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Abstract

Martin Lof Type Theory, having put computation at the center of logical
reasoning, has been shown to be an effective foundation for proof assistants,
with applications both in computer science and constructive mathematics. One
ambition though is for MLTT to also double as a practical general purpose
programming language. Datatypes in type theory come with an induction or
coinduction principle which gives a precise and concise specification of their
interface. However, such principles can interfere with how we would like to
express our programs. In this thesis, we investigate more flexible alternatives
to direct uses of the (co)induction principles.

As a first contribution, we consider the n-truncation of a type in Homo-
topy Type Theory. We derive in HoTT an eliminator into (n+1)-truncated
types instead of n-truncated ones, assuming extra conditions on the underlying
function.

As a second contribution, we improve on type-based criteria for termination
and productivity. By augmenting the types with well-foundedness information,
such criteria allow function definitions in a style closer to general recursion.
We consider two criteria: guarded types, and sized types.

Guarded types introduce a modality “later” to guard the availability of
recursive calls provided by a general fixed-point combinator. In Guarded Cu-
bical Type Theory we equip the fixed-point combinator with a propositional
equality to its one-step unfolding, instead of a definitional equality that would
break normalization. The notion of path from Cubical Type Theory allows us
to do so without losing canonicity or decidability of conversion.

Sized types, on the other hand, explicitly index datatypes with size bounds
on the height or depth of their elements. The sizes however can get in the
way of the reasoning principles we expect. Our approach is to introduce new
quantifiers for “irrelevant” size quantification. We present a type theory with
parametric quantifiers where irrelevance arises as a “free theorem”. We also
develop a conversion checking algorithm for a more specific theory where the
new quantifiers are restricted to sizes.

Finally, our third contribution is about the operational semantics of type
theory. For the extensions above we would like to devise a practical conversion
checking algorithm suitable for integration into a proof assistant. We formal-
ized the correctness of such an algorithm for a small but challenging core
calculus, proving that conversion is decidable. We expect this development to
form a good basis to verify more complex theories.

The ideas discussed in this thesis are already influencing the development
of Agda, a proof assistant based on type theory.

Keywords

Type Theory, Higher Inductive Types, Guarded Types, Sized Types, Para-
metricity, Conversion
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Chapter 1

Introduction

Martin-Lof Type Theory (MLTT) [30] has been very successful as the founda-
tion of proof assistants capable of formalizing large mathematical proofs like
the Four Color Theorem [20] and the Feit-Thompson Theorem [2I] but also
results in computer science like correctness of a C compiler [27].

MLTT can also be used directly as an expressive type system for a func-
tional programming language. Types then do not just express correctness
properties to verify after the fact but also guide development by constraining
the possible programs towards the correct one, as for example when imple-
menting search trees [3I]. Of course, this guidance can also become a burden
when the constraints are cumbersome to satisfy. Even when keeping the types
very simple, a user has to write a program that the theory can recognize as
total, which is something that mainstream programming languages do not re-
quest. The burden is significant enough that implementations like Agda and
Idris provide pragmas to circumvent it and instead accept the programmer’s
judgment and/or mark the definition as untrusted.

A core calculus would typically ensure totality by providing only (co)induction
combinators, which also have the benefit of being easy to model and fit well
within categorical semantics as universal properties. They correspond to prim-
itive (co)recursion or (un)folds, which are not that expressive in practice, as
witnessed by the quest for powerful generalizations [22]. The state of the art
in proof assistants based on type theory is instead to allow pattern match-
ing and direct recursion, and deploy more or less sophisticated coverage and
termination checks. However these are fairly limiting, especially because they
do not allow the programmer to provide their own reasoning to convince the
checker.

1.1 This Thesis

This thesis is a collection of six papers divided into three parts. The first
deals with the induction principle of n-truncations in HoTT. The second with
guarded types and sized types as type-based criteria for termination and pro-
ductivity. The third with decidability of conversion of type theory.
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1.1.1 First Part

The expressivity issues with writing programs discussed so far also apply to
what might seem closer to formalizations of mathematics, as long as they
involve non-trivial constructions. Homotopy Type Theory [39] is a field that
connects homotopy theory and type theory. The connection centers around
the identity type, whose elements can be thought of as paths connecting the
two values being equated. Types are then interpreted as topological spaces up
to homotopy equivalence.

It then becomes natural to classify types according to the complexity of
the topology of their associated space, and we can do so by definitions com-
pletely internal to the theory, rather than refer to the interpretation: we call
a type contractible if it is equivalent to the unit type, then we say that a type
has homotopy level n (or is an n-type) if its (n—+2)-iterated identity type is
contractible. A —2-type is then a contractible one. As an example, 0-types be-
have much like discrete spaces since all paths are trivial, as in any two parallel
ones are equal, and so they are a suitable representation of sets [38]. Instead,
(—1)-types are regarded as mere propositions, i.e., proof-irrelevant, meaning
that all elements of a —1-type are connected by a path and it only matters
whether there is some element or none at all. It happens that some construc-
tions, like pushouts, do not naturally preserve the homotopy level, e.g., build
sets out of sets. Or maybe we would like to turn constructive existence into a
mere proposition. For these and other reasons it can be useful to truncate a
type to a desired homotopy level. Given an arbitrary type A, its n-truncation
||All is the least n-type with a map |—|, : A = ||Al|». Equivalently, its stan-
dard induction principle says that a map ||A|l, — B can be built from a map
A — B as long as B is also an n-type. In the paper “Functions out of Higher
Truncations” we relax this to B being an (n+1)-type as long as the function
is constant on all (n+1) loop spaces, which we call n-constant. If we think
in terms of cubes, the m iterated loop space of a type at some point a is the
space of m-cubes whose m—1-dimensional faces are degenerate, in the sense
that they are actually the constant cube at a. The paper gives two proofs,
one based on a reformulation of ||A]|,, as an (n+1)-truncated Higher Induc-
tive Type (HIT) [39] with extra constructors, the other on the n-connected
components of the type A:

conn,(z : ||Alln) :==X(a: A).|a|, =z
By contractibility of singletons we have the following equivalence
A~ 3%(z:||A|n). conny(z)

from which we can show that an n-constant map A — B is a family of n-
constant maps f, : conn,(z) — B. Each of the n-constant f, is actually
determined by a single point in B, which is not surprising since collectively
they are supposed to correspond to a map from || A||,, to B. This motivates us
to prove the following family of equivalences,

Oz ||Allp. (B ~ X(fs : conny,(x) — B).n-constant(f,))

and we do so by induction on n and by the fact that being an equivalence
is a (—1)-type. The latter allows induction on z so that we can define the
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inverse function while assuming « := |a|,, for some a : A. We can then collect
this family of equivalences into an equivalence of families, which concludes the
result.

This extended elimination principle has been used in “Constructions with
Non-Recursive Higher Inductive Types” [25] to give a definition of proposi-
tional truncation without making use of recursive higher inductive types. The
same paper provides alternative elimination principles for n-truncations, but
while they allow the codomain to be an (n+k)-type for an arbitrary k, they
impose stronger than expected constraints on the map A — B, so there is still
further work to be done in this direction.

1.1.2 Second Part

The second part of this thesis presents some contributions to type-based to-
tality checking, which in our case refers to systems with sized types [24] or
guarded recursive types [32].

Programming in a functional language typically involves (co)recursive defi-
nitions dealing with algebraic datatypes. In dependent type theory, admitting
only total definitions is a prerequisite for consistency, as otherwise the empty
type could be inhabited. Therefore, typical implementations which allow direct
(co)recursion employ termination checkers based on a structural ordering [19],
possibly with some extensions [} 26} [44]. Such termination checkers, however,
get in the way of some typical functional programming patterns like the use of
higher order functions. We can look at a Haskell example that defines a map
function for rose trees.

data RT a = Node a [RT a]

mapRT :: (a => b) -> RT a -> RT b
mapRT f (Node x ts) = Node (f x) (map (mapRT f) ts)

If we were to translate mapRT to Agda, the termination checker would complain
that the recursive call is not justified because it is not visibly applied to any
subterm of Node x ts, and in fact whether this function is total depends on
the behaviour of map. Here, a simple workaround is to mutually define a
specialized map-mapRT so that the recursion pattern becomes explicit. This
kind of inlining is not always possible, though. As another basic example, let
us take unfold.

unfold :: (a -> Maybe (a, b)) -> a -> [b]
unfold f x = case f x of
Just (x’, b) -> b : unfold f x’
Nothing -> [

If we consider [b] as the type of finite lists, then whether unfold f terminates
depends on the behaviour of £, which in this case is unknown until unfold
gets applied.

Type-based totality checking instead aims to keep track of the relevant
information about functions’ behaviour in their type. A major component is
to internalize the fact that (co)inductive types are typically given semantics
as the point where a chain of approximations to the type stabilize. If the
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language can discuss the intermediate steps in those chains then it has more
expressivity to discuss the information flow of recursive definitions.

This approach is very explicit with sized types. For example, in Agda
we could define a sized version of the type of rose trees, RT A i, which is
inhabited by trees of height bounded by the size i, then the definition of
mapRT would be accepted as total because the recursive call would be at type
RT A j — RT B j for some size j smaller than i. Guarded recursive types,
instead, keep this staging more implicit by the use of Nakano’s later modality,
>, which is used to “guard” recursive positions in the definition of types like
Stream, so that types can keep track of the ability to access what, in this
case, would be the tail. Other than its applications to productivity of corecur-
sive and “tying-the-knot” definitions [10], a motivating application of guarded
types comes from the observation that it can be useful to consider chains of
types that never actually stabilize. This happens with recursive types which
appear in their definition in a negative position, as for example a type T such
that T ~ (>T7 — A). Such types have been used to formulate models of
program logics as a less bureaucratic alternative to explicit step-indexing [14].

Guarded Types

In order to integrate the > modality into intensional type theory it is necessary
to develop its operational semantics, even in the presence of free variables,
so that we can formulate a useful but decidable judgmental equality. The
following two papers confront the challenge to unrestricted computation that
the guarded fixed point poses.

A Formalized Proof of Strong Normalization for Guarded Recur-
sive Types studies a simply typed lambda calculus with products extended
with guarded recursive types and the applicative functor structure of the >
modality:

next: A — > A

*:>(A—>B)—->A—>>B

A guarded fixed point combinator fix : (> A — A) — A can be derived using
the recursive type T'=>T — A.

Full reduction for this language is the congruence closure of the usual g
rules for application and projections plus the law (next ) (nextw) — next(tw).
Full reduction invalidates strong normalization as it leads, for instance, to the
infinite chain fix f — f (next(fix f)) — f (next(f (next(fix f)))) — ... As a rem-
edy, we lift the concept of finite approximations directly from the model and
define a reduction relation indexed by a natural number n, which specifies un-
der how many nested uses of next we are still allowed to reduce. This strategy
takes inspiration from the denotational semantics: if a term is supposed to
represent a natural transformation in the topos of trees, Set“’op, then we are
entitled to apply it to a natural number and observe its behaviour at that
stage. However, the semantics of next ignores its argument at stage zero, and
it is this base case that bootstraps the recursion that justifies fix, so it seems
natural for reduction to also stop there.

The proof itself goes by showing that saturated sets [I1], indexed by the
stage as a natural number, form a model of the calculus. By saturated set we
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mean a predicate over terms which sits between the strongly neutral and the
strongly normalizing terms and, moreover, supports renaming and is closed
under strong head expansion. Indexing by the stage is necessary because our
notions of neutral, normal, and expansion inherit the stage from the reduction
strategy indicated above. Eventually, we prove that the predicates correspond-
ing to the various type formers are antitone with respect to the stage, so it
might be worthwhile to reformulate the model as predicates internal to the
category of presheaves over typing contexts and stages.

The fact that a term might have a different normal form for each stage in-
troduces some problems for using this as a strategy to decide equality, though,
because later stages will generally recognize more terms as reducing to the
same normal form. For base types and with a restricted context the stage
does not matter, but in general we do not provide a bound on which stages
to try when comparing two terms. An option would be to design a type the-
ory where the staging is expected to influence the judgmental equality: one
possibility is to consider the stage as a fuel we earn by walking down our
terms during typechecking and then get to spend in the conversion rule when
comparing equality of types. We would have a typing judgment of the form
'k, t: A, where the stage would increase under a next

F|_rn+1t:A
'k, nextt:>A

and then used by conversion:

I'kot=u:A
I'Fpp1 nextt = nextu: > A I'tg nextt = nextt: > A

Top-level definitions would then be checked at stage zero. The usefulness
of such a system and whether it enjoys the usual expected meta-theoretic
properties could be interesting future work.

Finally, since the strong normalization proof is fully formalized in Agda, it
has been stripped of the later modality components and taken as the proto-
type implementation for the POPLMark Reloaded challenge [35], which aims
to compare different approaches to syntax with binding in proof assistants
by how they apply to a fairly involved but well-understood proof like strong
normalization for the simply typed lambda calculus.

Guarded Cubical Type Theory: Path Equality for Guarded Recur-
sion presents Guarded Cubical Type Theory (GCTT) as an intensional ver-
sion of the extensional Guarded Dependent Type Theory (GDTT) [I5].

As the name suggests GDTT is a dependent type theory, including IT and
) types, a natural number type, an equality type, and a hierarchy of universes,
extended with the > modality and clock quantification. The main innovation
is the introduction of delayed substitutions in place of the x operator: they
appear as extra arguments of next and > and allow the formation of types like
A:N—>Uz:>NF >[n« z]. An. GDTT furthermore makes fix a primitive,
since in the presence of a universe it can be used to derive guarded recursion
in types, instead of the other way around. The theory is motivated by a few
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examples of non-trivial corecursion patterns and proofs of equality of guarded
streams by bisimulation.

Judgmental equality is undecidable not only because of the reflection rule,
but also due to the rule for unfolding fix, I F fix f = f (next(fix f)), which
introduces the same normalization problems as discussed above. Simply re-
moving the reflection rule and turning the unfolding of fix into a propositional
equality would likely recover decidability but destroy canonicity, as now there
would be proofs of equality that are not given by reflexivity and the eliminator
for the equality type would be stuck on them.

This is a problem that arises whenever we start from an intensional type
theory where propositional equality is seen as an inductive type with reflexivity
as the only constructor and correspondingly a single /3 rule for the eliminator:
canonicity dictates that in a closed context propositional equality and judg-
mental equality must coincide, so decidability of the latter also severely limits
the former. Breaking this coincidence was the main feature of Observational
Type Theory [7] which got around it by internalizing the setoid model of type
theory and defining propositional equality on a type by type basis and, by
doing so, achieving support for function and proposition extensionalit

Cubical Type Theory (CTT) [I7] takes the intuitions of Homotopy Type
Theory about the identity type a step further and uses paths as the repre-
sentation of equality proofs themselves, as in maps from an abstract interval
type: elements of Pathy a b are built using path abstraction (i)t where ¢ is
an element of A with an extra interval variable ¢ and furthermore ¢[0/i] = a
and t[1/i] = b, where 0 and 1 are the two endpoints of the interval. Then,
reflexivity is not the only canonical element of the equality type, function ex-
tensionality just follows from abstraction for paths and function types, and
univalence can be proven with the support of a special Glue type that allows
to build paths in the universe from equivalences. This does not come for free,
as now the eliminator for paths has to deal with more canonical forms and its
behaviour is defined according to the type we are eliminating into.

We obtain GCTT by extending CTT with the > modality and next as in
GDTT and adding a path dfix

'cf:0A—A T'kr:1I
Fkdfixfr:>A

I'Fdfix f1 =next(f (dfix f0)): > A

so that we can define fix f := f (dfix f0) and prove it equal to its one step
unfolding by (i) f (dfix fi). Choosing dfix as the primitive rather than fix avoids
the introduction of new canonical forms at an arbitrary type A and confines
them to > A instead. Since GCTT does not have clock quantification there
is no real eliminator for the > modality so there’s no issue with piling up
more term constructors for it. However, the prototype implementatiorﬂ has
some limited support for clock quantification and we were able to make dfix
step forward in a controlled fashion when implementing the computational
behaviour of pre\ﬂ

Fl—AﬁtZDA
T'Faprevi.t:Vk. A

prev k. nextt = Ax.t

L Also expected to support quotient types and bisimilarity for coinductive types
2https://github.com/hansbugge/cubicaltt/tree/gcubical
3Here we give only a simplified type
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In fact, we can simply reduce as if dfix f r = next (f (dfix f r)) and let prev strip
away the next.

(prev k. dfix fr) = Ak. f (dfix fr)

The paper provides a denotational model in presheaves over [1 xw which
proves the consistency of our theory. The category of cubes [J is the one used
for the denotational semantics of CTT, so our model can be thought of as
staged cubical sets.

Coinductive Types in Cubical Type Theory

To be fair, if the aim is just to extend CTT with coinductive types whose
equality is bisimulation, we do not need to introduce the > modality. As I
discuss in [43] , although only for the case of streams, cubical sets already
support coinductive types in the sense of strict final coalgebrasﬂ and they
can be shown to be fibrant, i.e. support the eliminator for the equality type.
Then, we just need a theory that allows paths to be defined corecursively and,
for that, copatterns seem to be a very good fit, as shown by this example in
“Cubical Agda” [41]:

record Stream (A : Set) : Set where
coinductive
constructor
field
head : A
tail : Stream A

-5 =

open Stream

map : V {A B} - (A — B) — Stream A — Stream B
head (map f xs) = f (head xs)
tail (map f xs) = map f (tail xs)

map-id : V {A} {xs : Stream A} — map (A x = x) xXs = xs
head (map-id {xs = xs} i) = head xs
tail (map-id {xs = xs} i) = map-id {xs = tail xs} i

We have that map-id {xs = xs} is a path between streams, so it takes an
interval variable i as argument, and then it defines a stream by giving its
head and tail in such a way that they match the head and tail of the
streams we are proving equal. For the tail case we proceed by corecursion, as
we would in case we were defining a simple function, rather than a path. This
use of corecursion is still justified in the denotational semantics because we
model streams by taking a final coalgebra across arbitrary cubical sets, so the
universal property gives us a map even from a coalgebra that has the interval
type as a component.

Of course, the usual limitations of productivity checking apply, so integra-
tion with type based approaches is still important.

4Being a presheaf category they can be built as limits, level-wise
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Sized Types

In comparison to guarded types, sized types mention the stages explicitly.
Further, besides antitone dependency on the stage as for corecursion, sized
types can be inductive and increase with the size. However, since sizes are then
actual arguments of the constructors of inductive types we have the problem
that they interfere with their equality. For example, sized natural numbers N ¢
end up having not just a single “zero” element but one for each size j which
is less than 4.

This creates distinctions where we would like none, and prevents us from
deriving the actual type of natural numbers from the sized variant because the
multiple zeros would prevent it from being the fixed point of the Maybe X =
Unit +X functor, at least in the canonical way.

However, we also cannot disregard sizes completely when comparing terms
for equality because the difference between, e.g., the types N i and N (i + 1)
is crucial to ensure the well-foundedness of programs. We then need a way to
keep track of where size arguments can be ignored or, in other words, when
functions use them in a uniform enough way to produce the same result for
different sizes.

If we look at the semantics of (co)inductive types as (co)limits of chains,
then the uniformity we would like to impose is naturality. But internalizing
naturality directly would require us to keep track of the variance of size vari-
ables in types and into the realm of directed type theory, which is not well
understood yet [28, B7]. However, the semantics of lambda calculus give us
relational parametricity [36], a concept which also tries to characterize the
well-behavedness or invariance of maps for some of their arguments, and also
specializes to naturality in many cases. Due to this, parametric quanfication
seems a good fit for our purposes.

Parametricity has been studied before in the context of MLTT, both in
the sense of categorical models satisfying parametricity [8] and as extensions
of type theory internalizing parametricity principles [I2]. These works study
how the II type itself enjoys interesting parametricity properties, in case the
domain has an interesting notion of relation. However, they are confronted
with limitations with regards to trying to scale the identity extension lemma
to universes. The identity extension lemma (IEL)[36], used to derive naturality
from parametricity, implies that the relational interpretation of a closed type
is just equality. However, when proving interesting properties about paramet-
rically polymorphic functions, we rely on the relational interpretation of the
domain to be coarser than equality, most notably for the universe but not only
[9]. A specific example of this phenomenon is that we would like parametric-
ity to imply that a function of type f : (A : U) - FA — G A is a natural
transformation when F' and G are functors. But if we have U : U; and take
F A = Unit, G A= U, we can write f = A(A : U) (_: Unit). A which does not fit
into a naturality square. As a consequence we have that polymorphism-as-II
guarantees naturality when the codomain is “simple” enough to prevent the
leak of information coming from elements of the domain type but does not
scale to more general situations.
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Parametric Quantifiers for Dependent Type Theory addresses this
problem by presenting a type theory (ParamDTT) which introduces new quan-
tifiers that restrict the use of the quantified variable through a system of
modalities, thus preventing definitions like f above. With those quantifiers
and a type Size which supports well-founded parametric and non-parametric
induction, we are able to internally build indexed initial and final coalgebras
for functors that commute with parametric Size quantification, which includes
(finitary-branching) polynomial functors.

We give a denotational semantics in a presheaf model over a category of
cubes generated by two distinct interval objects with a map between them: we
use one interval to characterize equality, and the other parametric relatedness.

The theory does not admit canonicity because our version of identity ex-
tension is introduced as an axiom which is only validated in the model. The
theory already uses Path-like types from [12] and Cubical Type Theory [I7]
to discuss how values are parametrically related, so we expect that the tech-
niques of CTT can be adapted to give computational meaning to the axioms
we introduced.

Even without canonicity we provide a prototype implementation [42] as a
fork of Agda by adapting the present support for -—cubical and an irrelevance
modality. We found it quite helpful to experiment with the power of the theory
and used it to formalize the examples in the paper. As a side-product, the
effort spent adapting Agda to support parametricity as a modality was then
reused to produce a prototype implementation[40] of crisp type theory [29],
which seems to indicate the infrastrucure developed could be useful for other
systems of modalities.

Normalization by Evaluation for Sized Dependent Types also presents
a theory with two quantifiers, II i : Size. and V i : Size. to distinguish between
occurences of sizes that should or should not matter for equality, but in this
case the judgmental equality. The technical contribution of the paper is then
a Normalization by Evaluation (NbE) algorithm for conversion checking.

The main hurdle is how to reconcile typed judgmental equality with the
irrelevant quantifier Vi., since given f : Vi : Size . T'i we would like f ¢ and f j
to be equal, but they would naturally live in different types 7' i and T jEI

To get around this, we take the approach of making the size in an applica-
tion like f i to also be irrelevant for the typingﬂ

L Ft:Vi:Size.T[i] T®Fa,b:Size
TFt{a): T[]

so that we can use different sizes in the equality rule for irrelevant application
while maintaing the invariant that both sides have the same type.

I't=1t:Vi:Size.T[i] T®Fa,d,b:Size
T't{a)=t(a"):T[b]

5In ParamDTT, the parametric quantifiers only give propositional equalities, and we have
a notion of heterogeneous equality between elements of two parametrically related types
SI'® is like I but where irrelevant bindings are turned relevant
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This setup is motivated by the desire to approximate curry-style equality for
church-style terms: the sizes in the application are there as annotations for
a typechecking algorithm, but they are actually ignored by the type theory
itself.

Operationally, the reason we can be so liberal with sizes is that in our type
theory they never affect the overall “shape” of a type since size expressions
only appear in size applications and as indexes of datatypes, and there’s no
size-case. That means that the same type directed eta equality rules will apply
tobotht =w:T[i:=a] and t = u: T[i := b].

We prove conversion decidable by presenting an NbE algorithm and its
proofs of soundness and completeness. The algorithm includes the usual re-
flection and reification steps, which take a type to orchestrate expansion to
n-long normal forms. The notion of type shapes comes back in the complete-
ness proof, as the types provided to reflection and reification end up diverging
from the type we want to compare the terms at. But all is well as long as the
former types are the same approximate shape as the latter (defined formally
in the paper) because they will trigger the same eta-expansions. We only have
to generalize the corresponding theorems to get the induction through.

The use of NbE is a limitation we would like to overcome in future work.
For reasons that will be discussed in the next section we would like obtain an
incremental conversion checking algorithm based on reduction to weak normal
forms instead, but in that case when comparing neutral irrelevant size appli-
cations we would need to figure out a suitable size b to use to instantiate the
type of the result.

1.1.3 Third Part
Decidability of Conversion

The previous part of this thesis proposes extensions of type theory aimed
at increasing its expressivity. Such extensions are shown consistent through
various models, but we also want them to be practically implementable.

Proof assistants like Coq and Agda insist on decidable judgmental equality
and normal forms for terms. This simplifies the implementation by being able
to omit the storage not only of typing derivations but also type annotations
in terms. That is because redexes can sometimes be typed by fairly different
derivations if we don’t have the necessary annotations, but normal forms do
not have this problem because we can deploy a bidirectional typechecking algo-
rithm and infer some of those annotations back as needed. Another advandage
of normalization is that one can rely on it for techniques like small scale re-
flection, which make use of computation at the level of types to automatically
simplify goals rather than having to produce a proof term that encodes each
computation step.

When extending type theory one would like to prove that such nice prop-
erties are preserved and, ultimately, that a reasonable typechecking algorithm
can be deployed. A big part is proving that there is an algorithm for decid-
ing whether two terms are equal at a given type, i.e. conversion. It’s not a
straightforward task because the behaviour of types is complicated by universes
allowing arbitrary reductions in them, and the equality of terms is affected by
types through the eta rule for dependent functions.
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If one only wants to show decidability, one option is to prove a normaliza-
tion theorem using, for example, a normalization by evaluation technique as
we did above. The decision procedure would then be to fully normalize each
term, then compare the normal forms. However, that is not how conversion
checking is implemented in, e.g., Agda or Mini-TT [33] [I§], where the algo-
rithm is instead to reduce to weak head normal form, then compare the heads,
and then recurse in subterms. If normalization happens lazily then the two
algorithms can actually have very similar executions, but in such a setup it
might be hard to tell if we are normalizing more than necessary. Also, a prac-
tical typechecker probably wants to insert shortcuts like checking for syntactic
equality to skip recursion on subterms when possible. Side-stepping normal-
ization is especially useful in the presence of unification variables because the
incremental comparison algorithm can be easily extended to the case where
one or both of the terms is an application of an unification variable which can
potentially be solved without further reduction.

Decidability of Type Theory in Type Theory , for the reasons above,
takes the option of formalizing the correctness of a conversion checking algo-
rithm based on typed weak head normalization and type-directed comparison.
Specifically, we define algorithmic equality as an inductively defined relation,
which we then show to be decidable and equivalent to judgmental equalitym

Our proof goes by a Kripke logical relation with contexts as worlds and re-
namings as morphisms between worlds. The relation is over open terms, hence
the Kripke structure, and based on reduction in the sense that membership is
determined by the weak head normal form (whnf) of a term. Due to this, we
call it reducibility. For types the relation is defined inductively and recurses in
the subterms of their whnf, for terms in a type it is defined by recursion on the
proof that the type is reducible, and it checks that the observations that are
possible for the whnf of the term are also reducible. By the same recursion we
also define notions of reducible equality for types and terms. The fundamen-
tal theorem is proven as usual by quantifying over a reducible substitutimﬁ
and by showing that the identity substitution is reducible. It is only after
this proof that a lot of intuitions about the typing and equality judgments are
validated: injectivity of type constructors and other inversion lemmas are not
easy to establish from the declarative formulations of judgmental equality.

Establishing such properties is, however, not the whole battle. Earlier
formulations of this proof [4, 2] relied on a second distinct logical relation with
its own fundamental lemma to prove that algorithmic equality is complete,
i.e. it is implied by judgmental equality. The two logical relations differ by
which equality relation they imply through their “escape” lemmas, in one case
judgmental and in the other algorithmic.

Using two logical relations and fundamental lemmas might be the most
pragmatic presentation when doing things informally: most cases of the proof
will be omitted anyway, and it would otherwise be hard to keep track of all the
assumptions necessary if one tries to create an abstraction to reuse. However,

"Regarding the relationship with normalization: from a proof that a term is algorithmi-
cally equal to itself we can extract its normal form and a proof that it is judgmentally equal
to the term.

8However, we package this quantification into its own relation, denoted IF?.
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when it comes to formalized proofs the incentives and difficulties are reversed:
you do have to provide complete proofs and the typechecker helps you keep
track of whether you are missing something. So, after formalizing the fun-
damental lemma for the first logical relation, we abstracted over judgmental
equality in the definition of the relation and collected the properties needed for
the proof of the fundamental lemma, while also keeping an eye on what would
be easily provable for algorithmic equality. Doing so, we obtained a notion we
called “generic equality” which we use to parametrize the reducibility relation
and its fundamental lemmeﬂ We can then instantiate this parametrized re-
sult twice, for the two equalities of interest, to complete the overall proof of
decidability of conversion.

While the article only handles a fairly minimal type theory, we believe this
formalization can form a good basis for applying the proof technique to more
complex theories. For example, the Kripke structure could be extended to
contain more than just renamings, but also maps from the indexing category
for type theories whose denotational model is based on presheaf models. An
example of a similar setup can be seen in the proof of canonicity for Cubical
Type Theory [23].

This formalization can also be seen as a step towards bootstrapping Agda,
as it could reasonably be extended into a double checker for the core calculus.

1.1.4 Statement of Contribution
First part

e Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi. Functions out of
Higher Truncations. In 24th FACSL Annual Conference on Computer
Science Logic (CSL 2015)

Contributed the proof without extra higher inductive types and partici-
pated in writing the article.

Second Part

e Andreas Abel and Andrea Vezzosi. A formalized proof of strong nor-
malization for guarded recursive types. In Programming Languages and
Systems, 2014

Participated in the design and contributed most of the formalization of
the strong normalization proof and collaborated to the writing of the
article.

e Lars Birkedal, Ales Bizjak, Ranald Clouston, Hans Bugge Grathwohl,
Bas Spitters, and Andrea Vezzosi. Guarded Cubical Type Theory: Path
Equality for Guarded Recursion. In 25th EACSL Annual Conference on
Computer Science Logic (CSL 2016)

Developed GCTT and its prototype implementation in collaboration
with Hans Bugge Grathwohl, contributed the proof that bisimulation
is equivalent to equality, and participated in writing the article.

91 would like to insert here a special acknowlegment to Joakim, who performed the bulk
of the formalization and derived this abstraction.
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e Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric
quantifiers for dependent type theory. PACMPL, 1(ICFP):32:1-32:29,
2017

Contributed the application of parametricity to sizes and the proofs and
write-up of the construction of (co)inductive types by induction on sizes
and participated in the writing of other sections. Contributed to the
formulation of the model as modified cubical sets and the use of the
cohesive structure of the category. Contributed the use of a modified
Glue construction to internalize naturality with regard to functions and
the prototype implementation as a fork of Agda.

e Andreas Abel, Andrea Vezzosi, and Théo Winterhalter. Normalization
by evaluation for sized dependent types. PACMPL, 1(ICFP):33:1-33:30,
2017

Participated in the design of the type system and decidability of conver-
sion proof.

Third Part

e Andreas Abel, Joakim Ohman, and Andrea Vezzosi. Decidability of con-
version for type theory in type theory. PACMPL, 2(POPL):23:1-23:29,
2018

Contributed to the formalization, in particular in setting up the logi-
cal relation and the reasoning with substitutions. Collaborated to the
writing of the article.
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FUNCTIONS OUT OF HIGHER TRUNCATIONS

PAOLO CAPRIOTTI, NICOLAI KRAUS, AND ANDREA VEZZOSI

ApsTrACT. In homotopy type theory, the truncation operator ||, (for a
number n > -1) is often useful if one does not care about the higher structure
of a type and wants to avoid coherence problems. However, its elimination
principle only allows to eliminate into n-types, which makes it hard to con-
struct functions |A|,, - B if B is not an n-type. This makes it desirable to
derive more powerful elimination theorems. We show a first general result: If
B is an (n+1)-type, then functions |A|, — B correspond exactly to functions
A — B which are constant on all (n + 1)-st loop spaces. We give one “ele-
mentary” proof and one proof that uses a higher inductive type, both of which
require some effort. As a sample application of our result, we show that we can
construct “set-based” representations of 1-types, as long as they have “braided”
loop spaces. The main result with one of its proofs and the application have
been formalised in Agda.

1. INTRODUCTION

As it is very well-known, the type constructor ¥ of Martin-Lof type theory ex-
presses a very strong form of existence. Although a type of the form ¥ (a: A). P(a)
is read as “there exists an element in A for which the predicate P holds” under the
propositions as types view, an element of such a type is more than a proof of mere
existence: it includes a very concrete example of an element a : A. This is not
always satisfying as, for example, the set-theoretic axiom of choice becomes a tau-
tology when translated naively to type theory. The idea of adding a construction
which allows to formulate existence in a weaker sense has been studied intensively
in various different settings. As far as we know, the first documented appearance
are squash types in the extensional theory of NuPRL [7]. Later, Awodey and Bauer
introduced a similar concept in extensional Martin-Lof type theory, called bracket
types [4]. Homotopy type theory has introduced the propositional truncation oper-
ation, written |-||_; or simply || [14]. It forces all elements to be equal, in the
sense that the identity type = y is inhabited for any z,y : |A||_;, and it is well-
known that x = y will in fact be uniquely inhabited (i.e. equivalent, or isomorphic,
to the unit type). Classically, [|A|_; is always equivalent to either the unit type or
the empty type, but this is of course not the case in a constructive setting.

