find interesting and which we discuss in this chapter. So far,
(nearly) all our developments have been internal to type theory. This is only par-
tially the case for the results from this section, as any statement saying that some
equation holds judgmentally is meta-theoretic. We thus can not implement such
a statement as a type in a proof assistant like Agda, but we can still use Agda to

79

6. On the Computation Rule of the Propositional Truncation

check our claims; for example, if

p ∶ x = y (6.3)
p ∶≡ reflx (6.4)

type checks, we may conclude that the equality does hold judgmentally. The
results marked with the symbol A are “formalised” in this sense; it is probably
more accurate to say “checked” in this case.

This chapter is part of our publication [KECA14].

6.1 The Interval

The interval I [Uni13, Chapter 6.3] as a higher inductive type is a type in homotopy
type theory that consists of two points i0, i1 ∶ I and a path seg ∶ i0 =I i1 between
them. Its recursion, or non-dependent elimination principle says: Given

Y ∶ U (6.5)
y0 ∶ Y (6.6)
y1 ∶ Y (6.7)
p ∶ y0 = y1, (6.8)

there exists a function f ∶ I→ Y such that

f(i0) ≡ y0 (6.9)
f(i1) ≡ y1 (6.10)
apf(seg) = p. (6.11)

The induction principle is the corresponding dependent version. Assume

Y ∶ I→ U (6.12)
y0 ∶ Y (i0) (6.13)
y1 ∶ Y (i1) (6.14)
p ∶ y0 =Yseg y1. (6.15)

Then, there exists a dependent function f ∶ ΠIY such that

f(i0) ≡ y0 (6.16)
f(i1) ≡ y1 (6.17)
apdf(seg) = p. (6.18)

The interval is a contractible type and as such equivalent to the unit type. How-
ever, this does not make it entirely boring; it is the judgmental equalities that
matter. Note that the computation rules for the points are judgmental (6.9, 6.10,
6.16, 6.17), while the rules for the paths (6.11,6.18) are only propositional.

We will now show that ∥2∥ can be regarded as the interval.

80

6.1. The Interval

A Proposition 6.1.1. ∥2∥ can be understood as the interval, with ∣02∣ as i0, ∣12∣
as i1 and htr ∣02∣,∣12∣ as seg. In particular, the recursion and the induction principles
of the interval are derivable. The recursion principle of the interval satisfies the
expected judgmental computation rule if the recursion principle of the truncation
does (see (6.1)), and the analogue relation holds for the induction principles (see
(6.2) for the case of the truncation).

Proof. We first show that the recursion principle is derivable which already con-
tains contains the idea. We need to show that, under the assumptions 6.5-6.8,
there is a function f ∶ ∥2∥ → Y such that

f(∣02∣) ≡ y0 (6.19)
f(∣12∣) ≡ y1 (6.20)
apf(htr ∣02∣,∣12∣) = p. (6.21)

Let us define

g ∶ 2→ Σ (y ∶ Y) . y0 = y (6.22)
g(02) ∶≡ (y0, refl) (6.23)
g(12) ∶≡ (y1, p). (6.24)

As Σ (y ∶ Y) . y0 = y is contractible, g can (via the recursion principle of the trunca-
tion) be extended to a function g ∶ ∥2∥ → Σ (y ∶ Y) . y0 = y, and we define f ∶≡ fst○g.
It is easy to check that f has indeed the required judgmental properties (6.19)
and (6.20):

f(∣02∣) ≡ fst(g(∣02∣)) ≡ fst(g(02)) ≡ fst(y0, refl) ≡ y0 (6.25)
f(∣12∣) ≡ fst(g(∣12∣)) ≡ fst(g(12)) ≡ fst(y1, p) ≡ y1. (6.26)

The propositional equality (6.21) is only slightly more difficult: First, using the
definition of f and a standard functoriality property of ap (see [Uni13, Lemma
2.2.2 (iii)]), we observe that apf(htr ∣02∣,∣12∣) may be written as

apfst(apg(htr ∣02∣,∣12∣)). (6.27)

But here, the path apg(htr ∣02∣,∣12∣) lives in the contractible type (y0, refl) = (y1, p)
(note that both terms inhabit a singleton) and thereby unique. In particular, it is
(propositionally) equal to the path which is built out of two components, the first
of which is p, and the second is a canonically constructed inhabitant of p∗(refl) = p

(this is Lemma 2.2.1 with h ≡ λy.y0, k ≡ id, t ≡ p, p ≡ refl).
The second part, namely the induction principle, uses the the dependent ver-

sion of the same construction. However, it adds some technical difficulties which
we want to spell out. Assume we are given

Y ∶ ∥2∥ → U (6.28)
y0 ∶ Y (∣02∣) (6.29)
y1 ∶ Y (∣12∣) (6.30)
p ∶ y0 =Yhtr ∣02 ∣,∣12 ∣ y1. (6.31)

81

6. On the Computation Rule of the Propositional Truncation

We define

g ∶ Πx∶2 Σ (y ∶ Y (∣x∣)) . y0 =Yhtr ∣02 ∣,∣x∣ y (6.32)

g(02) ∶≡ (y0, refl) (6.33)
g(12) ∶≡ (y1, p). (6.34)

This definition type checks due to the definition of the “path over” construction
and the codomain of g is contractible as before (see Section 2.2.1). We use the
induction principle of the truncation to construct

g ∶ Πz∶∥2∥ Σ (y ∶ Y (z)) . y0 =Yhtr ∣02 ∣,z y (6.35)

and define f ∶≡ fst ○ g just as before. Literally the same calculations (6.25, 6.26)
can be done to verify that f has the required judgmental properties (6.16, 6.17).

Finally, we need to show apdf(htr ∣02∣,∣12∣) = p, and we note that (by functoriality
of apd) the first expression equals

apfst(apdg(htr ∣02∣,∣12∣)), (6.36)

with

apdg(htr ∣02∣,∣12∣) ∶ (y0, refl) =
λz.Σ(y∶Y (z)). y0=

Y
htr ∣02 ∣,z

y

htr ∣02 ∣,∣12 ∣
(y1, p). (6.37)

In principle, it would be possible to mimic the argument that we used for the non-
dependent case. However, the type expression in (6.37) above is fairly involved,
making such a treatment laborious if done carefully. Instead, we present a different
way. We first generalise the statement slightly and then use path induction twice,
enabling us to have refl in the place of htr ∣02∣,∣12∣ as well as in the place of p. In
detail, we prove the following statement:

Claim. Let P be a proposition (where, for any two points q, r ∶ P , we write hq,r
for the corresponding proof of q = r) and Y ′ ∶ P → U be a type family. Further,
assume

z,w ∶ P (6.38)
t ∶ z = w (6.39)
y′0 ∶ Y (z) (6.40)
y′1 ∶ Y (w) (6.41)

p′ ∶ y′0 =Y
′

t y′1. (6.42)

as well as

g′ ∶ Πv∶P Σ (y ∶ Y ′(v)) . y0 =Y ′hz,v
y. (6.43)

Then, we have
apfst(apdg′(hz,w)) = p′. (6.44)

82

6.2. Function Extensionality

From this claim, we can recover our actual goal by setting P ∶≡ ∥2∥, z ∶≡ ∣02∣,
w ∶≡ ∣12∣, t ∶≡ htr ∣02∣,∣12∣ , y

′
0 ∶≡ y0, y′1 ∶≡ y1, p′ ∶≡ p and g′ ∶≡ g.

Let us prove the claim: By path induction, it is enough to consider the case
z ≡ w and t ≡ refl. This makes p′ an inhabitant of the “ordinary” equality type
y′0 = y′1. Using path induction again, we may assume y′0 ≡ y′1 and p′ ≡ refl. What is
left to show is

apfst(apdg′(hw,w)) = refl. (6.45)

As P (and thereby w = w) is propositional, we may replace hw,w by reflw which
makes the equality (6.45) hold judgmentally.

6.2 Function Extensionality

It is known that the interval I with its judgmental computation rules implies
function extensionality. We may therefore conclude that propositional truncation
is sufficient as well.

A Lemma 6.2.1 (Shulman [Shu11]). In a type theory with I and the judgmental
η-law for functions (which we assume), function extensionality is derivable.

Proof. Assume X,Y are types and f, g ∶ X → Y are functions with the property
h ∶ Πx∶Xf(x) = g(x). Using the recursion principle of I, we may then define a
family

k ∶X → I→ Y (6.46)

of functions, indexed over X, such that k(x, i0) ≡ f(x) and k(x, i0) ≡ g(x) for
all x ∶ X; of course, we use h(x) as the required family of paths. Switching the
arguments gives a function

k′ ∶ I→X → Y (6.47)

with the property that k′(i0) ≡ f and k′(i1) ≡ g (by η for functions), and thereby
apk′(seg) ∶ f = g.

The combination of Proposition 6.1.1 and Lemma 6.2.1 implies:

A Corollary 6.2.2. From propositional truncation with judgmental β and judg-
mental η for functions, function extensionality can be derived.

6.3 Judgmental Factorisation

The judgmental computation rules of ∥−∥ also allows us to factor any function
judgmentally through the propositional truncation as soon as it can be factored
in any way. This observation is inspired by and a generalisation of the fact that
∥2∥ satisfies the judgmental properties of the interval (Proposition 6.1.1).

83

6. On the Computation Rule of the Propositional Truncation

A Proposition 6.3.1. Assuming that the recursion principle of the truncation
satisfies the judgmental computation rule (6.1), any (non-dependent) function that
factors through the propositional truncation can be factored judgmentally: as-
sume types X,Y and a function f ∶ X → Y between them. Assume that there
is f ∶ ∥X∥ → Y such that

h ∶ Πx∶Xf(x) = f(∣x∣). (6.48)

Then, we can construct a function f ′ ∶ ∥X∥ → Y such that, for all x ∶X, we have

f(x) ≡ f ′(∣x∣), (6.49)

which means that the type Πx∶Xf(x) = f ′(∣x∣) is inhabited by the function that is
constantly refl.

Proof. We define a function

g ∶X → Πz∶∥X∥Σ (y ∶ Y) . y = f(z) (6.50)

g(x) ∶≡ λz. (f(x), h(x) apf(htr ∣x∣,z)) (6.51)

By function extensionality, the codomain of g is contractible, and thus, we can
extend g and get

g ∶ ∥X∥ → Πz∶∥X∥Σ (y ∶ Y) . y = f(z). (6.52)

We define
f ′ ∶≡ λ(z ∶ ∥X∥).fst(g z z) (6.53)

and it is immediate to check that f ′ has the required property:

f ′(∣x∣) ≡ fst(g ∣x∣ ∣x∣) ≡ fst (f(x), h(x) apf(htr ∣x∣,∣x∣)) ≡ f(x). (6.54)

Note that in the above argument we have only used (6.1). We have avoided
(6.2) by introducing the variable z in (6.50), which is essentially a duplication of
the first argument of the function, as it becomes apparent in (6.53).

Furthermore, we have assumed that f is a non-dependent function. The ques-
tion does not make sense if f is dependent in the sense of f ∶ Πx∶XY (x); however,
it does for f ∶ Πz∶∥X∥Y (z). In this case, it seems to be unavoidable to use (6.2),
but the above proof still works with minimal adjustments. We state it for the sake
of completeness.

A Proposition 6.3.2. Let X be a type and Y ∶ ∥X∥ → U a type family. Assume
we have functions

f ∶ Πx∶XY (∣x∣) (6.55)

f ∶ Πz∶∥X∥Y (z) (6.56)

84

6.4. An Invertibility Puzzle

such that
Πx∶X (f(x) =Y (∣x∣) f(∣x∣)) . (6.57)

Then, we can construct a function f ′ ∶ Πz∶∥X∥B(z) with the property that for any
x ∶X, we have the judgmental equality

f(x) ≡ f ′(∣x∣). (6.58)

Proof. Because we allow ourselves to use (6.2) the proof becomes actually simpler
than the proof above. This time, we can define

g ∶ Πx∶XΣ (y ∶ Y) . (y = f(∣x∣)) (6.59)

g(x) ∶≡ (f(x), h(x)) . (6.60)

Using the induction principle, we get

g ∶ Πz∶∥X∥Σ (y ∶ Y) . y = f(z). (6.61)

Then,
λz.fst(g(z)) (6.62)

fulfils the required condition.

6.4 An Invertibility Puzzle

If we only have ∥X∥, we usually do not know an inhabitant of X. It therefore is
a reasonable intuition that

∣−∣ ∶X → ∥X∥ (6.63)

can be understood as an “information hiding” function: a concrete x ∶X is turned
into an anonymous inhabitant ∣x∣ ∶ ∥X∥. While this interpretation is justified to
some degree as long as we think of internal properties, it may be misleading from
a meta-theoretic point of view.

Let us assume the univalence axiom as it allows us to construct some interesting
equalities. We show that, for a non-trivial class of types, the projection map ∣−∣
can be “pseudo-reversed”. For example, there is a term that we call mystN such
that

id′ ∶ N→ N (6.64)
id′(n) ∶≡ mystN(∣n∣) (6.65)

type checks and id′ is the identity function on N, with a proof

p ∶ ∀(n ∶ N). id′(n) = n (6.66)
p ∶≡ λn.refln. (6.67)

85

6. On the Computation Rule of the Propositional Truncation

We think that the possibility to do this is counter-intuitive and surprising. The
term mystN seems to contradict the intuition that ∣−∣ does not make any distinction
between elements of N; it sends any such inhabitant to the unique inhabitant of
∥N∥. We do indeed have the equalities

mystN(∣0∣) ≡ 0 (6.68)
mystN(∣1∣) ≡ 1, (6.69)

and the fact that these are not only propositional, but even judgmental, makes it
even stranger. As we know ∣0∣ =∥N∥ ∣1∣, it might seem that we could prove 0 =N 1

from the equations above. Of course, this is not the case. The sketched proof of
0 =N 1 would work if the type of mystN (which we have not talked about yet) was
∥N∥ → N, but it is not that simple. Let us perform the the construction to see
what happens.1

First, let us state a useful general definition.

A Definition 6.4.1 (Transitive Type). Given a type X, we call it transitive and
write isTransitiveX if it satisfies

Πx,y∶X (X,x) =U● (X,y). (6.70)

This is, of course, where univalence comes into play. It gives us the principle
that a type X is transitive if, and only if, for every pair (x, y) ∶X ×X there is an
automorphism exy ∶X →X such that exy(x) = y.

We have the following examples of transitive types:

A Example 6.4.2. Every type with decidable equality is transitive.

This is because decidable equality on X lets us define an endofunction on
X which swaps x and y, and leaves everything else constant. Instances for this
example include all contractible and, more generally, propositional types, but also
our main candidate, the natural numbers N.

A Example 6.4.3. For any pointed type X with elements x1, x2 ∶X, the identity
type x1 =X x2 is transitive. In particular, the loop space Ωn(X) is transitive for
any pointed type X.

For a proof with the univalence axiom, it is enough to observe that, for
p1, p2 ∶ x1 =X x2, the function λq.q p1−1 p2 is an equivalence with the required
property. Surprisingly, we do not need univalence in the following alternative
proof: Fix x1. For any x2 and p ∶ x1 = x2, the pointed type (x1 = x2, p) is by based
path induction equal to (x1 = x1, reflx1

). The same is true for (x1 = x2, q); hence,
(x1 = x2, p) = (x1 = x2, p). The claim that Ωn(X) is transitive is a special case.2

As mentioned by Andrej Bauer in a discussion on this result [Kra13b], we also
have the following:

1Further discussion can be found at my homotopy type theory blog entry [Kra13b] where I
have presented the result originally.

2This is the proof that is formalised in the electronic appendix.

86

6.4. An Invertibility Puzzle

Example 6.4.4. Any group [Uni13, Definition 6.11.1] is a transitive type.

As for equality tyes, the reason is that there is an inverse operation, such that
the automorphism λc.c a−1 b maps a to b.

Example 6.4.5. If X is any type and Y ∶ X → U is a family of transitive types,
then Πx∶XY (x) is transitive.

In particular, × and → preserve transitivity of types.
We are now ready to construct myst: Assume that we are given a type X. We

can define a map

f ∶X → U● (6.71)
f(x) ∶≡ (X,x). (6.72)

If we know a point x0 ∶X, we may further define

f ∶ ∥X∥ → U● (6.73)

f(z) ∶≡ (X,x0). (6.74)

If X is transitive, we have

Πx∶Xf(x) = f(∣x∣). (6.75)

By Proposition 6.3.1, there is then a function

f ′ ∶ ∥X∥ → U● (6.76)

such that, for any x ∶X, we have

f ′(∣x∣) ≡ f(x) ≡ (X,x). (6.77)

Let us define

mystX ∶ Πz∶∥X∥ fst(f ′(z)) (6.78)

mystX ∶≡ snd ○ f ′. (6.79)

At this point, we can see where the puzzle comes from. The type of mystX is not
just ∥X∥ →X; however, for any x ∶X, the type of f ′(∣x∣) is judgmentally equal to
X, and we have f ′(∣x∣) ≡ x. This already proves the following:

A Theorem 6.4.6. Let X be an inhabited transitive type. Then, there is a term
mystX such that the composition

λx.mystX(∣x∣) ∶X →X (6.80)

type checks and is equal to the identity, where the proof

p ∶ Πx∶XmystX(∣x∣) =X x (6.81)
p(x) ∶≡ reflx (6.82)

it trivial.

87

6. On the Computation Rule of the Propositional Truncation

It is tempting to unfold the type expression Πz∶∥X∥ fst(f ′(z)) in order to better
understand it. Unfortunately, this is not very feasible as this plain type expression
involves the whole proof term f ′, which, in turn, includes the complete construc-
tion of Proposition 6.3.1.

Note that Theorem 6.4.6 does not mean that the identity function factors
through ∥X∥; because, being careful with this notion, this would require a retrac-
tion of ∣−∣ ∶X → ∥X∥, which we do not have. If we are given x, y ∶X, we do know
htr ∣x∣,∣y∣ ∶ ∣x∣ =∥X∥ ∣y∣, but we cannot conclude

apmystX
∶ mystX(∣x∣) =X mystX(∣y∣) (6.83)

as this does not type check. Instead, we only have

apdmystX
(htr ∣x∣,∣y∣) ∶ mystX(∣x∣) =fst○f

′

htr ∣x∣,∣y∣
mystX(∣y∣). (6.84)

Unfolding the definition of the path over -notation, this becomes

apdmystX
(htr ∣x∣,∣y∣) ∶ (transportfst○f ′(htr ∣x∣,∣y∣ , x)) =X y. (6.85)

But this does not look wrong at all any more as fst ○ f ′ is an automorphism on X

that sends x to y.
Finally, we want to remark that the construction of myst does not need the

full strength of Proposition 6.3.1. The weaker version in which f ∶ ∥X∥ → Y is
replaced by a fixed y0 ∶ Y is sufficient: in this case, f can be understood to be
strictly constant, or constant at y0. This leads to a simplification as the dependent
function types in (6.50) and (6.52) can be replaced by their codomains.

It may be helpful to see the whole definition of myst explicitly in this variant,
which is also how we explained it originally [Kra13b]: We define

f ∶X → Σ (A ∶ U●) . A =U● (X,x0) (6.86)
f(x) ∶≡ ((X,x), transitiveX(x, x0)), (6.87)

where transitive is the proof that A is transitive. The function f in (6.71) is then
simply the composition fst○f. As the codomain of f is a singleton, it is contractible
and thereby propositional (let us write h for the proof thereof). Hence, we get

f ′ ∶ ∥X∥ → Σ (A ∶ U●) . A =U● (X,x0) (6.88)
f ′ ∶≡ rectr (Σ (A ∶ U●) . A =U● (X,x0)) h f. (6.89)

We could now define myst′X to be

myst′X ∶ Π∥X∥ fst ○ fst ○ f ′ (6.90)

myst′X ∶≡ snd ○ fst ○ f ′ (6.91)

which has the same property as (6.79), even though it is not judgmentally the
same term.

88

Chapter 7

Higher Homotopies in a Hierarchy

of Univalent Universes

This chapter, probably a highlight of the thesis, contains a proof that the universe
Un in a hierarchy U0,U1, . . . of univalent universes is not n-truncated, and a con-
struction of a “strict” n-type. Note that we do everything in a theory which does
not necessarily have higher inductive types.

A joint article with Christian Sattler, containing the main results of this
chapter, is published in Transactions on Computational Logic [KS15].

7.1 Background of the Problem

One of the most basic and well-known implications of the univalence axiom is that
the first type universe, here written U0, is not a set. This is due to the fact that,
for an example, the type 2 of boolean values is isomorphic to itself in two different
ways, and these two isomorphisms give rise to two different inhabitants of 2 =U0 2.
Reading through this argument, it seems plausible to assume that, as we go up
the hierarchy of universes, we get types that can be shown to be not n-truncated
for higher and higher n, meaning that they have a more and more complicated
homotopical structure; in type-theoretic notation, we would ask for an inhabitant
of the type

¬is-n-type(Un). (7.1)

The question was discussed several times at the univalent foundations special
year program at the IAS in Princeton 2012/13, together with the very related
problem of constructing a type that is “strictly” an n-type, that is finding a type
X that is n-truncated but not (n − 1)-truncated, using a hierarchy of univalent
universes without higher inductive types. Even though there was no restriction on
the universe levels, it is (and was) somewhat intuitive that the necessary universe
level is (at least) n. The problem could therefore have been stated as finding an

89

7. Higher Homotopies in a Hierarchy of Univalent Universes

inhabitant of

Σ (X ∶ Un) . is-n-type(X) × ¬is-(n − 1)-type(X), (7.2)

possibly with an increased universe level.

Remark 7.1.1. Independently, I had thought about the problem (7.1) before and
assumed that it would be solvable easily considering higher loops in the universes,

Σ (X ∶ Un) . reflnX = reflnX . (7.3)

Here, reflnX stands for the “tower” reflreflrefl... , i.e. the the point snd (Ωn(Un,X)).
One key to this was the discovery that I call the local-global looping principle, the
statement that an (n+ 2)-loop in the universe with basepoint X corresponds to a
family of (n + 1)-loops in X itself (see Main Lemma 7.4.2): this allows to “shift”
the current level by one, which seemed to make an inductive argument possible.
However, at that time, I did not expect this problem to be open. I did not spell
out the proof and therefore did not realise a problem with my approach, even
though the gap should have been conspicuous, and I learned only much later from
Altenkirch that the problem was harder than I expected.

In 2013 in Princeton, Finster and Lumsdaine were able to extend the argument
for U0 by one or two steps, showing that U1 is not 1-truncated and U2 is not a 2-
type. Their idea was to construct, as a first step, a “universe” which only contains
the type 2, namely

2
(1) ∶≡ Σ (X ∶ U0) . ∥X = 2∥. (7.4)

Note that (7.4) does make use of a higher inductive type, namely the proposi-
tional truncation, but this usage can then be eliminated with the help of Propos-
ition 2.3.6, or rather the analogous statement for higher universes. However, we
think that this makes the expected result weaker than we would want it to be:
X = 2 is already not an inhabitant of U0, but only an inhabitant of U1, and it
seems to be unavoidable to eliminate from ∥X = 2∥ into a type that does not live
in U0. Thus, this approach technically seems to be only suitable to show that U2

is not 1-truncated while it cannot help with a conclusion about U1 unless we allow
the use of truncations. On the other hand, this probably did not bother Finster
and Lumsdaine as the challenge at that time only was to construct a provably not
n-truncated type, without requirements on universe levels.

The type 2(1) plays the same role as U0 itself. However, while U0 is not tame
enough (see Section 7.2.2), it is reasonable that this type works better. The
principle here is to take 2, which is sufficient to see that U0 is not a set, and
“wrap” it, defining something like the subuniverse of U0 which contains only 2.
This “wrapping” shifts the non-trivial proof of 2 = 2 by one level. For the next
step, the same construction can be applied again to define

2
(2) ∶≡ Σ (X ∶ U1) . ∥X = 2

(1)∥, (7.5)

90

7.1. Background of the Problem

and so on, constructing types that one would expect to be non-trivial on a high
level. Precisely this “wrapping” strategy was also suggested by Voevodsky in a
discussion after a seminar talk in March 2013. However, it was at that time
unclear whether the (negative) truncatedness properties could really be proved
internally for every n, and Lumsdaine said they were not able to do more than
the first few levels.

Another argument for that fact that U1 is not a 1-type was given by Coquand,
using the type of Z/2Z-sets: a set X, together with an endomorphism on X, and
a proof that this endomorphism is self-inverse,

Σ (X ∶ U0) .Σ (isSetX) .Σ (f ∶X →X) . f ○ f = id. (7.6)

It is not clear how a generalisation of this construction could be used for higher
cases, but in fact, the base case of our own construction is more similar to
Coquand’s suggestion than to Finster’s and Lumsdaine’s.

When the attempts to construct a type of non-trivial higher structure, or prove
that universes have this property, remained inconclusive, the task of construction
a “strict” n-type was added to the internal list of open problems of Princeton’s
special year. Around the same time, Christian Sattler independently came up
with yet another proof for the fact that U1 is not 1-truncated, noticing that the
trivial automorphism on the type

Σ (X ∶ U0) .X = X (7.7)

can be proved equal to itself in non-trivial ways. Note that (7.7) can be viewed as a
simplification of Coquand’s suggestion (7.6); by replacing Σ (f ∶X →X) . f ○f = id

by X = X, the condition isSetX (which is necessary to make f ○ f = id proposi-
tional) can be dropped. Then, I noticed that (7.7) is just the instantiation n ≡ 0

in my previous idea (7.3). However, as said above, the general guess (7.3) does
not seem to work for all n. One might think that this is only due to technical
difficulties, such as complicated expressions involving too many transports, which
are hard to compute manually. However, my coworker Chrstian has even conjec-
tured that (7.3) has a much more fundamental problem. To understand this, one
might start by trying to define the Whitehead product. Sattler conjectures that, if
one can define the Whitehead product, a parametricity argument can show that
(7.3) will not work for any odd n. Slightly more details can be found in Sattler’s
thesis [Sat15, Chapter 3.9, “Further work”].

Close to the end of the univalent foundations special year (March/April 2013),
I found the crucial step for the solution which consisted of restricting the type of
(n + 1)-loops in universe Un to the type of (n + 1)-loops in Un’s “subuniverse” of
n-types,

Σ (X ∶ Un) .Σ (is-n-typeX) . reflnX = reflnX , (7.8)

and presented the solution in the program’s regular seminar [Kra13a]. The case
n ≡ 0 made use of Sattler’s argument which can still be applied here. Later, we

91

7. Higher Homotopies in a Hierarchy of Univalent Universes

changed the notation and wrote

Σ (X ∶ Un
n) .Ωn+1(Un

n ,X) (7.9)

for the type (7.8).
Even later, I realised that the technology for this solution also greatly helps

with the “wrapping” approach of Finster and Lumsdaine discussed above. Indeed,
in this thesis, I can present a solution using their approach. However, the result will
be slightly weaker as one universe level is lost due to the impredicative encoding.

The last part of this chapter deals with connectedness. While connectedness
is usually defined via a higher inductive type, we give a reasonable definition in
their absence and show that both definitions are equivalent in their presence. We
then construct, given n, a type Mn that is (n+1)-truncated, not n-truncated, but
n-connected in our sense. In a theory with higher inductive types, this implies
that the n-th homotopy group[Uni13, Definition 8.0.1] of Mn is non-trivial, while
all other homotopy groups are trivial.

For our Agda formalisation of the results, it is important to take note of a
crucial difference between the theory that Agda implements and homotopy type
theory which is actually a great advantage here, see Remark 7.1.2. A further differ-
ence (this time a disadvantage) is that Agda does not have cumulative universes,
making explicit liftings necessary. This could easily have led to poor readability.
The workaround that we found was using pointed equivalences instead. By uni-
valence, those are equal to equalities between pointed types, but while equalities
between types in different universes do not type-check in Agda, equivalences do.

Remark 7.1.2. (i) First, we want to make a remark on universe polymorph-
ism. As stated above, our main results in this chapter are that Un is not an
n-type, and that Un

n , its restriction to n-types, is a strict (n+ 1)-type. Here,
n necessarily is an externally fixed constant. If we would quantify over n

internally, the statements would become something like

Πn∶N ¬is-n-type(Un) (7.10)

and
Πn∶N Σ (X ∶ Un) . is-n-type(X) × ¬is-n − 1-type(X). (7.11)

However, homotopy type theory does not regard universe levels as a type
that one can eliminate into, and these expressions are therefore not valid
types. The only thing we can do is proving that for any given n, the type
¬is-n-type(Un) is inhabited. We do this by an external induction on n, i.e. if
we want to prove ¬is-(n + 1)-type(Un+1), we assume that we already have a
derivation of ¬is-n-type(Un), or of corresponding lemmata. From the point
of view of the type theory, occurrences of n are always in canonical form
S(. . . (S0) . . .), with the length of this expression depending on the current
step in the external induction over derivations.

92

7.2. The First Cases

In an implementation of homotopy type theory, we could thus not hope
for a formalisation of (7.10) and (7.11). At this point, it is actually an
advantage that Agda is not an implementation of the type theory that we
work in, but only a reasonably close approximation. In particular, Agda does
allow to eliminate into universe levels. The expressions (7.10) and (7.11) are
therefore valid types in Agda and we can construct, and have constructed,
inhabitants of them. Applying the Agda term of this Agda type to any
canonical natural number n reduces to a derivation of ¬is-n-type(Un) which
does not use quantification over universe indices, and is a valid term in a
valid type in HoTT.

(ii) Our results (7.1,7.2) are as strong as they can be, in the sense that Un can
in neither case be replaced by a smaller universe. More concretely, it should
be consistent to assume that every type in Un is n-truncated (for any given
n). We are not aware of any published proof of this fact, but one approach
would be to use that the hierarchy U0

0 ,U1
1 , . . . is (in an appropriate sense)

closed under all type formers, including universe formation by Lemma 7.4.3.
This makes it easy to construct a model in which the claimed property holds.

7.2 The First Cases

Let us first discuss several solutions for special cases with low n: we start with
the standard argument of ¬isSetU0, and demonstrate that the “straightforward”
generalisation fails. We then continue with Sattler’s argument for ¬is-1-type(U1).

7.2.1 The Well-Known Basic Argument

It is a well-known and immediate consequence of the univalence axiom that the
smallest universe is not a set; for example, see the standard reference [Uni13,
Example 3.1.9]. The standard proof goes as follows. Suppose isSet(U0). Then,
by definition of isSet, we have isProp(2 = 2). By univalence, we may replace
2 = 2 by 2 ≃ 2. However, there are two distinct automorphisms on 2, yielding a
contradiction. In formulae:

isSet(U0) Ô⇒ isProp(2 = 2)
Ô⇒ isProp(2 ≃ 2)
Ô⇒ (id2, eid) = (swap, eswap)
Ô⇒ id2 = swap

Ô⇒ id2(12) = swap(12)
Ô⇒ 12 = 02

Ô⇒ �.

(7.12)

93

7. Higher Homotopies in a Hierarchy of Univalent Universes

7.2.2 Failure of the Naive Approach

Intuitively, it may appear that the reason why U0 is not a set is that an inhab-
itant of it, namely 2, is already not a proposition. However, possibly somewhat
surprisingly, this simple idea does not generalise. To make our point clear, let us
try to prove ¬is-1-type(U1) in a similar way as we have proved ¬isSet(U0) above,
choosing two inhabitants of U1 that seem homotopically complicated enough:

is-1-type(U1) Ô⇒ isSet(U0 = U0)
(by univalence)

Ô⇒ isSet(U0 ≃ U0)
(choose two inhabitants of U0 ≃ U0)

Ô⇒ isProp((idU0 , eid) = (idU0 , eid))
Ô⇒ . . . ?

(7.13)

In the attempt above, in the very first step, we have to choose two inhabitants
of U1 with sufficiently complicated equality type. We have chosen U0 as we have
already seen before that U0 is not a set.

The problem is that we seem unable to derive a contradiction from the assump-
tion isSet(U0 ≃ U0). In fact, an expected meta-theoretic result is that the identity
is the only definable auto-equivalence on U0. But, if this is the case, we should
not even expect that isContr(U0 ≃ U0) implies a contradiction. Auto-equivalences
on U0 correspond to families ΠX ∶U0X = X by strong function extensionality (we
will generalise and prove this statement in Main Lemma 7.4.2). This makes the
construction of a non-trivial element of U0 ≃ U0 as least as hard as constructing a
function ΠX ∶U0 (X → X), which we do not expect to be possible without further
assumptions such as LEM−1. To the best of our knowledge, no one has rigorously
proven this form of parametricity in the presence of univalence so far, but it is
commonly believed to hold. In particular, we conjecture that there is no proof of
the statement that a universe is not (n+1)-truncated as soon as it contains a type
that is not n-truncated, as it was conjectured during the special year in Princeton.

7.2.3 Sattler’s Argument

In this subsection, we want to present Sattler’s proof that U1 is not 1-truncated.
Effectively this proof will be the induction base for our generalisation; however, we
will not reuse the presentation given here as it will easily follow from more general
constructions. The approach we take for this special case contains some of the key
ideas and could therefore be supportive for understanding the later developments,
where all arguments are stated and proved rigorously. While not all steps in the
current subsection are spelled out completely, we expect the argument here to be
understandable.

The problematic step in the above attempt (7.13) is the first one, where we
need to choose something in U1 and take U0. We have to choose something better

94

7.3. Pointed Types

behaved. We use the type of loops in U0,

L ∶≡ Σ (X ∶ U0) .X = X. (7.14)

Showing that the second universe is not a groupoid proceeds as follows:

is-1-type(U1) Ô⇒ isSet(L = L)
(by univalence)

Ô⇒ isSet(L ≃ L)
(choose the identity)

Ô⇒ isProp((idL, eid) = (idL, eid))
(the second component of the equality is trivial)

Ô⇒ isProp(idL = idL)
(by strong functional extensionality)

Ô⇒ isProp(Πa∶La = a)
(unfold the definition of L and curry)

Ô⇒ isProp(ΠX ∶U0Πp∶X=X (X,p) = (X,p))
(paths between pairs are pairs of paths)

Ô⇒ isProp (ΠX ∶U0Πp∶X=XΣ (q ∶X = X) . q∗(p) = p)

(7.15)

By Lemma 2.2.1, transporting a path along a path can be written as path com-
position: q∗(p) = q−1 p q. Making this replacement and precomposing with q, we
get isProp(K) where

K ∶≡ ΠX ∶U0Πp∶X=XΣ (q ∶X = X) . p q = q p. (7.16)

Two inhabitants of K are

α ∶≡ λX.λp.(reflX , u), (7.17)
β ∶≡ λX.λp.(p, reflp p) (7.18)

where u is a proof of p reflX = reflX p. Since K is propositional, we may conclude
α =K β and consequently fst(α(2)) = fst(β(2)), which evaluates to

λp.refl2 =2=2→2=2 λp.p (7.19)

and, after replacing 2 = 2 by 2 ≃ 2 and applying on (swap, eswap), implies the same
contradiction as we got above (7.12) in the proof of ¬isSet(U0).

In the general case, we consider higher loops in higher universes. The core
obstacle in translating the above proof is the step where q∗(p) = p is observed to
hold for q ∶≡ refl and q ∶≡ p by virtue of q∗(p) = q−1 p q. In general, it is not so
clear how a uniform presentation of transporting along higher loops would look
like. However, as mentioned in the introduction of this chapter (Section 7.1), the
approach is likely to fail due to a fundamental problem, even if one was able to
resolve the technical obstacles.

Fortunately, we have discovered a simple but effective solution to bypass this
problem. The slight modification (7.9) turns out to yield the key for our general-
isation.

95

7. Higher Homotopies in a Hierarchy of Univalent Universes

7.3 Pointed Types

Pointed types are a simple but helpful concept. Their properties can usually easily
be formulated in terms of ordinary types. For our presentation of the result on
univalent universes we will develop some of their theory explicitly in this section,
aiming to provide an elegant way of expressing how Ω interacts with Σ and Π.