The homotopical view has suggested that propositional truncation is only one
out of infinitely many operations that reduce the complexity of a type. As “types
are weak w-groupoids” ([12] and [15]), it is easy to imagine that there is, for every
number n > —1, an operation which trivialises all the structure above level (n +1).
In other words, this is a reflector for the category of weak n-groupoids, viewed as a
subcategory of weak w-groupoids, roughly speaking. In homotopy type theory, we
write this operation as |-|,, (“n-truncation”), and it can be seen and implemented
as a higher inductive type [14]. The truncation operator ||, is a monad in some

1991 Mathematics Subject Classification. F.4.1 Mathematical Logic.

Key words and phrases. homotopy type theory, truncation elimination, constancy on loop
spaces.
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appropriate sense (and even a modality in the sense of [14]), and if we want to, we
can choose to work completely in that monad. Types that are canonically equivalent
to their n-truncation are called n-types, or n-truncated types.

Considering n-types (for some given n) instead of all types is useful if we do
not care about or want to avoid potential higher equality proofs. For example, if
we formalise algebraic structures such as groups, we may require that the type of
group elements is of truncation level 0 in order to match the set-theoretic definition:
equality of group elements should be a mere proposition and not carry additional
information, that is, there is at most one proof that given group elements are
equal. As a consequence, for any type A with an element a : A, the type a = a is
not necessarily a group. It does have a neutral element an elements can be inverted
and composed, corresponding to the fact that equality is reflexive, symmetric, and
transitive. However, a = a is not a O-truncated type. We can use 0-truncation to
make up for this, and |a = a|, is indeed a group, called the fundamental group of A
at basepoint a, while a = a (as pointed type also written Q(A,a)) is the loop space
at point a.

A drawback of truncations is that it can be hard to get out of them, that is,
“to leave the monad”. A priori we have, for any type A and number n > -1, a
map |-|: A - ||A],,, but there is in general no function in the other direction. The
universal property of ||, says that, via composition with |-|, the type of functions
|A], — B is equivalent to the type A — B, but only if B is n-truncated. To
continue with the previous example, an element of the fundamental group of A at
basepoint a is really an equivalence class of equality proofs (or paths) between a
and itself, but it is in general impossible to get a specific representative from such
a class; that is, we cannot construct a section of the map |-|: (a = a) - [a = af,.
Of course, we would not have expected anything else: it is unreasonable to assume
that we can make this sort of choice without any further assumptions. Although
the truncation operator ||, is often described as “cutting of” higher structure of
a type, it is more accurate to think of it as “filling non-trivial loops”, which makes
it plausible that it is harder instead of easier to define a function out of |A],, than
out of A.

Unlike in the example above, it is in some cases reasonable to expect that we can
get a function |A[, — B even if B is not an n-type. If |A|_, tells us that A has
some element without revealing a concrete one to us, then a function |A|_; - B
should be the same as a function f : A - B which cannot look at the “input”.!
What exactly this means is difficult to state in general (see [8]), so let us restrict
ourselves to the case that B is O-truncated (also called a set). In this case, the
statement that “f does not look at its input” can be expressed by saying that f
maps any pair of inputs to equal values, I, ,.a(f(2) = f(y)). Indeed, it has been
shown that a function f with this behaviour gives rise to a map |A|_; - B [10].

Even if we have a function A — B, it can be very hard to tell whether it is possible
to construct a function |A[, — B unless B is an n-type, and if it is possible, there
is no direct way to do so as the universal property (or the elimination principle)
cannot be applied directly. The usual workaround is looking for an n-type C' “in the
middle”; that is such that one has functions A - C' and C' - B. One can then apply
the elimination principle to construct a function |A|, — C which, by composition,
yields a function |A|, — B as desired. The type C is constructed ad-hoc, and it
is natural to ask for a more powerful elimination principle (or universal property)

IThis only makes sense if stated internally. Of course, a concrete implementation of f can
compute differently if applied to different terms of type A. As long as we stay inside the theory,
we cannot talk about judgmental equality.
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of |—|,, which allows the construction of functions |A|, - B in a more principled
and streamlined way.

This has been done for the (—1)-truncation in previous work [8], where it is shown
that functions |A|_; - B correspond exactly to functions A — B with an infinite
tower of coherence conditions. This can be understood as a generalised version of
the usual universal property of |-|_;. If B is known to be n-truncated for some
fixed finite n, the infinite tower becomes finite and can be expressed directly in type
theory, whereas the existence of Reedy limits [13] is necessary for the general case.
If B is a O-type, the “tower” of coherence condition is exactly the single condition
I, y:a(f(z) = f(y)) discussed above. If B is even a (—1)-type itself, the tower
vanishes completely and the usual universal property remains. Unfortunately, it
seems that there is no immediate generalisation of the proof of [8] to n-truncations.

In this paper, we do consider n-truncations for general n, but we assume that
B is (n + 1)-truncated, and already this case seems to be involved. We show that
functions | A[,, = B correspond exactly to those functions A — B that are constant
on all (n + 1)-st loop spaces. We offer two proofs for this fact, one which works
in “plain” homotopy type theory with general truncations, and the other involving
a higher inductive type. The first proof, which we call the “elementary proof”; is
close to not even requiring the univalence axiom (the central concept of homotopy
type theory expressing that equality in the universe is given by type equivalence).
The only reason why univalence is necessary is that we need to be able to translate
between truncations (|la =4 b[,, is equivalent to |a| =),  [b[). The second proof
(Section 4) uses an argument that makes crucial use of both a higher inductive type
and the univalence axiom, and we therefore call it the “HIT proof”. In the HIT
proof, we will construct a higher inductive type in such a way that it is the “initial”
type through which functions f: A — B with the property (10) factor, and we will
show that this type is really |A[,. Although we show an equivalence of types, we
believe that the main application is the construction of functions |A, — B, that
is, one may often want to use only one direction of the equivalence. Therefore,
the result can be used as an elimination principle that is more powerful than the
usual recursion principle of the truncation. We also present a sample application (a
translation of types into “set-based representation”), and conclude with a discussion
on how the generalised statement should look like, and under which assumptions it
should be provable.

The main contents of this paper have, in slightly different form, appeared in the
second-named author’s Ph.D. thesis [9].

Outline. We start by stating the result of the paper in Section 2, and discuss
two special cases (n = -1 and n = 0). In Section 3, we give the “elementary” proof of
this result, and in Section 4, the (technically harder, but conceptually clear) proof
that uses a higher inductive type. We discuss a sample application of the case n =0
in Section 5, namely a construction of a set-based representation of any given type,
provided that it fulfils a property that e.g. loop spaces do. Finally, in Section 6,
we compare the two proofs with each other. We also compare our result with the
general universal property of the propositional truncation as proved before [8], and
discuss why the potential generalisations seem so much more involved than what
we have done here.

Setting. We consider the theory of the standard reference on homotopy type
theory, that is, the textbook [14]. To summarise, we need a version of intensional
Martin-Lof type theory with 3, TI, and identity types. In addition, we assume
that the theory has a univalent universe, and that there are truncation operators
[, for all n > -1, with the canonical projections |-|: A - | A|,,. This concept is
explained in detail in [14, Chap. 7.3]). The statement and the first proof that we
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give do not need higher inductive types [14, Chap. 6] other than the truncations,
while the second proof that we give makes heavy use of such a higher inductive
type.

Agda Formalisation. We have formalised the main result, together with
the “elementary” proof (Section 3) and the sample application (Section 5), in
Agda [6]. The source code can be found on GitHub, at github.com/pcapriotti/
agda-base/tree/trunc. The results of this paper are contained in the module
hott.truncation.elim. A browsable HTML version of the formalisation can
be accessed at paolocapriotti.com/agda-base/trunc/hott/truncation/elim.
html. We encourage a reader who is not familiar with Agda to have a look at the
latter, which does not need any software apart from a web browser. For all the
technical details, we refer to the readme file in the repository.

On a minor note, we have chosen not to make use of the common (but, as far as
we know, not justified by a formal argument) hack that makes truncations satisfy
the judgmental computation rule. As we wanted our formalisation to be readable,
this has required us to think of some implementation strategies that make the code
in this setting more elegant than the “straightforward” formalisation approaches.

2. THE STATEMENT OF THE THEOREM

Let us begin by clarifying some notation. In general, we stick closely to the
terminology of the standard reference on the topic, the textbook [14]. We write
I,.4B(a) for II-types as it is done there, but X (a: A).B(a) for I-types.2 For
better readability, we uncurry implicitly and write f(a,b) : C, even if f is a function
of type A - B — C'. Instead of Ah.hog, we write _og. By the distributivity law of
3. and 11, we mean the well-known equivalence

Ha:aX (b: B(a)).C(a,b) = E(g:1aaB(a)).MaaC(a, g(a)), (1)
sometimes called the type-theoretic axiom of choice. As it is standard [14], we write
is-n-type(A) for the propositional type expressing that A is n-truncated if n > -2
is an integer, defined by

is-(=2)-type(A) :==X (ag: A) . Izaa = ag (2)
is-(n +1)-type(A) := I, 4,:ais-n-type(a; = az), 3)
and the special case when n is =2 (“A is contractible”) is also written as isContr(A).
We assume that there is a universe U, and we write U" for the type (or “universe”)
of n-types in U (cf. [14, Chap. 7.1]),
U" =% (X :U).is-n-type(X). (4)
Further, we write U, for the type (or “universe”) of pointed types in U (cf. [14, Def.
2.1.7)),
U =X (X:U). X. (5)
If we have a type A and a pointed type (B,b), together with a function f: A - B,
we say that “f is null” if it is constantly b, that is,

isNull(f) :=.ab = f(x). (6)
Recall that there is an endofunction on U,, the loop space function €,
Q(A,a) = (a=a,refl,). (7)

For any natural number n, we can iterate this endofunction n times, for which we
write Q™. Instead of 71 (2"(4,a)) and 71 ((2(A,a))), we simply write Q7 (A, a)

2 This seemingly inconsistent notation is intentional: we sometimes have nested -types, e.g.
Y (a:A).X(b:B(a)).C(a,b), and we view the components as “equally valued”; thus, writing
exactly one component bigger than the others would not look correct.
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and Q:(A,a) if we want to talk about the underlying type (i.e. ignore the point).
Further, given two types A and B together with any function f: A - B and a point
a: A, we have a function

apf,a:Qt(Ava)_)Qt(vi(a’))' (8)
In the same way, we have (given A, B, f as before) ap} , : Q' (4, a) - Q7 (B, f(a)),
and Q is really an endofunctor in some appropriate sense.?

Our result can now be stated as follows:

Theorem 2.1. Let n > -1 be a number, A a type, and B an (n+1)-type. Assume
that f : A - B is a function. Then, f can be factored through the n-truncation,
that is

S(f Al = B) . frel-|= f, 9)
if and only if ap?:;l is null for every a,
I aisNull(ap}t!), (10)

and both of the types (9) and (10) are propositional.
An immediate corollary tells us how we can eliminate out of truncations:

Corollary 2.2. Assume we have n, A and B as in Theorem 2.1. If we want to
construct a function |A|, — B, it suffices to find a function f: A - B which
satisfies Ha;AisNuII(ap'fL;1

Before approaching a proof of Theorem 2.1, let us have a look at two special
cases, namely the cases n = -1 and n = 0. The first case is known [10] and will serve
as the base case for the two general proofs presented later. The second case is not
strictly necessary, but serves to exemplify the techniques used in the “HIT proof”
(Section 4).

The case n = -1: The simplified statement of Theorem 2.1 reads in this case
as follows: Assume we are given a type A and a O-type B (often called a set). A
function f: A - B factors through the propositional truncation if and only if

o yaf(z) = f(y). (11)
This follows easily from previous work, e.g. [8, Prop. 2.2]. It is a pleasant surprise
that “ap?c’ ., is null for all a”, simply by unfolding our definitions, simplifies to (11),
which is “f is constant” in the sense of [10].*

The case n=0. Here, our result (Theorem 2.1) implies that, for any type
A and 1-type B, a function f : A - B factors through |Al|, if and only if, for
all a: A and p: a = a, we have that ap; ,(p) equals reflz,). As Shulman has
remarked in an online discussion (in the comment section of a blog post [5]), this
follows from the Rezk completion [1]: Let A be the precategory with the type A
of objects and hom(ay,az) = |la; = az|_;, and let B be the category with B as
objects and hom(by,b2) := (by =p b2). Then, f with the condition Ha:AisNuII(apf,a)
gives (already using the case n = —1) rise to a functor A - B. Such a functor
generates a functor between the Rezk completion of A and the category B, and the
former happens to be [|A[,.

In the remainder of the current section, we give a simple technical construction
which essentially serves as a reformulation of Theorem 2.1 and which is necessary
for both the elementary and the HIT proof. For types A and B, assume we are

30f course, apy,, is its action on the morphism f and could thus rightfully be called (f,a).
4In the simplified formulation, we have omitted the part that the two logically equivalent types
are propositional. This is easy to see here, and will in the general case be part of the proof.
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Cn

|Al,, > B S (f: A~ B) . IgaisNull(ap’t!

_oh —

—

FIGURE 1. The canonical map c¢,, as map between fibres

given a function g: |A], - B. We can consider the composition A ink |A|, = B.
For any a: A we have, by functoriality of Q*!, that the composition

n+ n.+1

n n lal n
QP (A, a) T QP (AL, Jal) =2 07 (B, g(lal) (12)
is equal to ap™ !, . But Q2*1(| A ,|a|) is contractible ([14, Thm. 7.2.9]), and ap™*?

gol-l,a gslal
clearly maps its unique element to the basepoint of Q"*'(B,g(|a|)). Therefore,

ap;f‘l‘ is null. From this construction, we get a canonical function

n?

wi(JAl, > B)>2(f: A->B). (11 aAlsNuIl(ap"+1 ). (13)
We then claim the following:

Lemma 2.3 (“Total space” formulation of Theorem 2.1). For any n > -1, any type
A and any (n+1)-type B, the types |A|,, > B and X (f: A— B). HaAlsNull(ap”+1
are equivalent, and the equivalence is given by the canonical function cy,.

It is easy to see that Lemma 2.3 does indeed imply, and is nearly immediately
equivalent to, Theorem 2.1. Consider the triangle shown in Figure 1, where the top
horizontal map is the canonical map ¢, the left one is composition with ||, and the
right one is simply the projection. The triangle clearly commutes (judgmentally)
by construction. Let us fix some function f: A - B. The fibre (or “inverse image”)
over f is, in the case of _ o|—|, exactly (9), i.e. the statement that f can be lifted.
In the second case, the fibre is (10). Therefore, ¢, induces an equivalence of the
two fibres, which implies that ¢, itself is an equivalence (see [14, Thm. 4.7.7]).

3. THE “ELEMENTARY” PROOF

In this section, we give our first proof of Lemma 2.3 (and thereby of Theo-
rem 2.1). This does not need higher inductive types apart from truncations that
already appear in the statement. The idea is to not prove the result for any type A
first, but only for an n-connected one.® Afterwards, we generalise this to arbitrary
types, by splitting the type into its “connected components” and gluing together
the constructions for the components.

Lemma 3.1. Ifn> -1 be a number, A an n-connected type, and B be an (n+1)-
type, the canonical map ¢, is an equivalence.

Proof. We do induction on n. As already discussed above, the case that n is -1 is
known (e.g. [8, Prop. 2.2]).

Let now n > 0 be any given number. Note that, due to the assumption that | A,
is contractible, we have a unique element x : HAH the type |A[, — B is actually
equivalent to B, and any function g : |A[, — B is uniquely specified by its value

9(o)-

5Recall that a type A is n-connected if [A],, is contractible [14, Def. 7.5.1].
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The claim of the lemma is propositional. Applying the eliminator of |A[,,, we
may not only assume that we are given x : | A]|, , but we can also assume a point
a: A. A potential inverse of ¢, is then given by®

0, (S(f: A~ B).HaaisNull(ap}i!)) - (|A],, > B) (14)
o (fp) = A_.f(a). (15)

To show that ¢, and ?,, are inverses, we check that both compositions are the
identities. One direction is easy: for any g: | A, - B, we have

on(en(9))(20) = g(lal), (16)

and the latter is equal to g(zo).

For the other direction, assume we have f : A - B together with a proof q.
We need to show (f,q) = ¢, (0,(f,q)). Fortunately, the equality of the two second
components is automatic thanks to the fact that isNuII(ap}Lfal) is propositional, and
we only need to prove the equality of f and 71 (¢, (9,.(f,¢))). We observe that the
latter expression computes to A_.f(a). Thus, our goal is to show that, for any
a': A, we have f(a) = f(a').

We use the induction hypothesis with (a = a’) for A, and f(a) = f(a’) for
B. By the connectedness assumption on A, the type |a| = |a/| is contractible.
Consequently, the type |a = a’|,,_; is contractible ([14, Thm. 7.3.12], note that this
theorem depends on the univalence axiom). Put differently, (a = a’) is (n - 1)-
connected. As B is an (n + 1)-type, we know that f(a) = f(a’) is n-truncated. By
the induction hypothesis, it is hence enough to construct an element of

Y(kia=a - f(a)=f(a")). . Mpa=aisNull(apy ). (17)

For k, we choose ap;. By path induction, we may assume that p is refl,. Thus, we
need to show that ap;lpf is null. This term is equal to ap;ij;l‘7 The condition

n?

oorefly

that this function null is exactly what is given by ¢(a’). d

To move from n-connected to arbitrary types A, we simply split a type into
n-connected components. This is very intuitive for n = 0, in which case we use
that any type (or “space”) can be viewed as the “disjoint sum” of its connected
components. To be precise, an element of a component is a point of A together
with a proof that it is in the component. For n = 0, this proof is propositional. For
higher n, it is not. This makes the general case less intuitive and hard to picture.
In fact, the proof determines in which component the element is, which makes it
seem circular. Fortunately, it is easier to write down the type-theoretic argument
than picturing the topological intuition, as we will see in the following lemma.

Lemma 3.2. For any type A and number n, we define the family of n-connected
components,

conn, : |4, - U (18)
conn, (z) =¥ (a: A).x =4 || (19)

Then, for any x : ||A|,,, the type conn,(z) is n-connected. Further, “choosing an n-
connected component and then a point in this component” corresponds to “choosing
a point”, that is,

Y (x:|Al,) conny(z) =~ A. (20)

6We use _ if we do not need to give the bound variable a name.

7Depending on the the exact definition of ap™, this can hold judgmentally, but can also be
rather involved. We refer to our formalisation for technical details.
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Proof. This is easy and standard. For the first part, we claim that the equivalence
IZ(a:A).z=pq |, = S(y:]Al,) 2 =4y, ¥ (21)

holds, where the left-hand type is |conn, ()|, by definition, and the right-hand
type has the form of a singleton.® For both directions of (21), we apply the depen-
dent eliminator of |—-|,. From left to right, we map |(a,p)| to (|a|,p). From right
to left, we map (|al,p) to (Ja,p|). For an alternative proof, see [14, Cor. 7.5.8].

To see that the equivalence (20) holds, it is enough to unfold the definition of
conn,,, and use that in X (z: |A],).X(a: A).z =4 la|, the first and the third
component form a singleton. |

Finally, we can complete the first proof of our main result:

“Elementary” proof of Lemma 2.3. Assume we have n, A, and B as in the state-
ment. The preceding two lemmata tell us that, for any x : |A]|,,, the canonical
map

*:B - (E (fz : conn,(z) - B) .Hy,connn(m)isNull(ap?:}y ) (22)

is an equivalence (note that we have omitted the contractible type |conn,(z)],, in
the domain of ¢f7). A family of equivalences gives rise to an equivalence of families,
so that we get that the map

¢ (|A]l,, - B) - (HﬂHAHnE (g : conny, (x) > B).Hy;connn(m)isNuII(ap’;zll)) (23)
¢ (k) = Al (k(x)) (24)

is also an equivalence.

All we need at this point is an equivalence from the codomain of the function (24)
to the type stated in the theorem, i.e. X (f: A — B) .Ha:AisNuII(ap}LLI), and the
composition of (24) and this equivalence has to be the canonical map ¢,. We
calculate:

My a), 2 (g2 : conny () > B) .Hyzconn"(w)isNuII(ap;:,ly (25)

(by the distributivity law)

= B(g:Myyap, (conny, (2) = B)) Majap, Mysconn, (a)isNull(apy() ) (26)
(by currying and using the canonical equivalence (20))

~ ¥(h:A-B) 'HG:AiSNu”(ap’;\L;&:onn"(|a|).h(7r1y),(a,ref|‘a‘)) (27)

Fortunately, the (pointed) types Q"*!(conn,(|al), (a,refl,)) and Q"*'(A,a) are
equivalent, with the equivalence being apﬁfl; this is an easy technical statement
that follows from [11, Lem. 5.1]. If we compose apz;:lconnn(|a|).h(7r1y),(a,ref|‘a‘) with the
allows us to simplify the expression.

inverse of this equivalence, functoriality of ap™*!

» X (h: A~ B).IgaisNull(ap) (28)

We need to check that the composition of ¢, with this equivalence is indeed the
canonical function ¢,. This is immediate as we only need to check that the first
component (the map A — B) turns out to be the correct function, as the second
component is propositional. a

8If 2o : Z is some point of some type, we call any type of the form X (z: Z).z = z¢ a singleton.
It is well-known that singletons are contractible and therefore “neutral” components of X-types,
which we use here and later.
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4. THE “HIT PrROOF”

Our second proof is fairly technical. We construct a higher inductive type with
a suitable elimination property and show that it is equivalent to |A[,,. As a prepa-
ration, we show a small lemma. It is a part of a theorem that has been introduced
in [9], where it is described as local generalised Hedberg argument.

Lemma 4.1 (main part of [9, Thm. 3.2.1]). Let (A,a0) be a pointed type. Assume
further that P is a pointed family of (n —1)-types over (A,ag), that is, a family
P: A - U™ with a point po : P(ag). If P(a) implies that ay is equal to a, i.e.
m:gaP(a) = ag = a, then A is “locally an n-type” in the sense that Q"1 (A, ag)
is contractible.”

Proof sketch. Consider the following composition of three maps, for any a : A:

q+ transportP(prO) Mg, q = May(po)-q
ap=a P(a) ap =a ap =a

By path induction, we easily see that these maps make ag = a a retract of P(a).
Hence, the former is (n - 1)-truncated [14, Thm. 7.1.4], which shows the claim [14,
Thm. 7.2.9]. |

We are ready to define the higher inductive type that plays the central role in
the second proof of Lemma 2.3. For the following definition and for the rest of the
section, we fix a type A and a number n > —1.

Definition 4.2. Define the higher inductive type H, which depends on A and n,
as given by the constructors

n:A->H (29)
€:apa (fa=0],, - n(a)=n(b)) (30)
O Ha:A (refln(a) =n(a)=n(a) 6(&, a, |ref|a\)) (31)
t:is-(n+1)-type(H). (32)

The complicated looking constructors € and § are more intuitive than they looks
at first sight. If we have (a = b), we of course always get a proof of n(a) = n(b)
using ap,,. The constructor e says that |la = b[,,_, is sufficient, while J ensures that
€ is really a lifting of ap,, through [a =b|,_;. This is because we could have used
the expanded form

8 Ha,b:AHp:a=b (apn(p) =n(a)=n(b) E(Ll, b7 ‘p‘)) ) (33)

instead of the constructor §. By path induction on p, the type (33) is easily seen to
be equivalent to the original type (31). While (33) might look more regular next
to (30), we choose (31) just for simplicity.

The recursion principle for H is straightforward to write down. Given some
(n+1)-type B, we need a function f: A - B, together with a function

k:Mapa(la=0l,,) > f(a) = f(b) (34)
and a proof

h: Ha:ArefIf(a) =f(a)=f(a) k(a7 a, |ref|f(a)|)7 (35)

9This “local” form directly implies the “global” form: We can consider a relation R: Ax A —
U™ ! which implies identity and which has points 74 : R(a,a) for all a: A; then, the lemma shows
that A is an n-type.
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we get a function H — B with the expected properties. It is more involved, never-
theless not inherently difficult, to state the induction principle following the stan-
dard (“intuitive”) approach as used in [14, Chap. 6]. Given an (n + 1)-truncated
family P: H - U™, in order to prove .5 P(x), we need

7: a:aP(n(a)) (36)
Mo allgpamyy, transport” (e(a,b,q), 7(a)) =p(yy) 1(b) (37)
6: 1,0 (transport”'t'a"SPO”P(T’ﬁ(a)):ﬁ(“) (6(a), reflyqy) =€(a,a, |ref|a|)) . (38)

al

The above type expressions look rather involved. Fortunately, we do not need to
deal too much with them at all because we are only interested in the case that P
is n-truncated (instead of, more generally, (n + 1)-truncated), which enables us to
use the following observation:

Lemma 4.3 (Restricted dep. universal property of H). Given A and n > -1 as
above and a family of n-types, P: H - U™, the canonical map

HzHP(x) ;W> Ha;AP(’ﬂ((I)) (39)
is an equivalence.

Proof. As P is a family of n-types, the type transport” (e(a,b,q), 7i(a)) =p(n(b))
71(b), appearing in (37) as the target of €, is (n — 1)-truncated. By the standard
universal property of the (n - 1)-truncation, we may thus assume that the ¢ in the
type (37) is of the form |p| with p: a = b, and then do path induction on p. This
shows that the type of € is equivalent to
€ Ha:AtransportP (6(@, a, |reﬂa‘)7 ﬁ(a)) =P(n(a)) ﬁ((l) (40)
Under this equivalence, the type of § becomes

RS 1 N (transport’\m'a"s""'tp(r’ﬁ(“))ﬁ(“) (6(a), reflz(q)) = E"(a)) . (41)

We see that the dependent pair of (40) and (41) forms a family of singletons.
Therefore, there is always a canonical and unique choice for € and 6. The induction
principle can therefore be simplified to only (36). Let us write rind : 11,4 P(n(a)) —
IL,.z P(x) for this restricted induction principle. It is easy to check that rind is
indeed an inverse of the map on:

e For any f:11,.4P(n(a)) and a: A, the expression (rind(f) on)(a) can be
reduced to f(a).

e For any g : I,y P(x), assume z : H. We need to show (rind(gon))(z) =
g(z). Using the restricted induction principle, we may assume z = 7(a),
and the left side can be reduced to the right side of the equation. (|

This allows us to conclude the following crucial property of H:
Lemma 4.4. The type H is n-truncated.

Proof. Tt suffices to show that Q"*1(H, x) is contractible for all « : H [14, Lem.
7.2.9]. The restricted induction principle of H tells us that, in order to show
P(z) := isContr (Q"*!(H,z)) for all z, we only need to prove P(n(ao)) for any
ao : A. Let us define a type family @ : H - U™ ! using the restricted induction
principle, Q(n(a)) := ||lag = af,,_;. This family is trivially inhabited at ag. We want
to show that @ implies local equality in the sense of . (Q(z) = n(ap) = x), and
as this type family is n-truncated, we apply the restricted induction principle again
and the goal becomes

a:a (Q(n(a)) = nlao) = n(a)). (42)



32 Chapter 2. Functions out of Higher Truncations

By definition of @, this is exactly given by the constructor €, applied on ag and a.
This allows us to conclude, by Lemma 4.1, that H is n-truncated, as claimed. O

It is straightforward and standard that an n-truncated type which satisfies the
dependent eliminating principle of |A],, is necessarily equivalent to |Al|,,, and we
record:

Corollary 4.5. The types H and |A|,, are equivalent.
At the same time, we have the following:

Lemma 4.6 (Universal property of H). For any (n+1)-type B, the type of functions
H — B is equivalent to

Y(f:A->B).
Y(e:apala=0l, ., ~ f(a) = f(b)). (43)
(d:Tlgareflpqy = e(a, a,|refly])).
Proof sketch. The proof of deriving this form of universal property from the induc-

tion principle is standard. The map from H — B into the stated type is more or
less composition with the constructors; for any k: H - B, we get

(fre;d) = (kon, apy o€, Aa.ap,, (8(a))). (44)
The map in the other direction is exactly the recursion principle of H. That they are
mutually inverse corresponds to the computation (3) rule respectively the unique-
ness (1) rule of H. a

Finally, we can complete the second proof of our main result:

“HIT proof” of Lemma 2.3. We do induction on n. The base case (n = -1) is, as
before, just what we have discussed in Section 2. For higher n, we have the following
chain of equivalences:

1Al - B (45)
(by Corollary 4.5)
~ H-B (46)

(by Lemma 4.6)
= N(f: A~ B).E(e:Mapala=0b],, > f(a)=f(b)).

(Mg:arefl ) = e(a, a, |refl,))) (47)
(by “inverse path induction”)
= Y(f:A-B).Z(e:Mapala=0],, > f(a) = f(b)).

(Ha,b:AHp:a:bapfp = e(a,b, |p|)) (48)
(by the distributivity law)
~ B(f:A=B) . Mopa(S(e :[a=b],, = f(a)=f(b)).

Mpa-sap;p = €' (|p])) (49)

Now we exchange e’ by (e1, e2) := ¢,—1(€") using the induction hypothesis, and thus
we need to apply ¢!, to that term in the last component. Fortunately, it follows
from the definition of ¢,_; that oc¢,_1 = o|-|, hence we can replace e'(|p|) with
simply e1(p):
~ Y (f:A-> B). Ha,b;A(E (er:a=b- f(a)=f(b)).X (62 : Hp:a:bisNull(ap;’;hp)) .

(TMpazsapsp = €1(p)) ) (50)
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The term e; and the very last (unnamed) component form a singleton and can be
removed:

~ Y (f:A-> B). (Ha,b:AHp:a:biSNU”(ap:'pf’p)) (51)

(by “path induction”)

~ ) (f A - B) . (Ha;AiSNU“(aprf,reﬂf(a))) (52)
n+1

(as apfpfﬁeﬂa is the same as ap;" — the footnote on page 7 applies)

~ Y (f:A-B). (UazaisNull(apfiag,))- (53)

Finally, we need to check that the constructed equivalence is indeed the canonical
function c,. Fortunately, the second (and more involved) part I, 4isNull(a p?’t;ﬂa)
is propositional. It is therefore enough to check that any map g : | A||,, = B gets, by
the constructed equivalence, mapped to a pair in (53) of which the first component
is go|-|. But the first component is constructed in the very first step, where
Lemma 4.6 is applied, and, looking at the proof of Lemma 4.6, it is indeed simply
composition with |-|. O

5. A SAMPLE APPLICATION: SET-BASED GROUPOIDS

A set-theoretic w-groupoid has, in the “globular” formulation, w-many levels:
At level 0, it has a collection of objects (or 0-cells); for any two objects, it has a
collection of 1-morphisms (1-cells); for any two 1-morphisms, there is a collection
of 2-morphisms (2-cells), and so on. As recalled in the introduction, types indeed
are such w-groupoids meta-theoretically. It is intuitive to ask how much of this
can be internalised. Defining a weak w-groupoid in type theory is already very
hard [2, 3]: one would want a O-type (i.e. a set) Ay of O-cells, a set A; of 1-cells
which is indexed twice over Ag, and so on. Even if one has such a definition at hand,
it is implausible to expect that one can define the “fundamental w-groupoid” of a
type. As Altenkirch, Li and Rypacek [2] mention, they are unable to construct such
an w-groupoid, which in their terminology is called Idw. The Ph.D. thesis of the
second-named author of the current paper includes a precise negative statement [9,
Sec. 9.4.1] which shows that a construction in the sense of [2] is impossible in all
non-trivial cases. The argument given there indicates that a fundamental reason
why we cannot even define A; is that we want A; to be indexed twice over Ag.

However, we know that the whole higher structure of types is in some sense
determined by the loop spaces, as opposed to the path spaces. It seems therefore
reasonable to consider a more modest variation where we index A; only once over
Ay, with the intention that A;(ag) represents the loop space over ag. This has the
further advantage that we can assume that Ag is |A|,; with double-indexed A, it
would be possible that elements a,b: Ay are not equal in Ay, but “made equal” by
an element of Aj(a,b). As a further simplification, we only consider the question
whether a type can be represented in two levels, i.e. with Ay = | A, and A;.

Definition 5.1. We call a type A set-based representable if the function
wa:A-U (54)
wal(a) = (a=a) (55)

factors through || A|,, i.e. if there is a single-indexed family A : | A|, - U of types
which, for all a: A, satisfies A;(|a|) ~ (a =4 a).

We also define the following simple notion:

Definition 5.2. We say that a type A has loop spaces with braidings if, for all a : A
and p,q:a=a, we have p=qg=q-p.
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Examples of types which have loop spaces with braidings are sets (for which the
condition is trivial), and, more interestingly, loop spaces themselves.

Theorem 5.3. Fvery 1-type whose loop spaces have braidings is set-based repre-
sentable.