7.3.1 Dependent Pairs and Loops

We will first treat the interaction of Σ and Ω. Let us begin by recalling the
following definition:

Let (P, p) be a pointed family over some pointed type (A,a). There is an
induced type family P̃ over Ω(A,a), given by P̃ (q) ∶≡ q∗(p) =P (a) p. The type over
the basepoint is P (refla) ≡ (p = p) and therefore trivially inhabited by reflexivity.
This allows us to define a fibered version of Ω:

A Definition 7.3.1 (Ω̃). For a pointed type A ≡ (A,a), we define

Ω̃ ∶ Fam●A → Fam●ΩA (7.20)

Ω̃(P, p) ∶≡ (λq.q∗(p) =P (a) p , reflp) . (7.21)

Consequently, Ω and Ω̃ together form the following endofunction:

⟨Ω, Ω̃⟩ ∶ Σ (A ∶ U●) . Fam●A → Σ (A ∶ U●) . Fam●A (7.22)

⟨Ω, Ω̃⟩(A,P) ≡ (ΩA, Ω̃P) (7.23)

Given a pair of a pointed type and a pointed family, it is straightforward to
construct a pointed type corresponding to the dependent pair.

A Definition 7.3.2 (Σ●). We define the operator Σ● in the following way:

Σ● ∶ (Σ (A ∶ U●) . Fam●A)→ U● (7.24)
Σ●((A,a), (P, p)) ∶≡ (Σ (A) . P , (a, p)) (7.25)

We write Σ●AP synonymously for Σ●(A,P).

We are now ready to formulate precisely how dependent pairs and loop spaces
interact:

A Lemma 7.3.3. The operators Σ● and Ω commute in the following sense:

Ω○Σ● = Σ●○⟨Ω, Ω̃⟩. (7.26)

96

7.4. Homotopically Complicated Types

Proof. Let A ≡ (A,a) be a pointed type with a pointed family P ≡ (P, p). By
function extensionality1 it is enough to show that both sides of the equation are
equal if applied to (A,P). Let us calculate:

(Ω○Σ●)(A,P) (7.27)
(by definition of Σ●) ≡ Ω (Σ (a ∶ A) . P (a) , (a, p)) (7.28)

(by definition of Ω) ≡ ((a, p) = (a, p) , refl(a,p)) (7.29)

(by Lemma 2.2.10) = (Σ (q ∶ a = a) . q∗(p) = p , (refla, reflp)) (7.30)
(by definition of Σ●) ≡ Σ●(a=a,refla)(λq.q∗(p) =P (a) p, reflp) (7.31)

(by definition of Ω and Ω̃) ≡ (Σ●○⟨Ω, Ω̃⟩)(A,P). (7.32)

7.3.2 Dependent Functions and Loops

The situation is similar, and even simpler, if we want to examine the interac-
tion of Π and Ω. Given a family of pointed types over some (ordinary) type A,
there is a straightforward way to construct a pointed type out of the given data
corresponding to the dependent function type.

A Definition 7.3.4 (Π●). We define the operator Π● by:

Π● ∶ (Σ (A ∶ U) . (A→ U●))→ U● (7.33)
Π●(A,F) ∶≡ (ΠA fst○F , snd○F) (7.34)

We use the notations Π●a∶AF(a) and Π●AF synonymously with Π●(A,F).
With this at hand, we are ready to prove:

A Lemma 7.3.5. Ω and Π● commute in the following sense: given a type A and
a family F of pointed types over A, we have

Ω(Π●(A,F)) = Π●(A,Ω○F). (7.35)

Proof. Let us do the following calculation:

Ω(Π●(A,F)) (7.36)
(by definition of Π●) ≡ Ω (ΠA fst○F , snd○F) (7.37)
(by definition of Ω) ≡ (snd○F = snd○F , refl) (7.38)

(by strong fun. ext.) = Πa∶A (snd(F(a)) = snd(F(a)) , λa.refl) (7.39)
(by definition of Π●) ≡ Π●(A,Ω○F) (7.40)

1Recall that the univalence axiom implies function extensionality, so this is no additional
assumption.

97

7. Higher Homotopies in a Hierarchy of Univalent Universes

7.4 Homotopically Complicated Types

In this section, we will prove two main results of this article: first, in MLTT with
the univalence axiom, we can construct a type that strictly has truncation level
n; and second, the universe Un is not n-truncated.

We begin with a lemma that tells us how a truncated Σ-component can be
neutralized by Ω.

A Lemma 7.4.1. Let n be a natural number. Further, let A be a pointed type
and P be a pointed family over A of truncation level n − 2. Then,

Ωn(Σ●AP) = Ωn(A). (7.41)

Proof. We do induction on n. For the base case n ≡ 0, the statement is exactly
given by Lemma 2.2.8(i). For the induction case, we have the following chain of
equalities:

Ωn+1(Σ●AP) (7.42)
≡ Ωn(Ω(Σ●AP)) (7.43)

(by Lemma 7.3.3) = Ωn(Σ●ΩAΩ̃P) (7.44)
(by induction hypothesis) = Ωn(Ω(A)) (7.45)

≡ Ωn+1(A) (7.46)

For the second to last step, note that if P is n − 1-truncated, then Ω̃P is n − 2-
truncated.

We are now ready to prove our local-global looping principle, stating that a
loop in the universe is the same as a family of loops in its underlying type:

A Main Lemma 7.4.2 (local-global looping). Let A be a type and n be a natural
number. Then,

Ωn+2(U ,A) = Π●a∶AΩ
n+1(A,a). (7.47)

Proof. The proof is again done by a calculation, utilizing most of the theory we
have developed so far:

Ωn+2(U ,A) (7.48)
(by definition) ≡ Ωn+1 (A = A , reflA) (7.49)

(by univalence) = Ωn+1 (A ≃ A , (idA, eid)) (7.50)
(by definition of ≃) ≡ Ωn+1 (Σ (f ∶ A→ A) . isequiv(f) , (idA, eid)) (7.51)

(by definition of Σ●) ≡ Ωn+1(Σ●(A→A,idA)
(isequiv, eid)) (7.52)

(by Lemma 7.4.1) = Ωn+1(A→ A, idA) (7.53)
(by definition of Π●) ≡ Ωn+1(Π●a∶A(A,a)) (7.54)

(by Lemma 7.3.5) = Π●a∶AΩ
n+1(A,a) (7.55)

98

7.4. Homotopically Complicated Types

Recall that we have introduce Un, that is, the universe U restricted to n-
types, in Definition 2.2.4. The following simple and well-known observation will
be useful. We give an explicit proof as it falls out nicely as a consequence of the
above lemmata.

A Lemma 7.4.3 ([Uni13, Theorem 7.1.11]). For any n ≥ −2 and universe U , the
type Un is (n + 1)-truncated.

Proof. For n ≡ −2, note that every contractible type is equivalent to the unit type.
Assume n ≥ −1. By Lemma 2.2.17, it suffices to show that, for any (X,h) ∶ Un, the
loop space Ωn+2(Un, (X,h)) is contractible. But (Un, (X,h)) is judgmentally equal
to Σ●

(U ,X)
(is-n-type, h). By Lemma 7.4.1 showing that Ωn+2(U ,X) is contractible

for any n-type X is therefore enough. This is easy to see for n ≡ −1. For n ≥ 0 we
apply Main Lemma 7.4.2, requiring us to show that Π●x∶XΩ

n+1(X,x) is contractible,
and this is the case by Lemma 2.2.17.

For n ∈ N, let us write Pn(X) for the type of (n + 1)-loops that live in the
universe Un

n and have basepoint X. More precisely, we abbreviate

Pn ∶ Un
n → U●n+1 (7.56)

Pn(X) ∶≡ Ωn+1(Un
n ,X). (7.57)

Homotopically, these loops Pn(X) are rather tame:

A Corollary 7.4.4 (of Lemma 7.4.3). Pn is a family of sets, that is,

ΠUn
n
isSet○Pn. (7.58)

An (n + 1)-loop consists of a basepoint X and the actual loop around X. For
all n ∈ N, the type of (n + 1)-loops in universe Un

n is therefore given by

Loopn ∶ Un+1 (7.59)
Loopn ∶≡ Σ (Un

n) . fst○Pn. (7.60)

We further choose to define Loop−1 ∶≡ 2 in the lowest universe U0, which will allow
us to treat all universes uniformly.

This type is also fairly tame homotopically:

A Lemma 7.4.5. For all natural numbers n, the type Loopn−1 is n-truncated,
that is, we can construct

hn ∶ is-n-type(Loopn−1). (7.61)

Proof. The claim is fulfilled for n ≡ 0 by the standard argument that we discussed
in Section 7.2, so let us assume n ≥ 1. By Lemma 2.2.3, it is enough to examine
the two parts of the dependent pair separately. The required property for the first
part is given by Lemma 7.4.3. Further, the second component is a family of sets
by Corollary 7.4.4, which suffices by Lemma 2.2.2.

99

7. Higher Homotopies in a Hierarchy of Univalent Universes

For a pointed type (A,a), we say that an element b ∶ A is trivial if it is equal
to the basepoint, i.e. if we have a proof of a = b. We mark the following result
as “formalised” A . However, note that the formalised version is slightly weaker:
instead of “has a non-trivial inhabitant”, we show only “not all inhabitants are
trivial”. The latter version has turned out to be easier to implement while being
totally sufficient for our later results, which can all be found at full strength in
the formalisation.

A Lemma 7.4.6. For all n ≥ 0, the type Ωn+1 (Un , Loopn−1) has a non-trivial
inhabitant. The same is true for Ωn+1 (Un

n , (Loopn−1, hn)).
Proof. Observe that the pointed type (Un

n , (Loopn−1, hn)) can be written as (and
is judgmentally equal to) the expression Σ●

(Un,Loopn−1)
(is-n-type, hn). As the pre-

dicate is-n-type is propositional, Lemma 7.4.1 implies the equivalence of the two
loop spaces of this lemma, and we may restrict ourselves to showing that the claim
holds for Ωn+1 (Un , Loopn−1).

We do induction on n. For n ≡ 0, we have to provide a non-trivial inhabitant
of 2 = 2. This is swap, just as in Section 7.2.1.

Assume n ≡m + 1 and calculate:

Ωm+2(Um+1,Loopm) (7.62)
(“local-global”, 7.4.2) = Π●(X,q)∶Loopm

Ωm+1(Loopm, (X,q)) (7.63)

(by definition of Σ●) ≡ Π●(X,q)∶Loopm
Ωm+1(Σ●(Um

m ,X)(fst○Pm, q)) (7.64)

(“Ω, Σ● commute”, 7.3.3) ≡ Π●(X,q)∶Loopm
Σ●

Ωm+1(Um
m ,X)Ω̃

m+1(fst○Pm, q) (7.65)

The underlying type of this last pointed type has the following inhabitant:

ξ ∶≡ λ(X,q).(q, dq) (7.66)

where dq is defined as follows:

• for m ≡ 0, the type of dq is q∗(q) = q, which is inhabited by Lemma 2.2.1
and the fact that equality carries a groupoid structure. Note that this case
corresponds to the special case we already handled, and that we are not able
to obviate this additional coherence condition here.

• for m ≥ 1, the type of dq is contractible by Corollary 7.4.4 and the definition
of Ω̃, providing a canonical choice for dq.

Once again, let us view Loopm−1, together with hm, as an inhabitant of Um
m .

Note that Pm(Loopm−1, hm) is, by definition, judgmentally equal to

Ωm+1 (Um
m , (Loopm−1, hm)) . (7.67)

By the induction hypothesis, we can construct a non-trivial inhabitant q̃ of the
underlying type, so that we have

((Loopm−1, hm) , q̃) ∶ Loopm. (7.68)

100

7.5. A Solution with the “Wrapping” Approach

If ξ was trivial, the term fst(ξ(X,q)) ≡ q would be trivial in Pm(X) for any
(X,q) ∶ Loopm. But this is invalidated by (7.68).

This allows us to prove:

A Theorem 7.4.7. In Martin-Löf type theory with a hierarchy of univalent uni-
verses U0,U1,U2, . . ., the universe Un is not an n-type. That is, for any natural
number n, the type

¬is-n-type (Un) (7.69)

is inhabited.

Proof. If Un was an n-type, then Ωn+1 (Un , Loopn−1) would be propositional, con-
tradicting Lemma 7.4.6.

At the same time, we have solved the question of constructing a “strict” n-type.

A Theorem 7.4.8. For a given n ≥ −2, there is (in the settings of Theorem 7.4.7)
a type that is an (n+ 1)-type but not an n-type. In particular, for n ≥ −1, the type
Loopn has this property. Further, for n ≥ 0, the universe of n-types at level n,
namely Un

n , is such a strict (n + 1)-type.
Proof. For n ≡ −2, the empty type proves the statement. The claim for Un

n follows
in the same way as Theorem 7.4.7, combined with Lemma 7.4.3. Loop−1 ≡ 2 is
clearly strictly a set. For n ≥ 0, Lemma 7.4.5 shows that Loopn is (n+1)-truncated.
To see that it is not n-truncated, observe that the first component is Un

n and
therefore not n-truncated while the second component is always inhabited.

7.5 A Solution with the “Wrapping” Approach

The tools that we have developed allow us to solve the problem of constructing a
strict (n+1)-type in at least one additional way. It was originally the idea of Finster
and Lumsdaine, but also suggested by Voevodsky, that the question could possibly
be attacked in this way (see Section 7.1). We start by freely using propositional
truncation, even though this is “against the rules” of the problem. Afterwards, we
observe how we can replace truncations by appropriate impredicative encodings.
This turns out to work, but this is not a priori clear: one needs to be careful
to choose the correct universe levels at each point, and it could have happened
that the dependencies are cyclic in a way that makes the construction impossible.
Maybe somewhat surprisingly, we only loose one universe level (that is, we need
one more universe for a given n) compared to the above result, and the consequence
is a probably less elegant statement than Theorem 7.4.8. An advantage might be
that we can give the highest non-trivial loop space explicitly: by construction, it
is equivalent to 2. It would be possible to formalise the results of this section, but
we have chosen to omit it in our Agda implementation.

We start by defining the “wrapping” (see Section 7.1) explicitly:

101

7. Higher Homotopies in a Hierarchy of Univalent Universes

Definition 7.5.1. For all n ≥ 0, we define the type 2(n) in the universe Un by

2
(0) ∶≡ 2 (7.70)

2
(n+1) ∶≡ Σ (X ∶ Un) . ∥X = 2

(n)∥. (7.71)

We may regard every 2(n) as pointed type, where the point 12(n) is

12
(0) ∶≡ 12 (7.72)

12
(n+1) ∶≡ (2(n), ∣refl∣). (7.73)

This definition allows us to apply the tools we have developed before and prove:

Lemma 7.5.2. For all n and Z ∶ 2(n), there is a pointed equivalence from the
pointed type Ωn(2(n), Z) to the pointed type (2,12).
Proof. The crucial point is that “being pointed-equivalent to (2,12)” is a propos-
itional property. We define it (for any universe U) as

is2● ∶ U● → U (7.74)
is2●(Y, y0) ∶≡ Σ (f ∶ Y → 2) . isequiv(f) × (f(y0) = 12). (7.75)

We do the proof by induction on n. For n ≡ 0, the claim holds by definition.
For n ≡ 1, assume Z ≡ (Y, q) with Y ∶ U0 and q ∶ ∥Y = 2∥. We then have

Ω1(2(1), Z) (7.76)
(by definition) ≡ Ω (Σ (X ∶ U0) . ∥X = 2∥, (Y, q)) (7.77)

(by Lemma 7.4.1) = Ω(U0, Y) (7.78)
≡ Y = Y. (7.79)

We thus need to show is2●(Y = Y, reflY). This would clearly be the case if we had
a proof of Y = 2, and as the goal is a proposition, q suffices.

For (n + 2), assume Z ≡ (X,p) with X ∶ Un+1 and p ∶ ∥X = 2(n+1)∥. Then,

Ωn+2(2(n+2), Z) (7.80)

(by definition) ≡ Ωn+2 (Σ (X ∶ Un+1) . ∥X = 2
(n+1)∥, (X,p)) (7.81)

(by Lemma 7.4.1) = Ωn+2(Un+1,X) (7.82)
(by Main Lemma 7.4.2) = Π●x∶XΩ

n+1(X,x). (7.83)

As our goal is propositional, we may assume X = 2(n+1) instead of ∥X = 2(n+1)∥,
and the above type becomes

Π●
x∶2(n+1)

Ωn+1(2(n+1), x). (7.84)

The type Ωn+1(2(n+1), x) is pointed-equivalent to (2,12) by the induction hypo-
thesis. Consequently, the type (7.84) is equivalent to Π●

x∶2(n+1)
(2,12). The required

statement now follows from the fact that 2(n+1) is connected (or 0-connected, see
[Uni13, Chapter 7.5]).

102

7.5. A Solution with the “Wrapping” Approach

Using Lemma 2.2.18, we see that Lemma 7.5.2 has an immediate consequence:

Corollary 7.5.3. For any n, the type 2(n) is a strict n-type.

Further, it is easy to see that the projection 2(n+1) → Un is an embedding. This
implies that Un is not n-truncated, as 2(n+1) would otherwise be n-truncated by
[Uni13, Theorem 7.1.6], contradicting Corollary 7.5.3.

Let us come back to the original question: The open problem of constructing
a strict n-type without higher inductive types. Corollary 7.5.3 does this, but
with the use of propositional truncations. The idea behind the approach was
that the need of the truncation operator could be removed afterwards, using the
impredicative encoding (Proposition 2.3.6). We have to be very careful to choose
the correct universe levels. In the proof of Lemma 7.5.2, in the case n ≡ 1, the type
Y = Y is in U1, and so it is2●(Y = Y, refl). The component q ∶ ∥Y = 2(0)∥ cannot
be encoded as ΠP ∶U0 isProp(P) → ((Y = 2(0)) → P) → P as we could not choose P

to be is2●(Y = Y, refl).
A working definition is:

2
(0) ∶≡ 2 ∶ U0 (7.85)

2
(1) ∶≡ Σ (X ∶ U0) .ΠP ∶U−1

1
((X = 2

(0))→ P)→ P ∶ U2 (7.86)

2
(n+1) ∶≡ Σ (X ∶ Un+1) .ΠP ∶U−1n+1

((X = 2
(n))→ P)→ P ∶ Un+2. (7.87)

Note that (7.86) is not an instance of (7.87) exactly because the first component
of the Σ-type (X) is in U0, not in U1. This is necessary, as the universe levels
would not work out otherwise. It is reflected in the proof of Lemma 7.5.2, where
we need to treat the case n ≡ 1 separately as well, due to the fact that we cannot
“save” one universe level by applying “local-global”. This is made up for by (7.85),
which is in U0 instead of only in U1.

With the above definition, the proof of Lemma 7.5.2 works for 2(n). The
proof with the impredicative encoding is also fairly tricky: For example, when
we eliminate the truncation to show is2● (Ωn+2(2(n+2), Z)), this “real” goal is in
universe Un+3. From what we know, we are not able to eliminate the (encoded)
truncation if the goal is in Un+3; only because that goal happens to be equivalent
to a type in Un+2, namely is2●(Ωn+2(Un+1,X)), the proof works. Every time when
the eliminator for the truncation is applied, the levels in the definition of 2(n)

are just the correct ones. In the last step, we need to show that (2(n+1) → 2)
is pointed-equivalent to (2,12). For this, it suffices to show that any function
(2(n+1) → 2) is weakly constant, so that we only need to apply the “eliminator” to
show an equality in 2 at the lowest universe level.

However, note that 2(n+1) is not in Un+1, but only in Un+2. We thus have
here constructed a strict (n + 1)-type in Universe Un+2. Compared to our result
Theorem 7.4.8 where we had a strict (n + 1)-type in universe Un+1, we have lost
one universe level.

103

7. Higher Homotopies in a Hierarchy of Univalent Universes

One advantage compared to the previous result (Theorem 7.4.8) is that we
know the highest non-trivial loop space (and thereby also the highest non-trivial
homotopy group) explicitly. This seems nice, so let us record it:

Theorem 7.5.4. In Martin-Löf type theory with a hierarchy of univalent uni-
verses, the type 2(n+1) (in universe Un+2) is a strict (n+ 1)-type, and its n-th loop
space is equivalent to 2.

7.6 Connectedness

So far, we have shown how to construct types that have some truncation level
strictly. If we had worked in a theory with appropriate truncation operations,
this could have been made precise by saying that the n-th homotopy group (at
some basepoint) is non-trivial, while all higher groups are trivial. Our goal for this
section is to control the levels below n as well, still without using higher inductive
types. However, this property is tricky to express in type theory: if we directly
state that a type is trivial at some dimension, it immediately implies that it is
trivial at all higher dimensions as well (see the introduction in Section 1.2). The
way HoTT deals with this problem is the following: in order to express that a
type is n-connected, the type is first “artificially” made trivial above dimension
n, and then required to be contractible. Unfortunately, this requires truncation
operators, which we count as one kind of higher inductive types.

7.6.1 Truncations via Universal Properties

As higher inductive types allow us to add paths at an arbitrarily high level to a
type, it is not surprising that they can be used to construct types that are not
n-truncated for a given n. A canonical candidate for a HIT that is not an (n−1)-
type is the sphere Sn, which can be generated with one point-constructor base and
one path-constructor loop that gives an inhabitant of Ωn(Sn,base). Unfortunately,
even the seemingly simple statement that loop is non-trivial is not amenable to an
instant argument. While Sn has Z as n-th homotopy group, which immediately
implies that it is not an (n − 1)-type, calculating it in HoTT for example via the
long exact sequence requires some effort [Lic13].

On the other hand, the construction of Loopn that we present in this article
can be understood as a way to use spheres even if the theory does not support
HITs. Recall that our type Loopn was (after unfolding the definition of Pn) defined
as

Loopn ∶≡ Σ (X ∶ Un
n) . fst(Ωn+1(Un

n ,X)). (7.88)

If HITs are available, Loopn is equivalent to the function type

S
n
→ Un

n . (7.89)

104

7.6. Connectedness

Even if we do not have Sn available in the theory, we can thus still talk about
how the sphere could be mapped into another type (this holds true for any non-
recursive HIT).

If we have truncation operators available, connectedness can be defined as
follows:

A Definition 7.6.1 ([Uni13, special case of Definition 7.5.1]). In a theory with
truncations, the property of being n-connected can then be defined as

is-n-connected(A) ∶≡ isContr(∥A∥n). (7.90)

We will define a notion of connectedness that does not require truncations to
be part of the theory.

From now on, let us denote MLTTUA the setting that we have considered so
far (MLTT with univalence). We say that a statement holds in MLTT if it further
does not require univalence. If instead the proof of a lemma also needs truncations
in the sense of Definition 2.3.8, we say that it holds in MLTTUA

TRUNC.
We will use the fact that truncations can be characterized up to homotopy by

their universal properties in MLTT. This allows us to formulate the statement
that a type is n-connected⋆ in MLTT, with the name being justified by the fact
that we can prove is-n-connected = is-n-connected⋆ in MLTTUA

TRUNC.
Given a type A with an inhabitant a, we will (in MLTT) construct the n-

connected version of A with basepoint a. In MLTTUA, that type has the same loop
spaces as A above dimension n and is n-connected⋆. For n ≡ −1, this corresponds
to constructing the connected component of a in the ordinary topological sense.

The construction of this “n-connected version” can also be done fairly easily in
MLTTUA

TRUNC. It corresponds to

Σ (b ∶ A) . ∥b = a∥n−1. (7.91)

It may be hard to appreciate the contents of this section for the reader who is
not interested in the formalisation. The mathematical construction is somewhat
straightforward; the actual challenge is the formalisation and the fiddling with
details. Getting all the universe levels right seems to be the hardest part from
the mathematical point of view. As one can see in the electronic appendix, the
formalisation of this section is about twice the length of the formalisation of the
rest of this chapter.

We first want to specify what it means in MLTT to have the universal property
of a truncation.

A Definition 7.6.2. Let U and V be universes, A be a type in U , and n ≥ −2
be a number. Let X be an n-type in U and c a function from A to X. We say
that (X, c) (or just c) has the universal property of the n-truncation of A with
respect to V if, for any n-type Y in V , the function types X → Y and A → Y are
equivalent, and the equivalence is given by composition with c:

upA∶UVn (c) ∶≡ Π(Y,k)∶Vn isequiv(λf ∶X → Y.f ○c). (7.92)

105

7. Higher Homotopies in a Hierarchy of Univalent Universes

Remark 7.6.3. Let us say that a truncation algebra of degree n over A is an
n-type Y together with a map A → Y . It is to be expected that such truncation
algebras bear a canonical weak (ω,1)-categorical structure, where a morphism
between truncation algebras (Y, d) and (Z, e) consists of a map f ∶ Y → Z and
a proof f ○d = e. Let us ignore hierarchy issues for the moment. Saying that a
truncation algebra (X, c) has the universal property of the n-truncation of A is
then equivalent to stating that (X, c) is a homotopy initial object, i.e. classes of
morphisms to arbitrary truncation algebras are contractible.

If we had an internal representation of the 2-cells of the preliminary (ω,1)-
categorical structure alluded to above, this should yield an alternative approach
for proving Lemmata 7.6.6 and 7.6.7 which is more in line with work by Awodey,
Gambino, and Sojakova [AGS12] and Sojakova [Soj15]. However, the construction
of the required weak (ω,1)-categorical structure has yet to be given. We expect
that, once we have this construction, all the usual logical equivalences between
universal properties, homotopy initiality, recursion with propositional computation
unique up to homotopy, and induction with propositional computation admit a
unifying treatment that is more abstract than the current approach of rather
explicit definitions and hands-on path computation.

Let us now define a type with the property that any of its inhabitant can serve
as an n-truncation. The crucial point will consist of perspicaciously inserting the
assumption that certain truncations exist deep into the connectedness construction
of types, taking care not to change their expected properties.

A Definition 7.6.4. Given universes U and V , a type A in U and n ≥ −2 in
MLTT, define the type of n-truncations of A to be the type of maps c ∶ A→X for
some n-type X ∶ U which satisfy the universal property:

T n
U ,V(A) ∶≡ Σ ((X,h) ∶ Un) .Σ (c ∶ A→X) . upA∶UVn (c). (7.93)

Note that this type is not in universe U or V , but it inhabits every universe that
U and V both inhabit. Given t ≡ (X,h, c, u) ∶ T n

U ,V(A), we write type(t) for the
component X (i.e. type ≡ fst) and cons(t) for the component c (i.e. cons ≡ fst○snd).

Remark 7.6.5. In MLTTUA
TRUNC, the type T n

U ,V(A) is naturally inhabited by ∥A∥n
(Lemma 2.3.10). For MLTT or even MLTTUA, which we consider here, we strongly
believe that an inhabitant of T n

U ,V(A) can, in general, not be constructed: the
n-truncation is not definable.

Our intention is to use an (assumed) inhabitant of T n
U ,V(A) in the same way

as ∥A∥n could be used if it was part of the theory. While this turns out to be
possible, there are a couple of obstacles:

First, the only assumption we make is that T n
U ,V(A) includes the encoding

of a universal property. The truncation ∥A∥n of homotopy type theory has this
universal property with respect to n-types of any universe. Being unable to poly-
morphically quantify over all universes, we have to restrict ourselves to a fixed

106

7.6. Connectedness

elimination universe V . We need to be careful though: it is not sufficient for our
purposes to require the universal property with respect to all n-types in the same
universe as A, as this would prevent us from performing large elimination. For
that reason, we require the universal property for all n-types that live in some
fixed universe V , which for most constructions will have to be larger than U .

Second, the truncation ∥A∥n, defined as a HIT, has important judgmental
computation rules. We have seen in Chapter 6 that such rules have the potential
to make the theory stronger. It is therefore not a priori clear that the universal
property that we have at hand suffices for everything we want to do. However, even
disregarding that, the judgmental computational rules offer in many cases huge
simplifications, and in this section, this does affect us – the Agda formalisation of
the proof is considerably more tedious than the analogous proof using ∥A∥n would
be.

Third, note that in the definition of T n
U ,V(A), we only ask for a non-dependent

universal property, while (in MLTTUA
TRUNC) ∥A∥n has the dependent version of this

property. While we could encode the dependent universal property in the definition
as well, we do not need to: as we will see, the non-dependent universal property
implies the dependent one.

7.6.2 Consequences of the Universal Property

Our next goal is to prove a couple of properties of upA∶UVn and T n
U ,V in MLTT. For

the lemmata in this subsection, let U and V be universes such that V is at least
as large as U , i.e. every type in U is also of type V . Further, let A ∶ U be a type
and n ≥ −2 a number.

A Lemma 7.6.6. We say that a map e ∶ A → X for some n-type X ∶ U has the
dependent universal property if the type

dupA∶UVn (e) ∶≡ Π⟨Y,h⟩∶X→Vn isequiv(λf ∶ ΠXY.f ○e). (7.94)

is inhabited. Then, e has the universal property if and only if it has the dependent
universal property,

upA∶UVn (e) ←→ dupA∶UVn (e). (7.95)

Proof. The direction “if” is trivial. For the other direction, we need the following
statement: For a function u ∶ C → D between types C,D and E ∶ D → U ′ a
type family in any universe U ′, dependent functions from c ∶ C to E(u(c)) are
equivalent to factorisations of u through Σ (D) .E →D:

Σ (s ∶ C → Σ (D) .E) . fst○s = u ≃ ΠC E ○u. (7.96)

Note that for C ≡ D and u ≡ id this just says that ΠCE is the type of sections
of the first projection. The equivalence (7.96) could be slightly strengthened by

107

7. Higher Homotopies in a Hierarchy of Univalent Universes

making D (and E) dependent on C, but we do not need this generality here. An
easy way to prove (7.96) is combining a couple of equivalences. First,

Σ (s ∶ C → Σ (D) .E) . fst○s = u ≃ Πc∶CΣ (p ∶ Σ (D) .E) . fst(p) = u(c) (7.97)

holds by strong function extensionality combined with the distributivity law for
Π and Σ (Lemma 2.2.12). Further, we have

Σ (p ∶ Σ (D) .E) . fst(p) = u(c) ≃ Σ (d ∶D) . E(d) × (d = u(c))
≃ Σ (Σ (d ∶D) . d = u(c)) . E ○ fst
≃ E(u(c)) (7.98)

The third step follows from contractibility of Σ (d ∶D) . d = d0 and Lemma 2.2.9(i).
The equivalences (7.97) and (7.98) together prove (7.96).

To prove the “only if” direction of the lemma, assume e ∶ A → X satisfies the
non-dependent universal property. Let ⟨Y,h⟩ ∶X → Vn be a family of n-types over
X. Set Ỹ ∶≡ Σ (X) . Y , which is an n-type in V . By upA∶UVn (e), the map λf.f ○e
induces an equivalence

(X → Ỹ) ≃ (A→ Ỹ). (7.99)

Fix s ∶ X → Ỹ . We then have fst○s ∶ X → X. By the assumed universal property,
composition with e is an equivalence (X → X) ≃ (A → X). As equivalences
preserve path spaces (Lemma 2.2.11), we have

Σ (s ∶X → Ỹ) . fst○s = idX ≃ Σ (s ∶X → Ỹ) . fst○s○e = e. (7.100)

In general, for any types C, D, a type family P ∶ D → U ′ and an equivalence
h ∶ C → D, we have that Σ (C) . P ○ h ≃ Σ (D) . P . Applying this rule with
C ≡ X → Ỹ , D ≡ A → Ỹ , P (s) ≡ fst ○ s = e and the equivalence (7.99) for h,
we get

Σ (s ∶X → Ỹ) . fst○s○e = e ≃ Σ (s ∶ A→ Ỹ) . fst○s = e. (7.101)

Finally, we are ready to prove ΠXY ≃ ΠAY ○ e. We start with ΠXY and
apply (7.96) with u ≡ idX to transform it into Σ (s ∶X → Ỹ) . fst○s = idX . Using
first (7.100) and then (7.101), this type is equivalent to Σ (s ∶ A→ Ỹ) . fst○s = e.
Equivalence (7.96), this time with u ≡ e, transforms that type into ΠAY ○ e as
required.

Going through the proof again and only checking what the function part of
the constructed equivalence does, it is easy to see that f ∶ ΠXY is mapped to
f ○e ∶ ΠAY ○e, proving dupA∶UVn (e).

Another interesting point is that the type T n
U ,V(A) can be shown to be pro-

positional already in MLTTUA, implying that it is contractible in MLTTUA
TRUNC by

Remark 7.6.5.

A Lemma 7.6.7. In MLTTUA, the type T n
U ,V(A) is propositional.

108

7.6. Connectedness

Proof. This is a consequence of the fact that T n
U ,V(A) is characterized via a uni-

versal property. Given inhabitants A
e1Ð→ X1 and A

e2
Ð→ X2, we need to show that

they are equal. Note that the universal property itself is propositional, and thus,
we do not have to construct a (dependent) path between the two witnesses of
this property. Such an equality proof therefore just corresponds to an equivalence
e ∶ X1 ≃ X2 and a proof of e○e1 = e2. The universal property of e1 tells us that
X1 → X2 and A → X2 are equivalent. As the latter type is inhabited by e2, we
find an inhabitant e of the former, and we get the property e○e1 = e2 for free. The
construction of the inverse of e is completely analogous, and the proof that their
composition is the identity proceeds by elimination using the universal properties
of e1 and e2.

A Corollary 7.6.8. Write TU ,V for the type Π(n,A)∶N−2×U T
n
U ,V(A). Then, TU ,V is

propositional as Π preserves the truncation level (Lemma 2.2.6).

Assuming TU ,V is inhabited at the necessary points, we need information on
how our notion of truncation interacts with dependent pair types and path spaces.
The corresponding lemmata are well-known for the truncation with judgmental
computation rule (“well-known” in the sense that they are listed in [Uni13]). Their
proofs can be modified to only use the universal property, allowing us to transfer
them to our setting. As explained in Remark 7.6.5, reasoning about reduction
behaviour propositionally is tedious, particularly so whenever it occurs in a type.
The second lemma is the reason why we need to parametrize TU ,V over two uni-
verses, enabling us to perform the correct elimination steps. Still, the proofs of the
lemmata follow well-known ideas. We only give rough sketches. Rigorous proofs
can be found in the Agda formalisation in the electronic appendix.

The following lemma can be understood as “flattening” (see [Uni13, Section
6.12]) for truncations.

A Lemma 7.6.9. Let tA ∶ T n
U ,V(A) and ⟨P,hP ⟩ ∶ type(tA)→ Un (i.e. P is a family

of types over type(tA) and hP is a proof that it is a family of n-types). Given
tΣ ∶ T n

U ,V (Σ (A) . P ○cons(tΣ)), we have

type(tΣ) ≃ Σ (type(tA)) . P. (7.102)

Proof. We can directly define functions

f ∶ Σ (A) . P ○cons(tA) → Σ (type(tA)) . P f(a, x) ∶≡ (cons(tA)(a), p) (7.103)
g ∶ Πa∶A (P (cons(tA)(a))→ type(tΣ)) g(a) ∶≡ λp.cons(tΣ)(a, p)

(7.104)

After applying the universal property of T n
U ,V (Σ (A) . P ○cons(tΣ)), the function f

gives us a map from the left-hand side to the right-hand side of the equivalence
(7.102). For the other direction, we need to use the dependent universal property
of T n

U ,V(A) together with g and uncurry the constructed function.
To prove that the two maps are inverses of each other, we use the (dependent)

universal properties again. Both directions are straightforward.

109

7. Higher Homotopies in a Hierarchy of Univalent Universes

In the statement of the next lemma, note that T m
U ,U(X) is always implied by

T n
U ,V(X) (if U ∶ V) and is therefore a more minimalistic assumption.

A Lemma 7.6.10. Let U , A, n be as before, but let V be a universe larger than
U in the sense that we have U ∶ V. Assume we have tA ∶ T n+1

U ,V (A) as well as
tP ∶ Πa1,a2∶AT

n
U ,U(a1 = a2). Then, for any given a1, a2 ∶ A, the equivalence

type(tP a1 a2) ≃ cons(tA)(a1) =type(tA) cons(tA)(a2) (7.105)

holds.

Proof. The proof is analogous to the one in [Uni13, Theorem 7.3.12], but more
tedious for lack of judgmental computation rules. In the application of the encode-
decode method, it is necessary to use the dependent universal property of tA to
construct a map into Un, a type that does not inhabit U , and that is why we need
to ask for the universal property with respect to types in V instead.

7.6.3 Construction of n-connected Types

With the previous lemmata at hand, we are able to perform the discussed con-
struction.