Proof. As A is a 1-type, the function (54) takes sets as values; that is, in this case,
we can assume that w4 is of type A — U°. Using that U4 is a 1-type [14, Thm.
7.1.11], we may apply Theorem 2.1 with n = 0. We need to show that, for a fixed
a: A, the function

Puyat Qt(Aa a) g Qt(ua a= a) (56)
is null. But ap,,, (p) induces a function of type (a = a) - (a = a) (via the function
that is called idtoeqv in [14], and projection), and by univalence, it is enough to
show that this function does not depend on p. We claim that this function maps
g:a=atopl-gp. An easy way to prove this claim is considering the more general
version of ap,,, that works on any path spaces (instead of loop spaces), and then
doing path induction on p. Clearly, the braiding on a = a is exactly what we need
to justify that p~'-¢-p does not depend on p. (|

6. THE Bi1G PICTURE: SOLVED AND UNSOLVED CASES

The “ordinary” universal property of the m-truncation can be recovered easily
from Theorem 2.1. If, under the conditions of the statement, B is not only (n+1)-,
but even n-truncated, the type I, 4isNull (ap}l:;l) becomes contractible, and the
theorem says precisely that functions A — B are the same as functions ||A|,, - B,
via composition with |-|. Theorem 2.1 is thus stronger than the “ordinary” universal
property. However, we weaken the condition on B by only one single level, while [8]
weakens it by arbitrary many levels, but only for the propositional truncation.

Of course, the general question is: What is the universal property of | Al|,, with
respect to m-types, i.e. how can we construct a map |Al|,, > B for some m-type B?
Put differently, given a function f : A — B, how can we (by only imposing conditions
on f, not on A or B) ensure that f factors through | A[,,? Figure 2 illustrates the
current progress on this question. As indicated, the question is trivial if m is not
greater than n. Two other families of cases are solved, those with m = n + 1 by
the current paper, and n = -1 by [8]. Note that the latter is not internalised in
the way that the result of the current paper is, and it is not to be expected that
an internalisation is possible in the considered type theory; and further, the case
n =-1, m = oo (meaning that there is no condition at all on B) is solved, but only
under the assumption of Reedy w°P-limits.

The (probably) simplest case that is left open is the case n =0, m = 2. So, let
us consider a function f: A - B, where B is 2-truncated. Which conditions do we
have to impose on f to conclude that it factors through | A[,? As is easy to show,
if f factors through the 0-truncation, then ap, factors through the (-1)-truncation.
The necessary conditions for the latter have been worked out in [8], and we could
thus try to impose them on ap; (at all points). However, this does not work. In one
aspect, the propositional truncation is a special case that is actually harder than
the higher truncations, intuitively because loop spaces are always pointed!® which
we have already made use of in the definition of isNull. It turns out that in this
“pointed” case one can get all these coherences (which make the result of [8] hard)
for free. Instead, the higher groupoid structure of loop spaces induces a different
sort of coherence problem. For example, it certainly is necessary that, for any a : A

10This seems to correspond to the fact that the zeroth homotopy “group” is not a group, and
does therefore not have a canonical element, which seems to occasionally make this special case
harder in traditional topology as well.
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FIGURE 2. The universal property of | Al|, with respect to ?-types:
trivial, solved, and open cases

and p:a = a, there is a proof ¢, p : apﬂa(p) = refl;(4). From ¢, 5, we can construct
a proof that ap, ;(p*p) equals refly,), using functoriality of ap; ,. If we want the
family c to be “fully coherent”, we have to force this proof to be the same as cq4 p.p.
The work [8] concludes with a precise conjecture of how all the required coherence
conditions can be captured in the general case. At this time, it is unknown whether
this can be used to fill in the missing parts of Figure 2.
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Abstract. We consider a simplified version of Nakano’s guarded fixed-point
types in a representation by infinite type expressions, defined coinductively. Small-
step reduction is parametrized by a natural number “depth” that expresses under
how many guards we may step during evaluation. We prove that reduction is
strongly normalizing for any depth. The proof involves a typed inductive notion
of strong normalization and a Kripke model of types in two dimensions: depth
and typing context. Our results have been formalized in Agda and serve as a case
study of reasoning about a language with coinductive type expressions.

1 Introduction

In untyped lambda calculus, fixed-point combinators can be defined using self-appli-
cation. Such combinators can be assigned recursive types, albeit only negative ones.
Since such types introduce logical inconsistency, they are ruled out in Martin-Lof Type
Theory and other systems based on the Curry-Howard isomorphism. Nakano (2000)
introduced a modality for recursion that allows a stratification of negative recursive
types to recover consistency. In essence, each negative recursive occurrence needs to
be guarded by the modality; this coined the term guarded recursive types (Birkedal
and Mggelberg, 2013)." Nakano’s modality has found applications in functional reac-
tive programming (Krishnaswami and Benton, 2011b) where it is referred to as later
modality.

While Nakano showed that every typed term has a weak head normal form, in this
paper we prove strong normalization for our variant A* of Nakano’s calculus. To this
end, we make the introduction rule for the later modality explicit in the terms by a
constructor next, following Birkedal and Mggelberg (2013) and Atkey and McBride
(2013). By allowing reduction under finitely many nexts, we establish termination ir-
respective of the reduction strategy. Showing strong normalization of A% is a first step
towards an operationally well-behaved type theory with guarded recursive types, for
which Birkedal and Mggelberg (2013) have given a categorical model.

Our proof is fully formalized in the proof assistant Agda (2014) which is based on
intensional Martin-Lof Type Theory. > One key idea of the formalization is to represent

! Not to be confused with Guarded Recursive Datatype Constructors (Xi et al., 2003).
2 A similar proof could be formalized in other systems supporting mixed induction-coinduction,
for instance, in Coq.
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the recursive types of A as infinite type expressions in form of a coinductive defi-
nition. For this, we utilize Agda’s new copattern feature (Abel et al., 2013). The set
of strongly normalizing terms is defined inductively by distinguishing on the shape of
terms, following van Raamsdonk et al. (1999) and Joachimski and Matthes (2003). The
first author has formalized this technique before in Twelf (Abel, 2008); in this work we
extend these results by a proof of equivalence to the standard notion of strong normal-
ization.

Due to space constraints, we can only give a sketch of the formalization; a longer
version and the full Agda proofs are available online (Abel and Vezzosi, 2014). This
paper is extracted from a literate Agda file; all the colored code in displays is necessarily
type-correct.

2 Guarded Recursive Types and Their Semantics

Nakano’s type system (2000) is equipped with subtyping, but we stick to a simpler
variant without, a simply-typed version of Birkedal and Mggelberg (2013), which we
shall call A”. Our rather minimal grammar of types includes product A x B and function
types A — B, delayed computations » A, variables X and explicit fixed-points uXA.

AB.C::=AxB|A—B|»A|X|uXA

Base types and disjoint sum types could be added, but would only give breadth rather
than depth to our formalization. As usual, a dot after a bound variable shall denote
an opening parenthesis that closes as far to the right as syntactically possible. Thus,
uX.X — X denotes uX (X — X), while pXX — X denotes (uX.X) — X (with a free
variable X).

Formation of fixed-points XA is subject to the side condition that X is guarded
in A, i.e., X appears in A only under a later modality ». This rules out all unguarded
recursive types like uX.A x X or uX.X — A, but allows their variants uX.» (A x X)
and uX.Axw» X, and uX.» (X — A) and uX.» X — A. Further, fixed-points give rise
to an equality relation on types induced by uXA = A[uXA/X].

I'x)=A I''xA+Ft:B I'+t:A—B I'Fu:A
I'kFx:A I'FAx.t:A—B I'tHtu:B

FFI[ZAI FF[2ZA2 FF[ZA[XAz FFIIA]XAZ

F}—(l‘l,l‘z):AlXAz I'-fstr:Ag I'Fsndt:A;
I'ki:A I'tt:»(A—B) I'btu:»A I'ti:A A=B
I' Fnextt:p»A I'ttxu:»B I'tt:B

Fig. 1. Typing rules.
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Terms are lambda-terms with pairing and projection plus operations that witness
applicative functoriality of the later modality (Atkey and McBride, 2013).

tou=x|Axt |tu]| (t1,t2) |fstt|sndt|nextt |t*u

Figure | recapitulates the static semantics. The dynamic semantics is induced by the
following contractions:

(Ax.t)u — t[u/x]
fst (l‘l,tz) — 1
snd (tl,tg) = I

(nextr) x(next u) — next (fu)

If we conceive our small-step reduction relation — as the compatible closure of +,
we obtain a non-normalizing calculus, since terms like 2 = @ (next ®) with @ =
(Ax. x*(next x)) are typeable.’ Unrestricted reduction of £ is non-terminating: 2 —
next Q — next (next Q) — ... If we let next act as delay operator that blocks re-
duction inside, we regain termination. In general, we preserve termination if we only
look under delay operators up to a certain depth. This can be made precise by a family
—, of reduction relations indexed by a depth n € N, see Figure 2.

t—t t—,t t—s,t u—npu
t—ut Ax.t —, Ax. t/ tu—pt'u tu—ptu
t —sut' u—pu t—,t t—s,t
(t,u) —, (t',u) (t,u) —p (t,0) fstt —, fstt/ sndt —, snd ¢/
t—spt t—spt u—,u
nextt —»,y| nextt’ txu—, t'*xu tku — sy, txu

Fig. 2. Reduction

We should note that for a fixed depth n the relation —,, is not confluent. In fact the
term (Az. next" ! z)(fst (u,t)) reduces to two different normal forms, next"*! (fst (u,t))
and next""!u. We could remedy this situation by making sure we never hide redexes
under too many applications of next and instead store them in an explicit substitution
where they would still be accessible to —,. Our problematic terms would then look
like next” ((next z)[fst (u,7)/z]) and next” ((next z)[u/z]) and the former would reduce
to the latter. However, we are not bothered by the non-confluence since our semantics
at level n (see below) does not distinguish between next" !y and next"t'u/ (as in o/ =
fst (u,1)); neither u nor ' is required to terminate if buried under more than n nexts.

To show termination, we interpret types as sets 7, %,% of depth-n strongly nor-
malizing terms. We define semantic versions [x], [—], and [»] of product, function

3FQ:AwithA=pX(»X). Totype @, weuse x: u¥ (> (Y — A)).
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space, and delay type constructor, plus a terminal (=largest) semantic type [T]. Then
the interpretation [A], of closed type A at depth n can be given recursively as follows,
using the Kripke construction at function types:

[AxB], = [A]. [x] [Bln of [x] B ={t|fstt € &/ and sndt € S}
[A— B], =Ny ([Aly [=] [Blw) < [—]%={t|tuc Bforalluec .o/}
Al = [PIIT] 1] —{rlrtem}

> AL = IAL o —fnexti[te o}

[uXA], = [AluXA/X]]n (o is weak head expansion closure of .<7)

Due to the last equation (i), the type interpretation is ill-defined for unguarded recur-
sive types. However, for guarded types we only return to the fixed-point case after we
have passed the case for », which decreases the index n. More precisely, [A], is de-
fined by lexicographic induction on (n,size(A)), where size(A) is the number of type
constructor symbols (x, —, ) that occur unguarded in A.

While all this sounds straightforward at an informal level, formalization of the de-
scribed type language is quite hairy. For one, we have to enforce the restriction to well-
formed (guarded) types. Secondly, our type system contains a conversion rule, getting
us into the vincinity of dependent types which are still a challenge to a completely for-
mal treatment (McBride, 2010). Our first formalization attempt used kinding rules for
types to keep track of guardedness for formation of fixed-point, and a type equality
relation, and building on this, inductively defined well-typed terms. However, the com-
plexity was discouraging and lead us to a much more economic representation of types,
which is described in the next section.

3 Formalized Syntax

In this section, we discuss the formalization of types, terms, and typing of A* in Agda.
It will be necessary to talk about meta-level types, i. e., Agda’s types, thus, we will refer
to A™’s type constructors as X, =, &, and fl.

3.1 Types Represented Coinductively

Instead of representing fixed-points as syntactic construction on types, which would re-
quire a non-trivial equality on types induced by 1XA = A[[1XA/X], we use meta-level
fixed-points, i.e., Agda’s recursion mechanism.* Extensionally, we are implementing
infinite type expressions over the constructors <, =, and » . The guard condition on re-

cursive types then becomes an instance of Agda’s “guard condition”, i. e., the condition
the termination checker imposes on recursive programs.

4 An alternative to get around the type equality problem would be iso-recursive types, i.e.,
with term constructors for folding and unfolding of [1XA. However, we would still have to
implement type variables, binding of type variables, type substitution, lemmas about type sub-
stitution etc.
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Viewed as infinite expressions, guarded types are regular trees with an infinite num-
ber of B -nodes on each infinite path. This can be expressed as the mixed coinductive(V)-
inductive(ut) (meta-level) type

VXUY. (Y xY)+ (Y XY)+X.

The first summand stands for the binary constructor X, the second for =, and the third
for the unary » . The nesting of a least-fixed point (i) inside a greatest fixed-point (V)
ensures that on each path, we can only take alternatives X and - a finite number of
times before we have to choose the third alternative » and restart the process.

In Agda 2.4, we represent this mixed coinductive-inductive type by a datatype Ty
(inductive component) mutually defined with a record Ty (coinductive component).

mutual
data Ty : Set where
X i(ab:Ty) —Ty

5 i(ab:Ty) =Ty

> : (a0 1 o0 Ty) — Ty

record Ty : Set where
coinductive
constructor delay
field force : Ty

While the arguments a and b of the infix constructors X and -~ are again in Ty, the
prefix constructor B expects and argument aco in oo Ty, which is basically a wrapping’
of Ty. The functions delay and force convert back and forth between Ty and Ty so that
both types are valid representations of the set of types of A*.

delay : Ty — ooTy
force : oo Ty — Ty

However, since «Ty is declared coinductive, its inhabitants are not evaluated until
forced. This allows us to represent infinite type expressions, like top = 1X (5 X).

top : oo Ty
force top = » top

Technically, top is defined by copattern matching (Abel et al., 2013); top is uniquely
defined by the value of its only field, force top, which is given as »top. Agda will use
the given equation for its internal normalization procedure during type-checking. Alter-
natively, we could have tried to define top : Ty by top = » delay top. However, Agda
will rightfully complain here since rewriting with this equation would keep expanding
top forever, thus, be non-terminating. In contrast, rewriting with the original equation
is terminating since at each step, one application of force is removed.

The following two defined type constructors will prove useful in the definition of
well-typed terms to follow.

>_:Ty—>Ty
» a=»delay a

5 Similar to a newtype in the functional programming language Haskell.
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= :(aco boo 1 e0Ty) — 00Ty
force (aco = boo) = force aco = force beo

3.2 Well-typed terms

Instead of a raw syntax and a typing relation, we represent well-typed terms directly by
an inductive family (Dybjer, 1994). Our main motivation for this choice is the beautiful
inductive definition of strongly normalizing terms to follow in Section 5. Since it relies
on a classification of terms into the three shapes introduction, elimination, and weak
head redex, it does not capture all strongly normalizing raw terms, in particular “junk”
terms such as fst (Axx). Of course, statically well-typed terms come also at a cost: for
almost all our predicates on terms we need to show that they are natural in the typing
context, i.e., closed under well-typed renamings. This expense might be compensated
by the extra assistance Agda can give us in proof construction, which is due to the strong
constraints on possible solutions imposed by the rich typing.

Our encoding of well-typed terms follows closely Altenkirch and Reus (1999);
McBride (2006); Benton et al. (2012). We represent typed variables x : Var I a by de
Brujin indices, i. e., positions in a typing context I : Cxt, which is just a list of types.

Cxt = List Ty

data Var : (I': Cxt) (a: Ty) — Set where
zero : V{T"a} —Var(a:T)a
suc : V{['ab} (x:VarT'a) - Var(b::I')a

Arguments enclosed in braces, such as I', a, and b in the types of the constructors zero
and suc, are hidden and can in most cases be inferred by Agda. If needed, they can
be passed in braces, either as positional arguments (e. g., {A}) or as named arguments
(e.g., {I'=A}). If V prefixes bindings in a function type, the types of the bound vari-
ables may be omitted. Thus, V{I" a} — A is short for {I": Cxt}{a: Ty} — A.

Terms ¢ : Tm I' a are indexed by a typing context I and their type a, guaranteeing
well-typedness and well-scopedness. In the following data type definition, Tm (I": Cxt)
shall mean that all constructors uniformly take I" as their first (hidden) argument.

data Tm (I': Cxt) : (a: Ty) — Set where

var :V{a} (x:VarT a) —-TmTla
abs :V{ab} (t:Tm(a::T) D) —>TmTI (a>Db)
app :V{ab} (t:TmT (a>b)) (u: TmTa) —>TmTIb
pair :V{ab} (r: TmT a) (u: TmT D) —>TmT (a X b)
fst  :V{ab} (1:TmT (aXb)) —-TmTa
snd :V{ab} (t:TmT (axb)) —-TmTb
next : V{ac} (1: Tm T (force as)) = TmT (B a)

# 1 V{acoboo} (1:Tm T (B (ace = beo))) (u: Tm ' (B ace)) — Tm T (B boo)

The most natural typing for next and * would be using the defined » : Ty — Ty:
next :V{a} (t:TmT a) > TmT (»a)
2 {ab} (t: Tm T (»(a=5))) (u: TmTIT (»a)) - TmI (»b)

However, this would lead to indices like » delay @ and unification problems Agda can-
not solve, since matching on a coinductive constructor like delay is forbidden—it can
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lead to a loss of subject reduction (McBride, 2009). The chosen alternative typing,
which parametrizes over aco boo : o Ty rather than a b : Ty, works better in practice.

3.3 Type Equality

Although our coinductive representation of A> types saves us from type variables, type
substitution, and fixed-point unrolling, the question of type equality is not completely
settled. The propositional equality = of Martin-L6f Type Theory is intensional in the
sense that only objects with the same code (modulo definitional equality) are considered
equal. Thus, = is adequate only for finite objects (such as natural numbers and lists) but
not for infinite objects like functions, streams, or A™ types.

However, we can define extensional equality or bisimulation on Ty as a mixed
coinductive-inductive relation =/co= that follows the structure of Ty/eTy (hence, we
reuse the constructor names X, =, and » ).

mutual

data = :(ab:Ty)— Setwhere
X :V{aa'bb'} (az:aza’) (b=:b

B b)) > (axb)=(a" xb)
_o_ :VWaa'bb’} (a=:a’=za) (b=:b=b") > (a>Db)=(a’ D)

> :V{awobeo}  (a=: aco ooz boo) — B aco =B beo

nm

record eo= (aco beo : ooTy) : Set where
coinductive
constructor =delay
field =force : force a = force beo

Ty-equality is indeed an equivalence relation (we omit the standard proof).

zrefl :V{a} —a=z=a
=sym :V{ab} —az=b —>b=a
=trans : V{abc} »a=b >b=c—>a=c

However, unlike for = we do not get a generic substitution principle for =, but have
to prove it for any function and predicate on Ty. In particular, we have to show that
we can castatermin TmI"a to Tm I b if a = b, which would require us to build type
equality at least into Var I" a. In essence, this would amount to work with setoids across
all our development, which would add complexity without strengthening our result.
Hence, we fall for the shortcut:

It is consistent to postulate that bisimulation implies equality, similarly to the func-
tional extensionality principle for function types. This lets us define the function cast
to convert terms between bisimilar types.

postulate =to-=:V {a b} 5a=b—>a=b

cast: V{I'a b} (eq:a=b) (1: TmTa)>TmIb

We shall require cast in uses of functorial application, to convert a type coo : coTy into
something that can be forced into a function type.
»app : V{I coo booa} (eq : coo co= (delay a = beo))

(t:TmIL (B c)) (u: Tm I (»a)) = Tm I (B beo)
»app eqtu=cast (»eq)t*u
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3.4 Examples

Following Nakano (2000), we can adapt the ¥ combinator from the untyped lambda
calculus to define a guarded fixed point combinator:

fix=Af. (Ax. f (xxnextx)) (next (Ax. f (x*nextx))).

We construct an auxiliary type Fix a that allows safe self application, since the argument
will only be available "later". This fits with the type we want for the fix combinator,
which makes the recursive instance y in fix (4y.7) available only at the next time slot.

fix : V{T'a} > Tm T ((» a > a) > a)

Fix Ty — Ty
force (Fix a) = » Fixa % a

selfApp: V{I'a} > Tm I (» Fixa) > Tm I (»a)
selfApp x = »app (=delay =refl) x (next x)

fix = abs (app L (next L))
where
f = var (suc zero)
X = var zero
L = abs (app f (selfApp x))

Another standard example is the type of streams, which we can also define through
corecursion.

mutual
Stream : Ty —> Ty
Stream a = a X B Streamoo a

Streameo : Ty — oo Ty
force (Streameo a) = Stream a

cons: V{I'a} > TmIa— TmT (» Stream a) - Tm I (Stream «)
cons a s = pair a (cast (> (=delay =refl)) s)

head : V{T'a} - Tm T (Streama) > TmTa
head s =fst s

tail : V{I'a} - Tm I" (Stream a) — Tm I" (» Stream a)
tail s = cast (B (=delay =refl)) (snd s)

Note that tail returns a stream inside the later modality. This ensures that functions
that transform streams have to be causal, i. e., can only have access to the first n elements
of the input when producing the nth element of the output. A simple example is mapping
a function over a stream.

mapS : V{T'a b} - Tm T ((a = b) = (Stream a > Stream b))

Which is also better read with named variables.

mapS = A f. fix (AmapS. As. (f s, mapS xtail s))
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4 Reduction

In this section, we describe the implementation of parametrized reduction —, in Agda.
As a prerequisite, we need to define substitution, which in turn depends on renaming
(Benton et al., 2012).

A renaming from context I" to context A, written A <T, is a mapping from variables
of I" to those of A of the same type a. The function rename lifts such a mapping to terms.

< (AT :Cxt) — Set
< AT =V{a} >VarTa—VarAa

rename: V{I'A:Cxt}{a: Ty} (N:A<T) (x: TmTla)>TmAa

Building on renaming, we define well-typed parallel substitution. From this, we get
the special case of substituting de Bruijn index O.

subst0: V{T'ab} >TmTa—Tm (a=:T)b—>TmTb

Reduction t —»,, ¢’ is formalized as the inductive family 7 (n)=>[ ¢ with four con-
structors B... representing the contraction rules and one congruence rule cong to reduce
in subterms.

data ( )=B {I}:V{a} >TmI'a—-N-—-TmI a— Setwhere

B V{nab}{t: Tm (a::T) b}{u}

— app (abs 1) u (n )=P subst0 u t

Bfst :V{nab}{r: TmTa}{u: TmT b}
— fst (pair ru) (n)=B1¢

Bsnd :V{nab}{r: TmTa}{u: TmT b}
— snd (pair ru) (n)=Bu

By iV {nace beo}{r: TmT (force aco % force beo)}{u: Tm I' (force aco)}
— (next 7 * next {aco = aco} u) (n )=P (next {acc = beo} (app tu))

cong :V{nnAabtt’ CtCr}{C:NBCxtAT abnn’}
— (Ct :Ct=C[1t])
- (Ct :Cr=C[r])
- (=B it (n)=pr)
= Ct(n")=pCr’

The congruence rule makes use of shallow one hole contexts C, which are given by
the following grammar

Cu=Ax_|_u|t_|(t,_)| (Lu)|fst_|snd_ | next_| _xu|rx_.

cong says that we can reduce a term, suggestively called Ct, to a term Ct’, if (1) Ct
decomposes into C[f], a context C filled by 7, and (2) Ct’ into C[¢’], and (3) ¢ reduces
to 7. As witnessed by relation Cr=CJs], context C : NBCxt " A a b n n’ produces a
term Ct: Tm " b of depth n’ if filled with a term 7: Tm A a of depth n. The depth is
unchanged except for the case next, which increases the depth by 1. Thus, ¢ (n)=f ¢’
can contract every subterm that is under at most » many nexts.

data NBCxt: (AT : Cxt) (ab: Ty) (nn’: N) — Set where

abs : V{T'nab} —>NBCxt(a=:T)Tb(a> b)nn
appl : V{T'nab} (u : Tm I a) - NBCxtT'T (a>b)bnn
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appr : V{T'nab} (t :TmTI (a>b)) —>NBCxtI'Tabnn

pairl : V{I'nab} (u : Tm I b) —NBCxtT'Ta(axb)nn
pairr : V{T'nab} (r : TmT a) —NBCxtT'T'h(axb)nn
fst : V{T'nab} —NBCxtT'I'(a X b)ann
snd : V{['nab} —NBCxtT'I'(a X b)bnn
next : V{I nac} — NBCxt I' T (force aco) (B aco) n (1 + n)
# s V{T nase beo} (u: Tm T (B ase)) — NBCxt I'T" (B (aco = beo)) (B beo) nn
#r_ 1 V{T naco boo}
(1:Tm T (B (aco = beo))) = NBCxt T'T" (B ac) (B beo) nn

data = [ ] {n:N}{I':Cxt}:{n":N}{A:Cxt} {ba:Ty} -
TmIb—->NBCxtATabnn— Tm A a— Set

5 Strong Normalization

Classically, a term is strongly normalizing (sn) if there’s no infinite reduction sequence
starting from it. Constructively, the tree of all the possible reductions from an sn term
must be well-founded, or, equivalently, an sn term must be in the accessible part of the
reduction relation. In our case, reduction 7 (n)= ¢’ is parametrized by a depth n, thus,
we get the following family of sn-predicates.

datasn (n:N) {aT} (1: TmI'a) : Set where
acc: (V{t'} »>t(n)=>Ppt" —>snnt’) >snnt

Van Raamsdonk et al. (1999) pioneered a more explicit characterization of strongly
normalizing terms SN, namely the least set closed under introductions, formation of
neutral (=stuck) terms, and weak head expansion. We adapt their technique from lambda-
calculus to A%; herein, it is crucial to work with well-typed terms to avoid junk like
fst (Ax.x) which does not exist in pure lambda-calculus. To formulate a deterministic
weak head evaluation, we make use of the evaluation contexts E : ECxt

E:=_u|fst_|snd_|_=u| (nextt)x_.

Since weak head reduction does not go into introductions which include A-abstraction,
it does not go under binders, leaving typing context I" fixed.

data ECxt (I': Cxt) : (a b : Ty) — Set
data _= [ J{T':Cxt}:{ab: Ty} 5 TmIbh—-ECxtTab—TmI a— Set

Etr=E[f] witnesses the splitting of a term Et into evaluation context E and hole
content 7. A generalization of _= [ ] is PCxt P which additionally requires that all
terms contained in the evaluation context (that is one or zero terms) satisfy predicate
P. This allows us the formulation of P-neutrals as terms of the form E[x] for some
E[]=E\[...E,[_]] and a variable x where all immediate subterms satisfy P.

data PCxt {T'} (P:V{c} > Tm I ¢ — Set):

V{ab} >TmIb—ECxtT'ab— TmTI a— Setwhere
appl :  V{abru} (w:Pu) - PCxtP(apptu) (applu) (t:(a>Db))

fst : V{abi} —PCxt P (fstr) fst (t: (a % b))
snd 1 V{abi} —PCxt P (sndt) snd (t: (a % b))
#l 0 V{aobeotu} (w:Pu) — PCxt P (1% (u:w aco): b beo) (xlu)t

#r_ 1 V{aobotu} (t:P (next {ac = aco = bo} 1))
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— PCxt P ((next 1) # (u: B aeo) : B boo) (r 1) u

data PNe {T'} (P:V{c} >TmTI c¢— Set) {b}: TmTI b— Set where
var : V x — PNe P (var x)
elim : V {a}{r: TmTa} {EE}
— (n:PNePr)(Et:PCxt PEtEtr) — PNePEt

Weak head reduction (whr) is a reduction of the form E[t] — E[t'] where t — ¢/ It is
well-known that weak head expansion (whe) does not preserve sn, e.g., (Ax.y)€ is not
sn even though it contracts to y. In this case, 2 is a vanishing term lost by reduction. If
we require that all vanishing terms in a reduction are sn, weak head expansion preserves
sn. In the following, we define P-whr where all vanishing terms must satisfy P.

data / = {I}(P:V{c} >TmIc¢— Set):
V{a} >TmIa—TmTI a— Setwhere

B 1 V{ab}{r:Tm (a::T) b}{u}
— (u:Pu)
— P/ (app (abs t) u) = substO u

Bfst : V{ab}{r: TmTCa}{u: Tm b}
— (u:Pu)
— P [ fst (pair tu) =t

Bsnd : V{ab}{r: TmTa}{u: TmI b}
—(t:Pr1)
— P/ snd (pair tu) =>u

B YV {aco beo}{t: Tm I (force (aco => beo))}{u: Tm T (force aco)}
— P/ (next t * next {aco = goo} u) = (next {aco = beo} (app tu))

cong : V{abtt’ Et Et’}{E: ECxt"a b}
- (Bt :E=E[1])
- (Et’ :Er=zE|[r])
(= P/t=1)
— P [ Et=Et’

The family of predicates SN 7 is defined inductively by the following rules—we

allow ourselves set-notation at this semi-formal level:

teSNn t1,tp €SNn teSNn
Axt € SNn (t1,12) €SN n nextr € SNO nexts € SN (1+n)

t€SNen e€SNn  t(n)=>1
teSNn teSNn

The last two rules close SN under neutrals SNe, which is an instance of PNe with
P = SN n, and level-n strong head expansion t (n)= t', which is an instance of P-whe
with also P = SN n. We represent the inductive SN in Agda as a sized type (Hughes
et al., 1996; Abel and Pientka, 2013) for the purpose of termination checking certain
inductions on SN later. The assignment of sizes follows the principle that recursive
invokations of SN within a constructor of SN {i} must carry a strictly smaller size
J @ Size< i. The mutually defined relations SNe n ¢ (instance of PNe) and strong head
reduction (shr) 7 (n)=> 1’ just thread the size argument through. Note that there is a
version i size t (n)= t’ of shr that makes the size argument visible, to be supplied in
case exp.
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mutual
data SN {i: Size}{I'}: (n:N) - V {a} - Tm I'a — Set where

abs : V{j:Size< i} {abn}{t: Tm (a::T) b}
= (t:SN {j}n1)
— SN n (abs 1)

pair : YV {jij>:Size< i} {abnrtu}
= (t:SN {ji}nt) (w:SN {jr} nu)
— SN n{a x b} (pair t u)

next0 : V {aco} {t: Tm I (force ax)}
— SN 0 {» aco} (next 1)

next : V{j:Size< i} {acon} {t: Tm I (force as)}
— (t:SN{j}nr1)
— SN (1 + n) {» ac} (next 1)

ne : V{j:Size< i} {anit}
— (n:SNe {}nr)
—SNn{a}t

exp YV {jjo: Size< 1} {anti}
= (t=:jisizet (n)=1) (' :SN {jr}nr)
—SNn {a}t

SNe 1V {i:Size} {T'a} (n:N) > Tm I a — Set
SNe {i} n=PNe (SN {i} n)

_size ()= :V(i:Size){T'a} >TmI'a—>N—->TmIa— Set
isizet(n )=>t_SN{}n/t=>t

( >ﬂ :V{i:Size} {T'a} > TmIla—->N->TmTI a— Set
)= {}rnr_SN{} Jt=>1

The SN-relations are antitone in the level n. This is one dimension of the Kripke
worlds in our model (see next section).

mapSN :V{mn} 5>m<Nn—->V{Ta}{t :TmTa} >SNnt ->SNmt

mapSNe : V{mn} >m<Nn—->V{T'a}{t :TmTIa} —>SNentr —>SNemt
map= V{mn} >m<Nn->V{Ta}{r’ :Tmla} >t{n)=t >t{m)=>1

The other dimension of the Kripke worlds is the typing context; our notions are also
closed under renaming (and even undoing of renaming). Besides renameSN, we have
analogous lemmata renameSNe and rename=.

renameSN : V {na AT} (p: A<I){r: TmTIa} >
SN nt— SN n (rename p 1)

fromRenameSN : V{naT A} (p:A<T){r: TmTa} -
SN n (rename pr) >SN n ¢

A consequence of fromRenameSN is that # € SN n iff 7 x € SN 7 for some variable x.
(Consider t = Ay.r" and 7 x (n)=> #'[y/x].) This property is essential for the construction
of the function space on sn sets (see next section).

absvVarSN : V{T'abn}{t: Tm(a::T) (a>b)} >
appt(varzero) e SNn—te SNn
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6 Soundness

A well-established technique (Tait, 1967) to prove strong normalization is to model each
type a as a set &7 = [[a] of sn terms. Each so-called semantic type .«# should contain the
variables in order to interpret open terms by themselves (using the identity valuation).
To establish the conditions of semantic types compositionally, the set .27 needs to be
saturated, i. e., contain SNe (rather than just the variables) and be closed under strong
head expansion (to entertain introductions).

As a preliminary step towards saturated sets we define sets of well-typed terms in
an arbitrary typing context but fixed type, TmSet a. We also define shorthands for the
largest set, set inclusion and closure under expansion.

TmSet : (a: Ty) — Set,
TmSet a = {T": Cxt} (t: TmI'a) — Set

[T]: v{a} - TmSet a
[T]e=T

_c :V{a} (A A’: TmSet a) — Set
AcA=V{I}{:TmI' }>Ar— A"t

Closed : V (n: N) {a} (A : TmSet a) — Set
Closedn A=V{I'}Hir':Tm[ _}—it(n)=>1"— A" - At

For each type constructor we define a corresponding operation on TmSets. The
product is simply pointwise through the use of the projections.

[X]_: v{ab} - TmSet a - TmSet b — TmSet (a X b)
(o [X] B) t= o (fst1) x Z (snd 1)

For function types we are forced to use a Kripke-style definition, quantifying over
all possible extended contexts A makes .o/ [—] Z closed under renamings.