A Definition 7.6.11. In MLTT, given a pointed type (A,a) and n ≥ −1, we write
⌊A,a⌋n for the n-connected version of (A,a), defined by

⌊A,a⌋n ∶≡ Σ (b ∶ A) .Πt∶T n−1
U,U (a=Ab)type(t). (7.106)

It has the canonical inhabitant (a, a) where a ∶≡ λt.cons(t)(refla). Note that ⌊A,a⌋n
is not a type in U but a type in V for any V satisfying U ∶ V .

In the above definition, we include the case n ≡ −1, but note that it trivial
in the sense that ⌊X⌋−1 ≃ X. The construction is interesting already for n ≡ 0

though, which corresponds to the connected component of a.

A Lemma 7.6.12. In MLTTUA, ⌊A,a⌋n is, on dimension n + 1 and above, equi-
valent to A, in the sense that

Ωn+1(A,a) = Ωn+1(⌊A,a⌋n , (a, a)). (7.107)

Proof. If we write (⌊A,a⌋n , a) as a pointed dependent pair type with an (n − 1)-
truncated pointed family over (A,a), the statement follows from Lemma 7.4.1.

Note that the formulation of the above lemma is justified by the fact that the
n-th dimension of a type is entirely described by the n-th loop spaces. If a = b, then
the types a = a and a = b are equivalent, and therefore, examining the elements of
the loop space is enough to determine the whole structure of a type above some
dimension.2

2This principle was used in the proof of Lemma 2.2.17.

110

7.6. Connectedness

Let us now discuss the connectedness properties of the type ⌊X⌋n for appro-
priate X and n.

A Definition 7.6.13. In plain MLTT, given universes U and V as well as C ∶ V ,
we define the following notion of n-connectedness:

is-n-connected⋆U ,V(C) ∶≡ Πt∶TU,V
ΠtC ∶T

n
V,V(C)

isContr(type(tC)) (7.108)

The notation TU ,V is used as introduced in Corollary 7.6.8.

A Lemma 7.6.14. In MLTTUA, for any pointed type A ∶ U (with a point a ∶ A)
and universe V that contains U , i.e. U ∶ V, the type ⌊A,a⌋n is n-connected in the
above sense, i.e.

is-n-connected⋆U ,V(⌊A,a⌋n). (7.109)

Proof. Unfolding the definitions, given

t ∶ TU ,V ,
tC ∶ T n

V,V (Σ (b ∶ A) .Πs∶T n−1
U,U (a=Ab)type(s)) , (7.110)

we need to show that type(tC) is contractible.
We perform a sequence of steps, each transforming type(tC) into an equi-

valent type. This is especially true for the very first step: by Corollary 7.6.8
and Lemma 2.2.9(ii), the remaining occurrence of Π in (7.110) can be removed,
as t(n − 1, a =A b) can be viewed as an inhabitant of T n−1

U ,U (a =A b). Consequently
it is enough to prove the type

type(t (n,Σ (b ∶ A) . type(t(n − 1, a =A b)))) (7.111)

contractible. Next, we apply Lemma 7.6.10 which provides an equivalence

type(t(n − 1, a =A b)) ≃ P (cons(t(n,A))(b)) (7.112)

where

P ∶ type(t(n,A))→ U (7.113)
P (x) ∶≡ cons(t(n,A))(a) =type(t(n,A)) x, (7.114)

transforming the type (7.111) into

type (t (n,Σ (A) . P ○cons(t(n,A)))) . (7.115)

Clearly, P is a family of (n − 1)-types. We may therefore apply Lemma 7.6.9,
telling us that the type (7.115) is equivalent to

Σ (type(t(n,A))) . P, (7.116)

and this is a singleton.

111

7. Higher Homotopies in a Hierarchy of Univalent Universes

The name of the entity in Definition 7.6.13 is justified in that we took the
standard definition of connectivity and replaced the use of truncation with an
inhabitant of our type of truncations before quantifying over it. Unsurprisingly,
it turns out to be equivalent to the standard notion of connectedness (7.90) if
available.

A Lemma 7.6.15. In MLTTUA
TRUNC, for any U and V, we have

ΠA∶UΠn∶N is-n-connected⋆U ,V(A) ≃ is-n-connected(A). (7.117)

Proof. In MLTTUA
TRUNC, the function type TU ,V has a canonical inhabitant, as men-

tioned in Remark 7.6.5. Together with Lemma 7.6.7 and Corollary 7.6.8, this shows
that TU ,V is contractible, and Lemma 2.2.9(ii) shows the stated equivalence.

A Remark 7.6.16. n-connectedness can be defined without referring to general
truncations and only by using propositional truncations instead [Uni13, Exercise
7.6]. This definition could be seen as somewhat more “elementary” in the sense
that propositional truncations, or notions similar to them, have been considered a
long time before HoTT was developed. Instead of saying that a type is n-connected
if its n-truncation is contractible, we could ask for it to be “merely” inhabited (in
the sense of [Uni13]), and all its path spaces to be n − 1-connected:

is-−2-connected′(A) ∶≡ 1 (7.118)
is-(n + 1)-connected′(A) ∶≡ ∥−1∥A ×Πx,y∶A is-n-connected′(x = y) (7.119)

This notion of connectedness is equivalent to the one stated in Definition 7.6.1.
We think that, generally in HoTT, there might be cases where this notion is
more convenient to use, as it supports direct induction on n. Unfortunately, it
does not seem suitable for a modification that gives a strong enough definition of
connectedness in MLTTUA as does our Definition 7.6.13.

7.7 Combining the Results

In Section 7.4, we have seen that Un is not an n-type and that Un+1 contains a
“strict” (n + 1)-type, namely Un

n . Combining that result with the construction of
the previous section, we immediately get:

A Theorem 7.7.1. In MLTTUA, for a given natural number n, we can construct
a type, defined by

Mn ∶ Un+2 (7.120)
Mn ∶≡ ⌊Un

n , (Loopn−1, hn)⌋n (7.121)

112

7.7. Combining the Results

(with hn as in Lemma 7.4.5) such that, purely in MLTTUA, the following proposi-
tions are provable:

Mn is (n + 1)-truncated: is-(n + 1)-type(Mn) (7.122)
Mn is not n-truncated: ¬is-n-type(Mn) (7.123)
Mn is n-connected: is-n-connected⋆Un+2,Un+3(Mn) (7.124)

The first two properties come from the construction of homotopically complicated
types, the third comes from the previous section on connectedness. Note that these
properties also imply that, in MLTTUA

TRUNC, the n-th homotopy group of Mn is non-
trivial, and all other homotopy groups are trivial.

Proof. The first statement holds as both components of the Σ-type Mn are (n+1)-
truncated. For the second, we combine Lemmata 2.2.17, 7.4.6 and 7.6.12. The
third part is an application of Lemma 7.6.14 with U ≡ Un+2 and V ≡ Un+3.

A related result with much stronger assumptions was shown before using
Eilenberg-Mac Lane Spaces [Uni13, Theorem 8.10.3],[LF14]: in MLTT with uni-
valence and not just truncations, but general higher inductive types, it is possible
to construct a type K(G,n) that is an n-type such that the n-th homotopy group
equals some abelian group G and all the others are trivial. That construction uses
higher inductive types not just to truncate, but also to produce the actual non-
trivial higher paths. This might not be too surprising as the property of K(G,n)
points directly to that usage of HITs. We have shown that, even without them, we
can get quite close. If we wanted to, we could use the second approach of defining
a strict (n + 1)-type (the one from Section 7.5); then, we could control the single
non-trivial homotopy group of our construction explicitly (it would, of course, be
2). Obviously, we would again loose a single universe level.

113

Chapter 8

The General Universal Properties of

Truncations

The propositional truncation has an elimination rule which only allows us to con-
struct functions into other propositions. So, what are we supposed to do if we
need a map ∥A∥ → B in general? If B is not propositional, the elimination rule of
the truncation feels very restrictive. A map A → B will not be sufficient and one
has to find a workaround.

Let us compare a function f ∶ A→ B and a function g ∶ ∥A∥ → B. The first can
“look at its input” (that is, f(a) can of course depend on a), while the second can
not make a distinction between any two of its inputs.1 g only gets an “anonymous”
inhabitant of A. Intuitively, this corresponds to saying that g gets some inhabitant
of A, but has to return the same value in B anyway, no matter what the input is.
In other words, we might say that g corresponds to a constant function from A to
B in some sense. Recall (from Definition 3.1.2) that we call f weakly constant if

constf ∶≡ ∀(x1 x2 ∶X). f(x1) = f(x2). (8.1)

It is not surprising that, in homotopy type theory, this notion of constancy is not
entirely satisfactory. We always emphasise that there might be different paths
between two points, so just asking for any such path does not feel right. Indeed,
we have discussed weakly constant functions in Chapter 5, and we have (in Sec-
tion 5.1) seen that a weakly constant function A → B is (intuitively) still not
enough to get ∥A∥ → B, even though it works in some interesting special cases
(see Section 5.2).

Let us go back to the question of how to define a function ∥A∥ → B in gen-
eral. The standard approach of finding a propositional type “in the middle” has
been described at the beginning of Section 5.2 (and slightly improved with Prin-
ciple 5.2.1). It feels somewhat odd that this propositional type has to be found

1Of course, we only think of internal properties here. When it comes to computation, the
term f can certainly behave differently if applied on not judgmentally equal terms of type ∥A∥.

115

8. The General Universal Properties of Truncations

by an ad-hoc construction. In Proposition 5.2.3, we have seen that a weakly con-
stant function is enough if the codomain is a set, and by Proposition 5.2.4, the
types ∥A∥ → B and Σ (f ∶X → Y) . constf are indeed equivalent. This is already
better than the original elimination principle, as it weakens the condition on B

from “propositional” to “being a set”. It is hard to imagine a situation in which
constructing a function ∥A∥ → B could be done more easily than by construction
a weakly constant A → B. The type which we have used in the proof of Propos-
ition 5.2.3 is essentially the “propositional type in the middle”. If we apply that
lemma, the task of defining ∥A∥ → B becomes easier at least in the sense that we
do not need to find Q ourselves any more. It can thus be used to streamline proofs
of that form.

Admittedly, Proposition 5.2.3 is very simple. But what if we want to get
∥A∥ → B, but B is not even a set? It could be that B is a 1-type, a 2-type,
of some other (known) truncation level, or maybe a totally unknown type. It
is natural to ask whether we can formulate functions A → B with some kind of
“better” constancy condition which let us deal with that situation.

The contribution of this chapter in an answer to these questions. It turns
out that, for 1-types B, a function ∥A∥ → B corresponds exactly to a weakly
constant function A → B which, in addition, satisfies one coherence condition. If
we weaken the assumptions on B further, we need to add more and more such
coherence conditions. The most interesting case is the one in which we do not
know anything about B (we could say that the only truncation level we know is
ω). Unfortunately, in this case, we need an infinite tower of coherence conditions
to define the type A

ω
Ð→ B of “completely coherent” constant functions from A to

B. Then, we can prove that A
ω
Ð→ B and ∥A∥ → B are equivalent. We can not do

this in the type theory that we have considered so far; however, we can do it if
we assume the existence of certain Reedy limits (see Shulman’s work on diagrams
over inverse categories [Shu15]).

More precisely, we use Shulman’s setting of a type theoretic fibration category,
which representing a dependent type theory with at least 1, Σ, Π, identity types,
and Reedy ωop-limits. The only assumptions here that are not satisfied in homo-
topy type theory are the strict (judgmental) uniqueness (or η-) rule for Σ-types,
and the existence of the mentioned Reedy ωop-limits. Strict η for Σ-types is com-
pletely natural and holds, for example, in the theory that Agda implements, as
we have already discussed in Section 1.4. Shulman even writes that strict η is
essentially unnecessary but simplifies the presentation [Shu15, Example 2.9]. This
is certainly true in many cases, but it seems unclear whether referring to strict η

can really be avoided in the proof of our main result (Theorem 8.8.5).
More interesting is the assumption of Reedy ωop-limits. It allows us to consider

Σ-types with infinitely many components in a sense that we will make precise in
Section 8.2, which is just what we need to define A

ω
Ð→ B. However, if we consider

an n-truncated type B for some finite fixed number n, then nearly all of the
coherence conditions captured by A

ω
Ð→ B become trivial, and that type expression

can be simplified to a nested Σ-type with n + 2 components, for which we will

116

write A
[n+1]ÐÐ→ B. It can be formulated in the standard syntactical version of

HoTT, where we can then prove that, for any A and any n-truncated B, the type

A
[n+1]
ÐÐ→ B is equivalent to ∥A∥ → B.
We thereby generalise the usual universal property of the propositional trun-

cation (see Lemma 2.3.3), because if B is not only n-truncated, but propositional,

then A
[n+1]
ÐÐ→ B is equivalent to A → B. This equivalence will in fact be simply

a projection: the type expression A
[n+1]
ÐÐ→ B will be a nested Σ-type with n + 2

components, the very first of which will be A→ B. Moreover, all except this first
one will represent contractible types. We call such a component of a nested Σ-
type expression which represents a contractible type a contractible Σ-component.
Note however that these are components in the purely syntactical sense, and have
nothing to do with components in the topological interpretation, which we will use
in Section 8.10.2. A “practical” application of the result is thus the construction
of maps ∥A∥ → B if B is known to be n-truncated (for some fixed n).

Nevertheless, we want to stress that we consider the correspondence between
A

ω
Ð→ B and ∥A∥ → B in a type theoretic fibration category with Reedy ωop-limits

our main result, and the finite special cases described in the previous paragraph
essentially fall out as a corollary. In fact, we think that Reedy ωop-limits are
a somewhat reasonable assumption. Recently, it has been discussed regularly
how these or similar concepts can be introduced into syntactical type theory (for
example, see the blog posts [Shu14] and [Oli14] with the comments sections, and
the discussion on the HoTT mailinglist [Hmail] titled Infinitary type theory). A
major motivation is the question whether HoTT can serve as its own meta-theory,
whether we can write an interpreter for HoTT in HoTT, and related questions
such as the definition of semi-simplicial types [Her15]. Moreover, a concept that is
somewhat similar has been suggested earlier as very dependent types ([Hic96]; see
also our Section 9.2 below), even though this suggestion was made in the setting
of NuPRL [Con+86].

The general principle for constructing equivalences is “adding and removing
contractible Σ-components” to expressions, or “expanding and contracting”. This
is a very clear example of our general equivalence reasoning strategy (see Sec-
tion 2.2.5), and we strive to explain the principle further with the help of the ex-
amples in Section 8.1. As we have mentioned in Section 1.4, we do not expect that
the main results of this chapter can be be internalised in the considered type theory.
These main contents are to appear in the post-proceedings of TYPES’14 [Kra14b].

The special case for higher truncations, Theorem 8.10.2, can be formalised,
and this has been done by Paolo Capriotti [Cap15].

As an anonymous reviewer of [Kra14b] has pointed out, our result can probably
be seen as a type theoretic version of Proposition 6.2.3.4 in Lurie’s Higher Topos
Theory [Lur09]. It certainly would be interesting to check whether the assumptions
of that proposition are satisfied in our situation and whether the proof of Lurie’s
proposition is constructive. More general, many of the connections between type
theory and higher topos theory have yet to be explored.

117

8. The General Universal Properties of Truncations

Organisation of the chapter We first discuss the cases that the codomain
B is a set or a groupoid in Section 8.1. This is intended to provide some intuition
for our general strategy of proving a correspondence between coherently constant
functions and maps out of propositional truncations. In Section 8.2, we briefly
review the notion of a type theoretic fibration category, of an inverse category, and,
most importantly, constructions related to Reedy fibrant diagrams, as described
by Shulman [Shu15]. Some simple observations about the restriction of diagrams
to subsets of the index categories are recorded in Section 8.3. We proceed by
defining the equality diagram over a given type for a given inverse category in
Section 8.4. The special case where the inverse category is ∆

op
+ (the category

of nonempty finite sets and strictly increasing functions) gives rise to the equality
semi-simplicial type, which is discussed in Section 8.5. We show that the projection
of a full n-dimensional tetrahedron to any of its horns is a homotopy equivalence.
Then, in Section 8.6, we manually construct a fibrant diagram that more or less
represents the exponential of a fibrant and a non-fibrant diagram. We extend the
category ∆

op
+ in Section 8.7, which allows us to make precise how contractible Σ-

components can be “added and removed” in general. Our main result, namely that
the types A

ωÐ→ B and ∥A∥ → B are homotopy equivalent, is shown in Section 8.8.
In Section 8.9, we derive the finite versions of the main theorem: if B is n-truncated
for any fixed finite number n, we can formulate an equivalence between ∥A∥ → B

and a type of constant functions with n coherence condition. This equivalence can
be stated and proved in standard MLTT with propositional truncation. Further,
we discuss the case of higher truncations in Section 8.10. We characterise functions
∥A∥n → B, i.e. we prove a universal property of ∥−∥n, but only for (n+1)-types B.
The intuition is that, to eliminate from the n-truncation of A into some m-type B,
we need a function from A to B that is constant (in an appropriate sense) on all
(n+1)-st loop spaces, and satisfies “all possible” coherence conditions. For example,
to get a map ∥A∥0 → B, where B is 1-truncated, it is necessary to have a function
f ∶ A → B such that, for any a ∶ A and p ∶ a = a, the loop apf(p) is trivial. For
the case m ≡ n+ 1, we give two proofs: the first uses a construction that is similar
to the Rezk completion [AKS15], and the second is based on, and generalises, a
(privately discussed) argument by Vezzosi. In Section 8.11, we summarise which
sort of universal properties (i.e. which cases for n,m) we have solved and which
are open. We provide an argument for the fact that the main difficulties in the
case of the propositional truncation vanish for higher truncations, which introduce
their own coherence issues instead.

Notation If C is some category and x ∈ C an object, we write (as it is stand-
ard) x/C for the co-slice category of arrows x → y. We do many constructions
involving subcategories, but we want to stress that we always and exclusively
work with full subcategories (apart from the subcategory of fibrations in Defin-
ition 8.2.1). Thus, we write C − x for the full subcategory of C that we get by
removing the object x. Further, if D is a full subcategory of C (we write D ⊂ C)
which does not contain x, we write D + x for the full subcategory of C that has

118

8.1. A First Few Special Cases

all the objects of D and the object x.
We also recall our convention that we outlined in Section 2.4: Notions of

equality that are internal to the type theory in question (the identity type and
equivalence of types) are written using “two-line” symbols (=, ≃), while non-internal
concepts (such as isomorphism of objects in a category, or judgmental equality)
are denoted by “three-line” symbols (such as ≡, ≅).

8.1 A First Few Special Cases

In this section, we want to discuss some simple examples and aim to build up intu-
ition for the general case. For now, we work entirely in standard (syntactical) ho-
motopy type theory as specified in Chapter 2 (or [Uni13, Appendix A.2]), together
with function extensionality and (weak) propositional truncation. These examples
here probably show best why we can avoid “computation overhead” thanks to the
equivalence-reasoning style, even if we do not assume judgmental computation
rules. It might be worth mentioning that we actually do not require much of the
power of HoTT: we only use 1, Σ, Π, identity types, propositional truncations,
and assume function extensionality. We do not need univalence, higher inductive
types, general truncations, a hierarchy of universes, or any other additional “fea-
ture”. This will in later sections turn out to be a key feature which enables us
to perform the construction in the infinite case (assuming the existence of Reedy
ωop-limits).

Assume we want to construct an inhabitant of ∥A∥ → B and B is an n-type,
for a fixed given n. The case n ≡ −2 is trivial. For n ≡ −1, the universal property
(or the elimination principle) can be applied directly. In this section, we explain
the cases n ≡ 0 and n ≡ 1. The following auxiliary statement will be useful:

Lemma 8.1.1. Let C1, C2, . . . , Cm be types dependent on A, possibly with Cj de-
pending on Ci for i < j. Consider a nested Σ-type, built out of components of
the form ΠACk. Then, functions from ∥A∥ into that type correspond directly to
elements of that type. That is, the types

∥A∥ → (Σ (f1 ∶ Πa∶AC1(a)) .
Σ (f2 ∶ Πa∶AC2(a, f1(a))) .
Σ . . .

(Πa∶ACm(a, f1(a), f2(a), . . . , fm−1(a))))
and

Σ (f1 ∶ Πa∶AC1(a)) .
Σ (f2 ∶ Πa∶AC2(a, f1(a))) .
Σ . . .

(Πa∶ACm(a, f1(a), f2(a), . . . , fm−1(a)))

119

8. The General Universal Properties of Truncations

are equivalent.

Proof. This holds by the usual distributivity law (Lemma 2.2.12) of Π (or →) and
Σ, together with the equivalence ∥A∥ ×A ≃ A.

8.1.1 Constant Functions into Sets

We consider the case n ≡ 0 first; that is, we assume that B is a set. We have
already seen and proved the following statement before, namely in Chapter 5 as
Proposition 5.2.4. At that point, we have shown the equivalence by constructing
functions in both ways, while we here use a strategy that is closer to the way in
which we prove the general case later.

Proposition 8.1.2. Let B be a set and A any type. Then, we have the equivalence

(∥A∥ → B) ≃ Σ (f ∶ A→ B) . constf . (8.2)

Note that, if B is not only a set but even a proposition, the condition constf
is not only automatically satisfied, but it is actually contractible as a type. By
the usual equivalence lemma (2.2.8), the type on the right-hand side of (8.2) then
simplifies to A → B, which exactly is the universal property. Thus, we view (8.2)
as a first generalisation.

Proof of Proposition 8.1.2. Assume a0 ∶ A is some point in A. In the following,
we construct a chain of equivalences. The variable names for certain components
might seem somewhat odd: for example, we introduce a point f1 ∶ B. The reason
for this choice will become clear later. For now, we simply emphasise that f1 is
“on the same level” as f ∶ A → B in the sense that they both give points, rather
than for example paths (like, for example, an inhabitant of constf).

B

(S1) ≃ Σ (f1 ∶ B) . (A→ Σ (b ∶ B) . b = f1)
(S2) ≃ Σ (f1 ∶ B) .Σ (f ∶ A→ B) .Πa∶Af(a) = f1

(S3) ≃ Σ (f1 ∶ B) .Σ (f ∶ A→ B) . (Πa∶Af(a) = f1) × (constf) × (f(a0) = f1)
(S4) ≃ Σ (f ∶ A→ B) . (constf) ×Σ (f1 ∶ B) . (f(a0) = f1) × (Πa∶Af(a) = f1)
(S5) ≃ Σ (f ∶ A→ B) . (constf) × (Σ (f1 ∶ B) . f(a0) = f1)
(S6) ≃ Σ (f ∶ A→ B) . constf

Let us explain the validity of the single steps. In the first step, we add a family of
singletons. In the second step, we apply the distributivity law (Lemma 2.2.12). In
the third step, we add two components, and B being a set ensures that both
of them are propositional. But it is very easy to derive both of them from
Πa∶Af(a) = f1, showing that both of them are contractible. In the fourth step, we
simply reorder some components, and in the fifth step, we use that Πa∶Af(a) = f1

120

8.1. A First Few Special Cases

is contractible by an argument analogous to that of the third step. Finally, we
can remove two components which form a contractible singleton.

If we carefully trace the equivalences, we see that the function part

e ∶ B → Σ (f ∶ A→ B) . constf (8.3)

is given by
e(b) ≡ (λa.b , λa1a2.reflb) , (8.4)

not depending on the assumed a0 ∶ A. But as e is an equivalence assuming A, it is
also an equivalence assuming ∥A∥.

As ∥A∥ → (B ≃ (Σ (f ∶ A→ B) . constf)) implies that the types (∥A∥ → B)
and (∥A∥ → (Σ (f ∶ A→ B) . constf)) are equivalent, the statement follows from
Lemma 8.1.1.

The core strategy of the steps (S1) to (S6) is to add and remove contractible
Σ-components, and to reorder and regroup them. This principle of expanding and
contracting a type expression can be generalised and, as we will see, even works
for the infinite case when B is not known to be of any finite truncation level.
Generally speaking, we use two ways of showing that components of Σ-types are
contractible. The first is to group two of them together such that they form a
singleton, as we did in (S1) and (S6). The second is to use the fact that B is
truncated, as we did in (S3). We consider the first to be the key technique, and
in the general (infinite) case of an untruncated B, the second can not be applied
at all. We thus view the second method as a tool to deal with single components
that lack a “partner” only because the case that we consider is finite, and which
is unneeded in the infinite case.

8.1.2 Constant Functions into Groupoids

The next special case is n ≡ 1. Assume that B is a groupoid (1-type). Let us first
clarify which kind of constancy we expect for a map f ∶ A → B to be necessary.
Not only do we require c ∶ constf , we also want this constancy proof (which is
in general not propositional any more) to be coherent : given a1 and a2 ∶ A, we
expect that c only allows us to construct essentially one proof of f(a1) = f(a2).
The reason is that we want the data (which includes f and c) together to be just
as powerful as a map ∥A∥ → B, and from such a map, we only get trivial loops in
B.

We claim that the required coherence condition is

cohf,c ∶≡ Πa1a2a3∶Ac(a1, a2) ⋅ c(a2, a3) = c(a1, a3). (8.5)

A first sanity check is to see whether from d ∶ cohf,c we can now prove that c(a, a)
is equal to refla, something that should definitely be the case if we do not want
to be able to construct possibly different parallel paths in B. To give a positive
answer, we only need to see what d(a, a, a) tells us.

121

8. The General Universal Properties of Truncations

Proposition 8.1.3 (case n ≡ 1). Let B be a groupoid (1-type) and A any type.
Then, we have

(∥A∥ → B) ≃ (Σ (f ∶ A→ B) .Σ (c ∶ constf) . cohf,c). (8.6)

Note that Proposition 8.1.3 generalises Proposition 8.1.2: if B is a set (as in
Proposition 8.1.2), it is also a groupoid and the type cohf,c becomes contractible,
as it talks about equality of equalities.

Proof. Although not conceptually harder, it is already significantly more tedious
to write down the chain of equivalences. We therefore choose a slightly different
representation. Assume a0 ∶ A as before. We then have:

B

(S1) ≃
Σ (f1 ∶ B) .
Σ (f ∶ A→ B) .Σ (c1 ∶ Πa∶Af(a) = f1) .
Σ (c ∶ constf) .Σ (d1 ∶ Πa1a2∶Ac(a1, a2) ⋅ c1(a2) = c1(a1)) .
Σ (c2 ∶ f(a0) = f1) .Σ (d3 ∶ c(a0,a0) ⋅ c1(a0) = c2) .
Σ (d ∶ cohf,c0) .
(d2 ∶ Πa∶Ac(a0, a) ⋅ c1(a) = c2)

(S2) ≃
Σ (f ∶ A→ B) .Σ (c ∶ constf) .Σ (d ∶ cohf,c) .
Σ (f1 ∶ B) .Σ (c2 ∶ f(a0) = f1) .
Σ (c1 ∶ Πa∶Af(a) = f1) .Σ (d2 ∶ Πa∶Ac(a0, a) ⋅ c1(a) = c2) .
Σ (d1 ∶ Πa1a2∶Ac(a1, a2) ⋅ c1(a2) = c1(a1)) .
(d3 ∶ c(a0,a0) ⋅ c1(a0) = c2)

(S3) ≃
Σ (f ∶ A→ B) .Σ (c ∶ constf) . (d ∶ cohf,c)

In the first step (S1), we add five contractible parts of a nested Σ-type, each
line apart from the first representing one.

To bring the lines two and three in the form of singletons, we apply the dis-
tributivity law (Lemma 2.2.12), while line four already is a singleton. Lines five
and six clearly represent propositional types which are additionally derivable from
the other Σ-components. In the second step, we simply re-order some compon-
ents. Then, in step (S3), we remove several contractible parts (again, each but
the first line is a contractible part of the nested Σ-type). We trace the canonical
equivalences to see that the function-part of the constructed equivalence is

e ∶ B → Σ (f ∶ A→ B) .Σ (c ∶ constf) . (d ∶ cohf,c) (8.7)
e(b) ≡ (λa.b , λa1a2.reflb , λa1a2a3.reflreflb), (8.8)

and the conclusion follows as in the proof of Proposition 8.1.3.

122

8.1. A First Few Special Cases

8.1.3 Outline of the General Idea

At this point, it seems plausible that what we have done for the special cases of
n ≡ 0 and n ≡ 1 can be done for any (fixed) n < ∞. Nevertheless, we have seen
that the case of groupoids is already significantly more involved than the case of
sets. To prove a generalisation, we have to be able to state what it means for a
function to be “coherently constant” on n levels, rather than just the first one or
two.

Let us try to specify what “coherently constant” should mean in general. If we
have a function f ∶ A → B, we get a point in B for any a ∶ A. A constancy proof
c ∶ constf gives us, for any pair of points in A, a path between the corresponding
points in B. Given three points, c gives us three paths which form a “triangle”,
and an inhabitant of cohf,c does nothing else than providing a filler for such a
triangle. It does not take much imagination to assume that, on the next level, the
appropriate coherence condition should state that the “boundary” of a tetrahedron,
consisting of four filled triangles, can be filled.

To gain some intuition, let us look at the following diagram:

A

A ×A

A ×A ×A

B

Σ (b1, b2 ∶ B) . b1 = b2

Σ (b1, b2, b3 ∶ B) .
Σ (p12 ∶ b1 = b2) .
Σ (p23 ∶ b2 = b3) .
Σ (p13 ∶ b1 = b3) .

p12 ⋅ p23 = p13

t[0]

t[1] ∶ constt[0]

coht[0],t[1]

Figure 8.1: Constancy as a natural transformation

All vertical arrows are given by projections. Consider the category D with objects
the finite ordinals [0], [1] and [2] (with 1, 2, and 3 objects, respectively), and
arrows the strictly monotonous maps. Then, the left-hand side and the right-
hand side can both be seen as a diagram over Dop. The data that we need for
a “coherently constant function” from A into B, if B is a groupoid, can now be
viewed as a natural transformation t from the left to the right diagram (the dashed
horizontal arrows). On the lowest level, such a natural transformation consists of
a function t[0] ∶ A → B, which we called f before. On the next level, we have
t[1] ∶ A2 → Σ (b1, b2 ∶ B) . b1 = b2, but in such a way that the diagram commutes

123

8. The General Universal Properties of Truncations

(strictly, not up to homotopy), enforcing

fst(t[1](a1, a2)) ≡ (t[0](a1), t[0](a2)) (8.9)

and thereby making t[1] the condition that t[0] is weakly constant. Finally, t[2]
yields the coherence condition coh.

In the most general case, where we do not put any restriction on B, we certainly
cannot expect that a finite number of coherence conditions can suffice. Instead of
the diagram over Dop, as pictured on the right-hand side of Figure 8.1, we will need
a diagram over the the category of all non-zero finite ordinals. This is what we call
the equality semi-simplicial type over B, written E (with B being kept implicit).
In the language of model categories, this is a fibrant replacement of the constant
diagram. It would be reasonable to expect that our E extends the diagram shown
in Figure 8.1, but this will only be true up to (levelwise) equivalence of types.
Defining E as a strict extension of that diagram is tempting, but it seems to be
combinatorically non-trivial to continue in the same style, as it would basically
need Street’s orientals [Str87]. Our construction will be much simpler to write
down and easier to work with, with the only potential disadvantage being that,
compared to the diagram Figure 8.1, the lower levels will look rather bloated. The
other diagram in Figure 8.1, i.e. the left-hand side, is easy to extend, and we call
it the trivial diagram over A. In the terminology of simplicial sets, it is the [0]-
coskeleton of the constant diagram. Our main result is essentially an internalised
version, stated as an equivalence of types, of the following slogan:

Functions ∥A∥ → B correspond to natural transformations from the
trivial diagram over A to the semi-simplicial equality type over B.

Our type of natural transformations is basically a Reedy limit of an exponential
of diagrams. We will perform the expanding and contracting principle that we
have exemplified in the proofs of Propositions 8.1.2 and 8.1.3 by modifying the
index category of the diagram of which we take the limit, step by step, taking
care that every single step preservers the Reedy limit in question up to homotopy
equivalence. As we will see, these steps correspond indeed to the steps that we
took in the proofs of Propositions 8.1.2 and 8.1.3.

8.2 Fibration Categories, Inverse Diagrams, and

Reedy Limits

In his work on Univalence for Inverse Diagrams and Homotopy Canonicity, Shul-
man has proved several deep results [Shu15]. Among other things, he shows that
diagrams over inverse categories can be used to build new models of univalent
type theory, and uses this to prove a partial solution to Voevodsky’s homotopy-
canonicity conjecture. We do not require those main results; in fact, we do not
even assume that there is a universe, an consequently we also do not use uni-
valence! At the same time, what we want to do can be explained nicely in terms

124

8.2. Fibration Categories, Inverse Diagrams, and Reedy Limits

of diagrams over inverse diagrams, and we therefore choose to work in the same
setting. Luckily, it is possible to do this with only a very short introduction to
type theoretic fibration categories, inverse diagrams and Reedy limits, and this is
what the current section servers for.

Type-theoretic fibration categories A type theoretic fibration category
(as defined in [Shu15, Definition 2.1] is a category with some structure that allows
to model dependent type theory with identity types. Let us recall the definition,
where we use a lemma by Shulman to give an equivalent (more “type-theoretic”)
formulation:

Definition 8.2.1 (Type-theoretic fibration category, [Shu15, Definition 2.1 com-
bined with Lemma 2.4]). A type theoretic fibration category is a category C which
has the following structure.

1. A terminal object 1.

2. A (not necessarily full) subcategory F ⊂ C containing all the objects, all the
isomorphisms, and all the morphisms with codomain 1. A morphism in F

is called a fibration, and written as A ↠ B. Any morphism i is called an
acyclic cofibration and written i ∶ X ∼↣ Y if it has the left lifting property
with respect to all fibrations, meaning that every commutative square

X

Y

A

B

i ∼ f

has a (not necessarily unique) filler h ∶ Y → A that makes both triangles
commute.

3. All pullbacks of fibrations exist and are fibrations.

4. For every fibration g ∶ A ↠ B, the pullback functor g⋆ ∶ C/B → C/A has a
partial right adjoint Πg, defined at all fibrations over A, whose values are
fibrations over B.

5. For any fibration A ↠ B, the diagonal morphism A → A ×B A factors as
A ∼↣ PBA↠ A×B A, with the first map being an acyclic cofibration and the
second being a fibration.

6. For any A↠ B, there exists a factorisation as in (5) such that in any diagram
of the shape

X Y Z

A PBA B
∼

125

8. The General Universal Properties of Truncations

we have the following: if both squares are pullback squares (which implies
that Y → Z and X → Z are fibrations), then X → Y is an acyclic cofibration.

Remark 8.2.2. From the above definition, it follows that every morphism factors
as an acyclic cofibration followed by a fibration. Shulman’s proof [Shu15, Lemma
2.4], a translation of the proof by Gambino and Garner [GG08] into category
theory, relies on the fact that every morphism A → 1 is a fibration (“all objects
are fibrant”) by definition.

The example of a type theoretic fibration category that we mainly have in
mind is [Shu15, Example 2.9], the category of contexts of a dependent type theory
with a unit type, Σ- and Π-types, and identity types. The unit, Σ- and Π-types
are required to satisfy judgmental η-rules. Because of these η-rules, we do not
need to talk about contexts; we can view every object of the category as a nested
Σ-type with some finite number of components. Of course, the terminal object
is the unit type. The subset of fibrations is the closure of the projections under
isomorphisms. One nice property is that the η-rules also imply that we can assume
that all fibrations are a projection of the form (Σ (x ∶X) . Y (x))↠X. Pullbacks
correspond to substitutions, and the partial functor Πg comes from dependent
function types. For any fibration f ∶ A ↠ B, the factorisation in item (5) can
be obtained using the intensional identity type: if B is the unit type, then the
factorisation can be written as A ∼↣ (Σ ((x, y) ∶ A ×A) . x = y)↠ A×A, and similar
otherwise (see [GG08]). The acyclic cofibration is given by reflexivity.

It is not exactly true that a type theoretic fibration category has an intensional
dependent type theory as its internal language due to the well-known issue that
substitution in type theory is strictly functorial. Fortunately, coherence theorems
(see e.g. [Awo14; LW15]) can be applied to solve this problem, and we do not
worry about it but simply refer to Shulman’s explanation [Shu15, Chapter 4].
The crux is that, disregarding these coherence issues, the syntactic category of
the dependent type theory with unit, Σ, Π, and identity types is essentially the
initial type theoretic fibration category. This means that we can use type-theoretic
constructions freely (as long as they can be performed using unit, Π, Σ, and
identity types); and we will exploit this heavily. For example, the same notion of
function extensionality and type equivalence A ≃ B can be defined. This means, of
course, that we have to be very careful with the terminology. We call a morphism
that is an equivalence in the type-theoretic sense a homotopy equivalence, while
an isomorphism is really an isomorphism in the usual categorical sense. Note that
any isomorphism is not only a fibration by definition, but it is automatically an
acyclic cofibration, and acyclic cofibrations are further automatically homotopy
equivalences.

Definition 8.2.3 (acyclic fibration). We say that a morphism is an acyclic fibra-
tion if it is a fibration and a homotopy equivalence.

An important property to record is that acyclic fibrations are stable under
pullback [Shu15, Corollary 3.12].

126

8.2. Fibration Categories, Inverse Diagrams, and Reedy Limits

Inverse categories and Reedy fibrant diagrams For objects x and y of
a category, write y ≺ x if y receives a nonidentity morphism from x (and y ⪯ x if
y ≺ x or y ≡ x). A category I is called an inverse category (also sometimes called
one-way category) if the relation ≺ is well-founded. In this case, the ordinal rank
of an object x in I is defined by

ρ(x) ∶≡ sup
y≺x

(ρ(y) + 1). (8.10)

As described by Shulman [Shu15, Section 11], diagrams on I can be constructed
by well-founded induction in the following way. If x is an object, write x � I for
the full subcategory of the co-slice category x/I which excludes only the identity
morphism idx. Consider the full subcategory { y ∣ y ≺ x } ⊂ I. There is the forgetful

functor U ∶ x� I→ { y ∣ y ≺ x }, mapping any x
f
Ð→ y to the codomain y. If further

A is a diagram in a type theoretic fibration category C that is defined on this full
subcategory, if the limit

MA(x) ∶≡ limx�I(A ○U). (8.11)

exists, it it called the corresponding matching object. To extend the diagram A

to the full subcategory { y ∣ y ⪯ x } ⊂ I, it is then sufficient to give an object A(x)
and a morphism A(x) → MA(x). The diagram A ∶ I → C is Reedy fibrant if all
matching objects MA(x) exist and all the maps A(x) → MA(x) are fibrations.
We use the fact that fibrations can be regarded as “one-type projections” in the
following way:

Notation 8.2.4 (Decomposition in matching object and fibre). If A ∶ I → C is a
Reedy fibrant diagram, we write (as said above) MA(x) for its matching objects,
and FA(x,m) for the fibre over m; that is, we have

A(x) ≅ Σ (m ∶MA(x)) . FA(x,m). (8.12)

There is the more general notion of a Reedy fibration (a natural transformation
between two diagrams over I with certain properties), so that a diagram is Reedy
fibrant if and only if the unique transformation to the terminal diagram is a
Reedy fibration. Further, C is said to have Reedy I-limits if any Reedy fibrant
A ∶ I → C has a limit which behaves in the way one would expect; in particular,
if a natural transformation between two Reedy fibrant diagrams is levelwise a
homotopy equivalence, then the map between the limits is a homotopy equivalence.
We omit the exact definitions as our constructions do not require them and refer
to [Shu15, Chapter 11] for the details instead. For us, it is sufficient to record that
a consequence of the definition of having Reedy ωop-limits is the following:

Lemma 8.2.5. Let a type theoretic fibration category C that has Reedy ωop-limits
be given. Suppose that

F ∶≡ F0
∼↞ F1

∼↞ F2
∼↞ . . . (8.13)

is a diagram F ∶ ωop → C, where all maps are acyclic fibrations. For each i, the
canonical map lim(F)→ Fi is a homotopy equivalence.

127

8. The General Universal Properties of Truncations

Proof. Consider the diagram that is constantly Fi apart from a finite part,

G ∶= F0
∼↞ F1

∼↞ . . . ∼↞ Fi−1 ∼↞ Fi
∼↞ Fi

∼↞ Fi (8.14)

There is a canonical natural transformation F → G, induced by the arrows in F ,
which is a Reedy fibration and levelwise an acyclic fibration. It follows directly
from the precise definition of Reedy limits [Shu15, Definition 11.4] that the induced
map between the limits lim(F)→ Fi is a fibration and a homotopy equivalence.

For later, we further record the following:

Lemma 8.2.6. If A ∶ I → C is Reedy fibrant, then so is A ○U ∶ x/I → C.

Proof. This is due to the fact that for a (nonidentity) morphism k ∶ x→ y in I the
categories k� (x�I) and y�I are isomorphic. This argument is already used by
Shulman ([Shu15, Lemma 11.8]).

An inverse category I is admissible for C if C has all Reedy (x�I)-limits. If I
is finite, then any type theoretic fibration category has Reedy I-limits by [Shu15,
Lemma 11.8]. From the same lemma, it follows that for all constructions that we
are going to do, it will be sufficient if C has Reedy ωop-limits. Further, in all our
cases of interest, all co-slices of I are finite, and C is automatically admissible.

Because of the above, let us fix the following:

Notation 8.2.7. For the rest of this chapter, let C be a type theoretic fibration
category with Reedy ωop-limits, which further satisfies function extensionality. We
refer to the objects of C (which are by definition always fibrant) as types. Let us
further introduce the term tame category. We say that an inverse category is a
tame category if all co-slices x/I are finite (which implies that ρ(x) is finite for all
objects x) and, for all n, the set of objects at “level” n, that is { x ∈ I ∣ ρ(x) ≡ n },
is finite. The important property is that a tame category I is admissible for C,
and that C has Reedy I-limits. Thus, tame categories make it possible to perform
constructions without worrying whether required limits exist, and we will not be
interested in any non-tame inverse categories.

8.3 Subdiagrams

Let I be a tame category. We are interested in full subcategories of I, and we
mean “subcategory” in the strict sense that the set of objects is a subset of the
set of objects of I. We say that a full subcategory J of I is downwards closed
if, for any pair x, y of objects in I with y ≺ x, if x is in J , then so is y. The full
downwards closed subcategories of I always form a poset (a partially ordered set)
Sub(I), with an arrow J → J ′ if J ′ is a subcategory of J . Again, “subcategory”
is to be understood in the set-theoretic sense. In particular, we do not identify

128

8.3. Subdiagrams

isomorphic subcategories (since their objects will in general be different, in other
words, the isomorphism will not commute with the embeddings into I).

It is easy to see that the poset Sub(I) has all limits and colimits. For example,
given downwards closed full subcategories J and J ′, their product is given by
taking the union of their sets of objects. We therefore write J ∪ J ′. Dually,
coproducts are given by intersection and we can write J ∩ J ′. An object x of I
generates a subcategory { y ∣ y ⪯ x }, for which we write x.

If A ∶ I → C is a Reedy fibrant diagram and C has Reedy I-limits, we can
consider the functor

lim−A ∶ Sub(I)→ C (8.15)

which maps any downwards closed full subcategory J ⊆ I to limJA, the Reedy
limit of A restricted to J .

Lemma 8.3.1. Let I be a tame category and J,K two downwards closed subcat-
egories of I. Then, the functor lim−A maps the pullback square

J ∪K

J

K

J ∩K

in Sub(I) to a pullback square in C.

Proof. For an object X, a cone X → A∣J∪K corresponds to a pair of two cones,
X → A∣J and X → A∣K , which coincide on J ∩K.

Lemma 8.3.2. Under the same assumptions as before, the functor lim−A maps
all morphisms to fibrations. In other word, if K is a downwards closed subcategory
of the inverse category J , then

limJA↠ limKA (8.16)

is a fibration.

Proof. We only need to consider the case that J has exactly one object that K does
not have, say J ≡K+x, because the composition of fibrations is a fibration (this is
true even for “infinite compositions”, with the same short proof as Lemma 8.2.5).
Further, we may assume that all objects of J are predecessors of x, i.e. we have
x ≡ J ; otherwise, we could view J → K as a pullback of x → x − x and apply
Lemma 8.3.1.

The cone limKA→ A∣K gives rise to a cone limKA→ (A○U)∣x�K (the morphism

into x
f
Ð→ y is given by the morphism into y), and we thereby get a morphism

m ∶ limKA → MA(x). If we pull the fibration A(x) ↠ MA(x) back along the
morphism m, we get a fibration P ↠ limKA, and it is easy to see that P ≅ limJA.

129

8. The General Universal Properties of Truncations

Remark 8.3.3. From the above proof, we also get a description of how the fibra-
tion limK+xA↠ limKA looks like in type-theoretic notation. It can be written as

Σ (k ∶ limKA) . FA(x,m(k)) ↠ limKA. (8.17)

This remains true even if not all objects in J are predecessors of x.

8.4 Equality Diagrams

Given any tame inverse category I and a fixed type B in C, the diagram I → C

that is constantly B is, in general, not Reedy fibrant. Fortunately, the axioms of
a type theoretic fibration category allow us to define a fibrant replacement (see,
for example, Hoveys textbook [Hov07]). We call the resulting diagram, which we
construct explicitly, the equality diagram of B over I. We define by simultaneous
induction:

1. a diagram E ∶ I→ C, the equality diagram

2. a cone η ∶ B → E (i.e. a natural transformation from the functor that is
constantly B to E)

3. a diagram ME ∶ I→ C (the diagram of matching objects)

4. an auxiliary cone η̃ ∶ B →ME .

5. a natural transformation ι ∶ E →ME

such that ι ○ η equals η̃.
Assume that i is an object in I such that the five components are defined for

all predecessors of i. This is in particular the case if i has no predecessors. We
define the matching object ME

i ∶≡ limi�IE as discussed in Section 8.2. The universal
property of this limit yields

• for every non-identity morphism f ∶ i → j, an arrow f ∶ME
i → Ej, which lets

us define ME(f) to be ιj ○ f ; and

• an arrow η̃i ∶ B → ME
i such that, for every non-identity f ∶ i → j as in the

first point, we have that f ○ η̃i equals ηj.

We further define E on objects by

Ei ∶≡ Σ (m ∶ME
i) .Σ (x ∶ B) . η̃i(x) = m. (8.18)

This allows us to choose the canonical projection map for ιi, and we can define E
on non-identity morphisms by

E(f) ∶≡ f ○ ιi. (8.19)

130

8.5. The Equality Semisimplicial Type

Finally, we set

ηi(x) ∶≡ (η̃i(x), x, reflη̃i(x)). (8.20)

By construction, η, η̃, and ι satisfy the required naturality conditions.

Lemma 8.4.1. For all i ∶ I, the morphism ηi ∶ B → Ei is a homotopy equivalence.

Proof. This is due to the fact that

Ei ≡ Σ (m ∶ME
i) .Σ (x ∶ B) . η̃i(x) = m

≃ Σ (x ∶ B) .Σ (m ∶ME
i) . η̃i(x) = m

≃ B,

(8.21)

where the last step uses that the last two components have the form of a singleton.

The proceeding lemma tells us that E is levelwise homotopy equivalent to the
constant diagram. The crux is that, unlike the constant diagram, E is Reedy
fibrant by construction, i.e. a fibrant replacement in the usual terminology of
model category theory.

Lemma 8.4.2. For all morphisms f in the category I, the fibration E(f) is a
homotopy equivalence.

Proof. If f ∶ i→ j is a morphism in I, we have E(f) ○ ηi ≡ ηj due to the naturality
of η. The claim than follows by Lemma 8.4.1 as homotopy equivalences satisfy
“2-out-of-3”.

8.5 The Equality Semisimplicial Type

Let ∆+ be the category of non-zero finite ordinals and strictly increasing maps
between them. We write [k] for the objects, [k] ≡ { 0,1, . . . , k }, and [k] +→ [m] for
the hom-sets. We can now turn to our main case of interest, which is the tame
category I ≡ ∆

op
+ . In this case, we call E the equality semi-simplicial type of the

(given) type B. We could write down the first few values of ME
[n] and E[n] explicitly.

However, these type expressions would look rather bloated. More revealing might
be the homotopically equivalent presentation in Figure 8.2.

131

8. The General Universal Properties of Truncations

M[0] ≡ 1

E[0] ≃ B

M[1] ≃ B ×B

E[1] ≃ Σ (b1, b2 ∶ B) . b1 = b2

M[2] ≃ Σ (b1, b2, b3 ∶ B) . (b1 = b2) × (b2 = b3) × (b1 = b3)
E[2] ≃ Σ (b1, b2, b3 ∶ B) .Σ (p ∶ b1 = b2) .Σ (q ∶ b2 = b3) .Σ (r ∶ b1 = b3) . p q = r.

Figure 8.2: The “nicer” formulation of the equality semi-simplicial type

We think of E[0] as the type of points, E[1] as the type of lines (between two points),
and of E[2] as the type of triangles (with its faces). The “boundary” of a triangle,
as represented by M[2], consists of three points with three lines, and so on. In
general, we think of E[n] as (the type of) n-dimensional tetrahedra, while ME

[n]
are their “complete boundaries”. In principle, we could have defined E in a way
such that Figure 8.2 are judgmental equalities rather than only equivalences: the
stated types could be completed to form a Reedy fibrant diagram. However, we
do not think that this is possible using a definition that is as uniform and short
as the one above. Already for E[3], it seems unclear what the best formulation
would be if we wanted to follow the presentation of Figure 8.2. In general, such a
construction would most likely make use of Street’s orientals [Str87].

For any [n], the co-slice category [n]/∆op
+ is a poset. This is a consequence

of the fact that all morphisms in ∆+ are monic. We have the forgetful func-
tor U ∶ [n]/∆op

+ →∆
op
+ . Further, [n]/∆op

+ is isomorphic to the poset P+([n]) of
nonempty subsets of the set [n] ≡ {0,1, . . . , n}, where we have an arrow between
two subsets if the first is a superset of the second. The downwards closed full
subcategories of [n]/∆op

+ correspond to downwards closed subsets of P+([n]). If
S is such a downwards closed subset, we write limS(E ○ U), omitting the implied
functor S → [n]/∆op

+ .
Any set s ⊆ [n] generates such a downwards closed set for which we write

s ∶≡ P+(s). For k ∈ s, we write s−k for the set that we get if we remove exactly two
sets from s, namely s itself and the set s − k (i.e. s without the element k). We
call lim[n]−k(E ○U) the k-th n-horn.

Main Lemma 8.5.1. For any n ≥ 1 and k ∈ [n], call the fibration from the full
n-dimensional tetrahedron to the k-th n-horn

lim[n](E ○U) ↠ lim[n]−k(E ○U) (8.22)

a horn-filler fibration. All horn-filler fibrations are homotopy equivalences.

Remark and Corollary 8.5.2 (Types are Kan complexes). As Steve Awodey and
an anonymous reviewer of [Kra14b] have pointed out to me, Main Lemma 8.5.1

132

8.5. The Equality Semisimplicial Type

can be seen as a simplicial variant of Lumsdaine’s [Lum09] and van den Berg-
Garner’s [BG11] result that types are weak ω-groupoids. Both of these (independ-
ent) articles use Batanin’s [Bat98] definition, slightly modified by Leinster [Lei02],
of a weak ω-groupoid.

Let us make the construction of a simplicial weak ω-groupoid, i.e. of a Kan
complex, concrete. We can do this for the assumed type theoretic fibration cat-
egory C as long as it is locally small (i.e. all hom-sets are sets). As before, we can
without loss of generality assume that the type we want to consider lives in the
empty context, i.e. is given by an object B. We can define a semi-simplicial set

S ∶∆op
+ → Set (8.23)

S[n] ∶≡ C(1,E[n]). (8.24)

For a morphism f of ∆op
+ , the functor S is given by simply composing with E(f).

Note that, of course, the simplicity of (8.24) benefits from the assumption that the
context is empty, and that sections of B↠ 1 are the same as morphisms C(1,B).

Shulman’s acyclic fibration lemma [Shu15, Lemma 3.11], applied on the result
of our Main Lemma 8.5.1, gives us sections of all horn-filler fibrations. Therefore,
S satisfies the Kan condition. By a result Rourke and Sanderson [RS71] (see also
McClure [McC13] for a combinatorical proof), such a semi-simplicial set can be
given the structure of a Kan simplicial set, an incarnation of a weak ω-groupoid.

To get the result that types in HoTT are Kan complexes, we simply take C to
be the syntactic category of HoTT, where we have to assume strict η for Π (as we
do anyway) and Σ (which we can certainly do as well). In Remark 9.2.5, we will
give an elegant type-theoretic definition of E . This allows us to say very concretely
that the terms of the types that we will write down form a Kan complex.

Proof of Main Lemma 8.5.1. Fix [n]. We show more generally that, for any s ⊆ [n]
with cardinality ∣s∣ ≥ 2 and k ∈ s, the fibration

lims(E ○U)↠ lims−k(E ○U) (8.25)

is an equivalence. The proof is performed by induction on the cardinality of s. In
case s has only one element apart from k, the proof is immediate.

Let us explain the induction step. For the one-object downwards closed cat-
egory {{k}} ⊂ s we have

lim{{k}}(E ○U) ≅ E[0] ≃ B. (8.26)

The inclusion {{k}} ⊆ s−k ⊂ s gives rise to a triangle

133

8. The General Universal Properties of Truncations

lims(E ○U) lims−k(E ○U)

lim{{k}}(E ○U)

of fibrations. The top horizontal fibration is the one which we want to prove of
that it is an equivalence. Using “2-out-of-3” and the fact that the left (diagonal)
fibration is an equivalence by Lemma 8.4.2, it is sufficient to show that the right
vertical fibration is an equivalence. To do this, we decompose it into 2∣s∣−1 − 1

fibrations, each of which can be viewed as the pullback of a smaller horn-filler
fibration:

Consider the set P+(s− k) of those nonempty subsets of s that do not contain
k. The number of those is 2∣s∣−1 − 1. We label those sets as α1, α2, . . . , α2∣s∣−1−1,
where the order is arbitrary with the only condition that their cardinality is non-
decreasing, i.e. i < j implies ∣αi∣ < ∣αj ∣.

We further define 2∣s∣−1 subsets of P+(s), named S0, S1, . . . , S2∣s∣−1 . Define S0 to
be {{k}}. Then, define Si to be Si−1 with two additional elements, namely αi and
αi ∪ {k}. In this process, every element of P+(s) is clearly added exactly once.
In particular, S2∣s∣−1 ≡ s and S2∣s∣−1−1 ≡ s−k. Further, all Si are downwards closed,
which is easily seen to be the case by induction on i: it is the case for i ≡ 0, and
in general, Si contains all proper subsets of αi ∪ {k} due to the single ordering
condition that we have put on the sequence (αj).

It is easy to see that

Si ≡ Si−1 ∪ αi ∪ {k} (8.27)

αi ∪ {k}−k ≡ Si−1 ∩ αi ∪ {k}. (8.28)

By Lemma 8.3.1, we thus have a pullback square

limSi
(E ○U) lim

αi∪{k}(E ○U)

limSi−1(E ○U) lim
αi∪{k}−k(E ○U)

For i ≤ 2∣s∣−1 − 2, the right vertical morphism is a homotopy equivalence by the
induction hypothesis. As acyclic fibrations are stable under pullback, the left ver-
tical morphism is one as well. As the composition of equivalences is an equivalence,
we conclude that

lims−k(E ○U) ↠ lim{{k}}(E ○U) (8.29)

is indeed an equivalence.

134

8.6. Fibrant Diagrams of Natural Transformations

Remark 8.5.3. Recall that a simplicial object X ∶ ∆op → D satisfies the Segal
condition (see [Seg68]) if the “fibration”

X[n] →X[1] ×X[0] X[1] ×X[0] . . . ×X[0] X[1]
´¹¹¸¹¹¹¶

n factors

(8.30)

is an equivalence. In our situation, it looks as if it was easy to check the Segal
condition; more precisely, a shorter argument than the one in the proof could
show that all the fibrations of the form (8.30)) are homotopy equivalences. Our
construction with the sequence α1, α2, . . . , α2∣s∣−1−1 seems to contain a “manual”
proof of the fact that checking this form of the Segal condition would be sufficient.

8.6 Fibrant Diagrams of Natural Transformations

Let us first formalise what we mean by the “type of natural transformations
between two diagrams”. If I is a tame category and D,E ∶ I → C are Reedy
fibrant diagrams, the exponential ED ∶ I → C in the functor category CI exists
and is Reedy fibrant [Shu15, Theorem 11.11] and thus has a limit in C. What
we are interested in is the more general case that D might not be fibrant, but we
also do not need any exponential. (I expect that the exponential ED exists and is
fibrant even if only E is fibrant. This would lead to an alternative representation
of the same construction, but I have decided to use the less abstract one presented
here as it seems to give a more direct argument.) On a more abstract level, what
we want to do can be described as follows. For any downwards closed subcat-
egory of I, we consider the exponential of D and E restricted to this subcategory,
and take its limit. We basically construct approximations to the “type of natural
transformations” from D to E which, in fact, corresponds to the limit of these
approximations, should it exist. Fortunately, it is easy to do everything “by hand”
on a very basic level.

We write LIM for the underlying partially ordered set of I that we get if we
make any two parallel arrows equal (we “truncated” all hom-sets). This makes
sense even if I is not inverse, but if it is, then so is LIM. There is a canonical
functor ∣−∣

I
∶ I → LIM. As the objects of I are the same as those of LIM, we omit

this functor when applied to an object, i.e. for i ∈ I we write i ∈ LIM instead of
∣i∣I ∈ LIM.

Definition 8.6.1 (Diagram of Natural Transformations). Given an inverse cat-
egory I, a diagram D ∶ I → C and a fibrant diagram E ∶ I → C with

E(i) ≡ Σ (m ∶ME(i)) . FE(i,m) (8.31)

as introduced in Notation 8.2.4, we define a fibrant diagram N ∶ LIM → C together
with a natural transformation

v ∶ ((N ○ ∣−∣
I
) ×D)→ E (8.32)

135

8. The General Universal Properties of Truncations

simultaneously, where (N ○ ∣−∣
I
) ×D is the functor I → C that is given by taking

the product pointwise.
Assume i is an object in I. Assume further that we have defined both N and

v for all predecessors of i (i.e. N is defined on { x ∈ LIM ∣ x ≺ i } and v is defined on
{ x ∈ I ∣ x ≺ i }). v then gives rise to a map

v ∶ lim{ x∈LIM ∣ x≺i }N ×D(i)→ME(i). (8.33)

Note that we have lim{ x∈LIM ∣ x≺i }N ≡ limi�LIM(N ○U) ≡ MN(i) since LIM is a poset.
Now, define N(i) ≡ Σ (m ∶MN(i)) . FN(i,m) by choosing the fibre over m to be

FN(i,m) ∶≡ Πd∶D(i)F
E(i, v(m,d)). (8.34)

This definition also gives a canonical morphism vi ∶ N(i) × D(i) → E(i) which
extends v.

Let us apply this construction to define the type of constant functions between
types A and B in the way that we already suggested in Figure 8.1 on page 123.
First, we define the functor A ∶∆op

+ → C. This is the [0]-coskeleton of the constant
diagram on A. For objects, it is simply given by

A[k] ∶≡ A ×A × . . . ×A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(k+1) factors

. (8.35)

If we view an element of A[i] as a function [i] → A, for a map f ∶ [i] +→ [j]
we get A(f) ∶ A[j] → A[i] by composition with f . We then define the functor
NA,B ∶ L∆op

+ M → C via the above construction as the “fibrant diagram of natural
transformations” from A to E . Note that L∆op

+ M is isomorphic to ωop. Using the
homotopy equivalent formulation of E stated in (8.2) and the definitions of const
and coh of Section 8.1, we get

NA,B([0]) ≃ (A→ B) (8.36)

as well as
NA,B([1]) ≃ Σ (f ∶ A→ B) . constf (8.37)

and
NA,B([2]) ≃ Σ (f ∶ A→ B) .Σ (c ∶ constf) . cohf,c. (8.38)

We want to stress the intuition that we think of functions with an infinite tower
of coherence condition by introducing the following notation:

Notation 8.6.2 (A ω
Ð→ B). Given types A and B, we write A

ω
Ð→ B synonymously

for limL∆op
+ MNA,B.

In the same way as we write simply E (and not EB), we usually omit the indices
of NA,B and just write N , provided that A,B are clear from the context. This
allows us write N[n] instead of NA,B([n]).

Analogously to Notation 8.6.2, let us write the following:

136

8.7. Extending Semi-Simplicial Types

Notation 8.6.3 (A
[n]Ð→ B). Given types A and B and a (usually finite) number

n, we write A
[n]
Ð→ B synonymously for N[n]. To enable a uniform presentation, we

define A
[−1]
ÐÐ→ B to be the unit type.

We are now able to make the main goal, as outlined in Section 8.1.3, precise: we
will construct a function (∥A∥ → B) → (A ω

Ð→ B) and prove that it is a homotopy
equivalence. For now, let us record that we can get a function B → (A ω

Ð→ B).
In the following definition, we use the cones η ∶ B → E and η̃ ∶ B → ME from
Section 8.4.

Definition 8.6.4 (Canonical function s ∶ B → (A ω
Ð→ B)). Define a cone γ ∶ B → N

which maps b ∶ B to the function that is “judgmentally constantly b”, in the follow-
ing way. First, notice that the matching object MN

[n] is simply N[n−1] (due to the
fact that L∆op

+ M is a total order). Assume we have already defined the component
γ[n−1] ∶ B → N[n−1] such that v(γ[n−1](b), x) ≡ η̃[n](b), with v as in (8.33), for all
x ∶ A[n]. We can then define γ[n](b) by giving an element of FN ([n], γ[n−1](b)), but
that expression evaluates to Πx∶A[n]Σ (x ∶ B) . η̃[n](x) = η̃[n](b). Thus, we can take
γ[n](b) to be

γ[n](b) ∶≡ (γ[n−1](b), λz.(b, reflη̃[n−1](b))). (8.39)

It is straightforward to check that the condition v(γ[n], x) ≡ η̃[n+1](b) is preserved.
Define the function s ∶ B → (A ω

Ð→ B) to be limL∆op
+ Mγ, the arrow that is induced by

the universal property of the limit.

8.7 Extending Semi-Simplicial Types

In this section, we first define the category �+. We can then view �
op
+ as an

extension of ∆
op
+ , as ∆

op
+ can be embedded into �

op
+ , and this embedding has a

retraction T with the property that the co-slice c/�op+ is always isomorphic to T (c)/
∆

op
+ . With the help of this category, we can describe precisely the components

precisely that we want to use in our “expanding and contracting” argument. The
definition of �+ is motivated by the proofs of Propositions 8.1.2 and 8.1.3, and this
will become clear when we show how exactly we use �+, see especially Figure 8.4.
In particular, we draw the connection to Proposition 8.1.3 explicitly on page 140.

Definition 8.7.1 (�+). Let �+ be the following category. For every object [k] of
∆+ (i.e. every natural number k), and every number i ∈ [k + 1], we have an object
ci[k]. Given objects ci[k] and c

j

[m], we define �+ (ci[k], cj[m]) to a subset of the set of
maps ∆+([k], [m]). It is given by

�+ (ci[k], cj[m]) ∶≡ { f ∶ [k] +→ [m] ∣ α(k,m, i, j) } (8.40)

137

8. The General Universal Properties of Truncations

where the condition α is defined as

α(k,m, i, j) ∶≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f(x) ≡ x for all x < i, and f(x) > x for all x ≥ i if i < j

f(x) ≡ x for all x < i if i ≡ j

� if i > j.

(8.41)

What will be useful for us is the opposite category �
op
+ . A part of it, namely the

subcategory { ci[k] ∈ �op+ ∣ k ≤ 3 }, can be pictured as shown in Figure 8.3. We only

draw the “generating” arrows c
j

[m+1] → ci[m]. The idea is that the full subcategory

c0[0] c1[0]

c0[1] c1[1] c2[1]

c0[2] c1[2] c2[2] c3[2]

c0[3] c1[3] c2[3] c3[3] c4[3]

.

Figure 8.3: The category �
op
+

of objects c0[m] is exactly ∆+, and that every object ci[m] in �+ receives exactly one
arrow for every [k] +→ [m]. We make this precise as follows:

Lemma 8.7.2. The canonical embedding ∆
op
+ ↪ �

op
+ , defined by [m]↦ c0[m], has a

retraction

T ∶ �op+ →∆
op
+ (8.42)

T (cj[m]) ∶≡ [m] (8.43)

and, for all objects cj[m] in �
op
+ , the functor that T induces on the co-slice categories

c
j

[m]/�op+ → [m]/∆op
+ (8.44)

is an isomorphism of categories.

Proof. It is clear that ∆
op
+ ↪ �

op
+

T
Ð→ ∆

op
+ is the identity on ∆

op
+ . For any c

j

[m], fix
an object [k] in ∆

op
+ and take a morphism f ∶ [k] +→ [m]. There is exactly one i

138

8.7. Extending Semi-Simplicial Types

such that the condition α(k,m, i, j) in (8.41) is fulfilled. This proves the second
claim.

Let us extend the functor A ∶ ∆op
+ → C (see Section 8.6) to the whole category

�
op
+ . Assume that a type A is given. We want to define a diagram Â that extends
A. This corresponds to the point where, in Section 8.1, we had assumed that a
point a0 ∶ A was given, in other words, we had added (a0 ∶ A) to the context. We
do the same here. Categorically, this means we work in the slice over A. The
slice category C/A is not necessarily a type theoretic fibration category as not all
morphisms B → A are fibrations, but we can simply restrict ourselves to those
that are. Shulman denotes this full subcategory of C/A by (C/A)f . The diagram
that we define is thus a functor

Â ∶ �op+ → (C/A)f . (8.45)

In order to be closer to the type-theoretic notation and to hopefully increase
readability, we write objects of (C/A)f simply as B(a0) if they are of the form
Σ (a ∶ A) .B(a)↠ A. This uses that we can do the whole construction fibrewise,
i.e. that we can indeed assume a fixed but arbitrary a0 ∶ A “in the context”. Of
course, objects in (C/A)f of the form A ×B↠ A are simply denoted by B.

Using this notation, we define Â on objects by

Â(cj[m]) ∶≡ A ×A × . . . ×A´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(m+1−j) factors

, (8.46)

for which we simply write Am+1−j. Given c
j

[m]
f
Ð→ ci[k] in �

op
+ , we thus need to define

a map Â(f) ∶ Am+1−j → Ak+1−i. As in the definition of A, the map f ∶ [k] +→ [m]
gives rise to a function f ∶ Am+1 → Ak+1 by “composition”. We define Â(f) as the
composite

Am+1−j

Aj ×Am+1−j

Ai ×Ak+1−i

Ak+1−i

a⃗↦ (a0,a0, . . . ,a0´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j times a0

, a⃗)

f

snd

We have a diagram E ○ T ∶ �op+ → C, which we can (pointwise) pull back
along A ↠ 1, which gives us a diagram that we call Ê ∶ �op+ → (C/A)f . This
diagram is Reedy fibrant. With the construction of Section 8.6, we can define

139

8. The General Universal Properties of Truncations

N̂ ∶ L�op+ M→ (C/A)f to be the “fibrant diagram of natural transformations” from Â
to Ê .

We can picture N̂ on the subcategory { cj[m] ∈ L�op+ M ∣m ≤ 2 } as shown in Fig-
ure 8.4. For readability, we use the homotopy equivalent representation of the
values of E as shown in Figure 8.2. Further, we only write down the values of F Ê

(i.e. the fibres) instead of the full expression Ê(cj[m]) ≡ Σ(t ∶M Ê(cj[m])) . F Ê(cj[m], t).
This means that the fibration constf ↠ (f ∶ A → B) from Figure 8.4 stands for
the projection Σ (f ∶ A→ B) . constf ↠ (A→ B). The reader is invited to make a
comparison with Proposition 8.1.3. Recall that, in the proof of Proposition 8.1.3,
we have started with the component f1. In the “expanding” part, we have added
the pair of f and c1, which (together) form a contractible type, as well as the pair
of c and d1, and c2 and d3. We have also used that the types of d and d2 are,
in the presence of the other components, contractible. Then, in the “retracting”
part, we have used that the types of d3 and d1 are contractible, and that c1 and
d2, as well as f1 and c2, form pairs of two other contractible types.

f ∶ A→ B f1 ∶ B

c ∶ constf c1 ∶ Πa∶Af(a) = f1 c2 ∶ f(a0) = f1

d ∶ cohf,c0
d1 ∶ Πa1a2∶Ac(a1, a2) ⋅ c1(a2) = c1(a1)

d2 ∶ Πa∶Ac(a0, a) ⋅ c1(a) = c2
d3 ∶ c(a0,a0) ⋅ c1(a0) = c2

Figure 8.4: The diagram N̂ in readable (homotopy equivalent) representation;
only the three lowest levels (the images of cj[m] with m ≤ 2) are drawn

To compare N̂ with N , first note that N ∶ ∆op
+ → C can be pulled back along

A ↠ 1 pointwise and yields a diagram ∆
op
+ → (C/A)f . This diagram is identical

(pointwise isomorphic) to the diagram that we get if we first pull back the diagrams
A and E , and then take the “fibrant diagram of natural transformations”. Further,
as “limits commute with limits”, the limit of this diagram is, in (C/A)f , isomorphic
to the pullback of A ω

Ð→ B along A↠ 1. It is thus irrelevant at which point in the
construction we “add (a0 ∶ A) to the context”, i.e. at which point we switch from C

to the slice over A. This allows us to compare constructions in (C/A)f and C, by
implicitly pulling back the latter. As it is easy to see, N̂ extends N in this sense
(i.e. N̂ (c0[m]) is the pullback of N[m] along A↠ 1).

140

8.8. The Main Theorem

Recall that we have defined a cone γ ∶ B → N and an arrow s ∶ B → (A ω
Ð→ B)

in Definition 8.6.4. Exploiting that γ[n](b) was defined in a way that makes it
completely independent of the “argument” x ∶ A[n], and using Lemma 8.7.2, we
can extend γ to a cone γ ∶ B → N̂ , essentially by putting γ

c
j

[m]
∶≡ γ[m]. This gives

a morphism
s ∶ B → limL�op+ MN̂ (8.47)

which extends s, in the sense that (the pullback of) s is the composition

B
s
Ð→ limL�op+ MN̂

pr
Ð→ limL∆op

+ MN , (8.48)

with pr coming from the embedding L∆op
+ M↪ L�op+ M and the fact that the restriction

of N̂ to {c0[m]} is N . Further, noting that N̂ (c1[0]) is canonically equivalent to B

(as used in Figure 8.4), the composition

B
s
Ð→ limL�op+ MN̂

pr′

Ð→ N̂ (c1[0])
∼
Ð→ B (8.49)

is the identity on B.

8.8 The Main Theorem

The preparations of the previous sections allow us to formulate and prove our
main result. We proceed analogously to our arguments for the special cases in
Section 8.1: Lemma 8.8.1 and Corollary 8.8.2 show that certain fibrations are
homotopy equivalences, i.e. that certain types are contractible. This is then used
in Lemma 8.8.3 to perform the “expanding and contracting” argument, which
shows that, if we assume a point in A, the function s from Definition 8.6.4 is an
equivalence.

For the next statement, note that N̂ (cj[m]) is isomorphic to lim{ x∈L�+M ∣ x⪯cj[m] }
N̂ .

Lemma 8.8.1. The fibration

N̂ (cj[m])↠ lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂ (8.50)

is a homotopy equivalence for any m and j.

Proof. There is a single morphism in �
op
+ (cj[m], cj−1[m−1]). For the category c

j

[m] � �
op
+

where this morphism is removed, we write c
j

[m] � �
op
+ − c

j−1
[m−1]. By construction of

N̂ , we have a natural transformation v ∶ (N̂ ○ ∣−∣�op+) × Â→ Ê , which gives rise to a
morphism

w ∶ (lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂) × Â(cj[m]) → lim
c
j

[m]��
op
+ −cj−1[m−1]

Ê ○U. (8.51)

Consider the diagram shown in Figure 8.5, in which Q is defined to be the pullback.
The right part (everything without the leftmost column) of that diagram comes

141

8. The General Universal Properties of Truncations

Q

(lim{ x∈L�op+ M ∣ xcj[m],x/≡c
j−1
[m−1] }

N̂) × Â(cj[m])

Σ(k ∶M Ê(cj[m])) . F Ê(cj[m], k)

M Ê(cj[m])

lim
c
j

[m]��
op
+ −cj−1[m−1]

Ê ○U

Σ (t ∶M Ê(cj−1[m−1])) . F Ê(cj−1[m−1], t)

M Ê(cj−1[m−1])

w

proj

Figure 8.5: Derivation of a homotopy equivalence

c
j

[m]/�op+

c
j

[m] � �
op
+

c
j

[m] � �
op
+ − c

j−1
[m−1]

c
j−1
[m−1]/�op+

c
j−1
[m−1] � �

op
+

Figure 8.6: A small diagram in Sub(cj[m]/�op+). This uses the principle that, in an
inverse category I with a morphism k ∶ x→ y, the categories k� (x�I) and y �I

are isomorphic.

from applying the functor lim−Ê to the diagram in Sub(cj[m]/�op+) that is shown in
Figure 8.6.