[=] :V{ab} > TmSet a —» TmSet b — TmSet (a = b)
(7 [2]B){Ti1=v{A} (p: A<T) >V {u} - o u— 2 (app (rename p 1) u)

The TmSet for the later modality is indexed by the depth. The first two constructors
are for terms in the canonical form next ¢, at depth zero we impose no restriction on z,
otherwise we use the given set A. The other two constructors are needed to satisfy the
properties we require of our saturated sets.

data [»] {ax} (A : TmSet (force ac)) {I'} : (n: N) - Tm I (» ax) — Set where

next0 : V {r: Tm I (force ax)} —[»] A zero  (nextr)
next : V {n}{r: TmT (force a=)} (t: A1) —[»] A (sucn) (nextr)
ne 2V {n}{r: Tm T (» ax)} (n:SNent) —[»]An t
exp VYV {n}{tr’ : TmT (B aw)}

(=t (n)y=1) (t:[w]Ant) ->[»]An t

The particularity of our saturated sets is that they are indexed by the depth, which
in our case is needed to state the usual properties. In particular if a term belongs to a
saturated set it is also a member of SN, which is what we need for strong normalization.
In addition we require them to be closed under renaming, since we are dealing with
terms in a context.

record ISSAT (n: N) {a} (A : TmSet a) : Set where
field
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satSNe :SNen c A
satSN A cSNn
satExp : Closed n A

satRename : V{['A} (p: A<T) >V {} > At— A (rename p1)

record SAT (a: Ty) (n: N) : Set; where
field
satSet : TmSet a
satProp :IsSAT n satSer

For function types we will also need a notion of a sequence of saturated sets up to a
specified maximum depth 7.

SAT<: (a:Ty) (n:N) — Set,
SAT<an=Y{m} >m<Nn—SAT am

To help Agda’s type inference, we also define a record type for membership of a
term into a saturated set.

record € {anT} (t:TmT a) (& : SAT an) : Set where
constructor |__
field |_ :satSet ot

e( ) V{anT} (t: TmT a){m} (m<n: m<Nn) (& : SAT<an) — Set

te(msn) o =te o msn

Given the lemmas about SN shown so far we can lift our operations on TmSet to
saturated sets and give the semantic version of our term constructors.
For function types we need another level of Kripke-style generalization to smaller
depths, so that we can maintain antitonicity.
_[=]_:V{nab} («/:SAT<an) (% :SAT<bn) - SAT (a > b)n
of [—] % = record
{satSet =Art—>Vm(msn:m<N )— (Amsn[-] Bmsn)t

; satProp = record
{ satSN = CSN

; satSNe = CSNe

; satExp = CExp

; satRename = CRename
}

}

where

module o = SAT< &/
module Z = SAT< A
A = o .satSet
B = A.satSet

C : TmSet( =~
Ct=VYVm(mn:m<N _)— (Amsn[-] Bmsn)t

CSN : CcSN_
CSN t = fromRenameSN suc (absVarSN
(#.satSN <N.refl (¢ _ <N.refl suc (.«7.satSNe <N.refl (var zero)))))
CSNe : SNe cC

CSNenmmsnpu=
#.satSNe m<n (sneApp (mapSNe m<n (renameSNe p n)) (<7 .satSN m<n u))

CExp : V{I}{i':TmI }—>r( )=>r—->Cr—-C1t
CExpt=tmmsnpu=
A.satExp m<n ((cong (appl ) (appl ) (map= msn (rename= p 1=)))) (t m m<np u)

CRename: {I'A :List Ty} (p: A<D) {r: TmI _} - C1— C (renamepr)
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CRename = Ap{r} t mm<np’ {u} u—
=.subst (A1, — B {m} m<n (app t; u)) (subst-e p’ p 1) (t mm<n (p’ *sp) u)

The proof of inclusion into SN first derives that app (rename suc f) (var zero) is in
SN through the inclusion of neutral terms into ./ and the inclusion of 4 into SN, then
proceeds to strip away first (var zero) and then (rename suc), so that we are left with
the original goal SN n 7. Renaming 7 with suc is necessary to be able to introduce the
fresh variable zero of type a.
The types of semantic abstraction and application are somewhat obfuscated because
they need to mention the upper bounds and the renamings.
[abs] : V {nab}{o :SAT<an} {#:SAT<bn}{T}{r:Tm (a=T)b} —>
(V {m} (msn:m<Nn){A} (p:A<T){u:TmAa} —>
ue(msn) o/ — (substO u (subst (lifts p) 1)) € ( m<n ) AB)
— absre (o [-] £)
(| [abs] {& = ZH{ B =B} t)ymmsnpu=
SAT<.satExp Z m<n (P (SAT<.satSN &/ m<n w)) (| t m<n p (] u))
[app] : V{nab}{e/ : SAT<an}{B:SAT<bn}{I}{r: TmT (a = b)}{u:TmT a}
—te (o [>] B) > ue(<Nrefl ) o/ — apprue(<N.refl) #

[app] {# = %} {u=u} (1t) (] w) = =.subst (At — app ru e (<N.refl ) ) renld
(1t  <N.reflid u)

The TmSet for product types is directly saturated, inclusion into SN uses a lemma
to derive SN n ¢ from SN 7 (fst 1), which follows from .7 C SN.

_[X]_:V{nab} (& :SAT an) (#:SAT bn) — SAT (a X b)n
o [X] # = record

{ satSet = satSet &/ [x] satSet &

; satProp = record

{ satSNe = CSNe
; satSN =CSN
; satExp = CExp
; satRename = A p x — satRename . p (proj; x) , satRename % p (proj x)
}
}
where
A = satSet &/
B = satSet #
C : TmSet _
C = AX]B
CSNe : SNe cC
CSNe n = satSNe &7 (elim n fst)
satSNe Z (elim n snd)
CSN : CcSN
CSN (t, u) = bothProjSN (satSN </ t) (satSN Z u)
CExp s V{IHie:TmT_}=1(_)=1'—>Cr—-Ct

CExp 1= (t, u) = satExp 7 (cong fst fst 1=) ¢
, satExp # (congsnd snd 1=) u

Semantic introduction [pair] : 1y € & — 1, € B — pair t; tr € (& [x] ) and
eliminations [fst] : r € (& [x] B) > fstte < and [snd] : t e (& [X] B) > sndte
2 for pairs are straightforward.

[pair] : V{nab}{o:SAT an}{#B:SAT bn} {I'}{r: TmTa}{n: TmT b}
—>hed >ne B —pairt e (F [X] B)

| [pair] {&/ = @} {B =R} (1t) (] u) = satExp &/ (pfst (satSN B u)) t
satExp Z (Bsnd (satSN &7 t)) uw
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[fst] : V{nab}{/ :SATan}{ZB:SAT bn}{I}{t: TmT (a x b)}
—te (o [xX] B) >fstre o
[fstl t = 1 (proj; (I t))

[snd] : V{nab}{/ :SATan}{ZB :SAT bn}{I}{t: TmT (a x b)}
—te (o [x] B) >sndie B
[snd] t = 1 (proj> (| t))

The later modality is going to use the saturated set for its type argument at the
preceeding depth, we encode this fact through the type SATpred.

SATpred : (a: Ty) (n:N) — Set,
SATpred a zero =T
SATpred a (sucn) =SAT an

SATpredSet : {n: N}{a: Ty} — SATpred a n — TmSet a
SATpredSet {zero} & =[T]
SATpredSet {suc n} &/ =satSet .o/

Since the cases for [»]  are essentially a subset of those for SN, the proof of inclu-
sion into SN goes by induction and the inclusion of 7 into SN.

[»]_ :V{nas} (o : SATpred (force aco) n) — SAT (B as) n
[»]_ {n} {ac} o =record

{ satSet = [»] (SATpredSet /) n

; satProp = record

{ satSNe = ne
; satSN = CSN &/
; satExp = exp
; satRename = CRen &/
}

}

where

C : V {n} (o : SATpred (force ax) n) — TmSet (» a)
C {n} «/ =[»] (SATpredSet /) n

CSN : V {n} (< : SATpred (force ac) n) - C {n} &/ SN n

CSN &7 next0 = next0
CSN 7 (nextt) = next (satSN <7 t)
CSN 7 (ne m) =nen

CSN &7 (exp t=t) =exp = (CSN &/ t)

CRen : V {n} («/ : SATpred (force a) n) >V {I' A} (p:I'<A) >
vV {1} > C {n} o/ t - C {n} </ (subst p1)

CRen &7 p next0 = next0
CRen &/ p (nextt) = next (satRename </ p t)
CRen &/ p (ne n) = ne (renameSNe p n)

CRen &/ p (exp t=t) = exp (rename= p =) (CRen & p t)

Following Section 3 we can assemble the combinators for saturated sets into a se-
mantics for the types of A*. The definition of [ ]| proceeds by recursion on the induc-
tive part of the type, and otherwise by well-founded recursion on the depth. Crucially
the interpretation of the later modality only needs the interpretation of its type parame-
ter at a smaller depth, which is then decreasing exactly when the representation of types
becomes coinductive and would no longer support recursion.

[_]s :(a:Ty){n:N} >V {m} >m<Nn—SAT am

[ ] :(a:Ty)(n:N)—>SATan
[a > b]n=[al<{n} [=] [2]I<{n}
[ax b]n=[aln xI [6]n
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[wae Jn=[»]Pn
where
P :V n — SATpred (force a=) n
Pzero = _
P (sucn) = [forceac | n

Well-founded recursion on the depth is accomplished through the auxiliary defi-
nition [ _]< which recurses on the inequality proof. It is however straightforward to
convert in and out of the original interpretation, or between different upper bounds.

in< :Va{nm} (msn:m<Nn)— satSet ([a] m) csatSet([a]<
out< : Va{nm} (ms<n:m<Nn)— satSet ([a ]< m<n) csatSet ([a]m

m<n)
)
coerce< : Va{nn'm} (m<n:m<Nn) (msn’:m<Nn’)

— satSet ([ a [< m<n) c satSet ([ a [<m<n’)

As will be necessary later for the interpretation of next, the interpretation of types
is also antitone. For most types this follows by recursion, while for function types anti-
tonicity is embedded in their semantics and we only need to convert between different
upper bounds.

map[ J:Va{mn} ->m<Nn—satSet ([a] n)csatSet ([a]m)

map[a>b | msn ¢ =AlI<mpu—> let I<n = <N.trans I<Sm m<n in
coerce< b [<n I<m (11 I<n p (coerce< a I<Sm [<n u))

map[axb | msn (¢, u) =map[a]msnt, map[b] msnu

map[ B aco | ms<n (nemn) = ne (mapSNe m<n n)

map[ B ace | msn (expi=1) =exp (map= m<ni=) (map[ ¥ acw ] msnr)

map[ B aco ]| {m =zero} m<n next0 = next0

map[ B aco [ {m=sucm} () nextO

map[ B aeo ]| {m =zero} m<n (next ) = next0

map[ B aee | {m =sucm} ms<n (nextr) =next(map[ force ac ] (pred<N m<n) 1)

Typing contexts are interpreted as predicates on substitutions. These predicates in-
herit antitonicity and closure under renaming. Semantically sound substitutions act as
environments 6. We will need Ext to extend the environment for the interpretation of
lambda abstractions.

[_]C:VT{n} —V{A} (c:SubstT"A) — Set
[T]C{n}o=V{a} (x:VarT'a) >cxe [a]n

Map: V {mn} — (m<n: m<Nn) —
V{I'A}{c:SubstT'A} (6: [T ]C{n}o) > [T]C{m}o
Map m<n 6 {a} x = map[ a ]e m<n (6 x)

Rename: V{nAA'} > (p:RenAA") —
V {T}{c:SubstT'A} (6:[I']C {n} o) >
[TIC(peso)

Rename p 6 {a} x = | satRename ([a] ) p (| 6x)

Ext: V{anAT}{r:TmAa}—>(t:te [a]n)—
V{c:SubstI'A} (8:[['JCo) > [a::T]C(r::s0)

Extt 6 (zero) =t

Extt6 (sucx) =6x
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The soundness proof, showing that every term of A* is a member of our saturated
sets and so a member of SN, is now a simple matter of interpreting each operation in
the language to its equivalent in the semantics that we have defined so far.

sound: V{nal} (t: TmTa){A} {c:Subst"A} —
(6:[T]C{n} o) >substcre [a]n
sound (var x) 0 =0 x
sound (abs 1) 6 = [abs] {t =1} Am<npu—
Tin<  ms<n (| sound 7 (Ext (] out<  m<n (| u)) (Rename p (Map m<n 6))))
sound (app tu) 6 = [app] (sound :6) (sound u6)
sound (pair ru) 6 = [pair] (sound 70) (sound u )
sound (fstr) 6 = [fst] (sound 6)
sound (snd 1) 6 = [snd] (sound 6)
sound (r*u) 6 =[x] (sound6) (sound u6)
sound {zero} (nextr) 6 =] next0
sound {suc n} (next 1) 6 =1 (next (| sound ¢ (Map n<sn 6)))

The interpretation of next depends on the depth, at zero we are done, at suc n we
recurse on the subterm at depth 7, using antitonicity to Map the current environment to
depth n as well. In fact without next we would not have needed antitonicity at all since
there would have been no way to embed a term from a smaller depth into a larger one.

7 SN correctness

To complete our strong normalization proof we need to show that SN is included in the
characterization of strong normalization as a well-founded predicate sn.

fromSN : V{i} {T} {n:N}{a} {t: TmTa} >
SN {i}nt—>snnt

The cases for canonical and neutral forms are straightforward, since no reduction
can happen at the top of the expression and we cover the others through the induction
hypotheses.

fromSNe : V{iTna} {t: TmIla} —
SNe {i}nt—snnt

fromSN (ne n) = fromSNe n

fromSN (abs t) = abssn (fromSN t)

fromSN (pair t u) pairsn (fromSN t) (fromSN )
fromSN next0 nextOsn

fromSN (next t) nextsn (fromSN t)

fromSN (exp = t;) = acc (expsn 1= t; (fromSN ¢,))

The expansion case is more challenging instead, we can not in fact prove expsn by
induction directly.
expsn : V{ijTna}{rthto: TmT a} —

isizet (n)=th—>SN{j} nth—snnth—
t{n)=PBto—snnto

We can see the problem by looking at one of the congruence cases, in particular
reduction on the left of an application. There we would have tu € sn, tht; and ¢Bt,, and
need to prove #, u € sn. By induction we could obtain #, € sn but then there would be no
easy way to obtain #, u € sn, since strong normalization is not closed under application.
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The solution is to instead generalize the statement to work under a sequence of head
reduction evaluation contexts. We represent such sequences with the type ECxt*, and
denote their application to a term with the operator [ ]*.

expsnCxt : V {ijTnab}{tthto: TmI a} —
(Es :ECxt* Tab) —isizet (n )= th—
SN {j}n (Es[th]¥) > snn (Es[th]*) -
t{n)=Ppto—snn(Es[to]*)

expsn 1= t 1 =B = expsnCxt [| 1= t 1 (=P

In this way the congruence cases are solved just by induction with a larger context.

expsnCxt E (cong (appl u) (appl .u) th=) th th (cong (appl .u) (appl .u) =)
= expsnCxt (appl u :: E) th= th th 1=

This generalization however affects the lemmata that handle the reduction cases,
which also need to work under a sequence of evaluation contexts. Fortunately the addi-
tion of a premise E[z] € sn, about an unrelated term z, allows to conveniently handle all
the reductions that target the context.

Brsn: V {nT b} {aco beo} {z} {t: Tm T (force (aco = beo))} {u: Tm I (force ac)}
(E: ECxt* " (» beo) b) —sn (sucn) (E[z]*) =

snni—>snnu— sn (sucn) (E[next (app ru) |*) =
sn (suc n) (E [ next ¢+ next {aco = aco} u ]*)

Bfstsn: V{nT b} {ac}{z} {t: Tm b} {u: TmI a}
(E:ECxt*T'bc) »>snn(E[z]*) —
snnt—snnu—snn(E[t]¥) -
sn n (E [ fst (pair t u) ]*)

Bsndsn: V {nTb} {ac} {z}{r: Tm b} {u:TmT a}
(E:ECxt*T'bc) »>snn(E[z]*) —
snnt—snnu—snn(E[t]¥) -
snn (E[snd (pair ut) ]*)

Bsn: V{inabcT}{u:TmTa}{r: Tm (a::T) b}{z}
(Es :ECxt*T'bc) »>snn(Es[z]¥) >
snnt— SN {i} n(Es[substO ut]*) ->snnu—
snn (Es[app (abs t) u]¥)

8 Conclusions

In this paper, we presented a family of strongly-normalizing reduction relations for
simply-typed lambda calculus with Nakano’s modality for recursion. Using a similar
stratification, Krishnaswami and Benton (201 1a) have shown weak normalization using
hereditary substitutions, albeit for a system without recursive types.

Our Agda formalization uses a saturated sets semantics based on an inductive no-
tion of strong normalization. Herein, we represented recursive types as infinite type
expressions and terms as intrinsically well-typed ones.

Our treatment of infinite type expressions was greatly simplified by adding an exten-
sionality axiom for the underlying coinductive type to Agda’s type theory. This would
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not have been necessary in a more extensional theory such as Observational Type The-
ory (Altenkirch et al., 2007) as shown in (McBride, 2009). Possibly Homotopy Type
Theory (UnivalentFoundations, 2013) would also address this problem, but there the
status of coinductive types is yet unclear.

For the future, we would like to investigate how to incorporate guarded recursive
types into a dependently-typed language, and how they relate to other approaches like
coinduction with sized types, for instance.

Acknowledgments. Thanks to Lars Birkedal, Ranald Clouston, and Rasmus Mggelberg
for fruitful discussions on guarded recursive types, and Hans Bugge Grathwohl, Fabien
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Abstract

This paper improves the treatment of equality in guarded dependent type theory (GDTT),
by combining it with cubical type theory (CTT). GDTT is an extensional type theory with
guarded recursive types, which are useful for building models of program logics, and for
programming and reasoning with coinductive types. We wish to implement GDTT with
decidable type checking, while still supporting non-trivial equality proofs that reason about
the extensions of guarded recursive constructions. CTT is a variation of Martin-Lof type
theory in which the identity type is replaced by abstract paths between terms. CTT provides
a computational interpretation of functional extensionality, is conjectured to have decidable
type checking, and has an implemented type checker. Our new type theory, called guarded
cubical type theory, provides a computational interpretation of extensionality for guarded
recursive types. This further expands the foundations of CTT as a basis for formalisation in
mathematics and computer science. We present examples to demonstrate the expressivity of
our type theory, all of which have been checked using a prototype type-checker implementation,
and present semantics in a presheaf category.

1 Introduction

Guarded recursion is a technique for defining and reasoning about infinite objects. Its applications
include the definition of productive operations on data structures more commonly defined via
coinduction, such as streams, and the construction of models of program logics for modern
programming languages with features such as higher-order store and concurrency [6]. This is
done via the type-former >, called ‘later’, which distinguishes data which is available immediately
from data only available after some computation, such as the unfolding of a fixed-point. For
example, guarded recursive streams are defined by the equation

Stry = AXDStry

rather than the more standard Stry = A x Stra, to specify that the head is available now but
the tail only later. The type for fixed-point combinators is then (>A — A) — A, rather than
the logically inconsistent (A — A) — A, disallowing unproductive definitions such as taking the
fixed-point of the identity function.

Guarded recursive types were developed in a simply-typed setting by Clouston et al. [9],
following earlier work [21, 3, 1], alongside a logic for reasoning about such programs. For large
examples such as models of program logics, we would like to be able to formalise such reasoning,.
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A major approach to formalisation is via dependent types, used for example in the proof assistants
Coq [18] and Agda [22]. Bizjak et al. [8], following earlier work [5, 20|, introduced guarded
dependent type theory (GDTT), integrating the > type-former into a dependently typed calculus,
and supporting the definition of guarded recursive types as fixed-points of functions on universes,
and guarded recursive operations on these types.

We wish to formalise non-trivial theorems about equality between guarded recursive construc-
tions, but such arguments often cannot be accommodated within intensional Martin-Lof type
theory. For example, we may need to be able to reason about the extensions of streams in order
to prove the equality of different stream functions. Hence GDTT includes an equality reflection
rule, which is well known to make type checking undecidable. This problem is close to well-known
problems with functional extensionality [13, Sec. 3.1.3], and indeed this analogy can be developed.
Just as functional extensionality involves mapping terms of type (z : A) — Id B (fz) (gz) to proofs
of Id (A — B) f g, extensionality for guarded recursion requires an extensionality principle for
later types, namely the ability to map terms of type >Id A¢u to proofs of Id (>A) (nextt) (nextu),
where next is the constructor for ». These types are isomorphic in the intended model, the
presheaf category @ known as the topos of trees, and so in GDTT their equality was asserted as
an axiom. But in a calculus without equality reflection we cannot merely assert such axioms
without losing canonicity.

Cubical type theory (CTT) [10] is a new type theory with a computational interpretation of
functional extensionality but without equality reflection, and hence is a candidate for extension with
guarded recursion, so that we may formalise our arguments without incurring the disadvantages
of fully extensional identity types. CTT was developed primarily to provide a computational
interpretation of the univalence axiom of Homotopy Type Theory [26]. The most important
novelty of CTT is the replacement of inductively defined identity types by paths, which can be
seen as maps from an abstract interval I, and are introduced and eliminated much like functions.
CTT can be extended with identity types which model all rules of standard Martin-Lof type
theory [10, Sec. 9.1], but these are equivalent to path types, and in our paper it suffices to work
with path types only. CTT has sound denotational semantics in (fibrations in) cubical sets, a
presheaf category that is used to model homotopy types. Many basic syntactic properties of CTT,
such as the decidability of type checking, and canonicity for base types, are yet to be proved, but
a type checker has been implemented! that confers some confidence in such properties.

In Sec. 2 of this paper we propose guarded cubical type theory (GCTT), a combination of the two
type theories? which supports non-trivial proofs about guarded recursive types via path equality,
while retaining the potential for good syntactic properties such as decidable type-checking and
canonicity. In particular, just as a term can be defined in CTT to witness functional extensionality,
a term can be defined in GCTT to witness extensionality for later types. Further, we use elements
of the interval of CTT to annotate fixed-points, and hence control their unfoldings. This ensures
that fixed-points are path equal, but not judgementally equal, to their unfoldings, and hence
prevents infinite unfoldings, an obvious source of non-termination in any calculus with infinite
constructions. The resulting calculus is shown via examples to be useful for reasoning about
guarded recursive operations; we also view it as potentially significant from the point of view of
CTT, extending its expressivity as a basis for formalisation.

In Sec. 3 we give sound semantics to this type theory via the presheaf category over the
product of the categories used to define semantics for GDTT and CTT. This requires considerable
work to ensure that the constructions of the two type theories remain sound in the new category,
particularly the glueing and universe of CTT. The key technical challenge is to ensure that the >
type-former supports the compositions that all types must carry in the semantics of CTT.

Ihttps://github.com/mortberg/cubicaltt
2with the exception of the clock quantification of GDTT, which we leave to future work.
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We have implemented a prototype type-checker for this extended type theory®, which provides
confidence in the type theory’s syntactic properties. All examples in this paper, and many others,
have been formalised in this type checker.

For reasons of space many details and proofs are omitted from this paper, but are included in
a technical appendix?.

2 Guarded Cubical Type Theory
This section introduces guarded cubical type theory (GCTT), and presents examples of how it
can be used to prove properties of guarded recursive constructions.

2.1 Cubical Type Theory

We first give a brief overview of cubical type theory® (CTT) [10]. We start with a standard
dependent type theory with II, ¥, natural numbers, and a Russell-style universe:

T,A = ()| Tz: A Contexts
t,u,A,B == z|dx:At|tu]|(z:A) — B II-types
| (tu)|tl]t2]|(z:A)xB -types
| 0| st| natrectu| N Natural numbers
| U Universe

We adhere to the usual conventions of considering terms and types up to a-equality, and writing
A — B, respectively A x B, for non-dependent IT and X-types. We use the symbol ‘=" for
judgemental equality.

The central novelty of CTT is its treatment of equality. Instead of the inductively defined
identity types of intensional Martin-Lof type theory [17], CTT has paths. The paths between two
terms ¢, u of type A form a sort of function space, intuitively that of continuous maps from some
interval I to A, with endpoints ¢ and u. Rather than defining the interval I concretely as the
unit interval [0,1] C R, it is defined as the free De Morgan algebra on a discrete infinite set of
names {i,j,k,...}. A De Morgan algebra is a bounded distributive lattice with an involution
1 — - satisfying the De Morgan laws

L= (iAj)=(1—i)v(1-J), L= (V)= (1) A(1- ).

The interval [0,1] C R, with min, max and 1 — -, is an example of a De Morgan algebra.
The syntax for elements of T is:

ros n=0|1]i|1l—r|rAs|rVs.

0 and 1 represent the endpoints of the interval. We extend the definition of contexts to allow
introduction of a new name:
LA == - |T,i: 1

The judgement I' - r : I means that r draws its names from I'. Despite this notation, I is
not a first-class type. Path types and their elements are defined by the rules in Fig. 1. Path
abstraction, (i) t, and path application, ¢t r, are analogous to A-abstraction and function application,
and support the familiar S-equality ({i)¢)r = ¢[r/i] and n-equality (i)ti = ¢. There are two
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TFA T'Ht: A TFu:A
I'FPathAtu

THA Ti:IFHt: A T'Ht:PathAus T'kEr:I
'+ (i)t : Path A ¢[0/i] t[1/1] Tktr: A

Figure 1: Typing rules for path types.

additional judgemental equalities for paths, regarding their endpoints: given p: Path A t u we
have p0 =t and pl = u.

Paths provide a notion of identity which is more extensional than that of intensional Martin-Lof
identity types, as exemplified by the proof term for functional extensionality:

funext fg = Ap. (i) \z.pzi : ((x: A) — PathB (fz) (gz)) — Path (A— B) f g.

The rules above suffice to ensure that path equality is reflexive, symmetric, and a congruence,
but we also need it to be transitive and, where the underlying type is the universe, to support a
notion of transport. This is done via (Kan) composition operations.

To define these we need the face lattice, IF, defined as the free distributive lattice on the
symbols (¢ = 0) and (i = 1) for all names 4, quotiented by the relation (i = 0) A (i = 1) = Op.
The syntax for elements of IF is:

op v=0p | 1p [(i=0) | (i=1) [ pAY [V

As with the interval, IF is not a first-class type, but the judgement I' F ¢ : IF asserts that ¢ draws
its names from I'. We also have the judgement I' - ¢ = 1) : IF' which asserts the equality of ¢ and
1 in the face lattice. Contexts can be restricted by elements of IF:

A == - | T,

Such a restriction affects equality judgements so that, for example, I', ¢ - 101 = 95 : IF is equivalent
tol'FpAYr=pAY: F

We write ' + ¢t : A[p — u] as an abbreviation for the two judgements I' F ¢ : A and
T',oFt=uwu: A, noting the restriction with ¢ in the equality judgement. Now the composition
operator is defined by the typing and equality rule

I'tp:F Ii:IFA Ipi:ITFu: A T+ ap : A[0/i][¢ — ul[0/1]]
T'F comp’ A [p — u] ag : A[1/i][e — u[1/i]]

A simple use of composition is to implement the transport operation for Path types
transp’ Aa £ comp’ A [0p =[] a : A[l/i],

where a has type A[0/i]. The notation [| stands for an empty system. In general a system is
a list of pairs of faces and terms, and it defines an element of a type by giving the individual
components at each face. We extend the syntax as follows:

tu, A B n= o | g1t o ]

Shttp://github.com/hansbugge/cubicaltt/tree/gcubical
4http://cs.au.dk/ birke/papers/gdtt-cubical-technical-appendix.pdf
Shttp://www.cse.chalmers.se/ coquand/selfcontained.pdf is a self-contained presentation of CTT.
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N F&ET -1 NFt:pEA
EoT — Félp+t]: T -1 2: A

Figure 2: Formation rules for delayed substitutions.

Below we see two of the rules for systems; they ensure that the components of a system agree
where the faces overlap, and that all the cases possible in the current context are covered:

A
o1 VooV, =1 : F Dottt A FioiNpjbti=t;: A i,j=1...n
TEprti,onta] : A

FF[@ltl,...,wntn]:A FF!,Q,ZI]FIF
FF[WI tlw-w@n tn]:ti:A

We will shorten [p1 V...V @n = [p1 t1,. .., 0n ta]] 10 [01 = t1,... 00— ).
A non-trivial example of the use of systems is the proof that Path is transitive; given
p: PathAaband q: Path A b c we can define

transitivity pg £ (i) comp? A [(i = 0) > a, (i = 1)+ qj] (pi) : Path A a c.

This builds a path between the appropriate endpoints because we have the equalities comp’ A [1p
al (p0) = a and comp’ A [Iy = qj] (p1) =gl =c.

For reasons of space we have omitted the descriptions of some features of CTT, such as glueing,
and the further judgemental equalities for terms of the form comp® A [p + u] ag that depend on
the structure of A.

2.2 Later Types

In Fig. 3 we present the ‘later’ types of guarded dependent type theory (GDTT) (8], with
judgemental equalities in Figs. 4 and 5. Note that we do not add any new equation for the
interaction of compositions with >; such an equation would be necessary if we were to add the
eliminator prev for >, but this extension (which involves clock quantifiers) is left to further work.
We delay the presentation of the fixed-point operation until the next section.

The typing rules use the delayed substitutions of GDTT, as defined in Fig. 2. Delayed
substitutions resemble Haskell-style do-notation, or a delayed form of let-binding. If we have
a term t : A, we cannot access its contents ‘now’, but if we are defining a type or term that
itself has some part that is available ‘later’, then this part should be able to use the contents of
t. Therefore delayed substitutions allow terms of type >A to be unwrapped by > and next. As
observed by Bizjak et al. [8] these constructions generalise the applicative functor [19] structure
of ‘later’ types, by the definitions pure t 2 nextt, and f ® t = next [f' + f,t' «t]. f't/, as well
as a generalisation of the ® operation from simple functions to II-types. We here make the
new observation that delayed substitutions can express the function & : >U — U, introduced by
Birkedal and Mggelberg [4] to express guarded recursive types as fixed-points on universes, as
Au>[u’ + ul.u'; see for example the definition of streams in Sec. 2.4.

Example 1. In GDTT it is essential that we can convert terms of type >¢.1d4 ¢ u into terms
of type ldy¢. 4 (next&.t) (next €. w), as it is essential for Lob induction, the technique of proof by
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ILT'FA F&:T—T' T,I'FA:U F&T—I' TDLOTFt:A F&TD—T
IFotA FFpeA:U T Fnexté.t: €A

Figure 3: Typing rules for later types.

Féfz«t]:T—T",2:B r,T'FA
Thpé[r«t].A=rEA

Félp+ty+u)& T —-T' 2:B,y:CT" r,T'-C I,T,z:B,y:C,T" A
FEplle  ty—ul& A=y« u,z + t]E.A

F&:T -1 I\ I',x:BF A I,T'+t:B
TFpl [z« nextl.t] .A=pE Alt/x]

Figure 4: Type equality rules for later types (congruence and equivalence rules are omitted).

Félz+t]: T —-T1",2:B T, IVFu:A
PEnextl[z+ t].u=nextl u:>EA

Félz—ty+u& T =TI 2:By:CT" L T'FC I\I',2:B,y:C,T"Fv: A
Tknextéz <+ t,y <+ ulf . v=nextl|y+ u,x + t]& v:>l[z+t,y <+ ul.A

F&T -1 I'I',x:BlFu:A \T'+t:B THt:pEA
b next [z next. t].u = next&. ult/x] : >E.Aft/x] Tknextl[z«t].z =t:>A

Figure 5: Term equality rules for later types. We omit congruence and equivalence rules, and the
rules for terms of type U, which reflect the type equality rules of Fig. 4.
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T'kEr:I Tez:pAFL: A Tz:pAFL: A
THdfix"z.t:>A [ b dfix! 2.t = next t[dfix’ z.t/a] : bA’

Figure 6: Typing and equality rules for the delayed fixed-point

guarded recursion where we assume >p, deduce p, and hence may conclude p with no assumptions.
This is achieved in GDTT by postulating as an axiom the following judgemental equality:

ldpg. 4 (next&.t) (nextéu) = pEldatu (1)

A term from left-to-right of (1) can be defined using the J-eliminator for identity types, but the
more useful direction is right-to-left, as proofs of equality by Lob induction involve assuming that
we later have a path, then converting this into a path on later types. In fact in GCTT we can
define a term with the desired type:

Ap.(i) next£[p’ < pl.p'i : (5€.Path Atu) — Path (€. A) (next£.t) (next €. u). (2)

Note the similarity of this term and type with that of funext, for functional extensionality, presented
on page 4. Indeed we claim that (2) provides a computational interpretation of extensionality for
later types.

2.3 Fixed Points

In this section we complete the presentation of GCTT by addressing fixed points. In GDTT there
are fixed-point constructions fix z.t with the judgemental equality fixx.t = ¢[nextfixz.t/x]. In
GCTT we want decidable type checking, including decidable judgemental equality, and so we
cannot admit such an unrestricted unfolding rule. Our solution it that fixed points should not be
judgementally equal to their unfoldings, but merely path equal. We achieve this by decorating
the fixed-point combinator with an interval element which specifies the position on this path.
The 0-endpoint of the path is the stuck fixed-point term, while the 1-endpoint is the same term
unfolded once. However this threatens canonicity for base types: if we allow stuck fixed-points in
our calculus, we could have stuck closed terms fix’ z.t inhabiting N. To avoid this, we introduce
the delayed fixed-point combinator dfix, which produces a term ‘later’ instead of a term ‘now’.
Its typing rule, and notion of equality, is given in Fig. 6. We will write fix" z.t for t[dfix" z.t/x],
fix z.t for fix’ z.t, and dfixz.t for dfix’ z.t.

Lemma 2 (Canonical unfold lemma). For any term I',x : >A &t : A there is a path between
fixx.t and t[nextfixx.t/z], given by the term (i) fix" x.t.

Transitivity of paths (via compositions) ensures that fixz.¢ is path equal to any number of
fixed-point unfoldings of itself.

A term a of type A is said to be a guarded fixed point of a function f :>A — A if there is a
path from a to f(nexta).

Proposition 3 (Unique guarded fixed points). Any guarded fized-point a of a term f:>A — A
is path equal to fixx.f x.

Proof. Given p : Path A a (f (nexta)), we proceed by Loéb induction, i.e., by assuming ih :
>(Path A a (fixz.f x)). We can define a path

s 2 (i) f(next[qg < ih].q4) : Path A (f(nexta)) (f(nextfixa.f x)),
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which is well-typed because the type of the variable ¢ ensures that ¢0 is judgementally equal to
a, resp. g1 and fixz.f x. Note that we here implicitly use the extensionality principle for later
(2). We compose s with p, and then with the inverse of the canonical unfold lemma of Lem. 2,
to obtain our path from a to fixz.f z. We can write out our full proof term, where p~! is the
inverse path of p, as

fixih . (i) comp? A [(i = 0) = p~ L, (i = 1) = f(dfix! ™7 z.f )] (f(next [q < ih].qi)). O

2.4 Programming and Proving with Guarded Recursive Types

In this section we show some simple examples of programming with guarded recursion, and prove
properties of our programs using Lob induction.

Streams. The type of guarded recursive streams in GCTT, as with GDTT, are defined as
fixed points on the universe:
Stra £ fixz. A X ply + ).y

Note the use of a delayed substitution to transform a term of type >U to one of type U, as
discussed at the start of Sec. 2.2. Desugaring to restate this in terms of dfix, we have

Stra = A xobly « dfi® 2.4 x by « 2].9].y

The head function hd : Strq4 — A is the first projection. The tail function, however, cannot be
the second projection, since this yields a term of type

> [y dfix® z. A x [y + ] Y]y 3)

rather than the desired >Strs. However we are not far off; >Stry is judgementally equal to
> [y — dfix! z. A x> ly + z] y] .y, which is the same term as (3), apart from endpoint 1 replacing
0. The canonical unfold lemma (Lem. 2) tells us that we can build a path in U from Str, to
A x >Str4; call this path (i) Strly. Then we can transport between these types:

unfold s £ transp® Str’y s fold s & transp® Strly s

Note that the compositions of these two operations are path equal to identity functions, but
not judgementally equal. We can now obtain the desired tail function tl : Stry — >Strs by
composing the second projection with unfold, so tl s £ (unfold s).2. Similarly we can define the
stream constructor cons (written infix as ::) by using fold:

cons £ \a, s.fold (a,s) : A — >Strq — Stra.

We now turn to higher order functions on streams. We define zipWith : (A - B — C) —
Stry — Strp — Stre, the stream function which maps a binary function on two input streams to
produce an output stream, as

2z
zipWith f £ fixz.\s1, s0.f (hd s1) (hd s2) =2 next | ¢ «tl sy | .2"t1ts.
to tl S92

Of course zipWith is definable even with simple types and >, but in GCTT we can go further and
prove properties about the function:
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Proposition 4 (zipWith preserves commutativity). If f : A — A — B is commutative, then
zipWith f : Strq — Stra — Strp is commutative.
Proof. Let c: (a1 : A) — (ag : A) — Path B (f a1 a2) (f az a1) witness commutativity of f. We
proceed by L&b induction, i.e., by assuming

ih:>((s1:Stra) — (s2 : Strg) — Path B (zipWith f s s2) (zipWith fs251)).
Let i : T be a fresh name, and s1,s9 : Stry. Our aim is to construct a stream v which is

zipWith f s; so when substituting 0 for ¢, and zipWith f s2 s; when substituting 1 for ¢. An initial
attempt at this proof is the term

q < ih
v 2 c(hd s1)(hd s9)i == next | ty < tlsy | .qtitai : Strp,
to tl So
which is equal to
B t1 tl S1 . .
f(hd s1) (hd s2) :: next { ty < tl 59 } . zipWith ft;to

when substituting 0 for 4, which is zipWith fs; sy, but unfolded once. Similarly, v[1/d] is
zipWith f s s1 unfolded once. Let (j) zipWith’ be the canonical unfold lemma associated with
zipWith (see Lem. 2). We can now finish the proof by composing v with (the inverse of) the
canonical unfold lemma. Diagrammatically, with ¢ along the horizontal axis and j along the
vertical:

zipWith fs189 ---------mmmm ey > zipWith f s251
zipWith! ™7 fs; 5o zipWith! ™7 f s 51
f(hd s1) (hd s3) = f(hd s2) (hd s1) =
t <~ tl S1 . . — tz(—t' So . .
next { t  tl 59 } . zipWith f ity to next e tls | zipWith fiaty

The complete proof term, in the language of the type checker, can be found in Appendix A. [J

Guarded recursive types with negative variance. A key feature of guarded recursive
types are that they support negative occurrences of recursion variables. This is important
for applications to models of program logics [6]. Here we consider a simple example of a
negative variance recursive type, namely Reca 2 fixz.(>[z’ < x].2") — A, which is path equal to
>Recs — A. As a simple demonstration of the expressiveness we gain from negative guarded
recursive types, we define a guarded variant of Curry’s Y combinator:

A Az.f(next[z’ < z]. ((unfoldz')z)) : >Recs — A

Y Af.A(nextfold A) : PA—A) = A,
where fold and unfold are the transports along the path between Rec4 and >Recy — A. As with
zipWith, Y can be defined with simple types and > [1]; what is new to GCTT is that we can also
prove properties about it:

1>l

Proposition 5 (Y is a guarded fixed-point combinator). Y f is path equal to f (next(Y f)), for
any f:>A — A. Therefore, by Prop. 3, Y is path equal to fix.

Proof. Y f simplifies to f (next(unfold (fold A) (next fold A))), and unfold (fold A) is path equal to
A. A congruence over this path yields our path between Y f and f(next(Y f)). O
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3 Semantics

In this section we sketch the semantics of GCTT. The semantics is based on the category Cxw
of presheaves on the category C x w, where C is the category of cubes [10] and w is the poset of
natural numbers. The category of cubes is the opposite of the Kleisli category of the free De
Morgan algebra monad on finite sets. More concretely, given a countably infinite set of names
i,j,k,..., C has as objects finite sets of names I, J. A morphism I — J € C is a function
J — DM (I), where DM (I) is the free De Morgan algebra with generators I.

Following the approach of Cohen et al. [10], contexts of GCTT will be interpreted as objects
of C X w. Types in context I will be interpreted as pairs (A4,c4) of a presheaf A on the category
of elements of I and a composition structure c4. We call such a pair a fibrant type.

To aid in defining what a composition structure is, and in showing that composition structure
is preserved by all the necessary type constructions, we will make use of the internal language of
C x w in the form of dependent predicate logic; see for example Phoa |24, App. .

A type of GCTT in context I will then be interpreted as a pair of a type I' - A in the internal
language of 6\% and a composition structure c4, where c4 is a term in the internal language of
a specific type ®(T'; A), which we define below after introducing the necessary constructs. Terms
of GCTT will be interpreted as terms of the internal language. We use categories with families [12]
as our notion of a model. Due to space limits we omit the precise definition of the category with
families here, and refer to the online technical appendix.

The semantics is split into several parts, which provide semantics at different levels of generality.

1. We first show that every presheaf topos with a non-trivial internal De Morgan algebra
I satisfying the disjunction property can be used to give semantics to the subset of the
cubical type theory CTT without glueing and the universe. We further show that, for any
category D, the category of presheaves on C x D has an interval I, which is the inclusion of
the interval in presheaves over the category of cubes C.

2. We then extend the semantics to include glueing and universes. We show that the topos of
presheaves C x D for any category D with an initial object can be used to give semantics to
the entire cubical type theory.

3. Finally, we show that the category of presheaves on C x w gives semantics to delayed
substitutions and fixed points. Using these and some additional properties of the delayed
substitutions we show in the internal language of C x w that >£.A has composition whenever
A has composition.

Combining all three, we give semantics to GCTT in C X w.

3.1 Model of CTT Without Glueing and the Universe

Let € be a topos with a natural numbers object, and let T be a De Morgan algebra internal to £
which satisfies the finitary disjunction property, i.e.,

(ivi)=1 = (=1)v(j=1), and —(0=1).

Faces. Using the interval I we define the type F as the image of the function - =1:1 — Q,
where 2 is the subobject classifier. More precisely, IF is the subset type

F2{p:Q|3G:D,p=(i=1)}
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We will implicitly use the inclusion I — Q. The following lemma states in particular that the
inclusion is compatible with all the lattice operations, so omitting it is justified. The disjunction
property is crucial for validity of this lemma.

Lemma 6.
o IF is a lattice for operations inherited from §).
e The corestriction - =1 :1 — F is a lattice homomorphism. It is not injective in general.

Given T ¢ : F, we write [p] 2 Idp(p, T). Given T+ A and T' - ¢ : F a partial element of
type A of extent ¢ is a term ¢ of type I' - ¢ : II(p : []).A. If we are in a context with p : [¢],
then we will treat such a partial element ¢ as a term of type A, leaving implicit the application
to the proof p, i.e., we will treat ¢ as ¢t p. We will often write I, [¢] instead of ', p : [¢] when we
do not mention the proof term p explicitly in the rest of the judgement. This is justified since
inhabitants of [¢] are unique up to judgemental equality (recall that dependent predicate logic
is a logic over an extensional dependent type theory). Given I',p : [¢] F B we write B¥ for the
dependent function space II(p : [¢]).B and again leave the proof p implicit.

For a term T, p: [¢] - u : A we define A[p > u] 2 B(a : A). (Ida(a,u))?.

Compositions. Faces allow us to define the type of compositions ®(I'; A). Homotopically,
compositions allow us to put a lid on a box [10]. Given I' F A we define the corresponding type
of compositions as

O A) 2 TM(y T — T)(p s F) (u: 10(3 s I). (A(1(0)))")..
A (0)[e = u(0)] = A(y(1))[p — u(1)].
Here we treat the context I' as a closed type. This is justified because there is a canonical
bijection between contexts and closed types of the internal language. The notation A(+(7)) means
substitution along the (uncurried) ~.

Due to lack of space we do not show how the standard constructs of the type theory are
interpreted. We only sketch how the following composition term is interpreted in terms of the
composition in the model.

Pkp:F Ti:T-A Dpyi:IFu: A T+ ap : A[0/i][¢ — u[0/1]]
T+ comp® A [+ u] ag : A[1/d][p — u[1/i]]

By assumption we have ¢4 of type ®(T',i : I; A) and v and ag are interpreted as terms in the
internal language of the corresponding types. The interpretation of composition is the term

7Tk ea (A D.011) 0 (AG: DD [p])-u) a : A1) > u(1)]

where we have omitted writing the proof u(0) = ag on [¢].

Concrete models. The category of cubical sets has an internal interval type satisfying the
disjunction property [10]. It is the functor mapping I € C to DM (I). Since the theory of a De
Morgan algebra with 0 # 1 and the disjunction property is geometric [16, Section X.3] we have
that for any topos F and geometric morphism ¢ : F — 5, ¢*(I) € F is a De Morgan algebra
with the disjunction property®. In particular, given any category DD there is a projection functor
7 : C x D — C which induces the (essential) geometric morphism 7* < 7, : CxD— C, where 7
is precomposition with 7, and 7, takes limits along D.

6A statement very close to this can be used as a characterisation of C: this topos classifies the geometric theory
of flat De Morgan algebras [25].
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Summary. With the semantic structures developed thus far we can give semantics to the
subset of CTT without glueing and the universe.

3.2 Adding Glueing and the Universe

The glueing construction [10, Sec. 6] is used to prove both fibrancy and, subsequently, univalence
of the universe of fibrant types. Concretely, given

FFe:I Lol -T kA I'tw: (T — A)¥

we define the type Glue [p +— (T, w)] A in two steps. First we define the type’

Gluep(p, T, A, w) £ Z Z H wp(tp) = a.
]

a:A t:T% p:p

For this type we have the following property T, [p] - T' = Gluef (¢, T, A, w). However, we need an
equality, not an isomorphism, to obtain the correct typing rules. The technical appendix provides
a general strictification lemma which allows us to define the type Glue.

To show that the type Glue [¢ — (T, w)] A is fibrant we need to additionally assume that the
map ¢ — A_.¢:F — (I - F) has an internal right adjoint V. Such a right adjoint exists in all

toposes C x D, for any small category D with an initial object.

Universe of fibrant types. Given a (Grothendieck) universe { in the meta-theory, the
Hofmann-Streicher universe [14] U“ in C X w maps (I,n) to the set of functors valued in £l on
the category of elements of y(I,n), where y is the Yoneda embedding. As in Cohen et al. [10]
we define the universe of fibrant types uy by setting L{}"(I ,n) to be the set of fibrant types in
context y(I,n). The universe U} satisfies the rules

I'ka:U Fc: ®(T;El(a)) F'ta:Uy Tha:Us
't (a,c) : Uy I' + El(a) F Comp(a) : ®(T; El(a))

Using the glueing operation, one shows that the universe of fibrant types is itself fibrant and,
moreover, that it is univalent.

3.3 Adding the Later Type-Former

We now fix the site to be C x w. From the previous sections we know that Cxw gives semantics
to CTT. The new constructs of GDTT are the > type-former and its delayed substitutions, and
guarded fixed points. Continuing to work in the internal language, we first show that the internal
language of € x w can be extended with these constructions, allowing interpretation of the subset
of the type theory GDTT without clock quantification [8]. Due to lack of space we omit the
details of this part, but do remark that > is defined as

{*x} ifn=0
(X)), n) o

X(I,m) ifn=m+1
The essence of this definition is that > depends only on the “w component” and ignores the “C
component”. Verification that all the rules of GDTT are satisfied is therefore very similar to the
verification that the topos @ is a model of the same subset of GDTT.

"This type is already present in Kapulkin at al. [15, Thm 3.4.1].
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The only additional property we need now is that > preserves compositions, in the sense that
if we have a delayed substitution - & : T' — IV and a type I, " I A together with a closed term
cy of type ®(I',I"; A) then we can construct ¢, 4 of type ©(I';>€.4).

The following lemma uses the notion of a type I' - A being constant with respect to w. This
notion is a natural generalisation to types-in-context of the property that a presheaf is in the
image of the functor 7*. We refer to the online technical appendix for the precise definition. Here
we only remark that the interval type I is constant with respect to w, as is the type I' - [¢] for
any term I' - : [F.

Lemma 7. Assume ' A, T',T",x: A+ B and £ : T — T, and further that A is constant with
respect to w. Then the following two types are isomorphic

ThpéIl(z: A).B=1(z: A).>EB (4)
and the canonical morphism \f \z.next [, f' + f]. f' x from left to right is an isomorphism.

Corollary 8. IfT't ¢ : IF then we have an isomorphism of types
Tk el [¢]).B = M(z: [¢]) 5E.B. (5)

Lemma 9 (>¢-types preserve compositions). If bE.A is a well-formed type in context T' and we
have a composition term ca : ®(T',I"; A), then there is a composition term ¢ : ®(T';>E.A).

Proof. We show the special case with an empty delayed substitution. For the more general proof
we refer to the technical appendix. Assume we have a composition c4 : ®(T'; A). Our goal is to
find a term ¢ : ®(T';>A), so we first introduce some variables:

v:I-T p:F w:Il(i : 0). ((bA)(vi)* ag : (>A)(70)[p — u0].

Using the isomorphisms from Cor. 8 and Lem. 7 we obtain a term @ : >(IL(¢ : I).(A(y1))?)
isomorphic to u. We can now — almost — write the term

u 1@

next ,
ag < ag

[-earenap < stac. 8
what is missing is to check that af, = v/ 0 on the extent ¢, so that we can legally apply ca;
this is equivalent to saying that the type > [u’ < @, ag < ao] . Id 4 0y (ag, v’ 0)¥ is inhabited. We
transform this type as follows:

u 1 Iy e u - ks
> { ah  ay } Id(ag,u' 0)¥ = <> { al  ag .Id(ag, v’ 0) (Cor. 8)
’ ~ ’ ~ ¥
= (Id(next { v cu } . ag, next { v cu } .u’(]))
ag < ag ag < ag

= (Id(ag,u0))%,

where the last equality uses that @ is defined using the inverse of AfAz. next [f’ « f]. f' = (Lem. 7).
By assumption it is the case that (Id(ag,u0))? is inhabited, and therefore () is well-defined. It
remains only to check that (x) is equal to u 1 on the extent ¢, but this follows from the equalities
of ¢4 and by the definition of @ (Lem. 7). Assuming ¢, we have

u —a
ag < ap

, -
u —u I ’

next .c u’ ag = next wl=ul. OJ
|:a6<—a0:| AT P 0 |: :|
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Summary. In this section we have highlighted the key ingredients that go into a sound
interpretation of GCTT in C X w. For the precise statement of the interpretation of all the
constructs, and the soundness theorem, we refer to the online technical appendix.

4 Conclusion

In this paper we have made the following contributions:

e We introduce guarded cubical type theory (GCTT), which combines features of cubical type
theory (CTT) and guarded dependent type theory (GDTT). The path equality of CTT is
shown to support reasoning about extensional properties of guarded recursive operations,
and we use the interval of CTT to constrain the unfolding of fixed-points.

e We show that CTT can be modelled in any presheaf topos with an internal non-trivial De
Morgan algebra with the disjunction property, an operator V, and a universe of fibrant
types. Most of these constructions are done via the internal logic. We then show that a
class of presheaf models of the form C/><\]D), for any category ID with an initial object, satisfy
the above axioms and hence gives rise to a model of CTT.

e We give semantics to GCTT in the topos of presheaves over C X w.

Further work. We wish to establish key syntactic properties of GCTT, namely decidable
type-checking and canonicity for base types. Our prototype implementation establishes some
confidence in these properties.

We wish to further extend GCTT with clock quantification [3], such as is present in GDTT.
Clock quantification allows for the controlled elimination of the later type-former, and hence
the encoding of first-class coinductive types via guarded recursive types. The generality of our
approach to semantics in this paper should allow us to build a model by combining cubical sets
with the presheaf model of GDTT with multiple clocks |7]. The main challenges lie in ensuring
decidable type checking (GDTT relies on certain rules involving clock quantifiers which seem
difficult to implement), and solving the coherence problem for clock substitution.

Finally, some higher inductive types, like the truncation, can be added to CTT. We would
like to understand how these interact with ».

Related work. Another type theory with a computational interpretation of functional
extensionality, but without equality reflection, is observational type theory (OTT) [2]. We found
CTT’s prototype implementation, its presheaf semantics, and its interval as a tool for controlling
unfoldings, most convenient for developing our combination with GDTT, but extending OTT
similarly would provide an interesting comparison.

Spitters [25] used the interval of the internal logic of cubical sets to model identity types.
Coquand [11] defined the composition operation internally to obtain a model of type theory. We
have extended both these ideas to a full model of CTT. Recent independent work by Orton and
Pitts [23| axiomatises a model for CTT without a universe, again building on Coquand [11]. With
the exception of the absence of the universe, their development is more general than ours. Our
semantic developments are sufficiently general to support the sound addition of guarded recursive
types to CTT.
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A zipWith Preserves Commutativity

We provide a formalisation of Sec. 2.4 which can be verified by our type checker. This file, among
other examples, is available in the gctt-examples folder in the type-checker repository.

module zipWith_preserves_comm where

Id (A : U) (a0 al : A) : U = IdP ((i) A) a0 al
data nat = Z | S (n : nat)

-- Streams of natural numbers
StrF (8 : > U) : U = (n : nat) * > [S’ < 8] §°

Str : U = fix (StrF Str)

-- The canonical unfold lemma for Str
StrUnfoldPath : Id U Str (StrF (mext Str))
= (i) StrF (dfix U strF [(i=1)])

unfoldStr (s : Str) : (n : nat) * > Str
= transport StrUnfoldPath s

foldStr (s : (mn : nat) * > Str) : Str
= transport ((i) StrUnfoldPath @ -i) s

cons (n : nat) (s : > Str) : Str = foldStr (m, s)
head (s : Str) : nat = s.1
tail (s : Str) : > Str = (unfoldStr s).2

-- Defining zipWith
zipWithF (f : nat — nat — nat) (rec : > (Str — Str — Str))
Str — Str — Str
= (A (s1 s2 : Str) —
(cons (f (head s1) (head s2))
(next [zipWith?’ < rec, sl1’ « tail s1 , s2’ < tail s2]
zipWith’ s17 s27)))

zipWith (f : nat — nat — nat) : Str — Str — Str
= fix (zipWithF f zipWith)

zipWithUnfoldPath (f : nat — nat — nat)
Id (Str — Str — Str)
(zipWith £)
(zipWithF £ (next (zipWith £)))
= (i) zipWithF f (dfix (Str — Str — Str) (zipWithF f£) [(i=1)])

-- Commutativity property
comm (f : nat — nat - nat) : U = (m n : nat) — Id nat (f m n) (f n m)

-- zipWith preserves commutativity.

zipWith_preserves_comm (f : nat — nat — nat) (¢ : comm f)
(s1 s2 : Str) — Id Str (zipWith f s1 s2) (zipWith f s2 s1)
= fix

(A (s1 s2 : Str) —
(i) comp ((_) Str)
(cons (c (head s1) (head s2) @ i)
(next [q - zipWith_preserves_comm
,tl < tail si
,t2 « tail s2]
q tl t2 @ i))
[(i=0) — (j) =zipWithUnfoldPath f @ -j sl s2
,(i=1) — (j) zipWithUnfoldPath f @ -j s2 s1])



Chapter 5

Parametric quantifiers for
dependent type theory



80 Chapter 5. Parametric quantifiers for dependent type theory

Parametric Quantifiers for Dependent Type Theory

ANDREAS NUYTS, KU Leuven, Belgium
ANDREA VEZZOSI, Chalmers University of Technology, Sweden
DOMINIQUE DEVRIESE, KU Leuven, Belgium

Polymorphic type systems such as System F enjoy the parametricity property: polymorphic functions cannot
inspect their type argument and will therefore apply the same algorithm to any type they are instantiated
on. This idea is formalized mathematically in Reynolds’s theory of relational parametricity, which allows the
metatheoretical derivation of parametricity theorems about all values of a given type. Although predicative
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not carry over as easily. The identity extension lemma, which is crucial if we want to prove theorems involving
equality, has only been shown to hold for small types, excluding the universe.

We attribute this to the fact that MLTT uses a single type former II to generalize both the parametric
quantifier V and the type former — which is non-parametric in the sense that its elements may use their
argument as a value. We equip MLTT with parametric quantifiers ¥V and 3 alongside the existing IT and X, and
provide relation type formers for proving parametricity theorems internally. We show internally the existence
of initial algebras and final co-algebras of indexed functors both by Church encoding and, for a large class of
functors, by using sized types.

We prove soundness of our type system by enhancing existing iterated reflexive graph (cubical set) models
of dependently typed parametricity by distinguishing between edges that express relatedness of objects
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1 INTRODUCTION

Many type systems and functional programming languages support functions that are parametrized
by a type. For example, we may create a tree flattening function flatten & : Tree @ — List a that
works for any type a. If the implementation of a parametrized function does not inspect the
particular type « that it is operating on, possibly because the type system prohibits this, then the
function is said to be parametric: it applies the same algorithm to all types. From this knowledge, we
obtain various useful ‘free theorems’ about the function [Reynolds 1983; Wadler 1989]. For example,
if we have a function f : A — B, then we know that listmap f o flatten A = flatten B o treemap f.
If parametricity is enforced by the type system, as is the case in System F but also in a programming
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language like Haskell, then we can deduce such free theorems purely from a function’s type
signature, without knowledge of its implementation. This allows parts of a function’s contract to
be enforced by the type-checker; a powerful feature.

Existing work on parametricity in dependent type systems such as Martin-L6f Type Theory
(MLTT) has been able to show that the expected parametricity results hold for functions that
produce values of a small type [Atkey et al. 2014; Krishnaswami and Dreyer 2013; Takeuti 2001].
Below, we show with a simple example that in existing dependent type systems, parametricity
theorems can break down where large types are involved. The central aim of this paper is to resolve
this issue by equipping dependent type theory with additional parametric quantifiers.

Representation independence in System F. In order to expose the problem that occurs in dependent
type theory, we will elaborate an example that shows the power of parametricity in System F,
but which breaks down in dependent type theory. Assume that A is a type that is essentially an
interface, listing the operations that its elements provide. Then typically, we will not directly
construct values of type A; rather, we will construct representations of them in some type C,
from which we can extract the operations using a function r : C — A. A function f of type
RI A B :=Vy.(y —» A) — (y — B) for some fixed type B, is then a function that, for any type y
that implements the interface A as witnessed by r : y — A, produces a map y — B. Parametricity
now asserts that f is representation independent: it can only use the argument ¢ : y through its
operations r ¢ : A and is thus oblivious to the particular implementation. Hence, elements of type
Rl A B are in one-to-one correspondence with functions A — B.

Representation polymorphism in dependent type theory. Dependent type theory departs from
System F in that it erases the strict dichotomy between types and values. The result is a system in
which types can depend on values, and can appear as values themselves, possibly as computational
content of other values (e.g. we can consider lists of types).

The function type former — from System F, is replaced with the type former II (called the
product type, dependent function type or simply II-type) in dependent type theory. If S is a type
and T is a type depending on a variable x : S, then the type II(x : S).T contains functions f that
map any value s : S to a value fs : T[s/x]. When T does not depend on x, we simply write S —» T
and have recovered the ordinary function type from System F.

If we disregard parametricity, we may also use II to recover the V type former from System F. If
the domain S is some type of types U, also called a universe, then the function type II(a : U).T
corresponds to the polymorphic type Var.T from System F. So we can translate RI to dependent
types as RI A B := II(C : U).(C — A) — (C — B). However, representation independence is not
enforced for this type, and an easy counterexample can be constructed if we let B be the universe
U itself. Then we can break representation independence by directly leaking the implementation
type C to the end user:

leak = AC.Ar.Ac.C : II(C : U).(C — A) = (C > U) (1)

Wrapping up. We claim that while dependent type theory clearly takes a step forward from
System F in that it allows any kind of dependencies, it takes a step back by unifying V and — in a
single type constructor. The problem is that functions f : Va.T and g : P — Q differ not only in
that f is dependent and takes a type as argument whereas g is non-dependent and takes a value as
argument; they also differ in that f is parametric and uses its argument solely for type-checking
purposes, whereas g is non-parametric and is allowed to use its argument as a value. It is the second
property of V that produces the free theorems we want.

In order to restore parametricity for large types in dependent type theory, we reinstate the
parametric quantifier V from System F alongside the non-parametric quantifier IT (also —) in
dependent type theory. The type formation rules for both quantifiers have the exact same premises.



82 Chapter 5. Parametric quantifiers for dependent type theory

This means that we can quantify parametrically or not over either type-like or value-like arguments,
making the distinction between parametricity and non-parametricity orthogonal to the distinction
between type-level and value-level arguments, which we seek to erase in dependent type theory.
This leads to four situations of which only two existed (at the value level) in System F.

(1) As in System F, we can quantify parametrically over a type argument. An example is the
(proper) Church encoding of lists: ChList B = V(X : U).{X — (B —» X — X) — X (the |
modality is explained later).

(2) Unlike in System F, we can quantify non-parametrically over a type argument. A (non-
dependent) example is the cons constructor of List U, which has the type cons : U —
List U — List U. Clearly, this function uses its first argument not just for type checking
purposes. Rather, the value X can be retrieved from the list cons X Xs using the list recursor.
Another example is the function type former AX.AY.(X — Y) : 4 — U — U. The argu-
ments X and Y are not used just for type-checking (in fact they do not even occur in the type
U — U — U); rather, they determine the output value X — Y. Non-parametric dependent
quantification over a type variable is also common. For example, algebraic structures can be
represented as dependent tuples and these must be non-parametric in their underlying type,
lest we identify structures as soon as there is a homomorphism between them.

(3) Unlike in System F, we can quantify parametrically over a value argument. We have a type
Size that is similar to the natural numbers but enforces a form of well-behavedness for
functions that have Size as their domain. Let Vec; A be the type of vectors of length i : Size
over A, where vectors of different lengths are considered equal if the truncation of the longer
one is equal to the shorter one. Now consider the type V(i : Size).Vec; A. Parametricity
ensures that a function of this type will produce equal (i.e. compatible) vectors for all sizes.
In other words, this is the type of infinite streams of elements of A.

(4) Like in System F, we can quantify non-parametrically over a value argument. Any ordinary
term-level function from System F is an example of this. A more intriguing example is the
function Ai.Vec; A : Size — U which maps sizes to types, but also provides a notion of
heterogeneous (cross-type) equality between elements of Vec; A and Vec; A.

Although up until this point, we appealed to the intuition of parametric functions as ‘not inspecting
an argument’, this intuition diverges from the relational formulation when we consider parametric
quantification over a data type. Relational parametricity asserts that related inputs will lead to
related outputs. The identity extension lemma (IEL) moreover implies that relatedness in a
closed type, means equality. No assertions are made, however, about unrelated inputs. If we have
a type Nat in which (unlike in Size) different natural numbers are considered unrelated, then we
can allow to pattern match on them. However, a function T : Nat — U may then not provide a
notion of equality between T m and T n and a function of type V(n : Nat).T n need not produce
equal output for different numbers (as we even lack the notion of equality). This is a situation that
does not apply in basic System F (or Fw), where any two elements of a given kind, are related.

Contributions.

(1) We present a dependent type system ParamDTT in which dependencies can be either para-
metric () or continuous (id). Correspondingly, we obtain (predicative) relationally parametric
quantifiers V and 3 alongside the usual continuous quantifiers IT and X.

(2) We make parametricity theorems provable internally using a type former called Glue (first
used by Cohen et al. [2016] in order to achieve computational univalence), and its (novel)
dual which we call Weld. These are an alternative for the operators by Bernardy et al. [2015].
Both Glue and Weld have some dependencies that are not continuous and that we cannot
prove further parametricity theorems about. This is represented by a third pointwise modality
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(1) As such, these type formers cannot be self-applied and iterated parametricity is not fully
available internally. We reframe and internalize IEL in the form of an axiom called the path
degeneracy axiom, enabling us to prove parametricity theorems involving equality.

(3) We construct Church initial algebras and final co-algebras of indexed functors, showing
that indexed (co)-recursive types can be built up from simpler components. We prove their
universal properties (up to universe level issues) internally, which to our knowledge has not
been done before in any type system. These internal proofs have some pointwise dependencies,
indicating that internal parametricity does not apply again to those dependencies.

(4) Annotating (co)-recursive types with a size bound on their elements is a modular way
to enforce termination and productivity of programs. This is a use case for parametric
quantification over values, as we do not want to view an object’s size bound as computational
content of the object. We construct initial algebras and final co-algebras of a large class of
indexed functors using induction on, and parametric quantification over size bounds. We
again prove their universal properties internally.

(5) We implement an extension to the dependently typed language Agda, which type-checks
ParamDTT and thus shows that its computational behaviour is sufficiently well-behaved to
allow for automated type-checking. ! We expect that ParamDTT minus its equality axioms,
which block computation of the J-rule, satisfies all desired computational properties.

(6) We prove the soundness of the type system by constructing a presheaf model in terms of
iterated reflexive graphs (more commonly called cubical sets), based on the reflexive graph
model by Atkey et al. [2014] and enhancements by Bernardy et al. [2015]. An important
innovation in our model is that our iterated graphs have two flavours of edges: bridges express
relatedness, and paths express heterogeneous equality of objects living in related types. If
we were to model parametricity of System F in the same model, we would use bridges to
represent relatedness of types, and paths to represent relatedness of terms. Correspondingly,
continuous functions are those that respect edge flavours, whereas parametric functions are
those that strengthen bridges to paths.

Overview. In Section 2, we give an informal overview of ParamDTT and its features. In Section 3,
we present the formal typing rules and relate the system to MLTT and predicative System Fo. In
Section 4, we treat Church encoding and sized types. In Section 5, we give an overview of the
presheaf model that proves soundness of ParamDTT. A more complete treatment of the model
is found in [Nuyts 2017]. We conclude in Section 6 with a discussion of related work and future
research directions.

2 A PROGRAMMER’S PERSPECTIVE

Before we show the formal rules of our type system, we present the system from a programmer’s
perspective. We consider the typical but simple example type of polymorphic identity functions:
VX : U)X - X.

Modalities. The ¥ quantifier is syntactic sugar for IT#(X : U).X — X: a II-type annotated with
the parametric modality . We can construct a value of this type by annotating a lambda with the
same modality: A(X #. U).u. In the body, the variable X is available in the context, annotated as
X* : U to remind us that it should only be used in parametric positions (which we color magenta as
a guide to the reader). A variable that is in the context parametrically (X # . 24) does not type-check
as a value of type U. Luckily, when we next use a normal lambda A(x : X)._u (i.e. annotated with
the continuous modality id) to construct a value of type X — X, the type annotation X for x
is a parametric position. As such, it is not type-checked in the current context (X¥ : /), but in

! Available in the artifact, and on Github as the ‘parametric’ branch of Agda: https://github.com/agda/agda/tree/parametric
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the context (X : U), where all parametric variables have been rendered continuous. This context
modification is a common theme in modal typing rules: §-modal subterms like our X are checked in
modified contexts, defined by formally left-dividing the current context (X¥ : 7/) by the #-modality:
(#\ (x* : U)) = (X : U). In the body of the second lambda, we simply return variable x of type X
to finish our example.