In Figure 8.5, the fibration labelled proj comes of course from

(cj[m] � �
op
+ − c

j−1
[m−1]) ⊃ (cj−1[m−1] � �

op
+) , (8.52)

as shown in Figure 8.6. We give it a name solely to make referencing it easier. Our
goal is to derive a representation of Q. As the right square is a pullback square
by Lemma 8.3.1, we clearly must have

M Ê(cj[m]) ≅ Σ(t ∶ lim
c
j

[m]��
op
+ −cj−1[m−1]

Ê). F Ê(cj−1[m−1],proj(t)). (8.53)

142

8.8. The Main Theorem

Doing so, we can write the top expression of the middle column as

Σ(k ∶M Ê(cj[m])). F Ê(cj[m], k)
≃ Σ(t ∶ lim

c
j

[m]��
op
+ −cj−1[m−1]

Ê).Σ(n ∶ F Ê(cj−1[m−1],proj(t))). F Ê(cj[m], (t, n)).
(8.54)

The pullback Q is thus

Σ(p ∶ lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂).Σ(a ∶ Â(cj[m])).

Σ(n ∶ F Ê(cj−1[m−1],proj(w(p, a)))).
F Ê(cj[m], (w(p, a), n)).

(8.55)

The composition of the two vertical fibrations in the middle column is a homotopy
equivalence by Main Lemma 8.5.1 and Lemma 8.7.2. As acyclic fibrations are
stable under pullback, the fibration

Q ↠ (lim
c
j

[m]�L�op+ M−cj−1[m−1]
N) × Â(cj[m]) (8.56)

is a homotopy equivalence as well. Function extensionality implies that a family
of contractible types is contractible (i.e. that acyclic fibrations are preserved by
Π), and we get that the first projection

Σ(p ∶ lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂).
Π

a∶Â(cj[m])
(n ∶ F Ê(cj−1[m−1],proj(w(p, a)))) × F Ê(cj[m], (w(p, a), n))

lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂
(8.57)

is an equivalence as well. The lemma is therefore shown if we can prove that the
domain of the above fibration (8.57), a rather lengthy expression, is equivalent
to N(cj[m]). Our first step is to apply the distributivity law (Lemma 2.2.12) to
transform this expression to

Σ(p ∶ lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂).

Σ(n ∶ Π
a∶Â(cj[m])

F Ê(cj−1[m−1],proj(w(p, a)))).
Π

a∶Â(cj[m])
F Ê(cj[m], (w(p, a), n(a))).

(8.58)

When we look at the following square, in which w is the map (8.51), w′ is induced
by the natural transformation v in the same way as w, and proj, proj′ come from

143

8. The General Universal Properties of Truncations

the restriction to subcategories,

(lim{ x∈L�op+ M ∣ x≺cj[m],x/≡c
j−1
[m−1] }

N̂) × Â(cj[m])

(lim{ x∈L�op+ M ∣ x≺cj−1[m−1] }
N̂) × Â(cj−1[m−1])

lim
c
j

[m]��
op
+ −cj−1[m−1]

Ê ○U

lim
c
j−1
[m−1]��

op
+
Ê ○U

proj′ proj

w

w′

(8.59)

we can see that it commutes due to the naturality of the natural transformation
v. In particular, note that Â maps the single morphism c

j

[m] → c
j−1
[m−1] to the

identity on Ai−1. This is exactly what is needed to see that the second line of
(8.58) corresponds to the “missing” component N̂ (cj−1[m−1]) in the limit of the first
line. Hence, the first and the second line can be “merged” and are equivalent to
lim{ x∈L�op+ M ∣ x≺cj[m] }

N̂ , in other words, M N̂ (cj[m]). Comparing the third line of (8.58)

with the definition of the “fibrant diagram of natural transformations” (see (8.34)),
we see that (8.58) is indeed equivalent to N̂ (cj[m]), as required.

By pullback (Lemma 8.3.1 and preservation of homotopy equivalences along
pullbacks), we immediately get:

Corollary 8.8.2. Let D be a downwards closed subcategory of �op+ which does not
contain the objects c

j

[m] and c
j−1
[m−1], but all other predecessors of c

j

[m]. The full

subcategory of �op+ which has all the objects of D and the objects c
j−1
[m−1], c

j

[m] (for

which we write D + c
j−1
[m−1] + c

j

[m]) is also downwards closed and the fibration

lim
D+cj−1[m−1]+c

j

[m]
N̂ ↠ limDN̂ (8.60)

is a homotopy equivalence.

Corollary 8.8.2 is the crucial statement that summarises all of our efforts so
far. We can use it to “add and remove” contractible Σ-components in the same
way as we did it in the motivating examples (Section 8.1). More precisely, we
exploit that we can group together components of �op+ in two different ways. Our
main lemma is the following:

Lemma 8.8.3. Given types A,B, recall that we have defined s ∶ B → (A ω
Ð→ B)

in Definition 8.6.4. Assume further that we are given a point a0 ∶ A (i.e. regard
s as a morphism in (C/A)f instead of C). Then, the function s is a homotopy
equivalence.

144

8.8. The Main Theorem

Proof. Using the point a0, we define N̂ and s ∶ B → limL�op+ MN̂ as before in (8.47),
and consider the following:

B limL�op+ MN̂ N̂ (c1[0]) B

A
ω
Ð→ B

s pr′ ∼
s pr

(8.61)

The commutativity of the triangle on the left is given by (8.48). Our first goal is
to show that the fibration pr′ is a homotopy equivalence.

Consider the set S ∶≡ { (m, j) ∈ N2 ∣ j is even and j ≤m + 1 }. A pair (m, j) is
in S if and only if cj[m] is an object in an “odd column” of �op+ in Figure 8.3 on page
138 (where we consider the leftmost column the “first”). Define a total order on
S by letting (k, i) be smaller than (m, j) if either k + i < m + j or (k + i ≡ m + j

and i < j). We represent this total order by an isomorphism f ∶ N+ → S (where
N+ are the positive natural numbers) which has the property that f(n) is always
smaller than f(n + 1). Write f1(n) and f2(n) for the first respectively the second
component of f(n).

Let us define a sequence D0 ⊂ D1 ⊂ D2 ⊂ D3 ⊂ . . . of full subcategories of L�op+ M
by

D0 ∶≡ {c1[0]} (8.62)

Dn ∶≡Dn−1 + c
f2(n)
[f1(n)] + c

f2(n)+1
[f1(n)+1]. (8.63)

It is easy to see that every object c
j

[m] is added exactly once, i.e. it is either c1[0]
or it is of the form c

f2(n)
[f1(n)] or of the form c

f2(n)+1
[f1(n)+1] for exactly one n. We have

chosen the total order on S in such a way that every Dn is a downwards closed
full subcategory of L�op+ M. Applying Corollary 8.8.2, we get a sequence

limD0
N̂ ∼↞ limD1

N̂ ∼↞ limD2
N̂ ∼↞ limD3

N̂ ∼↞ . . . (8.64)

of acyclic fibrations. Lemma 8.2.5 then shows that the canonical map

lim�
op
+
N̂ ∼↠ limD0

N̂ (8.65)

is an acyclic fibration. As limD0
N̂ is simply N̂ (c1[0]), this proves that pr′ is indeed

a homotopy equivalence.
Next, we want to show the same about pr. We proceed very similarly. This

time, we define S′ ∶≡ { (m, j) ∈ N2 ∣ j is odd and j ≤m + 1 }. A pair (m, j) is
consequently in S′ if and only if c

j

[m] is an object in an “even” column of Fig-
ure 8.4. As before, we define an isomorphism f ′ ∶ N+ → S′, and define a sequence
D′0 ⊂D′1 ⊂D′2 ⊂D′3 ⊂ . . . of full subcategories of L�op+ M by

D0 ∶≡ {c0[m]} (i.e. the full subcategory corresponding to L∆op
+ M) (8.66)

Dn ∶≡Dn−1 + c
f2(n)
[f1(n)] + c

f2(n)+1
[f1(n)+1]. (8.67)

145

8. The General Universal Properties of Truncations

Again, every object cj[m] is added exactly once, and every Dn is downwards closed.

Corollary 8.8.2 and Lemma 8.2.5 then tell us that limL�op+ MN̂ ↠ lim{c0[m]}N̂ is an
acyclic fibration. Hence, pr is indeed a homotopy equivalence, as claimed.

We take another look at the diagram (8.61). The composition of the three
horizontal arrows is the identity by (8.49). But homotopy equivalences satisfy “2-
out-of-3”, and we can conclude that s is an equivalence. Using “2-out-of-3” again,
we see that s is an equivalence as well.

This makes it easy to show the following:

Lemma 8.8.4. If C has propositional truncations, then the canonical function
s ∶ B → (A ω

Ð→ B), viewed as a morphism in C, is a homotopy equivalence assuming
∥A∥. More precisely, we can construct a function

∥A∥ → isequiv(s) (8.68)

in C.

Proof. We have shown in Lemma 8.8.3 that s is a homotopy equivalence in (C/A)f ,
i.e. if we pull back its domain and codomain along A↠ 1. In C, this means that

λ(a, b).(a, s(b)) ∶ A ×B → A × (A ω
Ð→ B) (8.69)

is an equivalence, but this implies

A→ isequiv(s). (8.70)

The claim then follows from the ordinary universal property of the propositional
truncation.

This allows us to prove our main result:

Theorem 8.8.5 (General universal property of the propositional truncation).
Let C be a type theoretic fibration category that satisfies function extensionality,
has propositional truncation, and Reedy ωop-limits. Let A and B be two types,
i.e. objects in C. Using the canonical function s ∶ B → (A ω

Ð→ B) as defined in
Definition 8.6.4, we can construct a function

(∥A∥ → B) → (A ω
Ð→ B), (8.71)

and this function is a homotopy equivalence.

Proof. From Lemma 8.8.4 we can conclude, just as in the special cases in Sec-
tion 8.1, that

(∥A∥ → B) → (∥A∥ → (A ω
Ð→ B)) (8.72)

f ↦ λx.s(f(x)) (8.73)

146

8.9. Finite Cases

is a homotopy equivalence.
This is not yet what we aim for. We need a statement corresponding to the

infinite case of Lemma 8.1.1, i.e. we need to prove that ∥A∥ → (A ω
Ð→ B) is equi-

valent to A
ω
Ð→ B. To do this, we consider the diagram P ∶ L∆op

+ M → C, defined on
objects by

P[k] ∶≡ ∥A∥ → N[k], (8.74)

and on morphisms by

P(g) ∶≡ λ(h ∶ ∥A∥ → N[k]).λx.N(g)(h(x)). (8.75)

Paolo Capriotti has pointed out that P is Reedy fibrant, and this is a crucial
observation. As P is defined over a poset, it is enough to show that (8.75) is a
fibration for every g. Our argument is the following: The maps in both directions
which are used to prove the distributivity law (Lemma 2.2.12) are strict inverses,
i.e. their compositions (in both orders) are judgmentally equal to the identities.
This means that every Pi is isomorphic to a Σ-type, where we “distribute” ∥A∥
over the components. From this representation, it is clear that P(g) is always a
fibration, as fibrations are closed under composition with isomorphisms.

Because of Lemma 8.1.1 (and the fact that the equivalence there can be defined
uniformly), there is a natural transformation κ ∶ P → N which is levelwise a ho-
motopy equivalence. By the definition of C having Reedy ωop-limits, the resulting
arrow between the two limits, that is

limL∆op
+ M(κ) ∶ (∥A∥ → (A ω

Ð→ B)) → (A ω
Ð→ B), (8.76)

is a homotopy equivalence as well. To conclude, we simply compose (8.73) and
(8.76).

8.9 Finite Cases

If B is an n-type for some finite fixed number n, the higher coherence conditions
should intuitively become trivial. This is obvious for the representation of N and
E given in Figures 8.2 and 8.4, although admittedly not for our actual definition of
E in Section 8.4 (and the corresponding definition of N and N̂) where it requires
a little more thought. This is our main goal for this section. After this, it will be
easy to see that the universal properties of the propositional truncation with an
n-type as codomain can be formulated and proved in (standard) homotopy type
theory.

What we first need is an instance of a more general principle, and, as it often
happens, the more general principle is easier to convince ourselves of. So, let us
formulate the entirely straightforward following statement:

147

8. The General Universal Properties of Truncations

Lemma 8.9.1 ([Uni13, Theorem 4.7.7]). Assume X is a type and Y1, Y2 ∶ X → U
are two families. If there is an equivalence f ∶ Σ (x ∶X) . Y1(x)→ Σ (x ∶X) . Y2(x)
such that f is the identity on the first component, then, for all x ∶ X, the types
Y1(x) and Y2(x) are equivalent.

This allows us to reverse the statement that “singletons are contractible”:

Lemma 8.9.2. Assume a type A, a family B ∶ A → U , and a second family
C ∶ (Σ (a ∶ A) .B)→ U are given. The following are logically equivalent:

(1) For any a ∶ A, there is a point ba ∶ B(a) and an equivalence C(a, b) ≃ (b = ba).

(2) The canonical projection

fst ∶ (Σ (a ∶ A) .Σ (b ∶ B(a)) . C(a, b))→ A (8.77)

is an equivalence.

Note that, in the special case that A is the unit type, this means that a type
of the form Σ (b ∶ B) . C(b) is contractible if and only if there is some point b0 ∶ B
and an equivalence C(b) ≃ (b = b0).
Proof. The direction (1)⇒(2) is an obvious consequence from the contractibility
of singletons. The other direction is (to the best of my knowledge) not very
well-known. Thus, we assume (2). This implies that, for any a ∶ A, the type
Σ (b ∶ B(a)) . C(a, b) is contractible; and this gives us the required family of ba’s.

From the assumption and contractibility of singletons, we further get

(Σ (a ∶ A) .Σ (b ∶ B(a)) . C(a, b)) ≃ (Σ (a ∶ A) .Σ (b ∶ B(c)) . (b = ba)) . (8.78)

Let us use associativity of nested Σ-operators (which we have done implicitly
before, but we do it explicitly here), and write this equivalence as

(Σ ((a, b) ∶ Σ (A) .B) . C(a, b)) ≃ (Σ ((a, b) ∶ Σ (A) .B) . (b = ba)) . (8.79)

We set X ∶≡ Σ (a ∶ A) .B(a) and Y1(x) ∶≡ C(x) respectively Y2(a, b) ∶≡ (b = ba) and
apply Lemma 8.9.1. The equivalence (8.79) preserves the first component: this is
obvious for the A-part and easy to see for the B(a)-part, as Σ (b ∶ B(a)) . C(a, b)
and Σ (b ∶ B(a)) . (b = ba) are contractible.

We are now ready to show that, in the case of n-types, the higher “fillers
for complete boundaries” become homotopically simpler and simpler, and finally
trivial.

Lemma 8.9.3. Let n ≥ −2 be a number and B be a type in C. Consider the equality
semi-simplicial type E ∶ ∆op

+ → C of B. For an object [k] of ∆op
+ , we can consider

the fibration E[k] ↠ ME
[k]. We know that, by definition, the fibre over m ∶ ME

[k] is
simply Σ (x ∶ B) . η̃[k](x) = m.

If B is an n-type, then, for any object [k] of ∆op
+ , all these fibres are (n − k)-

truncated (or contractible, if this difference is below −2).

148

8.9. Finite Cases

Remark 8.9.4. The other direction of Lemma 8.9.3 should also hold, as ME
[k]

should be equivalent to Σ (b ∶ B) .Ωk(B, b). We do neither prove nor require this
direction here.

Proof of Lemma 8.9.3. The statement clearly holds for [k] ≡ [0], as the matching
object ME

[k] will in this case be the unit type. We assume that the statement holds
for [k] and show it for [k + 1]. First, consider the fibration

ME
[k+1]↠ lim[k+1]−0(E ○U), (8.80)

where the last expression is the 0-th [k]-horn as in Main Lemma 8.5.1. This
fibration can be completed to the following pullback square by Lemma 8.3.1:

ME
[k+1]

lim[k+1]−0(E ○U)

E[k]

ME
[k]

By the induction hypothesis, the right vertical fibration is a (n − k)-truncated
type. The left vertical fibration is therefore (n − k)-truncated as well (fibres on
the left side are homotopy equivalent to fibres on on right side).

Consider the composition of fibrations

E[k+1]↠ME
[k+1]↠ lim[k+1]−0(E ○U). (8.81)

Intuitively, the horn is a “tetrahedron with missing filler and one missing face”, the
matching object is the same plus one component which represents this face, and
E[k] has, in addition to the face, also a filler of the whole boundary. The filler is
really the statement that the “new” face equals the canonical one, and we can now
make this intuition precise by applying Lemma 8.9.2. Let us check the conditions:

• Certainly, we can write the sequence in the form

Σ (x ∶X) .Σ (x ∶ Y (x)) . Z(x, y)↠ Σ (x ∶X) . Y (x)↠X (8.82)

(this is given by Lemma 8.3.2).

• The composition is a homotopy equivalence by Main Lemma 8.5.1.

Thus, we can assume that Z(x, y) is equivalent to y =Y (x) yx for some yx, and
thereby of a truncation level that is by one lower than Y (x). But the latter is(n − k) as we have seen above.2

2On low levels, we can consider the situation in terms of the presentation in Figure 8.2. Here,
yx will be the “missing face” that one gets by gluing together the other faces.

149

8. The General Universal Properties of Truncations

As a corollary, we get the case for [k] ≡ [n + 2]:
Corollary 8.9.5. Let B be an n-type. Then, the fibration

E[n+2]↠ME
[n+2] (8.83)

is a homotopy equivalence.

We are now in the position to formulate our result for n-types with finite n.

Recall from Notation 8.6.3 that we write A
[n]Ð→ B for Nn.

Theorem 8.9.6 (Finite general universal property of the propositional trunca-
tion). Let n be a fixed number, −2 ≤ n < ∞. In Martin-Löf type theory with
propositional truncations and function extensionality we can, for any type A and
any n-type B, derive a canonical function

(∥A∥ → B) → (A [n+1]
ÐÐ→ B) (8.84)

that is a homotopy equivalence.

Proof. Looking at Corollary 8.9.5 and at the definition of N , as given in Sec-
tion 8.6, we see immediately that each N[k+1]↠ N[k] with k ≥ n+ 1 is a homotopy
equivalence. Thus, using Lemma 8.2.5, the Reedy limit limL∆op

+ MN is equivalent

to N[n+1], and these are A
ω
Ð→ B and A

[n+1]
ÐÐ→ B by definition. Similarly, the limit

limL�op+ MN̂ (which we used in the proof of Lemma 8.8.3) is homotopy equivalent to

the limit over L�op+ M restricted to { ci[k] ∣ k ≤ n + 1 }. It is easy to see that the whole
proof can be carried out using only finite parts of the infinite diagrams. But then,
of course, all we need are finitely many nested Σ-types instead of Reedy ωop-limits,
and these automatically exist. Further, the only point where we crucially used the
judgmental η-rule for Σ is the proof of Theorem 8.8.5. In the finite case, however,
this is not necessary, as Lemma 8.1.1 is sufficient (similarly, the judgmental η-rule
for Π-types is not necessary). Therefore, the whole proof can be carried out in the
standard version of MLTT with propositional truncations.

8.10 Elimination Principles for Higher

Truncations

So far, we have seen that the universal property of the propositional truncation
((A → B) ≃ (∥A∥ → B) for a propositional B) allows us to characterise maps
out of ∥A∥ into general types, not only propositions. It suggests itself to ask
whether statements analogous to Theorems 8.8.5 and 8.9.6 can be derived for
higher truncations. Recall that we have (∥A∥n → B) ≃ (A→ B) if B is an n-type,
so what if B is not an n-type?

150

8.10. Elimination Principles for Higher Truncations

Together with Paolo Capriotti, I have worked on a solution to this question
with higher inductive types. I believe that it is possible to prove a theorem similar
to Theorem 8.9.6 which characterises ∥A∥n → B if B is m-truncated for some finite
number m. However, even though we have ideas how we could in principle attack
the general case, we can only solve the special case that m is n + 1 in this thesis.
We will see that even this case it quite involved with our approach, but we will
also see that already this case has an application in the proof of Theorem 9.4.7.

After discussing the case n ≡ 0, m ≡ 1 with Andrea Vezzosi, he found an
alternative argument which does not rely on higher inductive types. It can be
generalised to the case m ≡ n + 1 which I present here. While is is possible that
Vezzosi’s strategy could be used to find a solution for the general n <m case (note
that n ≥m makes the problem trivial), this has to be expected to be significantly
harder, for a reason that we will explain in Section 8.11.

We call the proof using higher inductive types the “HIT proof”, and the one
that builds upon Vezzosi’s argument the “elementary proof”.

If we want to get rid of all truncation conditions on B, i.e. derive a general
result analogous to Theorem 8.8.5, I believe that the elementary approach is more
promising. Of course, we would almost certainly still depend on the theory having
Reedy ωop-limits. It seems that the strategy with higher inductive types however
would further require some form of “higher inductive types with infinitely many
constructors”. On the other hand, in the presence of Reedy ωop-limits, this po-
tential component of type theory might not even be absurd. For now, we need to
leave all of this open for future work.

The current section of the thesis is largely based on many discussions with
Paolo Capriotti, and Section 8.10.2 builds upon Vezzosi’s argument. The main
result here, together with its “elementary” proof, has been formalised by Capriotti,
using a different library than the one that the electronic appendix of this thesis
is based on. We do not mark the formalised statements with A , as they can not
be found in the electronic appendix. However, Theorem 8.10.2 with the proof in
Section 8.10.2 is available in Capriotti’s GitHub repository [Cap15].

8.10.1 Some Preparation and the Statement

To start, we need to clarify some simple constructions. If we have a type A and a
pointed type (B, b), together with a function f ∶ A→ B, we say that “f is null” if
it is constantly b, that is,

isNull(f) ∶≡ Πx∶Ab = f(x). (8.85)

Recall that, given any two types A and B together with any function f ∶ A → B

and a point a ∶ A, we have a function

apf,a ∶ Ω(A,a)→ Ω(B,f(a)). (8.86)

151

8. The General Universal Properties of Truncations

In the same way, we have, for a number n ≥ 0 in addition to A, B, f as before,
the n-fold iterated ap-function

apnf,a ∶ Ωn(A,a)→ Ωn(B,f(a)). (8.87)

Here, we use the convention that ap0f,a is simply f .

Remark 8.10.1. Ω is really an endofunctor in some appropriate sense. Of course,
apf,a is its action on the morphism f and could thus rightfully be called Ω(f, a).

Our result on higher truncation elimination can now be stated as follows:

Theorem 8.10.2. Let n ≥ −1 be a number, A a type, and B an (n + 1)-type.
Assume that f ∶ A → B is a function. Then, f can be factored through the n-
truncation, that is

Σ (f ′ ∶ ∥A∥n → B) . f ′ ○ ∣−∣ = f, (8.88)

if and only if apn+1f,a is null for every a,

Πa∶A isNull(apn+1f,a), (8.89)

and both of the types (8.88) and (8.89) are propositional.

An immediate corollary tells us how we can eliminate out of truncations:

Corollary 8.10.3. Assume we have n, A and B as in Theorem 8.10.2. If we
want to construct a function ∥A∥n → B, it suffices to find a function f ∶ A → B

which satisfies Πa∶A isNull(apn+1f,a).
Remark 8.10.4. Note that the function apn+1f,a from the statements above is
null if and only if it is weakly constant. Further, both types isNull(apn+1f,a) and
const(apn+1f,a) are propositional, as B is (n+1)-truncated by assumption. We could
thus replace isNull(apn+1f,a) everywhere by const(apn+1f,a); the reason why we prefer
to talk about “being null” is explained in Section 8.11 below.

Before approaching a proof of Theorem 8.10.2, let us have a look at two special
cases, namely the cases n ≡ −1 and n ≡ 0. We already know the first case, and it
will serve as the base case for the two general proofs presented later. The second
case is not strictly necessary, but serves to exemplify the techniques used in the
“HIT proof” (Section 8.10.3).

The case n ≡ −1: The simplified statement of Theorem 8.10.2 reads in this
case as follows: Assume we are given a type A and a 0-type B (often called a
set). A function f ∶ A → B factors (propositionally) through the propositional
truncation,

Σ (f ′ ∶ ∥A∥−1 → B) . f ′ ○ ∣−∣ = f, (8.90)

if and only if it is weakly constant,

Πx,y∶Af(x) = f(y). (8.91)

152

8.10. Elimination Principles for Higher Truncations

Of course, this is only a reformulation of Proposition 8.1.2. It is a pleasant surprise
that “ap0f,a is null for all a”, simply by unfolding our definitions, simplifies to “f
is weakly constant”. In the simplified formulation, we have omitted the part that
the two logically equivalent types are propositional. This is easy to see here, and
will in the general case be part of the proof.

The case n ≡ 0. Here, our result (Theorem 8.10.2) implies that, for any type
A and 1-type B, a function f ∶ A → B factors through ∥A∥0 if and only if, for all
a ∶ A and p ∶ a = a, we have that apf,a equals reflf(a). As Shulman has remarked in
an online discussion (in the comment section of a blog post [Cap14]), this follows
from the Rezk completion [AKS15]: Let Ã be the precategory with the type A

of objects and hom(a1, a2) ∶≡ ∥a1 =A a2∥−1, and let B̃ be the category with B as
objects and hom(b1, b2) ∶≡ (b1 =B b2). Then, f with the condition Πa∶A isNull(apf,a)
gives (already using the case n ≡ −1) rise to a functor Ã → B̃. Such a functor
generates a functor between the Rezk completion of Ã and the category B̃, and
the former happens to be ∥A∥0.

In the remainder of the current section, we give a simple technical construction
which essentially serves as a reformulation of Theorem 8.10.2. It is necessary for
both the elementary and the HIT proof.

For types A and B, assume we are given a function g ∶ ∥A∥n → B. We can
consider the composition

A
∣−∣
Ð→ ∥A∥n

g
Ð→ B. (8.92)

For any a ∶ A we have, by functoriality of Ωn+1, that the composition

Ωn+1(A,a)
apn+1∣−∣,a
ÐÐÐ→ Ωn+1(∥A∥n, ∣a∣)

apn+1
g,∣a∣

ÐÐÐ→ Ωn+1(B,g(∣a∣)) (8.93)

is equal to apn+1
g○∣−∣,a. But Ωn+1(∥A∥n, ∣a∣) is contractible ([Uni13, Theorem7.2.9]),

and apn+1
g,∣a∣ clearly maps its unique element to the basepoint of Ωn+1(B,g(∣a∣)).

Therefore, apn+1
g○∣−∣,a is null. From this construction, we get a canonical function

cn ∶ (∥A∥n → B)→ Σ (f ∶ A→ B) . (Πa∶A isNull(apn+1f,a)) . (8.94)

We then claim the following:

Lemma 8.10.5 (Total space formulation of Theorem 8.10.2). For any n ≥ −1,
any type A and any (n + 1)-type B, the types

∥A∥n → B (8.95)

and
Σ (f ∶ A→ B) .Πa∶A isNull(apn+1f,a) (8.96)

are equivalent, and the equivalence is given by the canonical function cn.

153

8. The General Universal Properties of Truncations

It is easy to see that Lemma 8.10.5 does indeed imply, and is nearly immediately
equivalent to, Theorem 8.10.2. Consider the triangle shown in Figure 8.7, where
the top horizontal map is the canonical map cn, the left one is composition with
∣−∣, and the right one is simply the projection. The triangle clearly commutes
(judgmentally) by construction. Let us fix some function f ∶ A→ B. The fibre (or
inverse image) over f is, in the case of _ ○ ∣−∣, exactly (8.88), i.e. the statement
that f can be lifted. In the second case, the fibre is (8.89). Therefore, cn induces
an equivalence of the two fibres, which implies that cn itself is an equivalence (see
[Uni13, Theorem4.7.7]).

∥A∥n → B Σ (f ∶ A→ B) .Πa∶A isNull(apn+1f,a)

A→ B

cn

_ ○ ∣−∣ fst

Figure 8.7: The canonical map cn as map between fibres

8.10.2 The “Elementary” Proof

In this section, we give our first proof of Lemma 8.10.5 (and thereby of The-
orem 8.10.2). This does not need higher inductive types apart from truncations
that already appear in the statement. The idea is to not prove the result for
any type A first, but only for an n-connected one. Afterwards, we generalise this
to arbitrary types, by splitting the type into its connected components and glu-
ing together the constructions for the components. Note that the term connected
component refers to the topological interpretation and has nothing to do with
Σ-components, which are syntactical components of a type expression. The latter
could rightfully be called factors of a Σ-type, but the terminology that we use is
the one that has become accepted in type theory.

Lemma 8.10.6. If n ≥ −1 be a number, A an n-connected type, and B be an
(n + 1)-type, the canonical map cn is an equivalence.

Proof. We do induction on n. As already discussed above, the case that n is −1
follows easily from Proposition 8.1.2.

Let now n ≥ 0 be any given number. Note that, due to the assumption that
∥A∥n is contractible, we have a unique element x0 ∶ ∥A∥n, the type ∥A∥n → B is
actually equivalent to B, and any function g ∶ ∥A∥n → B is uniquely specified by
its value g(x0).

The claim of the lemma is propositional. Applying the eliminator of ∥A∥n, we
may not only assume that we are given x0 ∶ ∥A∥n, but we can also assume a point

154

8.10. Elimination Principles for Higher Truncations

a ∶ A. A potential inverse of cn is then given by

dn ∶ (Σ (f ∶ A→ B) .Πa∶A isNull(apn+1f,a))→ (∥A∥n → B) (8.97)

dn(f, p) ∶≡ λ_.f(a). (8.98)

To show that cn and dn are inverses, we check that both compositions are the
identities. One direction is easy: for any g ∶ ∥A∥n → B, we have

dn(cn(g))(x0) ≡ g(∣a∣), (8.99)

and the latter is equal to g(x0).
For the other direction, assume we have f ∶ A → B together with a proof q.

We need to show (f, q) = cn(dn(f, q)). Fortunately, the equality of the two second
components is automatic thanks to the fact that isNull(apn+1f,a) is propositional, and
we only need to prove the equality of f and fst(cn(dn(f, q))). We observe that the
latter expression computes to λ_.f(a). Thus, our goal is to show that, for any
a′ ∶ A, we have f(a) = f(a′).

We use the induction hypothesis with (a = a′) for A, and f(a) = f(a′) for
B. By the connectedness assumption on A, the type ∣a∣ = ∣a′∣ is contractible.
Therefore, the type ∥a = a′∥n−1 is contractible ([Uni13, Theorem7.3.12]) or, put
differently, (a = a′) is (n − 1)-connected. As B is an (n + 1)-type, we know that
f(a) = f(a′) is n-truncated. By the induction hypothesis, it is hence enough to
construct an element of

Σ (k ∶ a = a′ → f(a) = f(a′)) .Πp∶a=a′ isNull(apnk,p). (8.100)

For k, we choose apf . By induction on p, we may assume that p is refla. Thus, we
need to show that apnapf,a,refla

is null. This term is equal to apn+1f,a . The condition
that this function null is exactly what is given by q(a′).

To move from n-connected to arbitrary types A, we simply split a type into
n-connected components. This is very intuitive for n ≡ 0, in which case we use that
any type (or space) can be viewed as the disjoint sum of its connected components.
To be precise, an element of a component is a point of A together with a proof
that it is in the component. For n ≡ 0, this proof is propositional. For higher n,
it is not. This makes the general case less intuitive and hard to picture. In fact,
the proof determines in which component the element is, which makes it seem
circular. Fortunately, it is easier to write down the type-theoretic argument than
picturing the topological intuition, as we will see in the following lemma.

Lemma 8.10.7. For any type A and number n, we define the family of n-connected
components,

connn ∶ ∥A∥n → U (8.101)
connn(x) ∶≡ Σ (a ∶ A) . x =∥A∥n ∣a∣. (8.102)

155

8. The General Universal Properties of Truncations

Then, for any x ∶ ∥A∥n, the type connn(x) is n-connected. Further, “choosing a
connected component and then a point in this component” corresponds to “choosing
a point”, that is,

Σ (x ∶ ∥A∥n) . connn(x) ≃ A. (8.103)

Proof. This is easy and standard. For the first part, we claim that the equivalence

∥Σ (a ∶ A) . x =∥A∥n ∣a∣∥n ≃ Σ (y ∶ ∥A∥n) . x =∥A∥n y (8.104)

holds, where the left-hand type is ∥connn(x)∥n by definition, and the right-hand
type is a singleton. For both directions of (8.104), we apply the dependent elim-
inator of ∥−∥n. From left to right, we map ∣(a, p)∣ to (∣a∣, p). From right to left,
we map (∣a∣, p) to (∣a, p∣). For an alternative proof, see [Uni13, Corollary 7.5.8].

To see that the equivalence (8.103) holds, it is enough to unfold the definition
of connn, and use that in Σ (x ∶ ∥A∥n) .Σ (a ∶ A) . x =∥A∥n ∣a∣, the first and the third
component form a singleton.

Finally, we can complete the first proof of our main result:

“Elementary” proof of Lemma 8.10.5. Assume we have n, A, and B as in the state-
ment. The preceding two lemmata tell us that, for any x ∶ ∥A∥n, the canonical
map

cxn ∶ B → (Σ (fx ∶ connn(x)→ B) .Πy∶connn(x) isNull(apn+1fx,y
)) (8.105)

is an equivalence (note that we have omitted the contractible type ∥connn(x)∥n in
the domain of cxn). A family of equivalences gives rise to an equivalence of families,
so that we get that the map

c̃n ∶ (∥A∥n → B) → (Πx∶∥A∥nΣ (gx ∶ connn(x)→ B) .Πy∶connn(x) isNull(apn+1g,y))
(8.106)

c̃n(k) ∶≡ λx.cxn(k(x)) (8.107)

is also an equivalence.
All we need at this point is an equivalence from the codomain of the func-

tion (8.107) to the type stated in the theorem, i.e. Σ (f ∶ A→ B) .Πa∶A isNull(apn+1f,a),
and the composition of (8.107) and this equivalence has to be the canonical map
cn. We calculate:

Πx∶∥A∥nΣ (gx ∶ connn(x)→ B) .Πy∶connn(x) isNull(apn+1gx,y
) (8.108)

(by the distributivity law)

≃ Σ (g ∶ Πx∶∥A∥n (connn(x)→ B)) .Πx∶∥A∥nΠy∶connn(x) isNull(apn+1g(x),y) (8.109)

(by currying and using the canonical equivalence (8.103))

≃ Σ (h ∶ A→ B) .Πa∶A isNull(apn+1λy∶connn(∣a∣).h(fsty),(a,refl∣a∣)) (8.110)

156

8.10. Elimination Principles for Higher Truncations

Fortunately, the (pointed) types Ωn+1(connn(∣a∣), (a, refl∣a∣)) and Ωn+1(A,a) are
equivalent, with the equivalence being apn+1fst ; this is an easy technical statement
that follows from [KS15, Lemma 5.1]. If we compose apn+1

λy∶connn(∣a∣).h(fsty),(a,refl∣a∣)
with the inverse of this equivalence, functoriality of apn+1 allows us to simplify the
expression.

≃ Σ (h ∶ A→ B) .Πa∶A isNull(apn+1h,a) (8.111)

We need to check that the composition of c̃n with this equivalence is indeed the
canonical function cn. This is immediate because we only need to check that the
first component (the map A → B) turns out to be the correct function, as the
second component is propositional.