Another parametric position is the argument that we pass to a parametric function. For example,
with f : V(X : U).X — X in the context, we can construct another value of the same type by
composing f with itself: AH U A X).f Xt (f X% x). The variable X is used (twice) as the
argument to a parametric function, and as such, it is not type-checked in context T = (X* : U4, x : X)
(where it would not be accepted), butin (§\ T) = (X : U, x : X).

As a guide to the reader, we color subterms and variable bindings according to their modality:
magenta for parametricity (f), black for continuity (id), blue for the pointwise modality (denoted
q, see further below), and for any unknown modality (some typing rules work for an
arbitrary modality p). Because we want our language to be unambiguous even without color, we
will sometimes additionally insert a modality symbol to disambiguate. Continuity (id) is considered
the default and will be omitted.

Internal parametricity: paths and bridges. A compelling feature of our type system is that we have
internal parametricity: free theorems about parametric functions can be derived internally. Imagine
that we have a function f : V(X : U).X — X, a type X* : 1/ and a value x : X and we want to use
parametricity of f to prove that f X¥ x is equal to x. We can do this inside the language, using
essentially the same approach that one would take when using binary relational parametricity of
System F. There, for every x : X, we would construct a relation R, between the unit type T and
X such that R, (u, y) iff x = y. Since f, being parametric in its first argument, maps Ry-associated
second arguments to R,-associated output, we have that R(f T#tt, f X# x), i.e. f X¥x = x.

To construct the relation R, inside the language, we will construct a bridge from T to X. Such a
bridge can best be thought of as a line connecting two values, possibly living in different types. The
precise meaning of a bridge depends on the types concerned; a bridge from B, : U to By : U gives
meaning to statements of the form ‘b, : By and b; : B; are related’ (expressed by a heterogeneous
(cross-type) bridge from by to by) or ‘py : By and p; : By are equal’ (expressed by a path from py
to p1). Note that, unlike in existing accounts of relational parametricity, we distinguish between
relatedness and (possibly heterogeneous) equality.

A proof of Ry (u, y) will be represented internally as a path from u : T to y : X. A path between
values py and p; can also be thought of as a line connecting these values. Just like bridges, paths
may be heterogeneous, but when they are homogeneous (i.e. when they stay within a single type),
they are necessarily constant, implying equality of their endpoints. Moreover, paths are respected
by all functions. These properties make the path relation a good notion of heterogeneous equality:
a congruence that reduces to equality whenever equality is meaningful. So in order to prove that
f X% x = x, it will be sufficient to construct a path from f X* x to x.

We internalize both bridges and paths using a special pseudo-type I called the interval, which
consists of two elements 0 and 1 connected by a bridge. Since continuous functions, by definition
in the model, respect bridges, a bridge from By to B; can be represented as a function B : I — U
such that BO = By and B1 = B, definitionally. Since parametric functions, by definition in the
model, strengthen bridges to paths, a path from p, : By to p; : B; can be represented as a function
p: ¥(i :1).Bi such that p 0% = py and p 1# = p;. Meanwhile, heterogeneous bridges take the form
b : II(i : I).Bi. The typing rules make sure that the types V(x : A).T x and II(x : A).T x can be
formed precisely when we have a continuous function T : A — U; when I is the domain, this
says that there needs to be a bridge between the types before we can consider bridges or paths
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between their values. An internal path degeneracy axiom degax finally asserts that non-dependent
(homogeneous) paths are in fact constant.

Turning a function into a bridge. Note that the relation R, we used in the System F proof, is
in fact the graph of the function Au.x : T — X. As mentioned above, we intend to internalize
R, as a bridge from T to X, i.e. a function /Au.x\ : I — U such that /Au.x\0 reduces to T and
/Au.x\1 reduces to X. In fact, an operator /..\ that turns a function into the bridge representing
its graph relation, can be implemented using either the primitive Glue type former, or its dual
called Weld, which we introduce in Section 3.2. For now, we just assume that we have a bridge
/Au.x\ and that it comes with a function push : V(i : I).T — /Au.x\i from the domain, such that
push0% = idr : T — T and push 1# = Au.x : T — X; and a function pull : V(i : I)./Au.x\i — X
to the codomain, such that pull 0¥ = Au.x : T — X and pull 1# = idy : X — X. Now consider the

following composite:

hif Ju.x\D I
1 poen’ [Au.x\i SR /Au.x\ipu—l>X.

For i = 0, it reduces to the constant function Au.x, while for i = 1, it reduces to Au. f x# x. Thus,
applying this to tt : T, we obtain a homogeneous (non-dependent) path

pi= /Uﬁ.(pulliIj of(/ﬂu.x\i)ﬂopushiﬁ)tt: il — X, pOIj = x, pl11 EfXﬁ X.
Finally, since this is a non-dependent (homogeneous) path, the aforementioned path degeneracy
axiom asserts that it is constant, implying that x =x f X# x.

Before we proceed: the pointwise modality. One important aspect of our system has been tucked
under the carpet in the above example: the Glue and Weld type formers, as well as the graph
type former /.\ implemented in terms of either of them, break the relational structure. This is
reflected syntactically by a third pointwise modality (]), which annotates dependencies that have
no action on bridges. So to be precise, the above example does not show that any function of
type V(X : U).X — X is the identity; rather, every such function can be weakened to the type
V(X : U)X — X (forgetting its action on bridges in the second argument) and we have proven
that all functions of that type are the identity. In practice, this means the proof is perfectly usable
and valid, but we cannot apply another parametricity argument to the proof term. This restriction
is a limitation of our current model, but an acceptable one, as we will argue in what follows.

3 THETYPE SYSTEM, FORMALLY

With the general ideas of ParamDTT established, this section presents the system formally. The first
part treats the core type system, which is just MLTT with modality annotations. The second part
explains the machinery we use for internal parametricity. The third part adds two types Nat and
Size of natural numbers, and we conclude in the fourth part by embedding MLTT and predicative
System Fw in our system in two ways.

3.1 Core Typing Rules: Annotating Martin-Lo6f Type Theory

Modalities. The judgements and typing rules of our system are similar to MLTT, except that,
as discussed, every dependency is equipped with a modality: either pointwise ({), continuous
(id) or parametric (ff). We follow the general approach developed by Pfenning [2001] and Abel
[2006, 2008]. A dependency’s modality expresses how it acts on bridges and paths. Functions of all
three modalities respect paths. Continuous functions moreover respect bridges, while parametric
functions strengthen them to paths, and pointwise functions do not act on bridges whatsoever.
Every dependency can be viewed as pointwise by ignoring its action on bridges. Because equal
values are also related, our model allows to weaken paths to bridges; this weakening allows to
view parametric dependencies as continuous. We express these findings as an order relation on
modalities (Fig. 1).
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If a term t; depends yi;-modally on a variable x and ¢, depends p;-modally f=<id<¥

on y, then the term t,[1, /] depends on x under a composed modality pgop;. | lo— | I id 4
This composition of modalities is defined by the first table in Fig. 1, and 1 T 1 4
follows immediately from the action on bridges and paths. E.g. po J =, id | id 4
because if the inner function forgets bridges, then the outer one cannot i T # 4
retrieve them, and p o §f = § because if the inner function strengthens [ [\ — [ id #
bridges to paths, then the outer function has to respect those paths. Note q 9 ¢ #
that composition preserves order in both operands. id q id

Formally, modalities come into play wherever dependencies appear in # q id id

the type system. First of all, the term on the right of a judgement depends on
the context variables, so we annotate those with modalities: we write x : A Fig. 1. Composition,
for continuous, x* : A for parametric and x1 : A for pointwise variables. left division and order
Secondly, a term in the conclusion of an inference rule, also depends on of modalities.
the terms ¢ : T in the premises. As explained before, such terms may be in
p-modal position, in which case the premise will not be I' + ¢ : T but rather g \ T + ¢ : T, which can
beread asT + 1# : T (a non-existent judgement form). This left-division of context I by modality p
replaces every dependency x¥ : Aby x#\ : A, defined by the second table in Fig. 1. The left division
selects the least modality i \ v such that v < o (u\ v). In other words, p\v<p o v <pop
for all p, i.e. left division by y is left adjoint to postcomposition with p. In general, we take care to
maintain admissibility of the following structural rules:

T,H:T,ArJ  p\Trt:T IH:T,Av]  v<p

T 7 T S S Py oy Yo A

With this modality machinery in place, we can now discuss our typing rules.

Contexts. Contexts are formed by starting from the empty context (c-em) and adding variables in
modalities of your choice (c-ext). Context variables are valid terms if their modality is continuous
or less (t-var).

I'+Ttype I'rCtx (x¥:T)eT p<id
c-em c-ext t-var
+ Ctx T,x#:TFr Ctx Trx:T

Universes. There is a countable hierarchy of universes, each one living in the next (t-Uni). Elements
of a universe can be coerced to higher universes (t-lift). Elements of the universe can be turned
into types (ty), and this operation is parametric because it shifts T to the type level, preventing any
further use as a value.

T+ Ctx teN TrT: U k<fteN B\T+T:U,
————t-Uni, t-lift, ——————ty,
T+Up: Uy T+T:U, T+ Ttype

Definitional equality. There are equality judgementsT'+s=1¢:T and T + S = T type. We omit
the rules that make definitional equality a congruence and an equivalence relation. The conversion
rule (t-conv) allows to convert terms between equal types.

IF'ta:A I'+ A= Btype
Il'+ta:B

Quantification. We have universal and existential quantifiers for every modality (t-I1, t-X). We
denote them as IT* and 2# for general modalities, but we abbreviate the continuous ones as IT and
> and the parametric ones as V and 3. Moreover, in the non-dependent case we will write yA — B
and pA x B. Quantified types are continuous in both domain A and codomain B. Indeed, A and B are
not just provided for type-checking but they determine the output value Q(x : A).B. The variance
of B’s dependency on x is worth a mention: we want b : B to be meaningful if an element o# : A
is given p-modally. Since in the claim b : B, the type B is in a parametric position, it needs to be

t-conv,
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defined for «#\# : A. For i = id or yi = §, we have that # \  is id, so B depends continuously on x.
However, if 1 = q, then the codomain may be pointwise in x, since # \ | = {.
TrA: U, T, A-B:U, g frAt T AR B U .
t- t-
[ +II#(x: A).B: U, T'F2H(x:A).B: U,

Functions. p-Modal functions are created using A-abstraction over y-modal values (t-1). p-Modal
function applications depend p-modally on the argument provided (t-ap). We omit - and -rules
for functions.

I,x*:Arb:B I'rf:1T"(x:A).B u\Tra:A
t-,
T+ A(xH: A).b:TIH(x : A).B T+ fa*:Bla/x]
Pairs. The p-modal existential type Z#(x : A).B contains pairs (¢, b) where o : Aand b : Bla/x]
(t-pair). We have a dependent eliminator for v-modal use of pairs (t-indpair), for which we omit the

t-ap

P-rule. Note that the non-dependent specialization of indiad corresponds to the ‘unpack’ eliminator
for existentials in System F [see e.g. Pierce 2002, ch. 24].

'+ 3H(x: A).Btype T,z" : 3#(x : A).B+ Ctype
u\Tra:A T,xV°H: A yY :Brc:(C| /7]
T'rb:Bla/x] ) v\TFp:3#(x:A).B i dpa
t- t-
T b):3hGA)B P T TrindbG.Coryep):Clplz] Pt
Using indizd, we can implement continuous projections for X(x : A).B as
fst:2(x:A).B— A snd : II(p : E(x : A).B).B[fstp/x]
fstp = indizd(z.A, X.Y.x,p), sndp = indizd(z.B[fst z/x], x.y.y,p).

The model supports the n-rule for indy,, allowing us to assume the y-rule p = (fstp, snd p). For
>%(x : A).B, we can similarly implement a parametric first and a continuous second projection:

fstd : 4(=0(x : A).B) — A snd! H(p AT A).B) B[fst p/x]
fstp = indgl(z.A, X.Y.X, D), sndTp = indiz‘%\(z.A,x.y.y,p).

Since p depends on its first component pointwise and f o J = {, the term fstl p gets pointwise
access, hence continuous access, to the first component of p. Again, we assume the n-rule for these
projections.

Example 3.1. Consider the Church encoding of streams: ChStr A = 3(X : Up).(X — AXX)xX).
The above rules allow us to build head and tail functions for this type, left as an exercise to the
reader.

Identity types. We have an identity type a =4 b, continuous in A, a and b (t-1d).” The reflexivity
constructor is parametric (t-refl). We can use an equality proof e with modality v using the dependent
eliminator }”.> We omit the -rule. Our model supports the reflection rule (t=-rflct), which we will
often not want to include as it breaks decidability of type-checking. Instead, we can take some of
its consequences as axioms, such as function extensionality. A program that applies the J-rule to
an instance of this axiom, will block. The model also supports definitional uniqueness of identity

2 It may be surprising that the identity type a =4 b is not parametric in the type A, as one might think it is only there for type-
checking. However, if this were the case, then by parametricity, the type former Ly =_, 11, of type V(X : Up).X —» X — Uy
would have to be constant (this claim holds pointwise in @ and b). As such, the type a =4 b would have to remain unchanged
if we were to replace the type A, for example, with the related type T and a, b : A with the heterogeneously equal values
tt, tt: T.

3 A J-eliminator for every modality is actually a bit overkill, since the J-rule for a lesser modality follows from the J-rule for
a greater one.
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proofs (t=-UIP); which could be added to the type system either as-is, or in the form of special-case
propositional or definitional rules (e.g. proofs of a =4 a reduce to refl a).

'rA: U, I'rtab:A B\Tra:A
- t-refl
Tra=4b:U, Trrefla:a=4a
B\Trab:A T,yf iAWY ta=4y+ Ctype B\T+ f,g:11#(x: A).B
vN\Irte:a=ab Trc:Claly, a/w] Trp:MH(x: A).fx! =g gt
t_

T+ 7@ b,y ) : CIbJg, e/ ] D T fanedp S mmcaa g

Trab:A Tre:a=xb Tree :a=4b

t=-rflct — X t=-UIP
T'ta=b:A Tre=e :a=4b

Example 3.2. The continuous J-rule allows us to prove transport: V(X,Y : Up).(X =q;, Y) —
X — Y. Plugging in reflexivity, we get a term of type V(X : U;).X — X. Parametricity will allow
us to conclude, solely from the type, that this term is (pointwise) the identity function.

3.2 Internal Parametricity: Glueing and Welding

With the core typing rules established, let us now turn to the operators that will allow us to prove
parametricity theorems internally. In Section 2, we used the type former /..\ for turning a function
f¥: C — D into a bridge /f\ : I — U from C to D. As mentioned, this type former is not a
primitive; rather, it can be implemented in terms of either of the primitive type formers Glue and
Weld, which we introduce in this section. Because they require a bit of machinery, we start the
section with an introductory example in which we implement /. in terms of both Glue and Weld.
The Glue type former was originally introduced with one additional prerequisite by Cohen et al.
[2016] in a type system without modalities.

3.2.1 Introduction: Turning a Bridge into a Function. Let us take an f1: C — D and reiterate
from Section 2 the properties that we need the type /f\ : I — U to satisfy. The type is a bridge
between C and D, so we want to have that /f\ 0 = Cand /f\ 1 = D. Additionally, we want there to
be a function push : V(i : I).C — /f\i such that push 0¥ = id¢c : C — Cand push1# = f : C — D.
Finally, we also need pull : ¥(i : I)./ f\i — D to the codomain, such that pull 0¥ = f:C— Dand
pull 1¥ = idp : D — D. The property pull i* o pushi* = f holds if i equals 0 or 1 and we want it to
hold on the entire interval.

A construct called systems allows us to construct partially defined terms. For example, we can
define T := (i = 0?C|i = 1? D), a type that reduces to C if i = 0 and to D if i = 1. For general
i, it is not defined; it only makes sense when the predicate P := (i = 0 V i = 1) holds. Clearly,
/f\ i should extend T, in the sense that both types should be equal whenever T is defined. A naive
solution would be to add a default clause, i.e. something like:

/f\i:=(@{=0?C|i=1?D]|else E) (not ParamDTT syntax).

This approach is not quite right: it would allow us to relate any two types C and D by adding
an arbitrary third type as a default clause and it is all but clear what that would mean. But let’s
consider it anyway. What would be the meaning of a path p : V(i : )./ f\ i with this definition? The
endpoints of the path would live in C and D, while the rest of the path lives in E. So we need some
condition to decide whether elements ¢ : C and d : D qualify as endpoints of a path in E (which
normally has endpoints also in E). This condition could arise from a relation between C and E[0/i]
and one between D and E[1/i], or in short a relation between T and E defined only when P holds.
This is essentially how Glue and Weld work; however, they do not allow any kind of relation. The
Weld type former takes a partially defined function ¢ : E — T whereas Glue takes 1l : T — E.
The resulting types are denoted
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Weld{E — (P?T,9)}, Glue{E « (P?T,h)},
and reduce to T when P is true. When P is false, they will be isomorphic to E.*

Using the Weld operation. In order to form / f\ i using Weld, we need a diagram of the form C «
E — D that somehow encodes the graph of the function f.° In general, a relation can be represented
by such a diagram if we let E be the type of related pairs, which for functions is isomorphic to
the domain. So we set E := C (Fig. 2, left column) and g := (i = 0?idc|i =1?f):C — T (Fig. 2,
full arrows from left to middle column). With some syntactic sugar to avoid repeating the same
predicate, we can then write (Fig. 2, middle column)

Jf\i=Weld{C - (i=02C,idc|i=1?D,f)},  /f\o=C,  /f\1=D.

Thinking of / '\ i as a system with a default clause, it is clear

how we can obtain elements of it: if P holds, we can take /\f \

elements of T. If it does not hold, then we are (intuitively) 0:1 c c D

in the default case and we can use a constructor-like func- ide f

tion push i* := weld (P?g) = weld (i = 02id¢c|i = 12 f) : ‘ . ‘

C — /f\ i (Fig. 2, dashed arrow). Moreover, this function i1+ closy ! ; \; D

extends to the case where P does hold, and then it specializes ’ push i~ | pullif

to g, i.e. push 0% = idc and push 1# = f. This internalizes ‘

the idea that the paths in the welded type come from the de- /—:\ f\
1:1 C——>D—D

fault case, while their endpoints are associated to them by : 7 idp

the function g. Since weld (P ? g) is meaningful regardless

of whether P is true or false, it is a total function extending Fig. 2. Formation and elimination of /f\
g. To summarize: given a partial type T, a total type E and using Weld. The middle row depends on i
a partially defined g : E — T, welding extends T to a total and reduces to the top/bottom row when
type and g to a total function which takes the role of a i equals 0/1. Welding produces /f\ i and
constructor. the dashed lines.

Finally, in order to construct pull : V(i : )./ f\ i — D, we use the eliminator indeq. It allows us
to eliminate a value w : / [\ i into a goal type D (which could in general depend on w) by inspecting
how w was obtained: we need to handle elements created using weld (P ? g) (Fig. 2, curved arrows)
and, in the event that P holds, elements living in T (Fig. 2, full arrows from middle to right column).
These cases are not disjoint: if P is true, then weld (P ? g) creates elements of type T, so we need to
handle them compatibly (Fig. 2, commutation of diagrams in top and bottom row). Thus, we can
define pull i* (with some predicates-related syntactic sugar) as

pull it .= indweld(w.D, (i =0?c.(fc)|i=12d.d),c.(f¢c)a):/f\i— D.

Note that modalities play an inconspicuous but utterly important role here. The predicate former
= is continuous in its endpoints and the Weld type former is continuous in the predicate P, so that
/f\ is a bridge relating types and not a path equating them. On the other hand, weld and inde4
are parametric in the predicate P, so that push and pull are heterogeneous paths, allowing us to
prove parametricity theorems involving equality.

Using the Glue operation. Glueing is the dual operation to welding. In order to form /f\ i
using Glue, we need a diagram of the form C — E « D that encodes the graph of the function
f. A well-behaved relation can be represented by letting E be the disjoint union of C and D,

4The particular predicate i = 0V i = 1 will never reduce to L as there are no mid-interval constants, so we will never really
end up in the default case. A predicate that can become false, is i = 0.

5In fact, E may depend on i so we can be more general: we need functions E[0/i] — C and E[1/i] — D. However, glueing
and welding over constant types will be powerful enough for all applications in this paper.
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quotiented by the relation. For a function, this is isomorphic to the codomain. So we set E := D and
h:=({=0?f|i=1?idp): T — D. Then we get

/f\i:=Clue{D «— (i=0?C,f|i=1?D,idp)}, /f\o=C, /f\1=D.

Whereas the Weld type — like an inductive type — lets us eliminate elements by inspecting their
construction, the Glue type — like a record type — lets us construct elements by saying how they
eliminate. Thinking of /f\ i as a system with a default clause, it is clear how we can eliminate
an element b: if P holds, then b becomes an element of T; otherwise, we are in the default case
and we can use a projection-like function pull i* := unglue (P? h) = unglue (i = 0? f|i = 1?idp) :
/f\ i — D. Again, this function extends to the case where P does hold, and then it specializes to h.
Thus, in order to construct an element b : /f\ i, we need to say what element ¢ of T it extends, and
what element a : A it projects to, and moreover we need that g ¢ = a. This is then assembled as b :=
glue{a <= (P ?1)}. In particular, we can define push it = Ac.glue{fce—(i=02c|li=1?fc)}.

The rest of this section is dedicated to making formal every concept encountered in the above
examples, to wit: the interval I, a calculus of face predicates such as i = 0, systems for case distinction
over face predicates, and the Glue and Weld type formers. We conclude by postulating the path
degeneracy axiom.

3.2.2 The Interval. The interval I is what we use to reason internally about bridges and paths.
Although the model treats it as a type like any other, containing just two points 0 and 1 connected
by a bridge, we choose to give it an exceptional syntactic treatment with the purpose of preserving
the following syntactic property:

LEMMA 3.3. IfT + ¢t : 1, thent is either 0, 1 or a variable from T’ with modality u < id. O

In other words, we want to avoid neutral interval terms. Then we should not have functions
with codomain I, and so I cannot be part of a universe. Instead, we consider I' - i : I a new class of
judgements. So we postulate two constants 0, 1 : I and furthermore allow: context extension with
interval variables i# : I (c-ext), use of interval variables (t-var), the construction of IT#- and X#-types
with I as their domain (t-I1, t-3), A-abstraction over i# : I (t-1) and application to interval terms
(t-ap), formation of interval pairs (i#,y) (t-pair) and pattern matching over such pairs (t-indpair)
but not first projections for such pairs, as they would pollute the interval term judgement.

3.2.3  Face Predicates and Face Unifiers. If we have m

continuous and n parametric interval variables in the Frij:t f-eq
context, we can think of the term on the right as rang- Fri=j:F

ing over an (m + n)-dimensional cube that has m bridge- I'+ Ctx I'+ Ctx
dimensions and n path-dimensions. A calculus of face TrT:F ft Tr1:F
predicates allows us to make assumptions about where [+P,Q:F I+P,Q:F

f-v

we are on that cube, and to use those assumptions fle.ﬁm- Y PAQ T -A T PVO. T -
tionally. Face predicates can be thought of as propositions,
i.e. types that have at most one element. For that reason, I't Ctx f\TFHP:F
and because we make sure face predicates are decidable, I, Pk Ctx
we will never explicitly write their proofs or hypotheses.
Because propositions have no relational structure, we can
ignore modalities for their elements. Again, while the model allows us to treat the universe of face
predicates F as an ordinary type, we will be more restrictive in order to preserve decidability of
definitional equality.

Figure 3 lists the rules for generating predicates: we can equate interval terms (f-eq), we have
true and false predicates (f-tt, f-ff) and conjunction and disjunction (f-A, f-V). We can also extend
contexts with a face predicate assumption (c-f). As usual, we omit congruence rules for definitional

C-

Fig. 3. Formation rules for face predicates.
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equality. Before we can define equality for face predicates, we need two definitions. First, we say
that a face predicate holds when its translation to a metatheoretical predicate holds, i.e. i = j holds
if and only if i = j, T holds, L does not hold, P A Q holds when both P and Q hold, and P Vv Q holds
when either P or Q holds. Secondly, a face unifier o : A — T for a context I is a substitution of
interval variables from a face-predicate-free context. To be precise, they are generated as follows:

c:A—>T '+ Ttype c:A—>T

():()—)()u-em o (A F:Tlo]) — (T, #:T)U‘eXt O':(A“:D—)Fu—Wkn
o:A>l  piAbj: c:A—>T  §\TrP:F  Plo]holds
o)A @ry TP s AS T u-ext-f

GivenT + P,Q : F, we write P = Q if, for every face unifier ¢ for I' such that P[] holds, Q[c]
also holds. We equate predicates that are in this sense equivalent (f=). If an equality predicate is
satisfied by any face unifier of the context, we can use it definitionally (i=-f).
T+P,Q:F P4:>Qf Trij:1 T=G0=)) .

TrP=Q:F - Trizj:I !

The joint effect of these rules is that, as soon as there are face predicates in the context, type
checking no longer happens in the current context, but only after face unification. Even though
a given context has infinitely many face unifiers (by weakening), it is always sufficient to check

finitely many, and further optimizations are possible. Indeed, if the face predicates in the context
do not use disjunctions, then one unifier is sufficient.

—f

Example 3.4. Terms in the context I',i : I,j : I can be thought of as living in context I' and
varying over a two-dimensional square. If we extend the context further with the assumption
P:=i=0Vi=1Vj=0Vj=1, then we are restricting ourselves to the sides of that square.
Terms in the extended context will be type-checked 4 times, under each of the face unifiers
(0/),(1/i) : (T,j:I) = (T,i:Lj:LP)yand (0/j),(1/j): T,i:I) = (T,i:Lj:LP).

3.24 Systems. Systems are the eliminator for proofs of disjunctions (V) and contradictions (L).
Assuming that P V Q is true, we can define a term by giving its value when either P or Q is true,
such that the given values match when both are true (t-sys2). Assuming a contradiction, we can
spawn terms at will using the empty system (t-sys0). We also give the S-rules for systems and the
n-rule for 4, which states that 4/ is equal to anything.

I+ Atype ILPra:A I[L,Orb:A T+ Atype
ILPAQra=b:A \T+FPVQ=T:F F\TrL=T:F
t-sys2 ——/————
Tr(P?alQ?b): A Trs:A

t-sys0

(T?a|lQ?b) =a, (P?a|T?b)=b, 4 =a.

In order to avoid repeating predicates, we will denote (P?a|QV R?(Q?b|R?c)) shorter as
(P?a|0?b|R?c).

3.25 Welding. As clarified in Section 3.2.1, the Weld type (t-Weld) comes with a constructor
(t-weld) and a variance-polymorphic eliminator (t-indweld). We supplement these rules with three
equations that express that Weld and weld extend the partial objects that they should extend, as
well as two S-rules for indwelq. The S-rules are compatible due to the equality required by indweld-

T+P:F T,PrT:U, T+ Weld{A — (P?T. f)} type

r'rA: U, \T,Prf:A—>T T'ta:A
t-Weld t-weld
I'+Weld{A— (P?T, )} : Uy T'rweld(P?f)a:Weld{A — (P?T, f)}
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T,y” :Weld{A — (P?T,f)} rCtype TI,P,y":Ttrd:C

T,xV:Arc:C| P?f)x/y] I,P,x" :Arc=d[f x/y]:Clf x/y]
VAT Fb:Weld{A — (P?T, f)}
T+ indyo (0. (P? 0.d). 70 b) - L0/ 1] tindweld
Weld{A — (T?T, )} = T, indyq(v.C.(T ?2y.d), x.c,b) = d[b]y],
weld(T?f)a = fa, indy,q(v.C, (P?y.d), x.c, P?fra) = cla/x].

3.2.6 Glueing. Dually, the Glue type (t-Glue) comes with a projection (t-unglue) and a construc-
tor (t-glue). We supplement these with three equations stating what happens when P = T, a f-rule
and an n-rule.

TrHP:F T,P+T:U,

F'rA: U, J\T,P+f:T—A Trb:Glue{A— (P?T, f)}
v Glueld — (PIT. N} "0 " Trunglue(@? )b a Lonele
I'+ Glue{A « (P?T, f)} type T,Prt:T Tra:A ILPrft=a:A |
T+ glue{a < (P?t)} : Glue{A « (P?T, f)} t-glue
Glueg{lz\e{: E: Z_{;Jgi Z tT ulnglue (Pl?f);glue{s — (};??tb)}) = Z’
unglue(T? )b = fb, glue{(unglue (P? [)b) < (P?b)} = .

3.2.7 From Identity Extension to the Path Degeneracy Axiom. Relational parametricity in System
F [Reynolds 1983] asserts that, at both the type and the value level, related inputs will lead to
related outputs; thus, ‘relatedness’ is a congruence. In this formulation, to say that types A; and
A; are related, is to give a relation [A] : Rel(A;, A;). Relatedness of values a; : A; and a; : Az is
then defined by that same relation [A]. The identity extension lemma (IEL) asserts that if, at the
type level, all inputs are of the form Eq : Rel(A, A), then the output will also be of that form. In
particular, relatedness in a closed type (with no type-level input) means equality. Then ‘relatedness’
at the value level can be thought of as heterogeneous equality: it is a congruence that boils down
to equality when it becomes homogeneous. However, ‘relatedness’ at the type level does not mean
equality, as Rel(A, B) can be inhabited for any two types A and B. This explains the difficulty in
extending IEL to large types in dependent type theory.

Our approach in the transition to dependent types, is to mix value and type levels, while
maintaining two separate relations: the bridge relation is like type-level relatedness in System F,
whereas the path relation is like value-level relatedness in System F and expresses heterogeneous
equality. Parametric functions in System F map types to values; hence our parametric functions
map bridges to paths. We already know that all functions preserve paths (since o = #}), so we only
need to add that path-connectedness in closed types means equality. We assert this by postulating
that all non-dependent paths are constant, implying that their endpoints are equal:

T+ Atype AT Fp:V(i:1).A
'+ degaxp : p =vy(in.a (/1(1'Ij :D.p Oﬁ)

t-degax

3.3 Related and Unrelated Naturals

We include two types Nat and Size which both represent the natural numbers, but with different
relational structure. In Nat, numbers are only related to themselves, i.e. every bridge I — Nat is
constant. In Size, any two sizes are related, i.e. the bridge relation is codiscrete. As such, it is easier
to create functions of domain Nat, but these functions come with fewer type-guaranteed properties.
The type of naturals Nat is highly similar to that of MLTT:
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T r Ctx N I',m" : Nat  Ctype
o tNat T+oc:Cl0/m]
T+ Nat : U, 0
0 T,m" :Nat,c: Cr cs: C[sm/m]
I'+ Ctx o I'tn:Nat s v\TFn:Nat -
: . t-indnat
I't0: Nat T'Fsn:Nat r'_indl‘:lat( .C, co, m.c.cs, 1) : C[n/m]

We omit the f-rules. Perhaps surprisingly, the eliminator allows us to create parametric functions
from the naturals by pattern matching. For example, we can have a parametric identity function:

An”.indﬁat(m.Nat, 0,m.c.(sc),n) : fNat — Nat. 2)
This makes sense, because Nat has no interesting bridges, so every function trivially maps bridges to
paths, as required by the parametric modality f§. This is in line with the known theorem [Atkey et al.
2014; Takeuti 2001] that any function in MLTT with small codomain, is parametric, even though
such functions may pattern match on natural numbers. The reason for the surprise may lie in the
fact that parametricity over a discrete domain typically does not arise in e.g. System Fw, where
elements of the most common kinds are always related. In Section 6, we contrast parametricity
with irrelevance.

The type Size, in contrast, has the following constructors: TrP:F
T+ Ctx 5 '+ Ctx 5 T'Fn:Size S I',P+n:Size Size-fill
_—t 1 _—t- i -0 _—t- ize- _— - 1ze-
T+ Size: Uy €T 0s : Size e '+ Tn:Size e Tr fill(P? n) : Size e

where fill(P ? n) extends n, i.e. fill(T ? n) = n : Size. Moreover, we have fill(L ? n) = 0s. So the fill
operation completes a partial size by adding 0s in missing vertices, and filling up the relational parts
using the fact that any two sizes are related. However, we want more: if the bridge relation is to be
codiscrete, then the relational action of any continuous function to Size should be void of informa-
tion. This means not only that any two sizes are related, as is asserted by Ai.fill(i = 0?m|i = 1?n),
but also that they are related in a unique way. To that end, we add the following, somewhat
unconventional typing rule:

(i#:I)eTl p<id '+ m,n:Size I,i=0Vi=1)Frm=n:Size
t=-Size-codisc

T'tm=n:Size
Repeated application shows that two sizes are equal as soon as they are equal on all bridge-vertices
of T, i.e. they become equal after substituting every continuous and pointwise interval variable
with a constant.