8.10.3 The “HIT Proof”

Our second proof is fairly technical. We construct a higher inductive type which
is, in some appropriate sense, the initial type through which functions f ∶ A → B

with the property isNull(apn+1f,a) for all a ∶ A factor. This higher inductive type has
exactly the right elimination principle (the one which we want to show for ∥A∥n),
and we prove that it is indeed equivalent to ∥A∥n. For the following definition and
for the rest of the subsection, we fix a type A and a number n ≥ −1.
Definition 8.10.8. Define the higher inductive type H, which depends on A and
n, as given by the constructors

η ∶ A→H (8.112)
ǫ ∶ Πa,b∶A (∥a = b∥n−1 → η(a) = η(b)) (8.113)

δ ∶ Πa∶A (reflη(a) =η(a)=η(a) ǫ(a, a, ∣refla∣)) (8.114)

t ∶ is-(n + 1)-type(H). (8.115)

The definition of H is much more intuitive than it may look at first sight. η

obviously says that we may always go from A to H, similarly as one always has
∣−∣ ∶ A → ∥A∥n. However, at the moment, we only know that H is an (n + 1)-type
from the constructor t. Note that, while t does not directly have the shape of a
HIT constructor, is-(n + 1)-type(H) can for any (fixed) n be unfolded and brought
into the required form.

If we have (a = b), we of course always get a proof of η(a) = η(b) using apη.
The constructor ǫ says that ∥a = b∥n−1 is sufficient, while δ ensures that ǫ is really
an extension of apη along ∣−∣n−1. This is because we could have used the expanded
form

δ′ ∶ Πa,b∶AΠp∶a=b (apη(p) =η(a)=η(b) ǫ(a, b, ∣p∣)) , (8.116)

instead of the constructor δ. By path induction on p, the type (8.116) it is easily
seen to be equivalent to the original type (8.114). While (8.116) might look more
regular next to (8.113), we choose (8.114) just for simplicity.

157

8. The General Universal Properties of Truncations

The recursion principle for H is straightforward to write down. Given some
(n + 1)-type B, we need a function f ∶ A→ B, together with a function

k ∶ Πa,b∶A(∥a = b∥n−1)→ f(a) = f(b) (8.117)

and a proof
h ∶ Πa∶Areflf(a) =f(a)=f(a) k(a, a, ∣reflf(a)∣), (8.118)

we get a function H → B with the expected properties. It is more involved,
nevertheless not inherently difficult, to state the induction principle following the
standard (intuitive) approach as used in [Uni13, Chapter 6]. Given an (n + 1)-
truncated family P ∶H → Un+1, in order to prove Πx∶HP (x), we need

η ∶ Πa∶AP (η(a)) (8.119)
ǫ ∶ Πa,b∶AΠq∶∥a=b∥n−1 transport

P (ǫ(a, b, q), η(a)) =P (η(b)) η(b) (8.120)

δ ∶ Πa∶A (transportλr.transportP (r,η(a))=η(a) (δ(a), reflη(a)) = ǫ(a, a, ∣refla∣)) . (8.121)

The above type expressions look rather involved. Fortunately, we do not need to
deal too much with them at all because we are only interested in the case that P
is n-truncated (instead of, more generally, (n+ 1)-truncated), which enables us to
use the following observation:

Lemma 8.10.9 (Restricted dep. universal property of H). Given A and n ≥ −1
as above and a family of n-types, P ∶H → Un, the canonical map

Πx∶HP (x) _○η
ÐÐ→ Πa∶AP (η(a)) (8.122)

is an equivalence.

Proof. As P is a family of n-types, the type of ǫ is (n − 1)-truncated. By the
standard universal property of the (n − 1)-truncation, we may thus assume that
the q in the type (8.123) is of the form ∣p∣ with p ∶ a = b, and then do path induction
on p. This shows that the type of ǫ is equivalent to

ǫ′′ ∶ Πa∶AtransportP (ǫ(a, a, ∣refla∣), η(a)) =P (η(a)) η(a). (8.123)

Under this equivalence, the type of δ becomes

δ
′′ ∶ Πa∶A (transportλr.transportP (r,η(a))=η(a) (δ(a), reflη(a)) = ǫ′′(a)) . (8.124)

We see that the dependent pair of (8.123) and (8.124) forms a family of singletons.
Therefore, there is always a canonical and unique choice for ǫ and δ. The in-
duction principle can therefore be simplified to only (8.119); that is, for any
function Πa∶AP (η(a)), the induction principle gives us Πx∶HP (x). Let us write
rind ∶ Πa∶AP (η(a))→ Πx∶HP (x) for this restricted induction principle.

The claim of the lemma should now really directly follow from a more general
principle: it should be possible to derive statements saying that, if we replace types

158

8.10. Elimination Principles for Higher Truncations

of constructors of a HIT by equivalent types, then the new HIT is equivalent to the
original one. However, such theorems have not been shown so far. Nevertheless,
the low level approach of applying the induction principle is not tedious either. The
map _ ○ η that we are supposed to prove invertible has the constructed restricted
induction principle rind as an inverse:

• For any f ∶ Πa∶AP (η(a)) and a ∶ A, the expression (rind(f) ○ η)(a) can be
reduced to f(a).

• For any g ∶ Πx∶HP (x), assume x ∶H. We need to show (rind(g○η))(x) = g(x).
Using the restricted induction principle, we may assume x ≡ η(a), and the
left side can be reduced to the right side of the equation.

This allows us to conclude the following crucial property of H:

Lemma 8.10.10. The type H is n-truncated.

Proof. It suffices to show that Ωn+1(H,x) is contractible for all x ∶ H ([Uni13,
Lemma 7.2.9], or Theorem 3.2.1). The restricted induction principle of H tells us
that, in order to show

P (x) ∶≡ isContr (Ωn+1(H,x)) (8.125)

for all x, we only need to prove P (η(a0)) for any a0 ∶ A. Let us define a type
family

Q ∶H → Un−1 (8.126)

using the restricted induction principle,

Q(η(a)) ∶≡ ∥a0 = a∥n−1. (8.127)

This family is trivially inhabited at a0. We want to show that Q implies local
equality in the sense of

Πx∶H (Q(x)→ η(a0) = x) , (8.128)

and as this type family is n-truncated, we apply the restricted induction principle
again and the goal becomes

Πa∶A (Q(η(a))→ η(a0) = η(a)) . (8.129)

By definition of Q, this is exactly given by the constructor ǫ, applied on a0 and a.
This allows us to conclude, by Theorem 3.2.1, (3)⇒(1), that H is n-truncated,

as claimed.

It is straightforward and standard that an n-truncated type which satisfies the
dependent eliminating principle of ∥A∥n is necessarily equivalent to ∥A∥n, and we
record:

159

8. The General Universal Properties of Truncations

Corollary 8.10.11. The types H and ∥A∥n are equivalent.

At the same time, we have the following:

Lemma 8.10.12 (Universal property of H). For any (n + 1)-type B, the type of
functions H → B is equivalent to

Σ (f ∶ A→ B) .
Σ (e ∶ Πa,b∶A∥a = b∥n−1 → f(a) = f(b)) .
(d ∶ Πa∶Areflf(a) = e(a, a, ∣refla∣).

(8.130)

Proof sketch. The proof of deriving this form of universal property from the in-
duction principle is standard. The map from H → B into the stated type is more
or less composition with the constructors; for any k ∶H → B, we get

f ∶≡ k ○ η ∶ A→ B (8.131)
e ∶≡ apk ○ ǫ ∶ Πa,b∶A∥a = b∥n−1 → f(a) = f(b) (8.132)
d ∶≡ λa.apapk(δ(a)) ∶ Πa∶Areflf(a) = e(a, a, ∣refla∣). (8.133)

The map in the other direction is exactly the recursion principle of H. That
they are mutually inverse corresponds to the computation (β) rule respectively
the uniqueness (η) rule of H.

Finally, we can complete the second proof of our main result:

“HIT proof” of Lemma 8.10.5. We do induction on n. The base case (n ≡ −1) is,
as before, just what we have discussed in Section 8.10.1. For higher n, we have
the following chain of equivalences:

∥A∥n → B (8.134)

(by Corollary 8.10.11)

≃ H → B (8.135)

(by Lemma 8.10.12)

≃ Σ (f ∶ A→ B) .Σ (e ∶ Πa,b∶A∥a = b∥n−1 → f(a) = f(b)) .
(Πa∶Areflf(a) = e(a, a, ∣refla∣)) (8.136)

(by “inverse path induction”)

≃ Σ (f ∶ A→ B) .Σ (e ∶ Πa,b∶A∥a = b∥n−1 → f(a) = f(b)) .
(Πa,b∶AΠp∶a=bapfp = e(a, b, ∣p∣)) (8.137)

160

8.11. The Big Picture: Solved and Unsolved Cases

(by the distributivity law)

≃ Σ (f ∶ A→ B) .Πa,b∶A(Σ (e′ ∶ ∥a = b∥n−1 → f(a) = f(b)) .
Πp∶a=bapfp = e′(∣p∣)) (8.138)

Now we exchange e′ by (e1, e2) ∶≡ cn−1(e′) using the induction hypothesis, and thus
we need to apply c−1n−1 to that term in the last component. Fortunately, it follows
from the definition of cn−1 that _○ cn−1 ≡ fst○ ∣−∣, hence we can replace e′(∣p∣) with
simply e1(p):

≃ Σ (f ∶ A→ B) .Πa,b∶A(Σ (e1 ∶ a = b→ f(a) = f(b)) .Σ (e2 ∶ Πp∶a=b isNull(apne1,p)) .
(Πp∶a=bapfp = e1(p))) (8.139)

The term e1 and the very last (unnamed) component form a singleton and can be
removed:

≃ Σ (f ∶ A→ B) . (Πa,b∶AΠp∶a=b isNull(apnapf ,p)) (8.140)

(by path induction)

≃ Σ (f ∶ A→ B) . (Πa∶A isNull(apnapf ,reflf(a))) (8.141)

(as apnapf ,refla
is equal to apn+1f,a)

≃ Σ (f ∶ A→ B) . (Πa∶A isNull(apn+1f,refla
)) . (8.142)

Finally, we need to check that the constructed equivalence is indeed the canonical
function cn. Fortunately, the second (and more involved) part Πa∶A isNull(apn+1f,refla

)
is propositional. It is therefore enough to check that any map g ∶ ∥A∥n → B gets,
by the constructed equivalence, mapped to a pair in (8.142) of which the first
component is g ○ ∣−∣. But the first component is constructed in the very first step,
where Lemma 8.10.12 is applied, and, looking at the proof of Lemma 8.10.12, it
is indeed simply composition with ∣−∣.

8.11 The Big Picture: Solved and Unsolved Cases

Both Theorem 8.9.6 (or the more general Theorem 8.8.5) and Theorem 8.10.2
generalise Proposition 5.2.4, although in two different directions. In the first case,
we characterise functions ∥A∥n → B, but only for the case n ≡ −1, while the second
case does not restrict n, but requires B to be an (n+1)-type. Of course, the general
question is: What is the universal property of ∥A∥n with respect to m-types, i.e.
how can we construct a map ∥A∥n → B for some m-type B? Put differently, given
a function f ∶ A→ B, how can we (by only imposing conditions on f , not on A or

161

8. The General Universal Properties of Truncations

B) ensure that f factors through ∥A∥n? Figure 8.8 illustrates the current progress
on this question. As indicated, the question is trivial if m is not greater than n,
as this case is covered by the “ordinary” universal property and elimination prin-
ciple. Non-trivial cases are solved by Proposition 5.2.4 and Theorems 8.8.5, 8.9.6
and 8.10.2. Note that only the most difficult case (Theorem 8.8.5) requires Reedy
ωop-limits and is not expected to be internalisable in the currently considered the-
ory. The family of statements given by Theorem 8.9.6 is also not expected to be
internalisable.

is-?-type(B)

∥A∥?

−1

0

1

2

3

−1 0 1 2 3 4

⋯

⋯ ∞

trivial
–

standard
universal
property
applicable

unsolved cases

!
8.10.2

!
8.10.2

!
8.10.2

!
8.10.2

!
5.2.4

!
8.9.6

!
8.9.6

!
8.9.6

!
8.9.6

⋯ !
8.8.5

Figure 8.8: The universal property of ∥A∥? with respect to ?-types: trivial, solved,
and open cases

The (probably) simplest case that is left open is the case n ≡ 0, m ≡ 2, and we
want to use this case to give some intuition on why the remaining cases are harder
than the solved ones. So, consider a function f ∶ A → B, where B is 2-truncated.
Which conditions do we have to impose on f to conclude that it factors through
∥A∥0? The one we gave in Theorem 8.10.2 (for general n) is equivalent to saying
that f induces a trivial map on all (n+1)-st homotopy groups. One might therefore
guess that, in the current case, it suffices to require f to induce trivial maps on
all first and second homotopy groups. This would be nice as this condition is
propositional, but, perhaps unsurprisingly, it does not suffice. One can also try

162

8.11. The Big Picture: Solved and Unsolved Cases

to replicate the coherence conditions that we have given for the case n ≡ −1, as
discussed in Section 8.1. However, this does not address the main difficulty. In
one aspect, the propositional truncation is a special case that is actually harder
than the higher truncations, intuitively because loop spaces are always pointed.3

In fact, in this “pointed” case, we can get all these coherences conditions (which
make Theorem 8.8.5 hard) very easily, as we explain in and after the following
proposition.

Proposition 8.11.1. Let (A,a0) be a pointed type and B be any type. Say that a
function f ∶ A→ B is coherently constant at the image of a0 if we have

Σ (p ∶ Πa∶Af(a) = f(a0)) . p(a0) = reflb0 . (8.143)

Then, the type of functions that are coherently constant at the image of a0 is
equivalent to B.

Proof. We can calculate

Σ (f ∶ A→ B) .Σ (p ∶ Πa∶Af(a) = f(a0)) . p(a0) = reflf(a0) (8.144)

(by adding a singleton (b0, q))

≃ Σ (b0 ∶ B) .Σ (f ∶ A→ B) .Σ (q ∶ f(a0) = b0) .
Σ (p ∶ Πa∶Af(a) = f(a0)) . p(a0) = reflf(a0) (8.145)

(by substituting b0 for f(a0) in the type of p)

≃ Σ (b0 ∶ B) .Σ (f ∶ A→ B) .Σ (q ∶ f(a0) = b0) .
Σ (p ∶ Πa∶Af(a) = b0) . p(a0) = q (8.146)

(by removing the singleton consisting of q and the very last factor)

≃ Σ (b0 ∶ B) .Σ (f ∶ A→ B) .Πa∶Af(a) = b0 (8.147)

(by using the distributivity law and removing a family of singletons)

≃ B (8.148)

Of course, if we have a0 ∶ A, then B is also equivalent to A
ω
Ð→ B by Lemma 8.8.3.

It is easy to check that, for any f ∶ A → B, the type (8.143) of proofs that f is
coherently constant at the image of a0 is equivalent to the type which states that
f is ω-constant (the fibre over f in the fibration (A ω

Ð→ B)↠ (A → B). But this
3This seems to correspond to the fact that the zeroth homotopy “group” is not a group, and

does therefore not have a canonical element, which seems to occasionally make this special case
harder in traditional topology as well.

163

8. The General Universal Properties of Truncations

means that, in the case of a pointed type (A,a0), the infinite tower of conditions
can be replaced by the very simple finite type (8.143). This result means that it
is actually easy to state that apkf,a is not only weakly constant, but ω-constant.
In fact, this is our reason for preferring isNull(apn+1f,a) over const(isNull(apn+1f,a),
as discussed in Remark 8.10.4: Although in our case of interest both types are
equivalent, isNull seems to be conceptually better. By only adding one single
condition on a proof p ∶ isNull(apn+1f,a), namely the condition that p(refln+1a0

) equals
refln+1f(a0), we can ensure that apn+1f,a is ω-constant.

Thus, all the coherence conditions that were a major issue in the formulation
and proof of our main result on propositional truncations, Theorem 8.8.5, can
be managed easily for the higher truncations. What happens instead is that the
higher groupoid structure of loop spaces induces a seemingly different sort of
coherence problem. It certainly is necessary that, for any a ∶ A and p ∶ a = a, there
is a proof ca,p ∶ apf,a(p) = reflf(a). It seems plausible to also ask for a proof one
level higher, ensuring that ca,refla is reflexivity. However, this is not enough: By
functoriality of apa,f , we have that apa,f(p p) equals apa,f(p) apa,f(p). Thus, ca,p
allows us to construct a proof that apa,f(p p) equals reflf(a). The family c can
only be coherent if this proof is forced to be the same as ca,p p.

A

Σ (a1, a2 ∶ A) . a1 = a2

Σ (a1, a2, a3 ∶ A) .
(a1 = a2)

× (a2 = a3)
× (a1 = a3)

B

Σ (b1, b2 ∶ B) . b1 = b2

Σ (b1, b2, b3 ∶ B) .
Σ (p12 ∶ b1 = b2) .
Σ (p23 ∶ b2 = b3) .
Σ (p13 ∶ b1 = b3) .

p12 ⋅ p23 = p13

Figure 8.9: Natural transformations from the [1]-coskeleton of the equality semi-
simplicial type on A to the equality semi-simplicial type on B are conjectured to
correspond to functions ∥A∥0 → B; only the components on the three lowest levels
are drawn

As we have shown that natural transformations from the [0]-coskeleton of the
constant diagram on A to the the equality semi-simplicial type on B correspond
to maps from ∥A∥ to B, it is natural to conjecture that, in the general case, we
should consider natural transformations from the [n + 1]-coskeleton of the constant
diagram on A (or rather a fibrant replacement of it) to the equality semi-simplicial

164

8.11. The Big Picture: Solved and Unsolved Cases

type on B. In the case of the 0-truncation, this would amount to the situation
illustrated in Figure 8.9. At the current time, we do not know whether this
captures all the required coherences and whether the missing parts of Figure 8.8
can be filled in this way.

165

Chapter 9

Future Directions and Concluding

Remarks

In this final part of the thesis, we describe approaches to formalisations of con-
cepts that are commonly believed to be impossible in the current theory, and
present some related results. First, we discuss the famous open problem of defin-
ing semi-simplicial types (see e.g. [Her15; Shu14]). We further show how to use
that types already have the correct structure in order to define some form of weak
ω-groupoids. We we them call Yoneda-groupoids; however, these do not seem to
allow many interesting further constructions. More modestly, we turn to ordinary
(1-) groupoids and discuss a question raised by Altenkirch, namely whether such
a groupoid (a 1-type) can be represented by a set of objects and a family of sets
of morphisms. Finally, additional notes on related work are given.

9.1 The Problem of Formalising Infinite

Structures

Univalent foundations, so is the hope of many, have the potential to serve as a
foundation for mathematics that make it possible to formalise (and thereby verify)
huge parts of traditional mathematics. Many concepts from homotopy theory (ori-
ginally constructed using set theory) can indeed be formalised in a very neat way.
Probably even more important is the question what the current formulation of
homotopy type theory allows us to formalise at all, not even necessarily in an
elegant way. Results in that direction (especially negative ones) should certainly
guide the discussion on what the “best” (in whichever sense, might it be philo-
sophical or pragmatical) and “most convenient” theory to work in is.

At the moment, it seems that certain important infinite constructions can
not be performed internally. Most importantly, it is believed that we can not
construct a model of homotopy type theory in itself (without restricting the trun-
cation levels of all types), something that would be desirable for many reasons.

167

9. Future Directions and Concluding Remarks

First, such a construction might give answers to questions related to (homotopy)
canonicity. The rough idea is that, if we use a constructive meta-theory, the “ca-
nonical” value of a given term can be obtained by checking what it evaluates to in
the semantics. This approach has recently received a lot of attention, especially
the model in cubical sets by Bezem, Coquand, and Huber [BCH14]. Their model
does not use homotopy type theory as a meta-theory, and there is on-going on
developing an appropriate syntax for “cubical type theory” by Altenkirch and Ka-
posi [AK14a],[AK14b], and by Brunerie and Licata [BL14]. On the other hand,
Shulman [Shu14] has discussed the possibility to interpret homotopy type theory
in itself, and it seems likely that this is not the case. Another reason why it would
be desirable to do this, as Shulman argues, is of more philosophical nature: if we
want a system to be a foundation for all of mathematics, it has to be able to serve
as its own meta-theory. In terms of programming language theory, as Shulman
mentions next to other motivations, it is natural to demand that “any general-
purpose programming language must be able to implement its own compiler or
interpreter”.

Related (and maybe even to some extend equivalent) problems are the form-
alisation of weak ω-groupoids and semi-simplicial types, of which we discuss the
latter below.

In this chapter, we assume the univalence axiom and higher inductive types,
although the latter assumption can be dropped for most of what we do.

9.2 Semi-Simplicial Types

Defining semi-simplicial types internally in homotopy type theory is a challenge
that, as far as I know, first came up at the special year program on univalent
foundations in Princeton, 2013/14. From a meta-theoretical point of view, it is
easy to describe them: they are Reedy fibrant type-valued presheaves over ∆+,
i.e. fibrant diagrams from ∆

op
+ to, say, the first universe U0.1 However, it seems

to be hard to impossible to express this internally due to coherence issues. In
(the currently considered version of) homotopy type theory, it is not possible to
state a judgmental equality internally, which one would want to do to specify
the functor laws. The only thing that would be left to do is to say that laws
such as associativity hold “up to a higher paths”. It would then be necessary to
explain how these families of higher paths “fit together”, in the same way as one
requires such properties for weak n-categories (similar as, for example, Mac Lane’s
pentagon [Mac71] for monoidal categories). It seems very plausible that such an
approach should in principle be possible for n-categories (with some fixed finite
number n), with the main question being whether it can be done in a sufficiently
clever way so that it is actually feasible. However, in the setting for an ω-category

1Recall that ∆+ is the category of non-zero finite ordinals and strictly increasing functions
(see the beginning of Section 8.5).

168

9.2. Semi-Simplicial Types

(or rather an ω-groupoid), each level of laws would analogously generate the ne-
cessity for new laws, and this leaves us with something which does not seem to
be formalisable internally. On the other hand, the problem that arises seems to
be similar to the reasons why it is hard (or impossible) to do what we discussed
above, i.e. to model homotopy type theory in itself. We expect that, if we had
the ability to formalise semi-simplicial types, many other important formalisation
problems would become accessible. This is mostly speculation, as we do not know
of any precise statement. However, there seems to be a connection as an inter-
preter for HoTT in HoTT would probably allow us to define semi-simplicial types;
see Remark 9.2.2 below.

Of course, the discussion above does not only apply to semi-simplicial types.
We have not yet made use of specific properties of ∆+. If we could express what
it means for a functor ∆+ → U to be “fully coherent” in the way outlined, we could
do this for any “type-valued presheaf”. To give an example, we could formalise
actual simplicial types, i.e. ∆op → U . Semisimplicial types are a more modest aim.
The reason why it is reasonable to expect that they are easier than the general
case is that ∆+ is an inverse category (in the sense of Section 8.2). We may thus
try to define semi-simplicial types in the “Reedy way”. Even more modestly, we
restrict ourselves to truncated semi-simplicial types, which only have simplices
at dimension less than a fixed given number. For example, a 0-truncated semi-
simplicial type X[0] (consisting of “only points”) is really only an ordinary type;
that is, we can simply write

X[0] ∶ U . (9.1)

A 1-truncated semi-simplicial type has “points” and “directed lines” (0-simplices
and 1-simplices). We want to use that we have just defined the type of “points”.
Given X[0], we have one “directed line” for every pair of “points”:

X[1] ∶X[0] →X[0] → U . (9.2)

Technically, the type of 1-truncated semi-simplicial types is then the Σ-type, con-
sisting of both the components X[0] and X[1]. For the case of a 2-truncated
semi-simplicial type, what is new is that there might be “fillers for triangles”,2

X2 ∶ (x1, x2, x3 ∶X[0])→X[1](x1, x2)→X[1](x2, x3)→X[2](x1, x3)→ U . (9.3)

Again, the type of 2-truncated semi-simplicial types is the (nested) Σ-type with
three components, namely X[0], X[1], and X[2]. As we have restricted ourselves to
truncated semi-simplicial types, we are not really trying to define what corresponds
to a functor ∆+ → U , but rather what corresponds to a functor ∆

op
+,n → U . Here,

∆+,n is the full subcategory of ∆+ with objects up to n. It thus should be clear
how to continue from here, and it is easy (although tedious) to write down the
next couple of definitions explicitly.

2Note that we once more implicitly uncurry and write X[0](x1, x2) instead of X[0] x1 x2.

169

9. Future Directions and Concluding Remarks

The actual challenge consists of writing down a function N → U which, for
each n, takes (up to equivalence) the type of n-truncated semi-simplicial type as
value. Maybe surprisingly, it seems to be impossible to do this, at least in the
theory that we are considering (the version of homotopy type theory outlined in
Chapter 2). At the same time, it seems to be hard to characterise exactly why
apparently promising approaches do not work. Multiple people have tried hard to
perform the construction without succeeding. I am not aware of the full history
of the problem, and I apologise in advance for the very fragmentary information
that follows in the next paragraph. I am sure that I fail to mention everyone who
would deserve to be acknowledged in the context of this problem.

Originally, the challenge was raised as an open problem at the special year pro-
gram in Princeton by LeFanu Lumsdaine, after it had already been discussed for
a while between members of the Carnegie-Mellon University and the Institute for
Advanced Study. Voevodsky had started a formalisation in Coq [Voe12], experien-
cing coherence problems. The problem was a major motivation for him to develop
HTS (Homotopy Type System) [Voe13a], a type system with two identity types,
in which the definition of semi-simplicial types is actually possible. An imple-
mentation of such a system with two identity types, led by Andrej Bauer, is called
Andromeda, and can be found in Bauer’s github repository.3 The challenge of de-
fining semi-simplicial types was further examined extensively by Herbelin [Her15]
and several other participants of the special year program. I myself have spent
a considerable amount of time on the problem as well, mostly together with Nuo
Li, but also with Thorsten Altenkirch and (later) with Paolo Capriotti, Ambrus
Kaposi, and Christian Sattler. Later, semi-simplicial types have been discussed
in the blog post by Shulman that we mentioned above [Shu14], which triggered a
long discussion and made Oliveri work on the question [Oli14].

Unfortunately, I do not have a solution to the formalisation problem either.
The different approaches that people tried do not differ too much from each other,
and in particular, the attempts of Li and myself in Agda are very close to Voe-
vodsky’s ideas in Coq. Still, to the best of my knowledge, what we will describe
below has some novel aspects. Firstly, we discuss the construction of diagrams
over inverse categories instead of only semi-simplicial types, but this is only a
straightforward generalisation. Secondly, we show how the constructions can be-
nefit if the indexing category satisfies associativity strictly. This is in particular
interesting because we also show how to implement ∆+ such that this condition is
met, in a theory with a very reasonable additional assumption, namely the judg-
mental η (or uniqueness) law for Σ-types. Thirdly, we draw the connection to
very dependent types [Hic96], which has already been mentioned in the discussion
following Shulman’s blog post [Shu14]; however, all details are left for future work,
and for the moment, we restrict the discussion to describing why it is reasonable
that very dependent types would solve the problem.

As our basic idea does not make use of the specific structure of ∆+, so let

3https://github.com/andrejbauer/andromeda

170

https://github.com/andrejbauer/andromeda

9.2. Semi-Simplicial Types

us describe it in higher generality. We intentionally do not address all details in
the following description, but we keep it a bit vague as different possibilities all
seem reasonable. We then discuss afterwards under which circumstances which
assumptions should be made. Assume we have a category C internalised in type
theory in a somewhat naive sense:

• a set C ∶ U0 of objects

• for any two objects a set of morphisms, that is, a family Hom ∶ C × C → U0

• identities i ∶ ∀(A ∶ C).Hom(A,A)
• a composition operator

_ ○_ ∶ ∀(A,B,C ∶ C).Hom(B,C) ×Hom(A,B)→ Hom(A,C) (9.4)

• laws for

– the identity:

∀(A,B ∶ C).∀(f ∶ Hom(A,B)). (f ○ iA = f) × (iB ○ f = f) (9.5)

– associativity:

∀(A,B,C,D ∶ C).
∀(f ∶ Hom(A,B)).
∀(g ∶ Hom(B,C)).
∀(h ∶ Hom(C,D)). (h ○ g) ○ f = h ○ (g ○ f)

(9.6)

What we have written down above is exactly the definition of a precategory in
the sense of [Uni13, Definition 9.1.1] (respectively [AKS15]), with the additional
assumption that the objects and the morphisms both form a set. We further
want C to be an inverse category, that is, there must not be an infinite sequence
⋅ → ⋅ → ⋅ → ⋯ of composable nonidentity morphisms (see Section 8.2). This
can be expressed internally or it can simply be a property that we “know” by
construction, for example because we have defined C such that it “is” the category
∆+ (in the latter case, we could prove the appropriate internal statement as well).
Note that this (appropriately formulated) implies that the identities are the only
isomorphisms, and C in fact has to be a (gaunt) category (see [Uni13], [AKS15]);
for example, ∆+ will automatically be a gaunt category. Whether it is necessary
(or useful) to have the “inverse”-property as an internal statement depends on how
we want to proceed, as we will see below.

Let us describe how we can define a (“Reedy fibrant”) diagram C → U in the
sense of what we have illustrated in (9.1-9.3). This means that we want to define
a function P ∶ C → U which is in fact a functor. In order to do this we define, for
each object A ∶ C, the matching object MA ∶ U . Similar as in (9.1-9.3), we prefer

171

9. Future Directions and Concluding Remarks

to not define P directly, but we define F such that FX ∶MX → U . Then, FX does
(by the usual translation between fibrations and families) represent the fibration
from P (X) to the matching object MX , just as in Chapter 8.

The structure of C as an inverse category induces a partial order on its set of
objects C. For X ∶ C, assume we have defined MX and FX for all objects that are
smaller than X. MX should then be a type with several components: for each Y

smaller than X (written Y ≺X), we need some τXY of type (explanation below)

Πf ∶Hom(X,Y)F
Y ({λ(g ∶ Hom(Y,Z)).τXZ (g ○ f)}Z≺Y). (9.7)

We did not specify what exactly we mean by “for each Y smaller than X”: it could
be a Π-type, quantifying over all such Y , or it could also be a nested Σ-type with
one component for each τXZ , or it could potentially be something else. For the
moment, we treat it as a black box. Of course, this means that we also cannot
specify what exactly the notation {⋯}Z≺Y means; it could be a function (λZ.⋯), a
pair with (Z ≺ Y)-many components, or possibly something else. We will discuss
this below. The crucial point is that, in (9.7), τXY makes use of τXZ , but only for
Z ≺ Y , so it at least does not seem completely unreasonable.

While it might look confusing at first sight, (9.7) it is really just the “formalisa-
tion” of the (meta-theoretical) definition of matching objects given in Section 8.2.
Let us unfold the above formula for the case that C is ∆+ to hopefully get some
clarity:

• M [0] is the unit type 1, as there are no Y ≺ [0].
• Consequently, F [0] has type 1→ U . This is the type of points.

• To define M [1], note that there is exactly one Y ≺ [1], namely [0]. M [1]

therefore has one component which, for every f ∶ [0] +→ [1], gives something
in F [0](⋆). The last argument is ⋆ simply because there is no Z ≺ [0]. If we
simplify, we see that M [1] is a pair of two points.

• Therefore, F [1] has to be a family of types, indexed over pairs of points.

• It now becomes more interesting. M [2] has two components, as there are
two objects less than [2]:

– τ[0] ∶ Πf ∶[0] +→[2]F
[0](⋆), a set of three points

– τ[1] ∶ Πf ∶[1] +→[2]F
[1] {λ(g ∶ Z +→ [1]).τZ(g ○ f)}Z≺[1]. Of course, Z here

has to be [0]. Intuitively, the map f selects two points, and the map g

then selects one of these two.

• We now see that F [2] is a family of types, indexed over “unfilled triangles”
just as expected.

• One more step will certainly not hurt. M [3] has three components:

172

9.2. Semi-Simplicial Types

– τ[0] ∶ Πf ∶[0] +→[3]F
[0](⋆), a set of four points

– τ[1] ∶ Πf ∶[1] +→[3]F
[1] {λ(g ∶ Z +→ [1]).τZ(g ○ f)}Z≺[1]. Again, Z has to be

[0].
– τ[2] ∶ Πf ∶[2] +→[3]F

[2] {λ(Z ≺ [2]).λ(g ∶ Z +→ [2]).τZ(g ○ f)}Z≺[2]. Now, Z

can take both the values [0] and [1]. We could write write the type of
τ[2] as

Π
f ∶[2] +→[3]F

[2] ([0]↦ λ(g ∶ [0] +→ [2]).τ[0](g ○ f)[1]↦ λ(g ∶ [1] +→ [2]).τ[1](g ○ f)) , (9.8)

where we also intentionally leave unclear what the notation formally
means.

The first serious question that we need to address is whether (9.7) type-checks.
Note that, by definition, F Y will have type MY → U . Its argument

{λ(g ∶ Hom(Y,Z)).τXZ (g ○ f)}Z≺Y (9.9)

therefore has to be of type MY , meaning that it has to have components τYZ (for
Z ≺ Y). To see whether this is the case, we need to check that (for a given Z) the
expression

λ(g ∶ Hom(Y,Z)).τXZ (g ○ f) (9.10)

can serve as τYZ (a component of MY and not of MX !). Looking at (9.7), the type
of this τYZ would be

Πh∶Hom(Y,Z)FZ({λ(k ∶ Hom(Z,W)).τYW (k ○ h)}W≺Z). (9.11)

By induction, we know that τYW (for all W ≺ Z) will be the term corresponding
to (9.10), with Z replaced by W . Making this substitution, we see that (9.11)
becomes

Πh∶Hom(Y,Z)F
Z({λ(k ∶ Hom(Z,W)).(λ(g ∶ Hom(Y,W)).τXW (g ○ f))(k ○ h)}W≺Z),

(9.12)
and, after β-reducing,

Πh∶Hom(Y,Z)F
Z({λ(k ∶ Hom(Z,W)).τXW ((k ○ h) ○ f)}W≺Z). (9.13)

Let us go back to (9.10) which, after α-renaming, is λ(h ∶ Hom(Y,Z)).τXZ (h ○ f).
From (9.7), we conclude that the type of this expression is

Πh∶Hom(X,Z)FZ({λ(k ∶ Hom(Z,W)).τXW (k ○ (h ○ f))}W≺Z). (9.14)

Comparing (9.13) with (9.14), we see that the type we have matches the type we
need if associativity in C is strict, as we need the equality ((k○h)○f) ≡ (k○(h○f))
to hold judgmentally. At the same time, we did not make use of the identity

173

9. Future Directions and Concluding Remarks

morphisms at all. We technically do not require them to be part of the structure
of the indexing “category”, and in particular, we do not need any judgmental laws
for the identities.

Strictness of associativity is a rather strong requirement. The interesting ob-
servation here is that is can be satisfied for our main case of interest, namely the
category ∆+. We also get strictness of the identity laws “for free”.

A Proposition 9.2.1. In MLTT with judgmental η-rule for dependent pair and
function types, that is x ≡ (fst(x), snd(x)) for x ∶ Σ (a ∶ A) .B(a), the category
∆+ can be constructed in such a way that associativity and identity laws all hold
strictly (and the same is true for the category ∆).

Proof. We first restrict ourselves to the case of ∆+. The construction is the ca-
nonical one with strictly increasing functions between finite sets. We only need to
ensure that we define “strictly increasing” correctly, and check that associativity
holds indeed strictly.

We write Fin ∶ N → U for the family of finite types: for any natural number k,
the type Fin(k) is the type with exactly k elements [Uni13, Chapter 1.3 and Exer-
cise 1.9]. Clearly, we can (for every k) define a function >k∶ Fin(k) → Fin(k) → U ,
usually used infix, such that a >k b is the proposition that a is greater than b.
Now, we define (for any h, k ∶ N) the predicate isIncrh,k by

isIncrh,k ∶ (Fin(h)→ Fin(k))→ U (9.15)

isIncrh,k(f) ∶≡ Πi,j∶Fin(h)(j >h i)→ (f(j) >k f(i)). (9.16)

Of course, isIncrh,k is a family of propositions as well.
This is all we need to construct ∆+ with the required properties. Define the set

of objects of ∆+ to be N. Morphisms from m to n are strictly increasing functions
from Fin(n + 1) to Fin(m + 1):

Hom(m,n) ∶≡ Σ (f ∶ Fin(n + 1)→ Fin(m + 1)) . isIncrn+1,m+1(f). (9.17)

The identities are the obvious ones: given m ∶ N, we have

(idFin(m+1), λi, j.idj>m+1i) ∶ Hom(m,m). (9.18)

Composition is defined pointwise. For all natural numbers m,n, o and morphisms
a ∶ Hom(m,n), b ∶ Hom(n, o), we may assume that a is of the form (f, p) with
f ∶ Fin(n + 1) → Fin(m + 1) and p ∶ isIncrn+1,m+1(f), and similarly that b is of the
form (g, q). We then simply set

(f, p) ○ (g, q) ∶≡ (f ○ g, p ○ q), (9.19)

where the composition on the right is the usual composition of functions. The
slick part is that this does not only work for the function parts, but also for the
proof components (p ○ q).