An eliminator that simply takes images for each of these constructors, satisfying the necessary
equations, would be very complicated to use. Instead, we choose to provide the strong principle
of induction (t-fix) which uses an inequality type (t-<). Since instances of the fix” combinator
expand non-terminatingly, we include its f-rule as a (non-computational) equality axiom (t-fix-eq),
although the model supports the definitional equality.

I,n" : Size v Atype T+ f:I1(n: Size).(I1"(m : Size).(Tm < n) — Alm/n]) - A
T+ fix" f:11V(n : Size).A t

-fix

B\ T Ffix" f : I1V(n : Size).A (Bov)\T Fm: Size 5 I'+m,n:Size
Trfix’ fm:fix’ fm =a fm? A" defix’ fnr) 04 Timen: U
B\T+ n:Size Tre :ny<m Threy:n <ny
—————t-<-refl t-<-trans
Trreflan:n<n I'Ftrans<ejey :ng < ny
B\T + n:Size Tre:m<n
t-<-zero t-<-step

Ttrzerocn:0<n Trstep.e:Tm<Tn
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T,Pre:m<n - <-fill fill<(T?e) = e
T +fillc(P?e):fill(P?m) < fill(P?n) ~ fill<(L?e) = zero<Os
(i#:T)eTl T'rtee :m<n Ii=ovi=1l)re=e':m<n
t=-<-codisc

F're=ze':m<n

The combinator fix” allows us to define g n" in terms of the restriction of g to Size:

glan = A(m” : Size).Me : Tm < n).gm". 3)
An intuitive argument why fix” can have the modalities it does, is the following: since we have
fix" fn' = fn'(Am".Ae.fix” f m¥) and the right hand side is v-modal in , so is the left hand side.
This reasoning shows that, when we pass a bridge in the argument 7, the action of v on bridges
will be respected during expansion of fix". Note that although the 0s and T constructors allow us to
create a function Nat — Size, we cannot construct an inverse. Indeed, fix” does not allow arbitrary
distinctions between 0s and T n.

We could add many more Size-related primitives, e.g. for deriving contradictions from assump-
tions like e : Tn < n or to prove that all inequality proofs are definitionally equal. However, the
current set of rules, combined with the following maximum operator (t-Ll) is more than sufficient
for the practical applications in Section 4.2.

T'+m,n:Size #<TFmn:Size #<TFmn:Size
—t-U t-<-u-1 t-<-U-r

I'FmUn:Size Trlmaxcmn:m<mUn IF'kFrmaxcmn:n<mUn

3.4 Embedding Other Systems

To understand precisely how powerful our type system is, it is useful to compare it to others.
In this section, we show that MLTT and a predicative variant of System Fw can be embedded
into our system using either the continuous or the pointwise modality. The latter shows that the
pointwise modality of Glue and Weld’s dependency on the diagram arrows will only interfere with
special features of ParamDTT and not with features already present in MLTT or System Fw. Indeed,
everything that can be done in MLTT, can be done pointwise in ParamDTT. Each of these results
can be proven by induction on the derivation tree of the translated judgement.

LEMMA 3.5 (EMBEDDING OF MLTT). Let u be either id or . Then every derivable judgement of
MLTT can be translated to a derivable judgement of ParamDTT by inserting u wherever a modality is
required.® Thus, we have extended MLTT.

We can make System Fo [see e.g. Pierce 2002, ch. 30]

Kinds — Types
predicative by annotating the kind * with a level £ € N and Tl = 0 }
assigning levels to types in the style of MLTT, e.g. if ¢ : Kinﬁd':n;;lxts = HKJQ;E::]]
*j = xp B A xg, then V(@ 1 %; — #1).A ¢ fmax (j41,k41,6) = 0
This extends the predicative variant of System F by Leivant H?‘ "i : f]] = MC’ “t :tM
[1991]. UL B

LEMMA 3.6 (EMBEDDING OF PREDICATIVE SYSTEM Fw). Let T)',PZS' = Ty’pes -
1 be eitherid or . Then every derivable judgement of pred- [¥(a - k). A = V(e [x]).TA]
. . . . [3(a : x).A] = 3(a : [x])-[A]
icative System Fw can be translated to a derivable judgement [A— Bl - u[A] - [B]
of ParamDTT by the tables in Fig. 4 (where we omit the trans- Ax B]]t‘ = £l x [5)
lation of terms and equality judgements).” [AF KindingCtx] = AT+ Ctx
[A|T - Ctx] = [A]T] - Ctx
4 APPLICATIONS [ArT:x] = B\[A] - [T]: [x]
[AITFe:T] =  [AIT]r[e]: (7]

Mechanized Agda proofs for the results of this section, are

available in the artifact or online®. Fig. 4. Embedding predicative System

e Fw into ParamDTT.
6 Alternatively, all 3-types can be annotated with id instead of . @l

7 Alternatively, all product types can be annotated with id instead of .
8https://github.com/Saizan/parametric-demo
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4.1 Church Encoded (Co)-Recursive Types

In System F, we can use Church encoding to represent data types. For example, for a fixed type B,
we can encode the type of lists over B as ChList B := Ya.a — (B — a — «) — a. The list [by, b, ]
is then encoded as Aa.Anil’.Acons’.cons’ by (cons’ by nil”"). With dependent types, we would define
ChlListy B:=II(X : U7).X — (B — X — X) — X. Now if B happens to be some universe U; with
Jj = ¢, then the following term should arouse suspicion:

exoticList = AX.Anil".Acons’.cons’ X nil” : ChList, U;

If this is a list of types, then it is one whose contents depend on the type X which we are eliminating
to. This may not be detrimental - for example an analysis based on universe levels may reveal that
we cannot extract the contents of such a list if j > £. However, using V instead of I, we can instead
forbid exoticList altogether.

In this section, we use parametric Church encoding to construct indexed (co)-recursive data types.
More formally put, we construct, up to universe level issues, initial algebras and final co-algebras
for indexed functors, and prove their universal properties internally. We assume throughout this
section that we have a context T and an index type #f \ T + Z : U, (which we take, for simplicity, in
Uy although our formal proof in Agda is more general). We will write X = Y forV(z: Z).Xz > Yz
and © for the corresponding composition operator.” We moreover assume a functor F which is a
scheme consisting of

AT+ Fr: (Z = Up) = (Z — Uy)
AT FE V(X Z = UV : Z = Up).(X = Y) = (FX = FY)

for all metatheoretic k, ¢ € N, such that identity and composition are preserved definitionally, even
across universes. We will omit level annotations on F and F, as well as the first two arguments of
F. Throughout the section, we will write 1# : T for p \ T + t : T. Note that theorems are strongest
when their assumptions are parametric and their conclusions are pointwise.
4.1.1 Initial Algebras. '° Define
BE\TFMup=2z2VX: Z 5> U JFX = X) > Xz:Z > Ups,
T+ fold := AX* AmkX T2z Amm X* mikx 1 V(X : Z 5 U)J(FX = X) > (Mugy = X),
T + mkMug := A28 272X % Amkx 1. (mkX © F (fold X* mkx1)) z# 7 : F Mu; = Muy,
T | = 228 Am X AmkxX Tm x* mkxX T Mugs, = Mug.

LEmMa 4.1 (NATURALITY OF fold). Assume A%, B} : Z — U, with algebra structures mkAl :
FA= A and mkBY : FB = B. Assume a morphism of algebras f1 : A= B (ie. f © mkA =
mkB @ F f). Then there exists a term natlemmal : f © fold A# mkAl =mu,=p fold B mkB1,

SKETCH OF PROOF. The proof boils down to the construction of the diagram of algebra morphisms
in Fig. 5, where /f\ differs from the type defined in Section 3.2.1 using Glue in that it is now a
Z-indexed type formed from a Z-indexed function, i.e. we currently write / '\ i z instead of / f z%\ .
The path degeneracy axiom then asserts that the top and bottom rows compose to equal functions.

A major hurdle is that we need a proof (mk/ f\ i*)¥: F(/f\ i) = /f\ ithat / f\ i is an algebra, so
that we can apply fold. Here, the push and pull functions are insufficient, and it becomes important
that we use the Glue-implementation of / f\. Indeed, the weld constructor only takes input of type

One can argue that it is more general to consider continuously indexed functions: I1(z : Z).X z — Y z. However, those
interfere with the  modality. In Section 4.2, we do use continuously indexed functions.

10For initial algebras, we have been able to refine the proofs so as to obtain the same results, but with continuous instead of
pointwise dependencies. There are some complications in dualizing the technique we used for final co-algebras.
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# Al
0:1 Mu, fold A* mkA f B
fold D (mk/F\ i1 It
il b Mug old (/f\ H¥ (mk/f\i%) JF\i pull i B
# mkB1 ‘ Azhidp .
1:1 MU[ fold B* mkB B z%idp B.

Fig. 5. Proving naturality of fold. The middle row depends on i and reduces to the top/bottom row for i = 0
and i = 1 respectively.

A, and applying indelg under the functor F would not allow us to escape F. However, we do have
mkB @ F pull i*%: F(/ f\ i) = B, which is enough for glue. See the Agda proofs for details. ]

We can prove, up to universe level issues, that folding to Mu is the identity:

LEMMA 4.2. We have loweringlemmaqI 2L =Mug =My, foldeig Mu# mkMu, 1.

Proor. By function extensionality, it is sufficient to prove the equation only when postcom-
posed with a general fold, X# mkX1 : Mu, = X. It is clear that fold, X# mkx% ® | is equal to
folds4; X* mkx1, so we can apply the previous theorem to fold, X* mkx1. ]

Combining these lemmas, we can conclude up to universe level issues that fold B¥ mkB1 is the
only algebra morphism Mu = B:

THEOREM 4.3. Assume we have B : 7 — Uyiq, an algebra structure mkBY : FB= B and
an algebra morphism f1 : Mu; = B (ie. f ® mkMu; = mkB ® Ff). Then initiality!
£ © 1 =mur,—5 foldesr B¥ mkBl. O

This theorem is perhaps less interesting than the proof technique. For example, the type of Church
lists V(X : Up).9X — (B —» X — X) — X and the Church-encoded unit type V(X : U).JX — X
mentioned in Section 2 do not precisely fit the constraints of the theorem. However, they do up
to isomorphism if there is a unit type and a coproduct type former, and the proof technique even
applies if those types do not exist. What we have demonstrated is in fact a more general thesis,
namely that Church encodings of indexed recursive types can be shown internally to work.

4.1.2  Final Co-algebras. Define, using some syntactic sugar for (elimination of) triples:
BE\TFNup=A2:2)3AX:Z > U)JIX=>FX)XxXz:Z— Upyy,

I' + unfold := AX”.Amatcthﬂ.Azu.Ax.(Xn, matchX ¥ x) : V(X : Up).J(X = FX) = (X = Nuy),

I + matchNug := Azn./l(X”, matchX%,x).(ﬁ(unfold x# matchX 1) ® matchX) 2 x 1 Nug = FNuy,
THT:= Azﬁ./l(X”, matcth[,x).(Xu, matchX¥, x) : Nup = Nugyg.

Then similar reasoning as before, but with /..\ implemented using Weld instead of Glue, shows:

THEOREM 4.4. Assume we have B : Z — U, a co-algebra structure matchBY : B = FB
and a co-algebra morphism f1: B = Nu, (i.e. matchNu; ® f = Ff © matchB). Then finalityT :
1® f =BoNu,., unfold B¥ matchB.

4.2 Sized Types

As an example of the use of parametric quantification over values, in this section we show how it
can express irrelevance properties of definitions that use sized types. By indexing data-types with a
bound to the height of their elements, sized types reduce both terminating recursion and productive
co-recursion to well-founded induction on sizes [Abel and Pientka 2013]. This allows to enforce
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universal existential
a V.T = T 3T = T
b VnAn = VYnVm<nAm dnAn = dndm<nAm
c I(x:T).Vn.Bxn = VnlIl(x:T).Bxn (x:T).3n.Bxn = 3n3(x:T).Bxn
d | (Vn.An) X (Vn.Bn) = Vn.(AnxBn) (3n.An)+(3n.Bn) = 3dn.(An+Bn)
e Vn3(x:T).Bxn = 3(x:T).Yn.Bxn
f Vn.(An+Bn) = (Yn.An)+ (¥n.Bn)
g

(3n.An) x (3n.Bn)
where C< n

Jn.(A<nxB<n)
dm <nCm

i1

Fig. 6. Isomorphisms for working with Size quantifiers. Isomorphisms between dually quantified types are
placed side by side.

the totality of programs through typing and allows more recursion patterns to be recognized as
well-founded when compared to more syntactic checkers.

However, while these sizes are just natural (or in some applications ordinal) numbers, they
require a different treatment than other natural numbers, as a bound on the length of a list should
not be considered computational content of that list. Consider the following sized list type and its
constructors:

SListA : Size > U
nil : II(n : Size).Il(m : Size).(m < n) — SListAn
cons : II(n: Size).Il(m : Size).(m < n) > A — SList Am — SList An

If we treat sizes as computational content, then we obtain two different empty lists of size 2:

ng := nil (170s) 0s (. . .), ny = nil (T705) (T0s) (.. .).

In ParamDTT we can fix this problem by making the constructors parametric in their
size arguments. Then we can use the codiscrete bridge structure of Size, to build a path
Aif il (170s)# (fill(i = 0205 | i = 1?705))# (...) from ng to n;. To show that this approach to sized
types is valid we will build initial algebras and final co-algebras, and their sized version, for suf-
ficiently well-behaved functors. Our approach is immature for practical use as it relies on many
propositional equalities, some of which are non-computing axioms. Throughout the section, we will
omit the domain of quantifiers over Size, and we will moreover write 3m < n.T for I3m.(m < n)xTm
and Ym < n.T for Ym.(m < n) — T.

4.2.1 Isomorphisms for Size Quantifiers. To do so we will make use of the isomorphisms in Fig. 6
which describe how parametric quantification over Size commutes with other connectives. We
highlight the central ideas here, see the full Agda proofs for details. We get to remove quantifiers
over constant types (a), because inserting different values of n into function applications f n# or
existential pairs (n¥, ) yields path-connected and hence equal values. The reasoning for (b) is
similar. The isomorphisms (c) involve trivial swapping of arguments or components. In the special
case where T = Bool, we get (d) modulo a trivial isomorphism. In the isomorphism (e), the first
component is constant by (a) and can be extracted from the quantifier. Specializing to Bool again,
we arrive at (f). To the right of (e), we would like to write that In.II(x : T).B x n were isomorphic to
II(x : T).3n.B x n. However, this would require an operator that joins T many sizes into a single size
n.;, and moreover a way to transport from various types B x n to the type B x n,. This is possible
when T = Bool by using the maximum operator (U), provided that Bx n is covariant in n. This
covariance is clear if Bx is of the form C<, in which case we can use (b) to extract C on the left.
This yields (g).

Example 4.5. We build a fixpoint for the functor T + (A X 1), assuming that we already have the
sized initial algebra SList A : Size — U such that SList An = T + AX (Im < n.SList Am). We have
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In.SList An = In.(T + AX (Im < n.SList Am)) =4 (3n.T) + In.(A X (Im < n.SList Am))
= c T+Ax3In.Im < n.SListAm =, T+ Ax 3In.SListAn

4.2.2  Sized Initial Algebras. In this section we fix a universe level £, a context I' and a type
#\T + Z: U, and take an Z-indexed functor to be a pair of terms

B\TFF:(Z—> Uy — (Z—> Uy
TrF:Y(AB:Z—>U). ((z:Z).Az — Bz) > (z: Z).FAz — FBz
such that F satisfies the identity and composition laws propositionally. We omit parametric type
arguments such as the first two arguments to F. Write (A = B) for (Vn.Il(z : Z). Anz — Bnz).

We lift the functor F to a functor F on the category of sized indexed types as follows (using some
syntactic sugar for eliminating pairs):

B\T F F:= AMA.An.F(Az.3m < n.Amz) : (Size — Z — U;) — (Size — Z — U;)
T+ F = M AB Af Anf F(z.A(m, e, a).(m¥, e, fm¥ za)) : VA B.(A= B) > FA= FB
which can be shown to also respect the functor laws. We then define the sized initial algebra Mu as
the unique fixpoint of F, using well-founded induction on Size:

$\ T + Mu := fix (An.AMu’.F(Az.3(m : Slze) S(e:m < n).Mu' mez)):Size > Z — U,.
From fix= we obtain the proposmonal equality Mu = F Mu which gives us the (mvertlble) algebra
structure T' F mkMu : F Mu = Mu, while the initiality is given by the following fold function:

Tk fold: YA(FA = A) — (Mu = A), fold A mkaA :
fix (Ann./lfold'.lz./lmu.mkA nfz (ﬁ Az’ A(m¥, e, mu’).(m®, e, fold’ m

E=3

ez’ mu’))z (mkf(l\]il mu)))

Uniqueness is obtained from well-founded induction on sizes and the functor laws for F.

4.2.3 Initial Algebras. Finally we define the initial algebra as Mu := Az.3n.Mun z. However, in
order to define the algebra map mkMu : II(z : Z).F Muz — Mu z we need an extra property of F:
we say that F weakly commutes with 3(n : Size) if the canonical map of type I(z : Z).(3n.F Anz) —
F(Az’.3n.Anz’) z is an isomorphism for every A. All finitely branching indexed containers [Al-
tenkirch et al. 2006], i.e. functors of the form FX z = 3(c: Cz).(I(b : Bzc¢).X (r zc b)) for some
r: I(z: Z)I(c: Cz).Bzc— Z with Bzc finite, satisfy this property. If F weakly commutes
with 3(n : Size), then F Mu = Mu, which gives us the algebra map as anticipated. The unique
algebra morphism fold is defined using fold and its uniqueness follows from the fact that there
is an isomorphism between algebra morphisms from (Mu, mkMu) and algebra morphisms from
(Mu, mkMu).

4.2.4  Final Co-algebras. The entire construction can be dualized to obtain final co-algebras,
here we give only the main definitions:

F:= MAM.F(Az' ¥Nm < n.Amz),
Nu := fix (An. AN’ .F(1z’.¥(m : Size) II(e : m < n). Nu’ mey),
Nu := Az.Vn.Nunz.

Then Nu is the final co-algebra if F weakly commutes with VY(n : Size), i.e. if the canonical map of
type I(z : Z).F(Az’.¥(n : Size).Anz’) z — ¥n.F Anz is an isomorphism for every A. This property
is satisfied by all containers.
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5 SOUNDNESS: AN OVERVIEW OF THE PRESHEAF MODEL

In this section we give a high-level overview of the presheaf model that we constructed to prove
the soundness of ParamDTT. This section can be safely skipped by readers who are primarily
interested in the type theory side of the story. No prior knowledge of presheaves is assumed.

We start with a brief review of the set model of MLTT and show why it cannot model contexts
containing continuous or parametric interval variables and hence also fails to model bridges and
paths. We then explain how the general presheaf model of dependent type theory as treated by
Hofmann [1997], can be seen as a method for manually adding non-setlike ‘primitive’ contexts
to the set model. We point out existing presheaf models that support some form of interval: the
reflexive graph model [Atkey et al. 2014] and cubical models [Bernardy et al. 2015; Bezem et al. 2014;
Cohen et al. 2016]. Finally, we construct a specific presheaf model by manually adding bridge/path
cubes — contexts consisting solely of continuous and parametric interval variables — and give a
high-level overview of the semantics of ParamDTT in that model.

For the sake of the exposition, we ignore universe level issues. Most of the time, we do not use an
interpretation function but instead give judgements a direct meaning in the model. A more formal
treatment of the model is found in [Nuyts 2017].

5.1 The Set Model of Dependent Type Theory

In this model, a closed type is a set, whose elements are precisely its semantic closed terms. So
+ T type means that T is a set, and + ¢ : T means that t € T. A context I is modelled as a set, whose
elements are vectors of semantic closed terms that give meaning to all of the variables in I':

0={0y  @t:D)={QF.0)ly el teTlyl}.

So T + Ctx means that I is a set. From the notation T[y], it is already clear that an open type
T + T type is a function that assigns to every y € T aset T[y]. Aterm T ¢ : T is a function that
maps y € T to t[y] € T[y]. Note that elements of a context I' correspond precisely to semantic
substitutions y : () — I from the empty context. More generally, a substitution ¢ : A — T is
a function from A to T. Substitutions of types and terms are given by T[c][§] = T[o(5)] and
t[a][8] = t[o(5)]. Definitional equality is modelled as equality of mathematical objects.

So to wrap up, we have picked a category (namely the category of sets) whose objects model
contexts and whose morphisms model substitutions. We have defined for every object I' what it
means to be a type I' + T type and how we define T[o], and finally we have done the same for
terms. We have explained how to extend a context with a type. A few additional features will give
this setup the structure of a category with families [CwF, Dybjer 1996], and we can prove soundness
of MLTT with any extensions of interest by giving every inference rule a meaning in the model in
such a way that some contradictory type has no semantic terms.

The set model is insufficient to model ParamDTT. Indeed, how do we interpret the closed type
I or the contexts (i : I) and (i* : I) as a set? The terms F 0,1 : I show that these have at least two
elements, and (0 = 1) = L shows that they are distinct. But there is nothing that allows us to relate
them, which is necessary if we want to model the path degeneracy axiom. The interval is, in short,
not a set.

5.2 Presheaf Models

The problem of contexts that cannot be modelled by sets, can be overcome by adding them explicitly
to the model. This is what presheaf models do. The first step in constructing a presheaf model,
is to identify a set of primitive contexts (also called levels, shapes, worlds or simply objects) that
‘generate’ the problem. Secondly, for every two primitive contexts V, W, we must explicitly provide
the set of all substitutions ¢ : V => W that we want to exist between V and W; we will call these
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primitive substitutions (more commonly, they are called face or restriction maps). Together, these
must form a category ‘W (the base category).

Now, we define contexts T not in relation to the empty context by providing the set of all
substitutions () — T, but in relation to all primitive contexts. So in order to define I', we need
to provide for every primitive context W the set of all defining substitutions y : W = T and for
every primitive substitution ¢ : V <> W a composition operator Lio ¢ : (W > T) — (V > T).In
other words, a context I is a functor (Ls — T) : WP — Set (also called a presheaf over ‘W). A
substitution o : A — T (also: presheaf map/morphism) is then defined by saying how it composes
with the defining substitutions of A, i.e. we have to give an operator oo : (W — A) » (W — )
that is natural in W. In other words, substitutions are natural transformations, and our category of
contexts is the functor space Set™?  also called W.

Note that we can view a primitive context W as a context by setting (V Sw)=wv 3w,
and a primitive substitution ¢ : V > W as a substitution by defining ¢ o L as composition with ¢
in ‘W. This defines a functory : W — W called the Yoneda-embedding, which is fully faithful,
meaning that (V L W)= (Vo W),ie. every substitution between primitive contexts is in fact a
primitive substitution. Similarly, we have (W S =W o0

So T + Ctx means that T is a presheaf, and a substitution o : A — T is a presheaf map. We
define a type I' + T type by giving for every W and every y : W 25 Tits set of defining terms
W P ¢ : T[y], plus for every ¢ : V <> W a substitution operator i[¢] that takes W P ¢t : T[y] to
VP t[p] : T[y o ¢]. AtermT F ¢ : T is then a thing that maps defining substitutions y : W > T to
defining terms W +P t[y] : T[y] in such a way that t[y][¢] = t[y o ¢]. Again, one can show that
defining terms W P t : T[id] are in bijection to terms W + ¢ : T. We extend contexts as follows:

W (T T) = {(y,t)|y:W3>FandW I—Dt:T[y]}, (r,1) 0 9 = (v o ¢, tg]).

One can show that every presheaf category constitutes a CwF [Hofmann 1997] that supports
universes if the metatheory does [Hofmann and Streicher 1997].

The category of reflexive graphs. In order to model parametricity for a dependent type system
without modalities, we can pick as base category the category RG with just two primitive contexts ()
and (i : I), and where primitive substitutions are (non-freely) generated by (0/i), (1/i) : () — (i : I)
and () : (i : I) > (). A presheaf T over RG is then a reflexive graph, with a set of nodes () = T and a
set of edges (i : I) 5T Precomposition with (0/i) and (1/i) determines the source and target of an
edge, and precomposition with () determines the reflexive edge at a node. This corresponds to the
reflexive graph model as treated by Atkey et al. [2014], although they use a non-standard universe
to model identity extension (IEL). This model does not support iterated parametricity; hence it does
not support internal parametricity operators which, in absence of modalities, can be self-applied.
The non-standard universe supports IEL, but not in combination with proof-relevant relations.

The category of cubical sets. In order to support iterated parametricity or to have identity extension
in the presence of proof-relevant relations, we need a way to express relatedness of relations. In
other words, we need a notion of edges between edges (squares), edges between squares (cubes), etc.
Although contexts like (i : I j : I) exist in the category of reflexive graphs, these are still just graphs
that do not contain data to express that the faces (0/5), (1/j): (i : ) = (i : I j : I) are related.

In the cubical model, we add cubes explicitly. As base category, we pick the cube category Cube
with primitive contexts (G :1") forn € N and primitive substitutions G:1m) 5 G 1" that
substitute every variable of the codomain with either 0, 1 or a variable from the domain. A presheaf
I' over Cube is then a so-called cubical set, consisting of, for every number n, a set of n-dimensional



101

cubes (7:1") >Tanda composition operator with primitive substitutions (face maps) that allow
us to extract faces, diagonals and reflexive cubes from a given cube. This model is close to the
(binary version of) the one used by Bernardy et al. [2015]. Cubical type theory [Bezem et al. 2014;
Cohen et al. 2016] uses a similar model to model univalence, but they have additional operators
V, A and — on the interval, resulting in a base category with the same objects but more primitive
substitutions.

The category of bridge/path cubical sets. We need to make just one
modification to the base category to obtain a presheaf category of Lo
our system: we annotate the interval variables in primitive contexts s 0/ ) (1/ L1/7)
with either id or § (as (i¥ : I) really just contains two points 0 and 1).
So as base category, we pick the category BPCube whose objects are @ Wikl
bridge/path cubes (j: 1™, : 1"), where m, n € N. Primitive substitu- T /ikl)
tions ¢ : V. — W substitute every continuous ‘bridge’ variable from
w With 0,1ora br.idge variable frorr.l V, and every Parametric path’ oy ki ki
variable from W with 0, 1 or any variable from V' (Fig. 7). A presheaf
I is then a bridge/path cubical set that contains for any m,n € Na
set of cubes with m bridge dimensions and n path dimensions. The %
defining composition operator of I' allows us to extract faces, diago-
nals and reflexive cubes from a given cube, as well as to weaken path
dimensions to bridge dimensions. (0/1i, 0 / ) «© / i, 1/7)
The standard presheaf model over BPCube supports iterated para-
metricity as it is essentially just the cubical set model extended with Fig. 7. All points, bridges (sin-
an arbitrary distinction between bridge and path dimensions. How- gle line) and paths (double line)
ever, on top of this model we will build a machinery of modalities ©f the bridge/path cube (i :
that adds the path degeneracy axiom, but loses full internal iterated LJ #:1). The labels are the cor-
parametricity. We still need the cubical structure in order to sup- responding primitive substitu-

port the path degeneracy axiom in the presence of proof-relevant tions V;i/iﬂj domain.S 0. (kD
relations and (k* : I) respectively.

1/J)

7 ©fiklj)

(0/i,k/j)

5.3 The Cohesive Structure of BPCube

A bridge/path cubical setT € BPCube can be seen as an ordinary cubical set (namely the cubical
set of its bridges) equipped with a notion of cohesion in the sense of Licata and Shulman [2016]
expressed by its paths. This is formalized by a forgetful functor LI : BPCube — Cube that forgets
paths. This functor can be shown to be a morphism of CwFs, i.e. it extends to types and terms in a
well-behaved manner. It is part of a chain of at least five adjoint functors (Fig. 8):
M4A4U4V 48,  MUB:BPCube — Cube, A,V :Cube — BPCube

of which only 1M is not a morphism of CwFs. The discrete functor A takes a cubical set with only
bridges and equips it with a path relation defined as the equality relation — the strictest path
relation possible. The codiscrete functor V on the other hand defines the path relation as the bridge
relation — the most liberal possibility. The functor B is a forgetful functor at another level: it maps
a bridge/path cubical set to its cubical set of paths and forgets the bridge structure. From this
perspective, V takes a cubical set with only paths and equips it with a bridge relation defined as the
path relation — the strictest possibility. Finally, the functor 1 identifies all path-connected objects,
producing a cubical set with only a bridge relation. This functor is not a morphism of CwFs as it
would not respect substitution.

Composing each adjoint pair to a (co)monad BPCube — BPCube, we get a chain of four adjoint
endofunctors on BPCube,
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§4b4449: BPCube — BPCube.

The shape monad | = An, again the only one that is not a morphism of CwFs, identifies path-
connected objects and then reintroduces a discrete path relation. The flat co-monad b = AU
redefines the path relation discretely as the equality relation. The sharp monad f = VLU redefines
the path relation codiscretely as the bridge relation, and the pointwise co-monad J = VH redefines
the bridge relation as the path relation. Note that a presheaf map §A — I' maps bridges in A to
paths in T, as does a parametric function, and that a presheaf map A — T maps paths in A to
paths in T, but does not act on bridges in A, just like a pointwise function. The functors , Id and #
satisfy the same composition rules that we have for modalities, and we have the co-unit ¢ : { — Id
and the unit ; : Id — # to interpret the order relation on modalities.

5.4 Meaning of Judgements

In this section, we write internal judgements between interpretation
brackets [...], in order to tell them apart from mathematical state-
ments about the standard presheaf model from Section 5.2 which we
also write in judgement-style. .

0

R ¢ L, §T
Contexts. As usual, [T + Ctx] means that [I] is a presheaf over

BPCube, i.e. [I'] + Ctx. °

Types. Unusually, [T + T type] means that [T] is a type over the
presheaf §[I], i.e. #[T] + [T] type, that is moreover discrete. The
fact that it lives in #[I] means that when there is a bridge in [I'],
then [T] provides a notion of paths over it. This is necessary if we o

L] L] L]
want to add xT : T to the context, because a bridge in J[T] is a
path in [T]. Of course we have [I'] + [T][] type. We say that a type \ \
A + Atype is discrete if every path in A that lives above a constant o aer® C oy *
path in A, is also constant. More formally, if we have a primitive ’
context (W, k* : T) and a defining substitution & : (W, k* : I) 2 A Fig. 8 Example of a

. . L 0 5 bridge/path bical set T
that is constant in k, ie. it factors as (W, k¥ : I) = W -5 A, then ridgerpath - cubical e
and its images for various

every defining term (W, k¥ :T) P a : A[S] is also constant in k, i.e.
it is a weakening of some W +P a’ : A[§’]. This is essentially the
statement that non-dependent paths in A are constant, i.e. that A
satisfies the path degeneracy axiom. So [T + T type] means that [T]
is a type in context §[I'] that satisfies the path degeneracy axiom.

Modal context extension. If [I' + T type] holds, then we need to be
able to extend [I'] with variables of type [T] in any modality . We
already know that y corresponds to an endomorphism of CwFs on

functors. A single line denotes
an edge (for edge cubical sets)
or a bridge, a double line is a
path. Implied content, such as
constant lines and the bridge
under a path, are not shown.
Hence, applying A preserves
the drawing.

BPCube. The laws of a morphism of CwFs allow us to apply p to both sides of a typing judgement,
obtaining pf[T] + p#[T] type. Now uff = # by the composition table of modalities so that we have
[T] + ([T type (note how this would not work if [T] lived in [I'] and y = q[). We now interpret
[T, x# : T] as ([T], x : (u[T])[+]). Then one can show that [# \ T]] = b[I] and [q \ I] = #[T], so that
left dividing a context by a modality corresponds to applying the modality’s left adjoint.

Terms. A term [ + ¢ : T] is now interpreted as [I'] + [¢] : [T][]-

5.5 Some Remarkable Interpretations of Types

The universe. For simplicity, we ignore universe levels — a more formal exposition can be found
in [Nuyts 2017]. The standard presheaf universe U™ as described by Hofmann and Streicher
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[1997] has as its defining terms W > A : UP" the types W + Atype over the Yoneda-embedded
primitive context W. This universe is problematic for our purposes in three ways. First, the types it
contains are not all discrete. Secondly, T™*" is not discrete itself and thus cannot satisfy the path
degeneracy axiom. Thirdly, an encoded type I' + A : U should admit terms T + a : A; indeed, the
V-quantifier admits parametric functions in non-parametric types. The universe ™" does not
satisfy this requirement.

The first issue is easiest to resolve: we define a non-discrete universe of discrete types UNPP by
taking as defining terms W > A : ZNPP precisely the discrete types W + Atype.

The other two issues can be solved together. A closed type such as the universe that we want
to model, is discrete if and only if its path relation is the equality relation. Meanwhile, a bridge
(i : I) ¥° A : U should admit paths (i’;1 : ) 2 a : A. Both of these matters are resolved if we
take as defining terms (j : 1", % : I") +P A : U precisely the discrete types (j# : I'™) + Atype, or
equivalently terms (j# : ") ¥® A : ©NPP_ So the paths of U are constant and the bridges of U are
the paths of ZNPP; this amounts to saying that U = bUNPP = ABUNPP. Indeed: ] redefines the
bridge relation as the path relation, and b subsequently redefines the path relation as equality.

Now if we have [f \ T + A: U], i.e. (up to isomorphism) b[I'] + [A] : bJZNPP, then applying
# and using that #b = § and §q = { yields a term #[T]  #[A] : qZNPP. Finally we can use
9 : { — Id to obtain #]T] + (*[A]) : TUNPP, which encodes a discrete type H[T] - I(*[A]) type, i.e.
an interpretation for [T + Atype]. We will write EIT for 9(*T).