174

9.2. Semi-Simplicial Types

Strictness of the associativity and identity laws now simply follows from the fact
that they hold for ordinary functions with the canonical definition of composition,
together with the assumed judgmental η-rule for dependent pair types.

For the category ∆, we simply replace >k by ≥k, defined in an appropriate
way.

The problematic part with the definition of the matching objects as consisting
of “components” τXY as given in (9.7) is of course how this collection of compon-
ents is formed, and further how the different “levels” are put together (for example,
F [2] is not a valid expression on its own, but it relies on F [0] and F [1]). Voevod-
sky’s [Voe12] and Herbelin’s [Her15] approaches use Σ-types. Unfortunately, this
works neither with our nor with their definitions (unless the theory is modified to
support more judgmental equalities in one way or the other). The reason is that
we cannot refer to a component τXY directly, but need to extract it using a bunch
of projections. Consequently, the whole construction does then not type-check
when defined for variable objects of C.

For an (externally) fixed number n, however, this strategy does allow us to
define the type of n-truncated semi-simplicial types. I have written a Haskell
program which takes a number n and returns the definition of n-truncated semi-
simplicial types as (valid4) Agda code [Kra14a].

Remark 9.2.2. Shulman [Shu14] made the following point: If there is such a
program in Haskell, then it could certainly be implemented in type theory, as a
function from N to some sort of expressions. If we had an interpreter of HoTT
in itself, taking the expressions to types and terms, this would give us an internal
definition of semi-simplicial types. Thus, the problem of defining such an inter-
preter seems to be at least as hard as defining semi-simplicial types. (At that
time, Shulman referred to a Haskell program by Lumsdaine. At another occur-
rence, Lumsdaine stated that the program he had written did not generate the
expressions for semi-simplicial types, but the semi-simplicial equality type instead.
However, there was never any doubt that a programs as ours exists and can be
written with a reasonable small amount of effort.)

Remark 9.2.3. One potential issue is that, in our construction, the matching
objects are in general not strictly the limits they are supposed to be. This means
that the diagram that we construct will not be Reedy fibrant. However, it will still
be equivalent to the “correct” diagram, which, in many cases, should be sufficient.

The algorithm of our Haskell program uses Proposition 9.2.1. On the other
hand, as everything in that setting is finite, we could easily avoid needing strict
associativity. All we would have to do is “unfolding the τXY ”. In the definition
above (9.7), a component τXY encodes all Y -faces (or Y -subdiagrams) at the same
time: for each morphism Hom(X,Y), we have something in the corresponding

4This was tested for a range of possible n. However, our Haskell program does not produce
very readable code, and can at most serve as a “proof of concept”.

175

9. Future Directions and Concluding Remarks

fibre F Y (. . .). Instead, we could construct (an even larger) Σ-type which has one
component for each such face. This is the approach in Herbelin’s construction. It
also does not type-check in the general case of a variable (not externally fixed) n.

What we could try doing is interpreting the “for every X and Y ≺ X, a τXY ”
as a Π-type instead of a Σ-type. That is, we could try viewing τX as a function
ΠY ≺X (. . .), and actually even see τ as a function ΠX ∶C0ΠY ≺X (. . .). In the same
way, we could try to see the matching objects M as a function M ∶ C → U . The
advantage is that, intuitively, functions (seem to) be easier to access than Σ-
components that are “hidden” somewhere deep inside a long term. The problem
is that M(X) makes use of M(Y) for all Y ≺ X. This seems like it is not a
big issue as all terms are defined in a well-founded manner, but it is something
that functions can not do. The idea of having function types with this power,
i.e. with types depending on the function’s value at lower arguments, has been
examined in the system NuPRL by Hickey, Formal Objects in Type Theory Using
Very Dependent Types [Hic96]. Their “very dependent types” seem to be exactly
what we would need here. Although it is currently not clear whether they can be
introduced into HoTT appropriately, and a suitable semantics is yet to be found,
we conjecture that they would solve the coherence problems with semi-simplicial
types:

Conjecture 9.2.4 (Capriotti and Kraus). It is possible to augment the current
version of homotopy type theory with a suitable formulated version of very de-
pendent types such that type-checking remains decidable, and in this system semi-
simplicial types are definable. We further expect that all functors from a large
class of inverse categories into U would be definable at least as long as (but maybe
not only if) the inverse category is fixed (externally).

Remark 9.2.5. Given a type B, we can use our construction to define the semi-
simplicial equality type that played a crucial role in Chapter 8 (see especially
Remark and Corollary 8.5.2). Recall that we have defined the functor E ∶∆op

+ → C

in Section 8.4. For an externally fixed number n, we can now easily define a type
that is (homotopy) equivalent to E[n].

As in Remark 9.2.3, the diagram will not be Reedy fibrant. This would be the
case if Fin(n) → X was strictly isomorphic to X × . . . ×X for numerals n, which
it is not. Of course, simply copying the construction from Section 8.4 would not
come with this issue, but would lead to a far more involved definition that would
be difficult to write down in type theory.

For an object [n] of ∆op
+ , we define, by induction on the object [i],

• Sk
[n]
[i] ∶ U , the [i]-skeleton of an [n]-simplex, i.e. a type that corresponds to

E[n] where the cells on level [i + 1], . . . , [n] are removed

• η
[n]
[i] ∶ B → Sk

[n]
[i] , a canonical inhabitant of Sk[n][i] for every b ∶ B

• F[i] ∶ Sk[i][i−1] → U , the fibres.

176

9.3. Yoneda Groupoids

Note that the matching object ME
[n] (as used in Chapter 8) is the [n − 1]-skeleton

of E[n], and E[n] itself is Sk[n][n]. The cones η̃[n] and η[n] (as introduced in Section 8.4)

can both be expressed as η here, using the appropriate indices, namely as η
[n]
[n−1]

and η
[n]
[n].

For Sk
[n]
[i] and η

[n]
[i] , we allow i ≡ [−1], which simplifies the definition (Her-

belin [Her15] does the same in his construction of semi-simplicial types). We set

Sk
[n]
[−1] ∶≡ 1 (9.20)

η
[n]
[−1](b) ∶≡ ⋆ (9.21)

and, assuming that we have already defined η
[n]
[i−1] and Sk

[n]
[i−1],

F[i](m) ∶≡ Σ (x ∶ B) . η[i][i−1](x) =m (9.22)

Sk
[n]
[i] ∶≡ Σ((_, τ[0], . . . , τ[i−1]) ∶ Sk[n][i−1]) .Πf ∶[i] +→[n]F[i] (_, τ[0], τ[1], . . . , τ[i−1]) (9.23)

where we set

τ[k] ∶≡ λ(g ∶ [k] +→ [i]).τ[k](f ○ g). (9.24)

Finally, we define

η
[n]
[i] (b) ∶≡ (η[n][i−1](b), λ_.(b, refl

η
[i]
[i−1](b)

)) . (9.25)

Note that this type-checks for externally fixed values of i in standard MLTT, while
n may be a variable.

As said above, the diagram that we defined here is not fibrant. In particular,
given f ∶ [k] +→ [m], the function of type Sk

[m]
[m] → Sk

[k]
[k] that corresponds to E(f) is

not simply a projection, and we thus need to show how to construct it. We define,
more generally for any j ≥ i, a function

Sk
[m],[k]
[j],[i] (f) ∶ Sk[m][j] → Sk

[k]
[i] . (9.26)

There is a projection Sk
[m]
[j] ↠ Sk

[m]
[i] , and it is therefore enough to define the

function Sk
[m],[k]
[i],[i] (f) ∶ Sk[m][i] → Sk

[k]
[i] . For i ≡ [−1], this is trivial, and otherwise, by

recursion on [i],
Sk
[m],[k]
[i],[i] (f) ∶≡ λ(s, τ). ((Sk[m],[k][i−1],[i−1](f)) , λ(g ∶ [i] +→ [k]).τ(f ○ g)) . (9.27)

Again, this type-checks as long as i is an externally fixed numeral.

177

9. Future Directions and Concluding Remarks

9.3 Yoneda Groupoids

In this section, we want to use the natural ω-groupoid structure of types (especially
of universes) to approach the problem of defining weak ω-groupoids. Our approach
does not come close to capturing all ω-groupoids hat one might be interested in,
but something that satisfies our definition of a Yoneda groupoid should be (or
give rise to) a weak ω-groupoid for any reasonable definition. This section has in
a different form been part of my first year report [Kra11, Section 2.4]. It is the
only content from my first year report that I have chosen to include in this thesis.
Similar ideas have been discovered and explored by at least two other researchers
independently. Martín Escardó has started a private discussion in late 2012 about
a similar concept that he called univalent relations. James Cranch has done work
on concrete categories, which essentially use the same idea as we do here [Cra13].

Let us start with the motivation of this development. Around 2011, Altenkirch
raised the problem of specifying when a (non-propositional) relation gives rise to
an ω-groupoid. Of course, this is another instance of a formalisation problem
that seems to require an infinite tower of coherence conditions. It is clear how to
start: we need conditions which ensure that the relation is reflexive, transitive,
and symmetric. But these conditions have to behave well when combined, and
this is where the usual coherence problems begin.

Question 9.3.1 (Altenkirch, around 2011). Given a type A ∶ U with a relation
R ∶ A ×A→ U , and terms

r ∶ ∀a.R(a, a) (“reflexivity”), (9.28)
s ∶ ∀(a, b).R(a, b)→ R(b, a) (“symmetry”), (9.29)
t ∶ ∀(a, b, c).R(a, b)→ R(b, c)→ R(a, c) (“transitivity”), (9.30)

2 how can we formalise (in type theory) the statement that they give A the structure
of a weak ω-groupoid?

Admittedly, the question does not specify what it really asks for: what does it
mean to “give A the structure of a weak ω-groupoid”? Given a complete answer
what the question means is already non-trivial. It is possible to do this without
already answering the question. For example, for the definition of semi-simplicial
types, one could say that an acceptable definition is a function N→ U together with
a (meta-theoretical) proof that, for any fixed n, it gives a type that is equivalent to
the type that (for example) our Haskell reference implementation gives. We choose
to not clarify Question 9.3.1 completely and hope that the mentioned coherence
properties and the section on semi-simplicial types together give sufficient intuition
for the question to be understandable.

If we start to write down which conditions we want to impose on r, s, t, we
come up with the following list. We omit arguments which are (for the under-
standing) unimportant or inferable (the style of “implicit arguments”), and we
omit quantifications over all used variables.

178

9.3. Yoneda Groupoids

1. s(r) = r

2. s(s(p)) = p

3. t(r, p) = p

4. t(p, r) = p

5. t(p, s(p)) = r

6. t(s(p), p) = r

7. . . .

Some of the above terms are redundant as they are constructable from other
terms. Unfortunately, these terms give to new coherence conditions. For example,
for p ≡ r, the third and the fourth both inhabit the type t(r, r) = r, and we cer-
tainly want them to be equal. Each new set of conditions gives rise to even more
conditions that we need to impose. We could try to find all the conditions, formu-
late them uniformly, and try to write them down as a type-theoretical expression.
I believe that this would be (at least) as hard as defining semi-simplicial types.
Instead of specifying all the coherences, we attempt to reuse a coherent structure
that we already have: the identities on types.

Definition 9.3.2 (Yoneda groupoid). Let A ∶ U be some type with a relation
R ∶ A×A→ U . For some type U, we say that R is an U-Yoneda groupoid if there
is a function mapping every a ∶ A to an X ∶U such that X represents the structure
of a’s “equivalence class”,

isYonedaGrp
U
(R) ∶≡ Σ (F ∶ A→U) .Πa,b∶AR(a, b) ≃ (F (a) = F (b)). (9.31)

U could be any type, especially one in a universe above U . The point is that
U has a natural ω-groupoid structure which we want to use; therefore, using an
U which involves a universe in some form seems to be particularly interesting if
we work in a type theory with univalence.

However, simply picking the univalent universe U for U bears a serious problem.
Let n ∶ N be some number and consider the discrete set A ∶≡ Fin(n) with the
discrete relation R(x, y) ∶≡ (x = y), which is for all pairs either 1 or 0. We can try
to define F ∶ Fin(n)→ U with the desired property. For distinguished x, y ∶ Fin(n)
we need to use two non-equivalent types F (x), F (y). This means that we need to
find a family of n different types all of which have a trivial automorphism group.
This is a difficult exercise which, to the best of my knowledge, was solved by Peter
Lumsdaine and Michael Shulman in a private discussion. Later, they explained
the construction in a mailing list discussion on rigid types, which was started
by Martín Escardó [Hmail]. For us, a much easier and generalisable solution
is to choose U ∶≡ Fin(n) × U , and set F (x) ∶≡ (x,1). Then, it is easy to see
that F (x) = F (y) is indeed contractible if (x = y) and empty otherwise. In this

179

9. Future Directions and Concluding Remarks

example, Fin(n) acts as a “labelling set” to produce multiple distinguishable copies
of a specific type (here 1). In general (and in particular here), one can alternatively
very often simply use N as a set of labels, i.e. use U ∶≡ N × U . This will become
clearer in the examples below (see Example 9.3.4).

Definition 9.3.2 is inspired by two different formalisations of equivalence rela-
tions in the proof-irrelevant case and can actually be understood as a combination
of those. The first is what we could call the Yoneda characterisation of equivalence
relations; that is, for some propositional relation S ∶ A×A→ U−1, we can say that
S is an equivalence relation if and only if we have, for all a, b ∶ A,

S(a, b)↔ (Πx∶AS(a, x)↔ S(b, x)) . (9.32)

Unfortunately, it is not possible to generalise this in the straightforward way to
higher relations. One might think that replacing ↔ by ≃ could suffice, but un-
fortunately, there would be an unwanted level shift. Let again R be some (not
necessarily propositional) relation R. Say that, for all a, b ∶ A, we require

R(a, b) ≃ (Πx∶AR(a, x) ≃ R(b, x)) . (9.33)

This does not give R a satisfactory higher groupoid structure for at least two reas-
ons. First, in the right-hand type, we quantify over all x. If multiple distinguished
elements of A are in the same “equivalence class” (i.e. related by R), then the
right-hand type will necessarily be larger than we want. Even more problematic is
the second issue, the unwanted level shift, which makes even very simple examples
fail. Consider A ∶≡ 1, choose some n ∶ N, and set R(⋆,⋆) ∶≡ Fin(n). There is (for
n ≥ 1) certainly an associated groupoid structure; for example, we could have the
cyclic group Z/(n). However, there is (unless n is 1 or 2) no equivalence between
the sets Fin(n) and (Fin(n) ≃ Fin(n)), the latter of which is equivalent to Fin(n!).

The second source of inspiration for Definition 9.3.2 has been the definition
of an equivalence class by Voevodsky [Voe10b; Voe13b] which we have already
explained in Example 5.2.5 and briefly repeat here. Recall that, for P ∶ A → U−1,
we may define the statement that P is an equivalence class of the (propositional)
equivalence relation S ∶ A ×A→ U−1 by

isEquivClass(P) ∶≡ ∥Σ (a ∶ A) .∀(b ∶ A). S(a, b)↔ P (b)∥. (9.34)

Then, the quotient would be defined as the collection of equivalence classes. In
the theory we consider, it would necessarily live in a higher universe than A.

Remark 9.3.3. The first definition for Yoneda groupoids that I came up with used
equivalence classes, which made it very similar to the construction of quotients by
Voevodsky. I have later simplified it and so that it now uses a single F ∶ A → U
which also adds labels from the set N to distinguish classes that are equivalent
but distinct.

180

9.3. Yoneda Groupoids

As the relation R of a Yoneda groupoid is by definition exactly given by the
equality of some type, it is clear that we can construct the terms r, s, t and prove
all the coherence laws listed on page 178. In particular, it one came up with some
definition of a weak ω-groupoid, it would certainly be desirable that every Yoneda
groupoid is (or gives rise to) an ω-groupoid in that sense.

If we are given a relation R, it may be proved to be a Yoneda groupoid in
more than one way. This is to be expected: For example, with A ∶≡ 1 and
R(⋆,⋆) ∶≡ Fin(6), two distinguishable groupoid structures would be Z/(6) and the
symmetric group S3. Put differently, isYonedaGrp

U
(R) is not necessarily proposi-

tional. As so often, it is the proof that makes the choice of the precise structure.
We can easily form some kind of quotient of a Yoneda groupoid if the theory

supports propositional truncations. However, the quotient that we define will
not live inside the same universe. This is to be expected, as we (without higher
inductive types) can only get types that do not have some fixed truncation level
by going up the universe hierarchy.

Let A be a type with a relation R that is a Yoneda groupoid with the proof
(F, p), where F ∶ A→U and p ∶ Πa,b∶AR(a, b) ≃ (F (a) = F (b)), Define the “carrier”
of the quotient by

Q ∶≡ Σ (x ∶U) . ∥Σ (a ∶ A) . F (a) = x∥ (9.35)

and the projection into the carrier to be

q ∶ A→ Q (9.36)

q(a) ∶≡ (F (a), ∣a, reflF (a)∣). (9.37)

For any a, b ∶ A, we then have

(q(a) = q(b)) ≃ (F (a) = F (b)) ≃ R(a, b), (9.38)

which can be understood as a form of soundness and exactness.
However, it is not clear what the induction (elimination) principle of that

quotient should be. Of course, it is not enough to have a map f ∶ A → B with a
proof Πa,b∶A (R(a, b)→ f(a) = f(b)) if we want to construct a map Q → B. This
will in general only suffice if B is a set. The absence of a reasonable induction (or
even recursion) principle is certainly a serious drawback of the construction.

Some examples of relations that can be equipped with the Yoneda groupoid
structure are the following:

Example 9.3.4. (i) For any type A, we have Idω, the identity ω-groupoid as
consider by other authors [ALR14]. As we know, A with its equality has the
structure of such an ω-groupoid, and indeed, it can be turned into a Yoneda
groupoid. Even more, it is as trivial as it can be expected to be.5 We simply
choose U to be A, and F to be the identity on A.

5This is not the case in the work by Altenkirch, Li and Rypacek [ALR14] from which we
have the example Idω from.

181

9. Future Directions and Concluding Remarks

(ii) For any n ∶ N, we have a Yoneda groupoid with A ∶≡ 1 and R(⋆,⋆) ∶≡ Fin(n!),
where n! denotes the factorial: We simply define F (⋆) ∶≡ Fin(n) and use the
equivalence of the automorphism group of Fin(n) and Fin(n!). There are
many other group structures, such as Z/(n), but unfortunately, we do not
get them with our construction. Note that this example is somewhat boring
as, for (fixed) finite truncation levels, groupoid structures could be defined
directly.

(iii) We can freely combine types and relations that come with a Yoneda groupoid
structure. If we have A,B ∶ U and R ∶ A ×A → U as well as S ∶ B ×B → U ,
we can define the canonical relations on A +B, namely

(R + S)(inl(a1), inl(a2)) ∶≡ R(a1, a2) (9.39)
(R + S)(inl(a), inr(b)) ∶≡ 0 (9.40)
(R + S)(inr(b), inl(a)) ∶≡ 0 (9.41)
(R + S)(inr(b1), inl(b2)) ∶≡ S(b1, b2) (9.42)

(9.43)

and also on A ×B,

(R × S)((a1, b2), (a2, b2)) ∶≡ R(a1, a2) × S(b1, b2). (9.44)

If we have F ∶ A →U1 and G ∶ B →U2 with the corresponding proofs, then
(F +G) ∶ (A+B)→ (U1+U2) and, respectively, (F ×G) ∶ (A×B)→ (U1×U2)
give the proofs that the sum and product of Yoneda groupoids are again
Yoneda groupoids.

Our definitions immediately give rise to the question: when does the pair
(U, F) exist? If we consider the case that U is a universe, our question amounts
to asking for which types the operator Ω(U ,_) has a local inverse, i.e. for which
types X there is a type Y with (Y = Y) ≃ X. In the example X ≡ Fin(n!), a
solution exists, namely Y ≡ Fin(n) However, can we find an appropriate structure
if X is not a discrete set where the number of terms equals a factorial? Christian
Sattler has sketched a proof that such a group does exist indeed for X ≡ 3, which
can (probably) be generalised. Sattler further conjectured that for any n-groupoid
there always is an n+1-groupoid with the required property, but even if this is the
case, it is not clear whether it can be done in type theory. I do not know whether
there are solutions or partial solutions to the corresponding problem of ω-groupoids
(or ω-categories, (ω,n)-categories, . . .), although the question seems to be very
famous for ordinary groups. For example, by a result of Guohua Qian, groups
with n elements (with n odd and not having a divisor p4 for any prime p) cannot
arise as the automorphism group of a finite group [Qia03]. On the other hand,
all groups are outer automorphism groups of simple groups, see Droste, Giraudet,
Rüdiger [DMG01]. The point is that, in our setting, we are not restricted to groups
of the same “dimension” as a given group; that is, even if a group G is not the

182

9.4. Set-Based Groupoids

automorphism group of another group, it may still happen to be the automorphism
2-group of some 2-group.

9.4 Set-Based Groupoids

In homotopy type theory, we have (at least) two plausible notions of (1)-“groupoid”.
We can consider a set of objects, and for any pair of objects, a set of morphisms
between them, together with all the data needed to make it a groupoid. We call
this a set-based representation. Another possibility is to simply consider 1-types
as groupoids.

From a groupoid in set-based representation, it seems to be fairly simple to
get a 1-type. We do not discuss this here; it is a simple higher inductive type,
and in particular should follow from the Rezk completion [AKS15]. A question of
Altenkirch is whether a 1-type can be transformed into a set-based groupoid as
well. One advantage of representing types of higher truncation levels in the set-
based way could be that it simplifies the handling of coherence issues, in particular
when trying to model type theory [ALR14].

Here, we show that we can derive the set-based representation for a 1-type
(in the sense of Altenkirch) if and only if the task is trivial, i.e. for 1-types that
are actually sets. However, for a given 1-type with braided loop spaces (“weakly
abelian” loop spaces), we can construct a weak form of the second representation
which only includes all loop spaces instead of all path spaces.

9.4.1 Negative Results

Let us begin with a precise definition.

Definition 9.4.1 (Altenkirch, around 2012). Given a type A, we say that A is
set-based representable if there is

h ∶ ∥A∥0 × ∥A∥0 → U (9.45)

such that there is a proof that, for any a, b ∶ A, we have

h(∣a∣0, ∣b∣0) ≃ (a =A b). (9.46)

Note that the above definition does not require A to be 1-truncated. Altenkirch
wanted to know whether all types are set-based representable. Capriotti observed
that, if A is set-based representable, then

∣−∣ ∶ A→ ∥A∥0 (9.47)

has a section. The other direction of this statement is wrong. A section does allow
us to construct a reasonable h, but we will in general not get the family of proofs
of equivalence. This would require a retraction (which would immediately imply
that A is a set). We can show a strong improvement of this observation:

183

9. Future Directions and Concluding Remarks

Proposition 9.4.2. A type is set-based representable if and only if it is a set.

Proof. The first direction (“if”) is trivial.
For the other direction (“only if”), let us start with a simple observation:

Observation. Given types A,B, functions j ∶ A → B and k ∶ B → U as well as
a1, a2 ∶ A and p ∶ a1 = a2. Then, there are three functions k(j(a1)) → k(j(a2)),
namely the ones coming from

• transporting along p

• transporting along apjp

• transporting along apk○jp.

These three functions are all equal (trivial by induction on p).

Assume now that we have a type A, together with

h ∶ ∥A∥0 × ∥A∥0 → U (9.48)

and
c ∶ Πa,b∶A (h(∣a∣0, ∣b∣0) ≃ (a =A b)) . (9.49)

We need to show that A is a set. First, assume a, b1, b2 ∶ A and p ∶ b1 = b2.
Consider the following square, in which the horizontal maps are given by the
function part of the equivalences c(a, b1) and c(a, b2):

h(∣a∣0, ∣b1∣0)

h(∣a∣0, ∣b2∣0)

a =A b1

a =A b2

c(a, b1)

c(a, b2)

transportλb∶A.h(∣a∣0,∣b∣0)(p,_) _ p

By path induction, the square commutes (up to homotopy, of course). But, by
the observation stated above, the functions

transportλb∶A.h(∣a∣0,∣b∣0)(p,_) (9.50)

and
transportλx∶∥A∥0.h(∣a∣0,x)(ap∣−∣0(p),_) (9.51)

are equal.But (9.51) is independent of p, as ap∣−∣0(p) equals ap∣−∣0(q) for any
q ∶ b1 = b2. Looking at the right vertical arrow, this means that composition
with p equals composition with q, which is only possible if p and q are equal.

184

9.4. Set-Based Groupoids

9.4.2 Positive Results

The notion of set-based representability of Definition 9.4.1 is too strong. Instead,
we suggest:

Definition 9.4.3. We call a type A reduced set-based representable if there is a
single-indexed family

g ∶ ∥A∥0 → U (9.52)

of types which, for all a ∶ A, satisfies

g(∣a∣0) ≃ (a =A a). (9.53)

Alternatively (and logically equivalently), A is reduced set-based representable if
the map λa.(a = a) ∶ A→ U factors through ∥A∥0.

We consider this a reasonable alternative to Definition 9.4.1. The higher
structure of a type is fully specified by its higher loop spaces (Lemma 2.2.17).
Consequently, in Definition 9.4.1, “too much” information is given; the HIT-
construction can be done with the reduced data given in Definition 9.4.3.

Remark 9.4.4. Assume A is reduced-representable by (g, d) (where d is the family
of proofs, as in Definition 9.4.3). We will see that A does not need to be a set.
One approach to construct a “full” representation (h, c) (as in Definition 9.4.1)
would be to set

h(x, y) ∶≡ (x = y) × g(x). (9.54)

Intuitively, this is correct as x = y is always propositional: (a = b) is isomorphic to
(a = a) if (a = b), and empty if ¬(a = b). However, we will not be able to construct
the general c. For any a, b ∶ A, the best we could get would be

∥h(∣a∣0, ∣b∣0) ≃ (a =A b)∥−1, (9.55)

but even this would require LEM−1.

We now work towards proving a “positive” result.

Definition 9.4.5. We say that a type A has braided loop spaces if, for all a ∶ A,
the loop space a = a is commutative (p q = q p for all p, q ∶ a = a).

Caveat: Having braided loop spaces is a much stronger statement than saying
that the fundamental group at every basepoint is abelian. Of course, if A is
1-truncated, they become the same.

The certainly most obvious examples of types with braided loop spaces are sets
(for which it is trivial). More interesting are loop spaces themselves:

Lemma 9.4.6. For any type A, and any element a ∶ A, the type Ω(A,a) has
braided loop spaces.

185

9. Future Directions and Concluding Remarks

Proof. For given A and a, and for any p ∶ a = a, and any s, t ∶ p = p, we need to show
s t = t s. The Eckmann-Hilton argument, see [Uni13, Theorem 2.1.6], shows this
equality in the case that p is reflexivity. To complete the argument, we consider
s reflp−1 and t reflp−1 instead, where, in this case, denotes 2-composition. Those
commute, and canceling the trivial proofs, we get what we need. This essentially
is the Eckmann-Hilton argument.

The property of having braided loop spaces is interesting for the following
reason:

Theorem 9.4.7. Every 1-type with braided loop spaces is reduced-representable.

Proof. We want to show that f ∶ A → U , defined by f ≡ λa ∶ A.(a = a), factors
through ∥A∥0. By Theorem 8.10.2 with n ≡ 1, we need to show that, for all a in
A, the function apf ∶ (A = A)→ ((a = a) = (a = a)) is weakly constant.

Consider any points a, b ∶ A and any proof p, q ∶ a = b. We then have

apf(p) ∶ (a = a) = (b = b) (9.56)

apf(q) ∶ (a = a) = (b = b). (9.57)

Clearly, we are done if we can show apf(p) = apf(q). Recall that we have a
function idtoeqv, mapping equalities of types to equivalences. The univalence
axiom says exactly that this function is an equivalence. In particular, it is enough
to show that the induced functions (a = a) → (b = b) are equal. But now we see
that the function induced by (9.56) is

λ(s ∶ a = a).p−1 s p (9.58)

and the function induced by eq. (9.57) is

λ(s ∶ a = a).q−1 s q; (9.59)

this follows immediately by path induction. In the case a ≡ b, we have by assump-
tion

(p−1 s p) = (p−1 p s) = s = (q−1 q s) = (q−1 s q). (9.60)

9.5 Further Notes on Related Work and

Conclusions

Chapter 3 The beginning of our thesis contains simple results that are re-
lated to Hedberg’s Theorem. The Generalised Local Hedberg Argument (The-
orem 3.2.1) itself is very easy to prove and certainly not surprising: it essentially
shows that a reflexive n-truncated relation which implies equality on a type is

186

9.5. Further Notes on Related Work and Conclusions

enough to conclude that the type is (n + 1)-truncated. It is a straightforward
generalisation of a collection of theorems that are listed in the textbook on HoTT,
such as [Uni13, Theorem 7.2.2], [Uni13, Theorem 7.2.9], and Hedberg’s Theorem
([Uni13, Theorem 7.2.5]). Although simple, I believe that this result is useful. It
is sometimes involved to show that a type has some truncation level, and The-
orem 3.2.1 can turn out to be a valuable technical tool for streamlining such proofs;
after all, already Hedberg’s Theorem itself (which seems much more restricted) is
sometimes used to show that a type is a set. We have seen evidence for this claim:
the already technically involved argument in Theorem 8.10.2 would probably be
significantly longer if we did not have this tool at hand.

Chapter 4 Considering “Hedberg-style” arguments has naturally led us to
examining the propositional truncation more carefully. We have compared it with
alternative notions of anonymous existence. In particular, we have defined popu-
latedness : A type is populated (in our sense) if every weakly constant endofunction
on it has a fixed point. It is a main result of the section that this property is pro-
positional. Therefore, populatedness is a propositional notion of existence that
is definable in MLTT. Unfortunately, the concept seems to be less useful than
propositional truncation.

Chapter 5 While we have shown that a type has a constant endofunction
if and only if it has split support, and (without any additional effort) we can
factor such a weakly constant endomap through the propositional truncation, it
seems to be impossible to do this in general if we drop the condition that domain
and codomain of the function coincide. For example, a constant map from the
sum of two propositions factors through the propositional truncation, meaning
that the join of propositions exists even in the absence of higher inductive types.
Retrospectively, it is not surprising that the factorisation is possible in this case
as the constancy can be expressed in a way that does not have any coherence
problems. More precisely, we can “coherify” it by replacing the “problematic”
parts of the constancy proof by the canonical ones, something that is not possible
for general weakly constant functions (A→ B). An open question that especially
Martín Escardó and I are interested in is whether one can derive a (constructive
or homotopical) taboo from the assumption that every weakly constant function
factors through the propositional truncation. More precisely, does the assumption

∀(X Y ∶ U).∀(f ∶X → Y). constf → ∥X∥ → Y (9.61)

allow us to derive a “suspicious” statement, such as UIP for all types, some form
of the axiom of choice, or some form of excluded middle? For the assumption
that every type is collapsible, we have established a corresponding result in Sec-
tion 4.3.1: It implies that all equalities are decidable.

One example of a weakly constant function for which we do not know the status
of its factorisability is the function (6.71) which maps, for a given transitive type

187

9. Future Directions and Concluding Remarks

X, any point x ∶ X to (X,x) ∶ U●. Being able to factor it amounts to knowing an
inhabitant of

∀(X ∶ U). (∥X∥ × isTransitiveX)→ Σ (A ∶ U) .A × (X → A =U X). (9.62)

We can use the functoriality of ∥−∥ to see that (9.62) implies

∀(X ∶ U). (∥X∥ × isTransitiveX)→ Σ (A ∶ U) .A × ∥A =U X∥. (9.63)

The latter statement can be read as: Given a transitive merely inhabited type,
can we find an inhabited type that is merely equal to the first? Finally, we can
ask one more short question if we drop the transitivity condition and arrive at

∀(X ∶ U). ∥X∥ → Σ (A ∶ U) .A × ∥A =U X∥ ∶ (9.64)

If we have exact knowledge of a type and mere knowledge about an inhabitant,
can we “trade” it for mere knowledge of (the structure of) the type and exact
knowledge about an inhabitant? We do not expect that (9.62), (9.63) or (9.64) is
derivable, but does any of these three assumptions allow us to conclude a taboo?
These problems are open.

Chapter 6 When I have presented the “myst puzzle” (Theorem 6.4.6) first
(in private discussions and on the HoTT blog [Kra13b]), it has caused a lot of
amazement, in fact far more amazement than I had expected. The possibility
to recover n ∶ N from a term x ∶ ∥N∥ that was (secretly) defined to be ∣n∣ seems
very counter-intuitive at first sight. On the other hand, if we are given x, it is
clear that we can find out at least something about it because we can observe
how functions behave when applied on x. The two facts that are not immediately
obvious are thus: First, the “tests” that we can do can indeed reveal everything
about x; and second, the “tests” can be summarised and formulated as a single
internally defined function term. We have seen that this does not only work for N
(in fact, N is just the example that I considered best), but for all transitive types.6

However, even this is only a requirement if we want to define the complete term
myst. The proof of homogeneity is irrelevant for the actual computation. Thus, we
can (“from the outside”, e.g. as an Agda programmer who does not want to open
or search some file which contains important definitions) recover a for any x ∶ ∥A∥
that was (secretly) defined to be ∣a∣. We do not have to provide a concrete proof
of transitive(A); working with the assumption transitive(A) (or simply leaving a
“hole” in Agda) will work.

Cohen, Coquand, Huber, and Mörtberg have implemented an experimental
simple type-checker with an evaluator for closed terms (including terms that use
univalence) [CCHM14], based on the cubical set model of type theory by Bezem,

6The term “transitive” was suggested by Christian Sattler, and I find it better for the concept
than “homogeneous”, which I had used in the blog post.

188

9.5. Further Notes on Related Work and Conclusions

Coquand, and Huber [BCH14]. As an example, they have implemented the func-
tion myst.7 As Simon Huber told me in a private conversation, it took “forever”
to type-check (but, giving it enough time, everything worked fine). This is not
surprising as the term myst becomes very long if we try to unfold it. In fact,
already its type is difficult to unfold!

Chapter 7 The construction of strict n-types from univalence alone is tricky
(it has been an open problem of Princeton’s special year for a reason), but it is
probably not surprising that it is possible. What is nice is that, with our first
construction where we show that Un

n is a strict (n + 1)-type, we do not loose
any universe level (see Remark 7.1.2(ii)). This was maybe not to be expected,
especially since the “more straightforward” approach of “wrapping” the type of
booleans (see Section 7.5) will necessarily loose a level.

The “local-global looping” lemma (Main Lemma 7.4.2), saying that a loop
in the universe (“global”) corresponds to a family of (“local”) loops in the type
it is based at, is essentially a not very difficult consequence of strong function
extensionality. I had presented it in my talk in Princeton in April 2013. However,
at that time, its name was rather boring (something like “Lemma 1”); calling it
“local-global” is inspired by Hasse’s local-global principle, a famous concept from
algebraic number theory. The local-global looping lemma was later reused (or
rediscovered) by Licata and Brunerie [LB13].

Section 7.6, the part about connectedness, is a bit away from the main devel-
opment. The motivation was to see whether we can trivialise the lower homotopy
groups, not only make sure that the n-th group is non-trivial. The construction
is somewhat straightforward and it is not surprising that it works, but it was (at
least for Christian Sattler and myself) also not obvious that it would really work
before we did it. We had to use the impredicative encoding very carefully to make
sure that we quantify over the correct universes, and we think that, in principle,
it is for this sort of constructions possible to run into cyclic dependencies. For
example, if we need some operator T on types which can be defined but only in a
way that increases the universe level, and we need to apply T on T (X) somewhere
(i.e. compose T with itself), this clearly is problematic. The main difficulty of that
part was the formalisation in Agda, which benefits from a lot of effort by Christian
Sattler. In some way, the formalisation of Section 7.6 could probably serve as a
case study for formalising with only a minimum of judgmental computation rules.

The article “Higher Homotopies in a Hierarchy of Univalent Universes”, jointly
written with Sattler, is to appear in Transactions on Computational Logic, con-
taining essentially the results of Sections 7.2 to 7.4.

Chapter 8 It always feels a bit unsatisfying that, in order to define a func-
tion (∥A∥−1 → B), one needs to come up with some ad-hoc auxiliary proposition P

7https://github.com/simhu/cubical/blob/master/examples/Kraus.cub

189

This implementation is available on Github.

9. Future Directions and Concluding Remarks

such that A → P and P → B. One can often construct P by “describing a partic-
ular unique element of B” (see e.g. [Uni13, Exercise 3.19]). With Theorem 8.8.5,
we have described what a map (∥A∥−1 → B) “is” in general, although it is only
applicable if we have Reedy ωop-limits. It should also work with other forms of the
“infinite Σ-types” concept. In particular, very dependent types should be sufficient
if one can formulate a version of MLTT which includes them; see Conjecture 9.2.4.

On the other hand, the result that is more likely to be usable “in practice” is
the finite special case Theorem 8.9.6, where B is an n-type for some fixed finite
n. Unfortunately, it is (as we believe) impossible to internalise Theorem 8.9.6
for a variable n in the system that we mainly consider in this thesis (and we are
convinced that it is impossible to formalise Theorem 8.9.6 in, say, Agda). To be
precise, it already seems to be impossible to formalise the semi-simplicial equality
types. As for semi-simplicial types, it should be possible to write a program
which takes n as input and outputs the correct Agda source code which formalises
Theorem 8.9.6 for n.

It is a somewhat obvious question to ask whether we can generalise The-
orem 8.8.5 from ∥−∥−1 to ∥−∥n, and we have discussed this in Section 8.10; however,
we have only solved one special case, and leave the rest as future work.

Another tool for eliminating truncations was given by Escardó and Xu [EX15,
Lemma 3]. Their “exiting [propositional] truncations” principle says that, if A is
a family of propositions indexed over N such that A(n) implies the decidability of
A(m) for all m < n, then

∥Σ (n ∶ N) .A(n)∥−1 → Σ (n ∶ N) .A(n). (9.65)

This is very useful in their situation as it allows them to get a proof of uniform
continuity for functions 2N → 2 from the truncated version of such a proof. As
Σ (n ∶ N) .A(n) is a set, we know that a function of type (9.65) corresponds ex-
actly to a weakly constant endofunction on Σ (n ∶ N) .A(n) by Proposition 8.1.2;
and indeed, such a weakly constant endofunction is constructed easily: given
(n, a) ∶ Σ (n ∶ N) .A(n), we know that A(0),A(1), . . . ,A(n) are all decidable, and
we simply return the smallest n′ for which there is an element of A(n′). The
authors of [EX15] do not assume that the propositional truncation exists, so they
show that the the “type in the middle” (see the beginning of Chapter 8), but dis-
regarding this, their proof is essentially the unfolded version of the proof sketched
above.

The work presented in the discussed chapter gives rise to the following ques-
tion, related to the discussion of semi-simplicial types above. The number n in
Theorem 8.9.6 really has to be an externally fixed constant or our proof will not
go through. One could therefore ask whether we can do the proof if n is a variable.
This would amount to internalising a family of proofs, indexed over N. It should
then be possible to actually construct what is intuitively an “infinite Σ-type”, and
we could reasonably hope that Theorem 8.8.5 can be proved in HoTT without any
further assumptions. I believe that the answer is negative. I do already not believe

190

9.5. Further Notes on Related Work and Conclusions

that the equality semi-simplicial type can be defined internally, i.e. I believe that
E ∶ N+ → U does not exist as a term. This seems to be very similar to the problem
of defining semi-simplicial types internally (see Section 9.2), but, as far as I can
see, there is neither a reason why it should be easier nor a reason why it should
be harder. Having said that, I still expect that if one could solve one problem
(possibly by extending the theory in a reasonable way), one could also solve the
other. This means that, although I can prove Theorem 8.9.6 internally if n is
instantiated with any number (Theorem 8.9.6), I conjecture that it is impossible
to prove it for a variable nin the standard version of homotopy type theory. What
I think is certainly possible is to write a program in any standard programming
language that takes a number n as input and prints out the formalised statement
of Theorem 8.9.6 (in the syntax of a proof assistant such as Coq or Agda) together
with a proof. I suspect that everything we did on propositional truncations would
be formalisable in Voevodsky’s HTS [Voe13a] or another type system with two
layers, where the inner layer corresponds to HoTT and the outer layer has a strict
identity type, as Altenkirch, Capriotti and myself are currently considering [ACK].
This would be conjectures that could be checked in further investigations.

On Infinite Structures It would be feasible to have a type theory which
can deal with “infinite Σ-types” for many reasons. We could define semi-simplicial
types, and we could reasonably hope for an internal definition of weak ω-groupoids,
and an internal model of univalent type theory. As we have discussed in Sec-
tion 9.2, Hickey’s very dependent types could potentially make it possible to achieve
this without changing the currently commonly used theory much. However, we
need to be careful: even if we find a nice extension of the currently considered the-
ory which allows the construction of an internal model of univalent type theory, it
is not clear whether we could equip the model itself with the same sort of “infinite
Σ-types”; thus, it is unclear whether we could get an interpretation of the theory
in itself. This means it would be preferable to perform the construction within
the currently considered type theory, but unfortunately, it is to be expected that
this is impossible.

One earlier attempt to define weak ω-groupoids syntactically was made by Al-
tenkirch and Rypacek [AR12], who suggested a very involved construction. Ori-
ginally, a definition was given by Grothendieck [Gro83], which was later simplified,
and used as inspiration for a new definition, by Maltsiniotis[Mal10]. An overview
was given by Shulman [Shu10]. There is also a type-theoretic version by Bru-
nerie[Bru13], on which an implementation in Agda by Altenkirch, Li and Rypacek
is based [ALR14].

The idea of using the structure of univalent universes to define well-behaved
higher relations, or weak ω-groupoids, is something that I initially found inter-
esting but quickly dropped when I noticed the restrictions that we saw in Defini-
tion 9.3.2. The work by Cranch [Cra13] sheds light on this approach from a slightly
different angle which makes it appear not as disappointing as I had thought it was.

191

9. Future Directions and Concluding Remarks

In Section 9.4, we have analysed whether a type A always has a set-based
representation, in the sense that there is a set A0 and a family h ∶ A0 × A0 → U
which gives us the identity types of A. If we are honest, we have to admit that our
formulation was already biased from the beginning. Already from the beginning,
we had pretended that the only possible choice for A0 was ∥A∥0. This is not
unreasonable, it probably would have led to a “minimalistic” representation if
it had worked; but in principle, two distinguishable elements of A0 could still
be “identified” by the family h. The proof that such a representation is only
possible if A is a set goes through even if we “relax” the definition of “set-based
representable” and allow any A0 (with a map A → A0) instead of forcing A0 to
be ∥A∥0. For precisely this reason, our alternative definition of reduced set-based
representability seems reasonable: if we do not allow that h contains “arrows”
between points that are distinguishable in A0, then A0 necessarily has to be ∥A∥0.

192

Bibliography

[AAL11] Thorsten Altenkirch, Thomas Anberrée and Nuo Li. Definable quo-
tients in type theory. Draft paper. 2011 (cited on pp. 6, 70).

[AB04] Steve Awodey and Andrej Bauer. Propositions as [types]. Journal of
Logic and Computation 14.4, 2004, pp. 447–471 (cited on p. 8).

[ACK] Thorsten Altenkirch, Paolo Capriotti and Nicolai Kraus. Infinite struc-
tures in type theory: problems and approaches. Presented at TYPES’15,
Tallinn, Estonia, 20 May 2015. Work in progress, working title (cited
on p. 191).

[AGS12] Steve Awodey, Nicola Gambino and Kristina Sojakova. Inductive
types in homotopy type theory. Logic in Computer Science (LICS).
IEEE Computer Society, 2012, pp. 95–104. isbn: 978-0-7695-4769-5
(cited on pp. 39, 106).

[AK11] Peter Arndt and Krzysztof Kapulkin. Homotopy-theoretic models of
type theory. Typed Lambda Calculi and Applications (TLCA). Springer-
Verlag, 2011, pp. 45–60. isbn: 978-3-642-21690-9 (cited on p. 5).

[AK14a] Thorsten Altenkirch and Ambrus Kaposi. A syntax for cubical type
theory. Talk in Oxford. 8th November 2014 (cited on p. 168).

[AK14b] Thorsten Altenkirch and Ambrus Kaposi. A syntax for cubical type
theory. Draft paper. Available at the first-named author’s webpage.
August 2014 (cited on p. 168).

[AKS15] Benedikt Ahrens, Krzysztof Kapulkin and Michael Shulman. Uni-
valent categories and the Rezk completion. Mathematical Structures
in Computer Science (MSCS), January 2015, pp. 1–30. issn: 1469-
8072 (cited on pp. 11, 118, 153, 171, 183).

[ALR14] Thorsten Altenkirch, Nuo Li and Ondrej Rypacek. Some construc-
tions on ω-groupoids. Logical Frameworks and Meta-languages: The-
ory and Practice (LFMTP). 2014 (cited on pp. 181, 183, 191).

[Alt99] Thorsten Altenkirch. Extensional equality in intensional type theory.
Logic in Computer Science (LICS). IEEE Computer Society Press,
1999, pp. 412–420 (cited on pp. 6, 28).

193

Bibliography

[AM06] Thorsten Altenkirch and Conor McBride. Towards observational type
theory. Draft paper. February 2006 (cited on p. 6).

[AMS07] Thorsten Altenkirch, Conor McBride and Wouter Swierstra. Observa-
tional equality, now! Programming languages meets program verifica-
tion (PLPV). ACM, 2007, pp. 57–68. isbn: 978-1-59593-677-6 (cited
on p. 6).

[APW13] Steve Awodey, Álvaro Pelayo and Michael A. Warren. Voevodsky’s
univalence axiom in homotopy type theory. Notices of the American
Mathematical Society, 2013 (cited on p. 2).

[AR12] Thorsten Altenkirch and Ondrej Rypacek. A syntactical approach to
weak ω-groupoids. Computer Science Logic (CSL). 2012, pp. 16–30
(cited on p. 191).

[AW09] Steve Awodey and Michael A. Warren. Homotopy theoretic models
of identity types. Mathematical Proceedings of the Cambridge Philo-
sophical Society 146, January 2009, pp. 45–55. issn: 1469-8064 (cited
on pp. 4, 23).

[Awo+11] Steve Awodey, Richard Garner, Per Martin-Löf and Vladimir Voe-
vodsky. Mini-workshop: the homotopy interpretation of constructive
type theory. Oberwolfach Reports 8.1, 2011, pp. 609–638 (cited on
p. 6).

[Awo12] Steve Awodey. Type theory and homotopy. Epistemology versus On-
tology. Ed. by Peter Dybjer, Sten Lindström, Erik Palmgren and
Goran Sundholm. Vol. 27. Logic, Epistemology, and the Unity of
Science. Springer Netherlands, 2012, pp. 183–201. isbn: 978-94-007-
4434-9 (cited on p. 2).

[Awo14] Steve Awodey. Natural models of homotopy type theory. June 2014
(cited on pp. 5, 126).

[Bat98] Michael Batanin. Monoidal globular categories as a natural environ-
ment for the theory of weak n-categories. Advances in Mathematics
136.1, 1998, pp. 39–103 (cited on p. 133).

[BCH14] Marc Bezem, Thierry Coquand and Simon Huber. A model of type
theory in cubical sets. Types for Proofs and Programs (TYPES).
Ed. by Ralph Matthes and Aleksy Schubert. Vol. 26. Leibniz In-
ternational Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, March 2014, pp. 107–128. isbn:
978-3-939897-72-9 (cited on pp. 5, 168, 189, 195).

[BG11] Benno van den Berg and Richard Garner. Types are weak ω-groupoids.
Proceedings of the London Mathematical Society 102.2, 2011, pp. 370–
394 (cited on pp. 4, 24, 133).

194

Bibliography

[BG12] Benno van den Berg and Richard Garner. Topological and simplicial
models of identity types. ACM Transactions on Computational Logic
(TOCL) 13.1, 2012, p. 3 (cited on p. 5).

[BL14] Guillaume Brunerie and Daniel Licata. Cubical infinite-dimensional
type theory. Talk in Oxford. 9th November 2014 (cited on p. 168).

[Bru13] Guillaume Brunerie. Syntactic grothendieck weak ∞-groupoids. Un-
published note, available at uf-ias-2012.wikispaces.com. January
2013 (cited on p. 191).

[Cap14] Paolo Capriotti. Higher lenses. Blog post at homotopytypetheory.org.
29th April 2014 (cited on p. 153).

[Cap15] Paolo Capriotti. Agda formalisations of results on eliminating out
of higher truncations. Available at github.com/pcapriotti/agda-

base/tree/trunc. April 2015 (cited on pp. 117, 151).

[CCHM14] Cyril Cohen, Thierry Coquand, Simon Huber and Anders Mörtberg.
Cubical. Project code available at github.com/simhu/cubical. 2014
(cited on p. 188).

[CDP14] Jesper Cockx, Dominique Devriese and Frank Piessens. Pattern match-
ing without K. Talk at the Types for Proofs and Programs workshop
(TYPES) in Paris. 13th May 2014 (cited on p. 14).

[CH88] Thierry Coquand and Gerard Huet. The calculus of constructions.
Inf. Comput. 76.2-3, February 1988, pp. 95–120. issn: 0890-5401
(cited on p. 2).

[Con+86] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler,
P. Panangaden, J. T. Sasaki and S. F. Smith. Implementing mathem-
atics with the NuPRL proof development system. NJ: Prentice-Hall,
1986 (cited on pp. 8, 75, 117).

[Coq13] Thierry Coquand. A property of contractible types / a remark on con-
tractible families of types. Unpublished note, complementing [BCH14].
9th December 2013 (cited on p. 5).

[Coq14] Thierry Coquand. Variation on cubical sets. Unpublished note, 3rd
version. 8th November 2014 (cited on p. 5).

[Cra13] James Cranch. Concrete categories in homotopy type theory. ArXiv
e-prints, November 2013 (cited on pp. 178, 191).

[Dia75] Radu Diaconescu. Axiom of choice and complementation. Proc. Amer.
Math. Soc. 51, 1975, pp. 176–178 (cited on p. 60).

[DMG01] Manfred Droste, Giraudet Michèle and Rüdiger Göbel. All groups are
outer automorphism groups of simple groups. Journal of the London
Mathematical Society 64(3). December 2001, pp. 565–575. issn: 1469-
7750 (cited on p. 182).

195

https://uf-ias-2012.wikispaces.com/file/detail/SyntacticInfinityGroupoidsRawDefinition.pdf
http://homotopytypetheory.org/2014/04/29/higher-lenses/
https://github.com/pcapriotti/agda-base/tree/trunc
https://github.com/pcapriotti/agda-base/tree/trunc
https://github.com/simhu/cubical

Bibliography

[EO10] Martín Escardó and Paulo Oliva. Searchable sets, Dubuc-Penon com-
pactness, omniscience principles, and the drinker paradox. Comput-
ability in Europe 2010, Abstract and Handout Booklet. 2010, pp. 168–
177 (cited on p. 5).

[Esc15a] Martín Escardó. Constructive decidability of classical continuity. Math-
ematical Structures in Computer Science FirstView, February 2015,
pp. 1–12. issn: 1469-8072 (cited on p. 5).

[Esc15b] Martín Escardó. The intrinsic topology of a Martin-Löf universe.
Draft paper. March 2015 (cited on p. 5).

[EX15] Martín Escardó and Chuangjie Xu. The inconsistency of a brouwerian
continuity principle with the curry–howard interpretation. Draft pa-
per. 2015 (cited on p. 190).

[FŠ82] M. P. Fourman and A. Ščedrov. The “world’s simplest axiom of choice”
fails. Manuscripta Math. 38.3, 1982, pp. 325–332. issn: 0025-2611
(cited on p. 66).

[GG08] Nicola Gambino and Richard Garner. The identity type weak factor-
isation system. Theor. Comput. Sci. 409, 1 December 2008, pp. 94–
109. issn: 0304-3975 (cited on p. 126).

[Gon+13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril
Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Rus-
sell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey
Solovyev, Enrico Tassi and Laurent Thery. A machine-checked proof
of the odd order theorem. Interactive Theorem Proving. 2013 (cited
on p. 2).

[Gon08] Georges Gonthier. Formal proof – the four-color theorem. Notices of
the American Mathematical Society 55, 2008, pp. 1382–1393 (cited
on p. 2).

[Gro83] Alexander Grothendieck. Pursuing stacks. Unpublished Manuscript.
1983 (cited on p. 191).

[Hagda] The HoTT and UF community. Homotopy type theory. Agda library,
available online at github.com/HoTT/HoTT-Agda. Since 2012 (cited
on p. 14).

[Hat01] Allen Hatcher. Algebraic Topology. First edition. Cambridge Univer-
sity Press, 3rd December 2001. isbn: 0521795400 (cited on p. 23).

[Hcoq] The HoTT and UF community. HoTT GitHub repository. Since 2011
(cited on p. 45).

[Hed98] Michael Hedberg. A coherence theorem for Martin-Löf’s type theory.
Journal of Functional Programming 8.4, 1998, pp. 413–436 (cited on
p. 44).

196

https://github.com/HoTT/HoTT-Agda

Bibliography

[Her15] Hugo Herbelin. A dependently-typed construction of semi-simplicial
types. Mathematical Structures in Computer Science, March 2015,
pp. 1–16. issn: 1469-8072 (cited on pp. 117, 167, 170, 175, 177).

[Hic96] Jason J. Hickey. Formal objects in type theory using very dependent
types. Foundations of Object Oriented Languages 3. 1996 (cited on
pp. 117, 170, 176).

[Hmail] The HoTT and UF community. Homotopy type theory mailing list.
Google Groups. Since 2011 (cited on pp. 72, 77, 117, 179).

[Hof95] Martin Hofmann. Extensional concepts in intensional type theory.
PhD thesis. University of Edinburgh, July 1995 (cited on pp. 6, 70,
75).

[Hof97] Martin Hofmann. Syntax and semantics of dependent types. Semantics
and Logics of Computation. Cambridge University Press, 1997, pp. 79–
130 (cited on p. 17).

[Hov07] Mark Hovey. Model categories. Mathematical surveys and monographs
63. American Mathematical Society, 2007. isbn: 9780821843611 (cited
on p. 130).

[How80] William A. Howard. The formulas-as-types notion of construction. To
H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism. Ed. by J. P. Seldin and J. R. Hindley. Academic Press,
1980, pp. 479–490 (cited on pp. 2, 4, 18).

[HS96] Martin Hofmann and Thomas Streicher. The groupoid interpretation
of type theory. In Venice Festschrift. Oxford University Press, 1996,
pp. 83–111 (cited on pp. 3, 5, 6, 24).

[KECA13] Nicolai Kraus, Martín Escardó, Thierry Coquand and Thorsten Al-
tenkirch. Generalizations of Hedberg’s theorem. Typed Lambda Calcu-
lus and Applications (TLCA). Ed. by Masahito Hasegawa. Vol. 7941.
Lecture Notes in Computer Science. Springer-Verlag, 2013, pp. 173–
188 (cited on pp. 15, 25, 43, 46, 51).

[KECA14] Nicolai Kraus, Martín Escardó, Thierry Coquand and Thorsten Al-
tenkirch. Notions of anonymous existence in Martin-Löf type theory.
Submitted to the special issue of TLCA’13. 2014 (cited on pp. 15, 43,
51, 69, 80).

[KLV12a] Krzysztof Kapulkin, Peter LeFanu Lumsdaine and Vladimir Voevod-
sky. The simplicial model of univalent foundations. ArXiv e-prints,
November 2012 (cited on p. 5).

[KLV12b] Krzysztof Kapulkin, Peter LeFanu Lumsdaine and Vladimir Voevod-
sky. Univalence in simplicial sets. ArXiv e-prints, March 2012 (cited
on p. 5).

197

https://groups.google.com/forum/#!aboutgroup/homotopytypetheory

Bibliography

[Kol32] Andrey Kolmogorov. Zur Deutung der intuitionistischen Logik. Math-
ematische Zeitschrift 35, 1932, pp. 58–65 (cited on p. 18).

[Kra11] Nicolai Kraus. Higher dimensional type theory and other aspects of
mathematics in computer science. First year progress report, exten-
ded version. 2011 (cited on p. 178).

[Kra12] Nicolai Kraus. A direct proof of Hedberg’s theorem. Blog post at ho-
motopytypetheory.org. 30th March 2012 (cited on pp. 45, 48).

[Kra13a] Nicolai Kraus. The hierarchy of univalent universes and a type of
strictly homotopy level n. Talk in Princeton at the UF program, notes
available at uf-ias-2012.wikispaces.com. 8th April 2013 (cited
on p. 91).

[Kra13b] Nicolai Kraus. The truncation map ∣−∣ ∶ N → ∥N∥ is nearly invertible.
Blog post at homotopytypetheory.org. 28th October 2013 (cited on
pp. 86, 88, 188).

[Kra14a] Nicolai Kraus. A haskell script to generate the type of n-truncated
semi-simplicial types. A proof of concept. 2014 (cited on pp. 13, 175).

[Kra14b] Nicolai Kraus. The general universal property of the propositional
truncation. ArXiv e-prints, November 2014. To appear in the post-
proceedings of Types for Proofs and Programs (TYPES) 2014 (cited
on pp. 15, 117, 132).

[KS15] Nicolai Kraus and Christian Sattler. Higher homotopies in a hierarchy
of univalent universes. ACM Transactions on Computational Logic
(TOCL) 16.2, April 2015, 18:1–18:12 (cited on pp. 15, 89, 157).

[LB13] Daniel Licata and Guillaume Brunerie. πn(Sn) in homotopy type the-
ory. Vol. 8307. LNCS. Springer, 2013, pp. 1–16 (cited on p. 189).

[Lei02] Tom Leinster. A survey of definitions of n-category. Theory and ap-
plications of Categories 10.1, 2002, pp. 1–70 (cited on p. 133).

[LF14] Daniel Licata and Eric Finster. Eilenberg-MacLane spaces in homo-
topy type theory. Logic in Computer Science (LICS). ACM. 2014,
pp. 66–74 (cited on p. 113).

[Li15] Nuo Li. Quotient types in type theory. PhD thesis. School of Com-
puter Science, University of Nottingham, 2015 (cited on pp. 70, 75).

[Lic12] Daniel Licata. Homotopy type theory. Agda library, available at github.
com/dlicata335. Since 2012 (cited on p. 14).

[Lic13] Daniel Licata. Homotopy theory in type theory: progress report. Blog
post at homotopytypetheory.org. 20th May 2013 (cited on p. 104).

[Lum09] Peter LeFanu Lumsdaine. Weak omega-categories from intensional
type theory. Typed Lambda Calculi and Applications (TLCA). Springer-
Verlag, 2009, pp. 172–187. isbn: 978-3-642-02272-2 (cited on pp. 4,
133).

198

http://homotopytypetheory.org/2012/03/30/a-direct-proof-of-hedbergs-theorem/
http://homotopytypetheory.org/2012/03/30/a-direct-proof-of-hedbergs-theorem/
http://uf-ias-2012.wikispaces.com/file/view/hierarchy.pdf/425054128/hierarchy.pdf
http://uf-ias-2012.wikispaces.com/file/view/hierarchy.pdf/425054128/hierarchy.pdf
http://homotopytypetheory.org/2013/10/28/
https://github.com/dlicata335/hott-agda
https://github.com/dlicata335/hott-agda
http://homotopytypetheory.org/2013/05/20/homotopy-theory-in-type-theory-progress-report
http://homotopytypetheory.org/2013/05/20/homotopy-theory-in-type-theory-progress-report

Bibliography

[Lum10] Peter LeFanu Lumsdaine. Higher categories from type theories. PhD
thesis. Carnegie Mellon University, 2010 (cited on p. 24).

[Lur09] Jacob Lurie. Higher topos theory. Vol. 170. Annals of Mathematics
Studies. Princeton, NJ: Princeton University Press, 2009. isbn: 978-
0-691-14049-0; 0-691-14049-9 (cited on p. 117).

[LW15] Peter LeFanu Lumsdaine and Michael A. Warren. The local universes
model: an overlooked coherence construction for dependent type theor-
ies. ACM Transactions on Computational Logic (TOCL) 16.3, 2015.
To appear (cited on p. 126).

[Mac71] Saunders Mac Lane. Categories for the working mathematician. New
York: Springer-Verlag, 1971 (cited on p. 168).

[Mal10] Georges Maltsiniotis. Grothendieck ∞-groupoids, and still another
definition of ∞-categories. ArXiv e-prints, 2010 (cited on p. 191).

[McC13] James E. McClure. On semisimplicial sets satisfying the kan condi-
tion. Homology, Homotopy and Applications 15.1, 2013, pp. 73–82
(cited on p. 133).

[Men90] Nax Paul Mendler. Quotient types via coequalizers in Martin-Löf
type theory. Proceedings of the Logical Frameworks Workshop. 1990,
pp. 349–361 (cited on p. 6).

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part.
Logic Colloquium ’73, Proceedings of the Logic Colloquium. Ed. by
H.E. Rose and J.C. Shepherdson. Vol. 80. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1975, pp. 73–118 (cited
on p. 2).

[ML82] Per Martin-Löf. Constructive mathematics and computer program-
ming. Logic, Methodology and Philosophy of Science VI, Proceedings
of the Sixth International Congress of Logic, Methodology and Philo-
sophy of Science, Hannover 1979. Ed. by L. Jonathan Cohen, Jerzy
Łoś, Helmut Pfeiffer and Klaus-Peter Podewski. Vol. 104. Studies
in Logic and the Foundations of Mathematics. North-Holland, 1982,
pp. 153–175 (cited on p. 2).

[ML84] Per Martin-Löf. Intuitionistic type theory. Vol. 1. Studies in Proof
Theory. Naples: Bibliopolis, 1984 (cited on p. 2).

[ML98] Per Martin-Löf. An intuitionistic theory of types. Twenty-five years
of constructive type theory (Venice, 1995). Ed. by Giovanni Sambin
and Jan M. Smith. Vol. 36. Oxford Logic Guides. Oxford University
Press, 1998, pp. 127–172 (cited on p. 2).

[Nor07] Ulf Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis. Department of Computer Science,
Engineering, Chalmers University of Technology and Göteborg Uni-
versity, 2007 (cited on pp. 2, 13).

199

Bibliography

[Oli14] Matt Oliveri. A formalized interpreter. Blog post at homotopytype-
theory.org. 19th August 2014 (cited on pp. 117, 170).

[Pal12] Erik Palmgren. Proof-relevance of families of setoids and identity in
type theory. Arch. Math. Log. 51.1-2, 2012, pp. 35–47 (cited on p. 48).

[PM93] Christine Paulin-Mohring. Inductive definitions in the system Coq -
rules and properties. Typed Lambda Calculi and Applications (TLCA).
Ed. by Marc Bezem and Jan Friso Groote. Lecture Notes in Com-
puter Science 664. 1993 (cited on p. 24).

[PW12] Álvaro Pelayo and Michael A. Warren. Homotopy type theory and
Voevodsky’s univalent foundations. CoRR abs/1210.5658, 2012 (cited
on pp. 2, 4, 18).

[Qia03] Guohua Qian. On automorphism groups of some finite groups. Sci-
ence in China Series A: Mathematics 46.4, 2003, pp. 450–458. issn:
1006-9283 (cited on p. 182).

[RS14] Egbert Rijke and Bas Spitters. Sets in homotopy type theory. MSCS,
special issue: From type theory and homotopy theory to univalent
foundations, 2014 (cited on p. 43).

[RS71] Colin Patrick Rourke and Brian Joseph Sanderson. ∆-sets I: ho-
motopy theory. The Quarterly Journal of Mathematics 22.3, 1971,
pp. 321–338 (cited on p. 133).

[Rus03] Bertrand Russell. The principles of mathematics. First edition. Cam-
bridge University Press, 1903 (cited on pp. 4, 18).

[Sat15] Christian Sattler. On the complexities of polymorphic stream equation
systems, isomorphism of finitary inductive types, and higher homo-
topies in univalent universes. PhD thesis. School of Computer Sci-
ence, University of Nottingham, December 2015 (cited on p. 91).

[Sco72] Dana Scott. Continuous lattices. Toposes, Algebraic Geometry, and
Logic. Ed. by F. W. Lawvere. Lecture Notes in Mathematics 274.
Springer-Verlag, 1972, pp. 97–136 (cited on p. 4).

[Seg68] Graeme Segal. Classifying spaces and spectral sequences. Publications
Mathématiques de l’Institut des Hautes Études Scientifiques 34.1,
1968, pp. 105–112. issn: 0073-8301 (cited on p. 135).

[Shu10] Michael Shulman. Grothendieck-Maltsiniotis ∞-categories. Blog post
at The n-Category Café. 15th September 2010 (cited on p. 191).

[Shu11] Michael Shulman. An interval type implies function extensionality.
Blog post at homotopytypetheory.org. 4th April 2011 (cited on p. 83).

[Shu14] Michael Shulman. Homotopy type theory should eat itself (but so
far, it’s too big to swallow). Blog post at homotopytypetheory.org.
3rd March 2014 (cited on pp. 117, 167, 168, 170, 175).

200

http://homotopytypetheory.org/2014/08/19/a-formalized-interpreter/
http://homotopytypetheory.org/2014/08/19/a-formalized-interpreter/
https://golem.ph.utexas.edu/category/2010/09/grothendieckmaltsiniotis_categ.html
https://golem.ph.utexas.edu/category/2010/09/grothendieckmaltsiniotis_categ.html
http://homotopytypetheory.org/2011/04/04/an-interval-type-implies-function-extensionality/
http://homotopytypetheory.org/2014/03/03/hott-should-eat-itself/

Bibliography

[Shu15] Michael Shulman. Univalence for inverse diagrams and homotopy
canonicity. Mathematical Structures in Computer Science, January
2015, pp. 1–75. issn: 1469-8072 (cited on pp. 10, 116, 118, 124–128,
133, 135).

[Soj15] Kristina Sojakova. Higher inductive types as homotopy-initial algeb-
ras. Principles of Programming Languages (POPL). ACM, 2015, pp. 31–
42. isbn: 978-1-4503-3300-9 (cited on pp. 39, 106).

[Str11] Thomas Streicher. A model of type theory in simplicial sets – a brief
introduction to Voevodsky’s homotopy type theory. Unpublished note.
September 2011 (cited on p. 5).

[Str87] Ross Street. The algebra of oriented simplexes. Journal of Pure and
Applied Algebra 49.3, 1987, pp. 283–335. issn: 0022-4049 (cited on
pp. 124, 132).

[Uni13] The Univalent Foundations Program. Homotopy type theory: uni-
valent foundations of mathematics. First edition. Institute for Ad-
vanced Study: homotopytypetheory.org/book, 2013 (cited on pp. 1,
6, 7, 9, 10, 14, 17, 20, 22, 24–41, 43, 45, 46, 49, 60, 61, 63, 71, 72, 75,
77, 79–81, 87, 92, 93, 99, 102, 103, 105, 109, 110, 112, 113, 119, 148,
153–156, 158, 159, 171, 174, 186, 187, 190).

[Vic01] Steven Vickers. Strongly algebraic = SFP (topically). Mathematical
Structures in Computer Science 11, 2001, pp. 717–742. issn: 0960-
1295 (cited on p. 4).

[Vic05] Steven Vickers. Some constructive roads to Tychonoff. From Sets and
Types to Topology and Analysis: Towards Practicable Foundations for
Constructive Mathematics. Ed. by Laura Crosilla and Peter Schuster.
Oxford Logic Guides 48. Oxford University Press, 2005, pp. 223–238.
isbn: 0-19-856651-4 (cited on p. 4).

[Vic96] Steven Vickers. Topology via logic. Cambridge Tracts in Theoret-
ical Computer Science. Cambridge University Press, 13th September
1996. isbn: 0521576512 (cited on p. 4).

[Vic99] Steven Vickers. Topology via constructive logic. Logic, Language and
Computation Vol II. Ed. by Moss, Ginzburg and de Rijke. CSLI Pub-
lications, 1999, pp. 336–345. isbn: 1575861801, 157586181X (cited on
p. 4).

[Voe06] Vladimir Voevodsky. A very short note on homotopy λ-calculus. Un-
published note. September 2006 (cited on p. 4).

[Voe10a] Vladimir Voevodsky. Univalent foundations project. A modified ver-
sion of an NSF grant application. 1st October 2010 (cited on pp. 1,
4, 5, 7, 23).

201

http://homotopytypetheory.org/book/

Bibliography

[Voe10b] Vladimir Voevodsky. Foundations. Coq Library based on Univalent
Foundations, available at the author’s institutional webpage. Since
2010 (cited on pp. 7, 38, 75, 180).

[Voe12] Vladimir Voevodsky. Semi-simplicial types. Formalisation attempt
in Coq, available at uf-ias-2012.wikispaces.com. 2012 (cited on
pp. 170, 175).

[Voe13a] Vladimir Voevodsky. A simple type system with two identity types.
Unpublished note. 2013 (cited on pp. 170, 191).

[Voe13b] Vladimir Voevodsky. Experimental library of univalent formalization
of mathematics. Available at arxiv.org/abs/1401.0053. December
2013 (cited on pp. 7, 38, 75, 180).

[War08] Michael A. Warren. Homotopy theoretic aspects of constructive type
theory. PhD thesis. Carnegie Mellon University, 2008 (cited on p. 4).

[War11] Michael A. Warren. The strict ω-groupoid interpretation of type the-
ory. Models, Logics, and Higher-dimensional Categories: A Tribute
to the Work of Mihály Makkai 53, 2011, pp. 291–340 (cited on p. 4).

[XE13] Chuangjie Xu and Martín Escardó. A constructive model of uniform
continuity. Typed Lambda Calculi and Applications (TLCA). Ed. by
Masahito Hasegawa. Vol. 7941. Lecture Notes in Computer Science.
Springer-Verlag, 2013, pp. 236–249. isbn: 978-3-642-38945-0 (cited
on p. 5).

202

http://www.math.ias.edu/~vladimir/Foundations_library/toc.html
http://uf-ias-2012.wikispaces.com/Semi-simplicial+types
http://arxiv.org/abs/1401.0053

	Summary
	Acknowledgements
	Contents
	Introduction
	Historical Outline
	A brief introduction to truncation levels and operations
	Overview over Our Results
	Computer-Verified Formalisations
	Declaration of Authorship and Previous Publications

	Overview over Homotopy Type Theory and Preliminaries
	Martin-Löf Type Theory
	Constructions with Propositional Equality
	Homotopy Type Theory
	A Word on Ambiguity Avoidance and Readability

	Truncation Level Criteria
	Hedberg's Theorem Revisited
	Generalisations to Higher Levels

	Anonymous Existence
	Collapsible Types have Split Support
	Populatedness
	Comparison of Notions of Existence

	Weakly Constant Functions
	The Limitations of Weak Constancy
	Factorisation for Special Cases

	On the Computation Rule of the Propositional Truncation
	The Interval
	Function Extensionality
	Judgmental Factorisation
	An Invertibility Puzzle

	Higher Homotopies in a Hierarchy of Univalent Universes
	Background of the Problem
	The First Cases
	Pointed Types
	Homotopically Complicated Types
	A Solution with the ``Wrapping'' Approach
	Connectedness
	Combining the Results

	The General Universal Properties of Truncations
	A First Few Special Cases
	Fibration Categories, Inverse Diagrams, and Reedy Limits
	Subdiagrams
	Equality Diagrams
	The Equality Semisimplicial Type
	Fibrant Diagrams of Natural Transformations
	Extending Semi-Simplicial Types
	The Main Theorem
	Finite Cases
	Elimination Principles for Higher Truncations
	The Big Picture: Solved and Unsolved Cases

	Future Directions and Concluding Remarks
	The Problem of Formalising Infinite Structures
	Semi-Simplicial Types
	Yoneda Groupoids
	Set-Based Groupoids
	Further Notes on Related Work and Conclusions

	Bibliography