An important challenge is now to establish that all type formers work on elements of the discrete
universe U = bJZNPP. The general approach is the following: We move the functor b] to the left
of the turnstile () in the form of its left adjoint {{. Then we apply existing type formers for Z/NPP
in the context #{T and finally we move the functor back to the right. Great care is needed where
we have interactions between terms and types, i.e. when modelling dependent quantifiers, identity
types and Glue/Weld types.

Identity types. The standard presheaf identity type has a single defining term W +° x : (a =4
b)ly] when a[y] = b[y] and no defining terms for y otherwise. In other words, it represents
definitional, proof-irrelevant equality. Now suppose we have [T+ T : U] and [T + s, ¢ : T]. The
former judgement can be unfolded to §f[I'] + T’ type. Using the fact that T is discrete, we are
allowed to disregard the § functor, so by applying § to [s] and [¢], we obtain terms §§[I'] + s’, " : §T".
Then we can construct §J[T'] + s =47+ t’ type, which is discrete as it is a proposition, and finally
we can go back to [U]. It is noteworthy that the interpretation of the identity type is not over
T’, but over #§T’. This also allows us to model parametricity of the reflexivity constructor, without
damaging the power of the J-rule.

Function types. Assume we have [[' + A : U] and [T, AL B: U], ie. [I] + [A] : b2aNOP
and [T],x : ((# \ WEIA)[] + B : bJUNPP. Again, we push b{ to the left in the form of .
Remember that | is a monad that we can map into; this allows us to extract the variable x out of
it. Meanwhile, we have a natural transformation p — # o (f \ y). All of this allows us to derive
B[] + A" : UNPP and #f[T], x : pA” + B’ : UNPP, whence #[[T] + M(x : pA’).B’ : UNPP and
finally [T] + [II#(x : A).B] : b 2UNPP.

Pair types. The pointwise and continuous pair types are formed in the same way as the function
types. For the parametric pair type 3, a problem occurs because 3(x : §4’).B’ is not generally
discrete. We resolve this by applying a type-level shape operator § that identifies all terms connected
by non-dependent paths, obtaining #{[I] + $=(x : #4”).B’ : UNPP. Pushing #{ to the right again,
we find [T + [3(x : A).B] : bJUNPP.
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Face predicates. Similar to U™, there is a standard presheaf universe of propositions Prop™".
The defining terms W P P : Prop™" are the proof-irrelevant types W + P type over the Yoneda-
embedded primitive context W these are types for which all defining terms are equal to x. We define
[F] = bh(#Prop™") = bProp™" (so #Prop™" takes the role that U’ took before) and interpret
context extension similar to the way we did for types. See [Nuyts 2017] for details.

Glueing and welding. We first define these types in the standard presheaf model. Write W =
Weld{A — (P?T, f)} and G = Glue{A « (P?T, h)}. We want these to be types: T + W, G type.
We define W as follows: the defining terms V P w : W[y] are defining terms V +° w : T[(y, %)] if
P[y] = T; otherwise, they are defining terms V +° w : A[y]. The primitive substitutions w[¢] of w
are defined using some case distinctions and the function f. Similarly, a defining term V +° g : G[y]
is a defining term V +P g : T[(y, %)] if P[y] = T. Otherwise, it is a pair (a, t) with V P a : A[y] and
V,p:Prt:T[(y.p)], such that h maps t to a. Again, primitive substitutions are defined using case
distinction and the function h.

The next step is to internalize these types. We have [A] and [T] living in bZ/NPP and [P] living
in bqProp™", all in context [I]. In each of these cases, we can push b to the left, arriving in
context #{[]. Further unpacking is needed for [P]. Meanwhile, [f] lives in context [ \ I'] = #]T].
The fact that the type of f is discrete and lives in a discrete universe, allows us to disregard {, so
that f too lives in §{[I']. Now we can apply the presheaf Glue or Weld type formers and push the
functors to the right again.

Size. We define a closed type Size in the presheaf model as a type of naturals with codiscrete
bridge structure and discrete path structure: a defining term (j : I, 7% : ") +P s : Size consists
of 2™ natural numbers, one for each vertex of the bridge cube. So we relate any two numbers
with a bridge, while paths are required to be constant. The type §Size then has defining terms
(f: ™ ") +P s : #Size consisting of 2™+" natural numbers. Given T F s, : #Size, we define
a proposition T' + s < ttype, where we have a defining term W +° x : (s < t)[y] if and only
if s[y] < t[y] vertexwise. The internal type [[s < ¢] is then defined similarly to the identity type.
Finally, the fixpoint operator on Size is defined by induction on the greatest vertex of a given cube.

6 RELATED AND FUTURE WORK

Parametricity in and of dependent type theory. Figure 9 provides an overview of related work.
Reynolds’s original formulation [1983] is in terms of a (partly ill-conjectured [Reynolds 1984])
set-theoretic semantics, but others have shown that parametricity of System F can be formulated in
a predicate logic on System F. Such frameworks can be seen as ‘internal’ because the parametricity
proof that we obtain for a specific program, can be constructed as a proof term internally in the
predicate logic. However, as the ‘journey’ column emphasizes, the fact that this program-to-proof
translation works for any program, is proven externally. IEL holds in each of the cited frameworks
for System F.

The second chunk of Fig. 9 contains frameworks for parametricity of dependent type theory.
In this class of work, IEL is only shown to hold for small types. In fact, the function leak from
Section 1 would be ruled out by IEL; hence, IEL cannot hold in general. In our terminology, work
like Bernardy et al.’s [2012] which omits IEL altogether, shows that MLTT is continuous (i.e. all
functions respect relations) analogous to Lemma 3.5 where p is the continuous modality.

Atkey et al. [2014] prove their results in a reflexive graph model, following related models for
simpler type systems such as those by Robinson and Rosolini [1994], Hasegawa [1994], and Atkey
[2012]. This model has been enhanced by Bernardy et al. [2015] to a (unary, but generalizable)
model in terms of cubical sets (iterated reflexive graphs) that supports iterated parametricity. Our
work builds further on that. Bernardy et al.’s type system provides operators that allow us to map
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‘ citation source target ‘ journey | model IEL proof
[Reynolds 1983] System F conject. set model | yes
[Abadi et al. 1993] System F System # external yes
[Plotkin and Abadi 1993] | System F System F + logic | external yes
[Wadler 2007] System F System F + logic | external yes
[Takeuti 2001] 2 € A-cube % € A-cube external for small types
[Bernardy et al. 2012] any PTS other PTS external no
[Krishnaswami and | dependent types PER-model only some corol-
Dreyer 2013] laries
[Atkey et al. 2014] dependent types presheaves: reflex- | for small types
ive graphs
[Bernardy et al. 2015] dependent types + | same as source | internal | presheaves: (unary) | no
param. operators cubical sets
This work dependent types + | same as source internal | presheaves: bridge/ | yes: (semantics
Glue, Weld, v, 3 path cubical sets of) degax

Fig. 9. Classification of important related frameworks that prove parametricity. The ‘source’ column lists the
type system that parametricity is proven of. If parametricity is formulated in some type system, it is listed
under ‘target’ and the ‘journey’ column lists whether the translation from program to parametricity proof,
takes place internal to the type system, or externally in the metatheory. If a metatheoretic model is (also)
used, it is listed under ‘model’. The last column lists whether the identity extension lemma (IEL) is proven.

programs to their parametricity proofs internal to the type system. Modulo some technical issues
that can be overcome, their operators could be plugged into our presheaf model and supplementing
them with the path degeneracy axiom would have given our system similar power. However, just
as in their system, we would have had non-duplicable interval variables, severely complicating
implementation as an extension of Agda. We overcome this, somewhat experimentally, by choosing
instead to use the more indirect Glue and Weld types, which exist in any presheaf model and are
in this sense also more robust against future reworkings of the model. This decision is unrelated to
the appearance of the pointwise modality (). The graph type /f\ from Section 3.2.1 with its push
and pull functions, is analogous to the graph relation in System % [Abadi et al. 1993].

Modalities. Although the use of modalities for keeping track of parametricity is to our knowledge
new, parametricity is just one addition to a large list of applications of modalities, including
(eponymously) modal logic [Pfenning and Davies 2001], variance of functorial dependencies [Abel
2006, 2008; Licata and Harper 2011], irrelevance [Abel and Scherer 2012; Reed 2003], erasure
[Mishra-Linger and Sheard 2008], intensionality vs. extensionality [Pfenning 2001]. Licata and
Shulman’s modality system for axiomatic cohesion [2016] is an important ingredient of our model.
The syntactic treatment in terms of order, composition and left division has been developed by
Pfenning [2001] and Abel [2006, 2008], and was already implemented in Agda as the basis for its
irrelevance modality, facilitating the implementation of the ParamDTT extension of Agda.

Parametricity versus irrelevance. Notions closely related to parametricity, especially in non-
dependently-typed systems, are irrelevance and erasability. The meanings of these words seem to
shift somewhat throughout the literature, so we start by defining the terminology we will use. By a
parametric dependency, as in the rest of the paper, we mean a dependency that maps related inputs
to (heterogeneously) equal outputs. This includes the identity function #Nat — Nat defined in
Eq. (2). By an erasable dependency, we mean a dependency that can be erased after type-checking, at
compile time, while preserving the operational semantics of a program. By an irrelevant dependency,
we mean a dependency that can be erased already during type-checking, implying that terms can
be converted between types that are equal up to their irrelevant parts. It is intuitively clear that
irrelevance is stronger than erasability, which in turn is stronger than parametricity.
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Mishra-Linger and Sheard’s EPTS [2008] and Barras and Bernardo’s ICC* [2008] are type systems
with quantifiers for erasable dependencies based on Miquel’s implicit calculus of constructions
(ICC) [2001a; 2001b]. Both propose a conversion rule that erases at type-checking time, making
their quantifiers irrelevant. If we allow conversion only between f-equal types, as Mishra-Linger
and Sheard also suggest, both systems embed into ours. Abel and Scherer [2012] show that it is
problematic to view the quantifiers of EPTS and ICC* as irrelevant. The problem can be neatly
formulated in terms of our bridges and paths: if a function is to be irrelevant, then surely it must
map any pair of inputs to equal outputs. However, both type systems consider irrelevant functions
f : O™ (x : A).B with merely ‘continuous’ codomain B : A — . In our system, this means that
we would require a path between any two values f 2, and f a,"™ without necessarily providing
a notion of paths between B a; and B a,. The result is unclarity about how to check cross-type
equality.

Reed [2003] and Abel and Scherer [2012] present similar type systems with irrelevant quantifiers
in which this problem does not arise as they require the codomain B : irr A — U to be irrelevant as
well. We can conclude that each of the concepts mentioned above has its own virtues. Irrelevance
admits erasure at type-checking time, but we cannot consider irrelevant functions for an arbitrary
dependent codomain. Erasability does allow arbitrary codomains, but admits erasure only at
compile time. Parametricity does not admit erasure whatsoever, but it does admit pattern matching
eliminators while still producing free theorems.

Cubical type theory and HoTT. Cubical type theory [Bezem et al. 2014; Cohen et al. 2016] uses
a cubical set model, similar to ours, to model the univalence axiom from homotopy type theory
(HOoTT) and consequently, function extensionality. The cubical type system and ParamDTT have in
common that equalities can be expressed using functions from the interval, and that types varying
over the interval can be constructed using variations of Glue. We expect that both systems can
be merged into a system for parametric HOTT. Voevodsky’s homotopy type system [HTS, 2013]
and Altenkirch et al.’s 2-level type system [2016], which contain both a fibrant path type and a
non-fibrant strict equality type, may play well with such a system for parametric HoTT, where
types live in a different context as their terms and hence need not be fibrant in their terms’ context.

Iterated bridges. It is regrettable that we have lost internal iterated parametricity. This issue
is directly related to the fact that in ParamDTT there is no way to provide, between two types
Ap and A, a notion of heterogeneous bridges without also providing a notion of heterogeneous
paths. Indeed, if we have a bridge A : I — U from A to A;, then we can consider both bridges
II(i : I).Ai and paths V(i : I).Ai. However, if we have a bridge between functions f and g, then
a heterogeneous bridge from a : Glue{A « (P?T, f)} to b : Glue{A « (P?T,g)} has meaning
in the model, whereas a path does not. This suggests that we should add to our model a weaker
connection of pro-bridges, such that a pro-bridge between types expresses a notion of bridges, but
not paths. This will then immediately ask for the addition of pro-pro-bridges, etc. It seems that a
system for iterated bridge/path parametricity needs to be modelled in iterated bridge/path cubical
sets which contain ever weaker notions of edges. On the syntax side, the consequence would be
that the q modality is lossless and we can have § o | = id, which would stop the propagation of
the { modality that precludes iterated parametricity. A possibly related feature that ParamDTT
lost with respect to both cubical type theory and Bernardy et al.’s work, is that our bridge and
path types are not indexed by their endpoints; rather, they look like ordinary function spaces. The
reason is that the interaction between modalities and indexed function types poses very subtle
problems and we were able to achieve good results without. We believe that iterated bridge/path
cubical sets could create clarity on this issue as well.
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Sized types have been developed to make termination checking more perspicuous, more powerful, and more
modular by integrating termination into type checking. In dependently-typed proof assistants where proofs
by induction are just recursive functional programs, the termination checker is an integral component of the
trusted core, as validity of proofs depend on termination. However, a rigorous integration of full-fledged sized
types into dependent type theory is lacking so far. Such an integration is non-trivial, as explicit sizes in proof
terms might get in the way of equality checking, making terms appear distinct that should have the same
semantics.

In this article, we integrate dependent types and sized types with higher-rank size polymorphism, which is
essential for generic programming and abstraction. We introduce a size quantifier ¥ which lets us ignore sizes
in terms for equality checking, alongside with a second quantifier II for abstracting over sizes that do affect the
semantics of types and terms. Judgmental equality is decided by an adaptation of normalization-by-evaluation
for our new type theory, which features type shape-directed reflection and reification. It follows that subtyping
and type checking of normal forms are decidable as well, the latter by a bidirectional algorithm.
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1 INTRODUCTION

Dependently-typed programming languages and proof assistants, such as Agda [2017] and Coq [IN-
RIA 2016], require programs to be total, for two reasons. First, for consistency: since propositions
are just types and proofs of a proposition just programs which inhabit the corresponding type,
some types need to be empty; otherwise, each proposition would be true. However, in a partial
language with general recursion, each type is inhabited by the looping program f = f. Secondly,
totality is needed for decidability of type checking. Since types can be the result of a computation,
we need computation to terminate during type checking, even for open terms, i. e., terms with free
variables.

Consequently, the aforementioned languages based on Type Theory come with a termination
checker, which needs to reject all non-terminating programs, and should accept sufficiently many
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terminating programs to allow the user to express her algorithms. In current termination checkers,
programs are required to terminate by structural descent [Giménez 1995]; the structural order may
be extended to a lexicographic [Abel and Altenkirch 2002] or size-change termination criterion
[Lee et al. 2001; Wahlstedt 2007]. This is not a fundamental limitation, since Type Theory allows
many functions to be expressed in a structurally recursive manner, if needed by the help of a
well-founded relation [Nordstrom 1988], inductive domain predicates [Bove and Capretta 2005],
or inductive descriptions of the function graph [Bove 2009]. However, the syntactic termination
check is very sensitive to reformulations of the program and hostile to abstraction [Abel 2012].

Sized types [Hughes et al. 1996] delegate the checking for structural descent to the type system
by annotating data types with a size parameter. The type checker can then ensure that in recursive
calls the size goes down, certifying termination. In the simplest setting [Abel 2008; Barthe et al.
2004], the size is just an upper bound on the tree height of the data structure; however, more
sophisticated size annotations have also been considered [Blanqui 2004; Xi 2002]. Most sized type
systems are non-dependent [Abel and Pientka 2016; Amadio and Coupet-Grimal 1998; Barthe
et al. 2008a,b; Blanqui and Riba 2006; Lago and Grellois 2017], yet the combination of sized and
dependent types has been studied as well [Barthe et al. 2006; Blanqui 2005; Grégoire and Sacchini
2010; Sacchini 2013, 2014]. However, to the best of our knowledge, no study combines higher-rank
size polymorphism with full-fledged dependent types.

Higher-rank size quantification takes termination checking to the next level; it is necessary for
abstraction and generic programming. For instance, it allows us to write a generic tree traversal
which applies a user-given preprocessor on subtrees before recursively descending into these trees,
and a postprocessor after surfacing from the descent. The condition is that preprocessing does
not increase the size of the subtree; otherwise, termination could not be guaranteed. Concretely,
assume a type Ti of trees of size < i with a constructor node : Vi. List (Ti) — T (i + 1) which takes
a finite list of subtrees to form a new tree. In the following definition of trav, the preprocessing
pre: Vi.Ti — Ti can be safely applied to input tree ¢ because the type of pre bounds the size of
pret by the size of t. In case pret = node ts, the trees in the list ts are still guaranteed to be of
strictly smaller size than t, thus, the recursive call to trav, communicated via the map function for
lists, is safe.

trav : (pre: Vi. Ti — Ti) (post : Too — Too) = Vi.Ti — Too
trav pre post t = post (case pret of { node ts — node (map (trav pre post) ts) })

The display shows the Curry-style program as provided by the user, but state-of-the-art type
checkers elaborate the program from surface syntax into an internal Church-style syntax with
explicit type abstractions and type applications.” With implicit type and size applications elaborated,
trav would look as follows:
trav pre post i t =
post (case preit of { nodejts — node co (map (T j) (T o) (trav pre post j) ts)})

Church-style syntax is the basis for all program analyses and transformations to follow and
should be considered as the true syntax. However, from a dependent-type perspective, explicit size
applications in terms can be problematic when the type checker compares terms for equality—which
is necessary as types can depend on values. Inferred sizes may not be unique, as we have subtyping
Ti < Tjfori < j: we can always weaken an upper bound. For instance, given ts : List (T i), any of
the terms node i ts, node (i + 1) ts, . . ., node oo ts has type T co. Yet semantically, all these trees are
equal, thus, the syntactic equality check should ignore the size argument to node. Similarly, in the

1Xi [2002] has first-class size polymorphism, but only indexed types, no universes or large eliminations.
2Agda, Coq, Idris [Brady 2013], and Haskell [Sulzmann et al. 2007] all have Church-style internal languages.
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application preit the size argument i should be ignored by the equality check. Yet prei : Ti — Ti
and prej : Tj — Tj have different types for i # j, and moreover these function types are not in the
subtyping relation due to the mixed-variant occurrence of the size parameter. It seems that during
equality checking we have to consider terms of different types, at least for a while. Once we apply
prei and prej to the same tree t : Tk, which determines i = j = k, we are back to safety. However,
allowing types to differ during an equality check needs special consideration, especially when the
equality-check is type directed.

Consider the analogous situation for the polymorphic lambda calculus System F, be it the
predicative variant or not, extended by a unit type 1. For Church-style, we can give a type-directed
pn-equality test which equates all terms at the unit type. The most interesting rules are the 5-rules
for unit and function type and the congruence rule for type application:

I,x:Artx=t'x:B T'rt=t:VX.B
Tre=t:1 Tri=t':A>B T +tA=t'A:B[A/X]

The Curry-style version replaces the last conclusion by I' + t = t’ : B[A/X] where the type
A to instantiate X has to be guessed. However, in Curry-style more terms are equated than in
Church-style, as for instance the Church-style terms t A(Ax : A.x) and t B(Ax : B.x) map to
the same Curry-style term ¢ (Ax. x). How would we adapt the algorithm for Church-style such
that it equates all terms that are equal in Curry-style? The conclusion of the last rule could be
changedtoT + tA =t"A": BlA/X], but then the second term ¢’ A’ does not have the ascribed
type B[A/X], and n-laws applied to this term would be unsound. For instance, the algorithm
would yield t1x = t (A — A)y even for x # y. We could also consider a heterogeneous check
T rt:A)=I" +1t':A") where each term is paired with its own type and context, but this leaves
us with the dilemma of explaining the meaning of this judgement when A and A’ are incompatible.

Does the literature offer a solution to this problem? In fact, a Church-style calculus with Curry-
style equality has been studied before, it is ICC* [Barras and Bernardo 2008; Mishra-Linger and
Sheard 2008] based on Miquel’s Implicit Calculus of Constructions [2001]. In ICC*, equality is
checked by erasing all type abstractions and applications, and comparing the remaining untyped
terms for fn-equality. While this works for n-laws that can be formulated on untyped terms, such as
n-contraction of functions Ax. t x —, t (when x not free in t), it does not extend to type-directed
n-laws such as extensionality for the unit type. Further, ICC* is not a type theory formulated with
a typed equality judgement, which makes it hard to define its models [Miquel 2000]—we wish not
to go there, but stay within the framework of Martin-L6f Type Theory [1975].

Now, if the types of compared Curry-style terms are not equal, can they be sufficiently related
to give a proper meaning to the algorithmic equality judgement? It has already been observed
that for a type-directed equality check the precise type is not necessary, a shape or skeleton is
sufficient. The skeleton informs the algorithm whether the terms under comparison are functions,
inhabitants of the unit type, or something else, to possibly apply the appropriate p-law. For the
Logical Framework (LF), the simplest dependent lambda-calculus, the skeletons are simple types
that can be obtained from the original dependent types by erasing the dependencies: dependent
function types map to non-dependent ones and indexed data types to simple data types. Harper
and Pfenning [2005] present such an equality check for LF which is directed by simple types, and
their technique should scale to other type theories that admit dependency erasure.’

3For instance, the types of the Calculus of Constructions erase to F*-types [Geuvers 1994], and the latter could be used to
direct the equality check. Lovas and Pfenning [2010] consider also refinement types for logical frameworks which can be
erased to simple types.
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By large eliminations [Werner 1992] we refer to types computed by case distinction over values;
they occur in type theories that feature both universes and data types. In the presence of large
eliminations, dependency erasure fails, and it is not clear what the skeleton of a dependent type
should be. For instance consider the type (n:N) — A — .- — A — A of n-ary functions; its shape

—_—

n
is dependent on the value of n, thus cannot be determined statically. Thus, the “skeleton” idea is
also not directly applicable.

Going beyond the standard syntax-directed equality check, there is a technique that can deal
with dynamic n-expansion. It is a type-directed normalization function inspired by normalization-
by-evaluation (NbE) that computes -long normal forms [Berger and Schwichtenberg 1991; Danvy
1999]. We can check the computed normal forms for identity and, thus, decide definitional equality.
NbE has proven to be a robust method to decide equality in powerful type theories with non-trivial
n-laws. It scales to universes and large eliminations [Abel et al. 2007], topped with singleton types
or proof irrelevance [Abel et al. 2011], and even impredicativity [Abel 2010]. At its heart there
are reflection 17 and reification | functions directed by type T and orchestrating just-in-time
n-expansion. Reflection 17 x maps variables x into the realm of values of type T and lets us compute
with open terms. Reification |7 a takes a value a of type T and computes its long normal form. For
instance, the normal form of a closed function f : U — T would be Ax. |T(f (1Y x)), and for its
dependently-typed variant f : (x:U) — T|[x] it would be Ax. lT[TU"](f (1Yx)).

The central technical observation is that reflection and reification do not need the precise type
T, they work the same for any shape S of T. We managed, while not introducing a new syntax
for shapes, to define a relation T < S on type values stating that type S qualifies as shape for
type T. Shapes unfold dynamically during reflection and reification. For example, when reflecting
a variable x into the polymorphic function type Vi. Fi where Fi = Nat i — Nat i, we obtain
(MY4Fixyi = 1F(x i) for size i and (1¥-Fix)j = 1F/(x j) for size j. The new types Fi and F j we
reflect at are no longer equal (and they are not subtypes of each other), but they still have the
same shape, Nat _ — Nat _. This means they will still move in lock-step in respect to n-expansion,
which is sufficient to prove NbE correct for judgmental equality. We call the enabling property of F
shape irrelevance, meaning that for any pair i, j of legal arguments, F i and F j have the same shape.
Whenever we form a irrelevant function type Vx:U. T[x], we require T[x] to be shape-irrelevant in
x. This is the middle ground between ICC*, where no restriction is placed on T but # for unit types
is out of reach (at least for the moment), and Pfenning’s [2001] irrelevance modality, adapted to full
dependent types by Abel and Scherer [2012], which requires T to be irrelevant in x and, thus, has
type equality T[i] = T[j].

For the time being, we do not (and cannot) develop a general theory of shape irrelevance. We
confine ourselves to size-irrelevant function types Yi. T[i]. This relieves us from defining a special
shape-irrelevance modality, since all size-indexed types T[i] are shape irrelevant in i, simply because
there is no case distinction on size, and sizes appear relevantly only under a sized type constructor
such as Nat. Our technique would not extend to the polymorphic types VX. B[X] of System F. Even
though there is no case distinction on types, shape irrelevance of B[X] fails in general, as X could
appear as a type on the top-level, e.g. in B[X] = X — X, and then B[1] and B[A — A] would have
distinct shapes.

To summarize, this article makes the following novel contributions:

(1) We present the first integration of a dependent type theory with higher-rank size polymor-
phism. Concretely, we consider a type theory a la Martin-Lof with dependent function types,
cumulative universes, subtyping, a judgmental equality with n-laws, a sized type of natural
numbers and two size quantifiers: an irrelevant one (V) for binding of sizes in irrelevant
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positions, and a relevant one (II) for binding of sizes in shape-irrelevant positions (Section 3).
Judgmental equality features a “Curry-style” rule for irrelevant size application which ignores
the size arguments, and consequently, the corresponding typing rule will also ignore the size
argument. (In the following rules, a, a’, and b stand for arbitrary size expressions.)
F'rt=t:Vi.T T re:ViT F'rt=¢:1L.T F+t:10i.T

IF'rta=ta :T[b/i] I'+ta:T[b/i] IT'rta=t"a:Tlali] I'+ta:Tlali]
Our substitution theorem distinguishes term- from type-side substitutions.

(2) We adapt normalization-by-evaluation (NbE) to sized types and size quantification and show
that it decides judgmental equality (sections 4 and 5). The novel technical tool is a relation
T = S which relates a type T to its possible shapes S. This approximation relation allows
reflection and reification at size-polymorphic types Vi. T. As usual for the meta-theory of
Type Theory with large eliminations, the machinery is involved, but we just require the
usual two logical relations: First, a PER model to define the semantics of types and prove the
completeness of NbE (Section 4). Secondly, a relation between syntax and semantics to prove
soundness of NbE (Section 5).

(3) We present an bidirectional type checking algorithm [Coquand 1996] which takes the irrele-
vant size argument as reliable hint for the type checker (sections 6 and 7). It is complete for
normal forms which can be typed with the restricted rule for V-elimination:

I'rt:Vi.T
I +ta:Tlali]
The algorithm employs the usual lazy reduction for types, i.e., just-in-time weak-head

evaluation, in type and sub-type checker [Huet 1989]. In this, it improves on Fridlender and
Pagano [2013] which instruments full normalization (NbE) at every step.

This article is accompanied by a prototypical type checker Sit which implements the type system
and type checking algorithm as described in the remainder of the paper. But before going into the
technical details, we will motivate our type system from a practical perspective: reasoning about
programs involving sized types in Agda.

2 SIZE IRRELEVANCE IN PRACTICE

In this section, we show how the lack of size irrelevance prevents us from reasoning naturally

about programs involving sized types in Type Theory. We focus on Agda, at the time of writing the

only mature implementation of Type Theory with an experimental integration of sized types.
The problem of the current implementation of sized types in Agda can be demonstrated by a

short example. Consider the type of sized natural numbers.

data Nat : Size — Set where
zero: VY i— Nat (i+ 1)
suc :Vi— Nati— Nat(i+1)

The predecessor function is size preserving, i.e., the output can be assigned the same upper
bound i as the input. In the code to follow, the dot on the left hand side, preceding (i + 1), marks
an inaccessible pattern. Its value is determined by the subsequent match on the natural number
argument, no actual matching has to be carried out on this argument.

pred:V i— Nat i — Nat i

pred .(i + 1) (zero i) =zero i
pred .(i+ 1) (suc ix) = x
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Note that in the second clause, we have applied subtyping to cast x from Nati to Nat (i + 1).

We now define subtraction x - y on natural numbers, sometimes called the monus function,
which computes max(0, x — y). It is defined by induction on the size j of the second argument y,
while the output is bounded by size i of the first argument x. The input-output relation of monus
is needed for a natural implementation of Euclidean divison.

There are several ways to implement monus, we have chosen a tail-recursive variant which treats
the first argument as accumulator. It computes the result by applying the predecessor function y
times to x.

monus : VY i— Nat i — V j— Nat j — Nat i
monus i x.(j+ 1) (zeroj) =x
monus i x.(j+ 1) (suc jy) = monus i(pred i x) j y

To document subgoals in proof terms, we introduce a mixfix version of the identity function
with a visible type argument:

prove_by_:(A:Set) = A— A
prove A by x=x

We now wish to prove that subtracting x from itself yields 0, by induction on x. The case x = 0
should be trivial, as x = 0 = x by definition, hence, 0 = 0 = 0. As simple proof by reflexivity should
suffice. In case x + 1, the goal 0 = (x + 1) = (x + 1) should reduce to 0 = x = x, thus, an application
of the induction hypothesis should suffice. The following display shows that partial proofs, leaving
holes {!...!} already filled with the desired proof terms.

monus-diag : V i — (x: Nat i) — zero co = monus i x i x
monus-diag .(i + 1) (zero i) = prove zero oo = zero i by {! refl 1}
monus-diag .(i + 1) (suc i x) = prove zero oo = monus (i + 1) x i x by {! monus-diag i x !}

Unfortunately, in Agda our proof is not accepted, as sizes get in the way. In the first goal, there
is a mismatch between size co and size i, the latter coming from the computation of monus (i +
1) (zeroi) (i+1) (zero i). In the second goal, there is a mismatch between size i+ 1 in term monus (i +
1) xix of the reduced goal and size i of the respective term monusixix from the induction
hypothesis we wish to apply.

The proof would go through if Agda ignored sizes where they act as type argument, i.e., in
constructors and term-level function applications, but not in types where they act as regular
argument, e. g., in Nat i.

The solution we present in this article already works in current Agda,* but the implementation
is not perfect. Thus, it is hidden under a scarcely documented flag:

{-# OPTIONS --experimental-irrelevance #-}

We mark the size argument of Nat as shape irrelevant by preceding the binder with two dots. In
a future implementation, we could treat all data type parameters as shape irrelevant by default.
In the types of the constructors, we mark argument i as irrelevant by prefixing the binder with a
single dot. This is sound because i occurs in subsequent parts of the type only in shape-irrelevant
positions.

data Nat : ..(i : Size) — Set where
zero: VY .i— Nat (i+ 1)
suc :V.i— Nati— Nat (i+ 1)

*https://github.com/agda/agda, development version of 2017-02-27.
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Similarly, “type” argument i to pred is irrelevant. Agda checks that it only occurs shape-
irrelevantly in the type and irrelevantly in the term. The latter is the case since i is also an
irrelevant argument to the constructors zero and suc; otherwise, we would get a type error.

pred :V .i — Nat i — Nat i
pred .(i + 1) (zero i) =zero i
pred .(i+ 1) (suc ix) = x
The two size arguments i and j to monus are also irrelevant. In this case, type checking succeeds
since the size argument to pred has been declared irrelevant.

monus :V .i— Nati— V .j— Natj— Nat i
monus i x.(j+ 1) (zeroj) =x
monus i x.(j + 1) (suc j y) = monus i (pred i x) j y

Now, with sizes being ignored in the involved terms, we can complete the proof of our lemma:

monus-diag : V .i — (x: Nat i) — zero co = monus i x i x
monus-diag .(i + 1) (zero i) = prove zero co = zero i by refl
monus-diag .(i + 1) (suc i x) = prove zero co = monus (i + 1) x i x by monus-diag i x

3 ATYPESYSTEM WITH IRRELEVANT SIZE APPLICATION

In this section, we give the syntax and the declarative typing, equality, and subtyping judgements.
The typing relation ' + t : T will not be decidable; instead, we present algorithmic typing
T +t & T in Section 7. However, equality and subtyping will be decidable for well-formed input,
see sections 4-6.

We present our type theory as (domain-free) pure type system [Barendregt 1991] with extra
structure. The sorts s are drawn from an infinite predicative hierarchy of universes Set, for £ € N.
Universes provide us with polymorphism and the capability to define types by recursion on values.
Whether we have just two universes Sety and Set; or infinitely many, does not matter for the
technical difficulty of the meta theory. The present setup have the advantage that every sort has
again a sort since Set, : Set¢41, thus, we do not have to introduce a separate judgement I' + T for
well-formedness of types, we can defineitas Is. T + T :s.

Sort El = Sety (£ € N) sort (universe)
Ann > % n= 2| annotation (irrelevant, relevant)
Exp > t,u, T, U =w|te expressions
Whnf > w,W :=n|s|Size|I*UT | At | Nata | ¢ weak head normal forms
Data > ¢ := zero{a) | suc{a)t constructed data
NeExp 3 n =v;|ne neutral expressions
Elim >e :=t|al|{a)|casesTt,ts | fixgTt eliminations
SizeExp 3 a,b =00 |o|v;+0(0€N) size expressions
Cxt 5T,A = () | T.T | T.7Size contexts
Subst > n,p,0,7,& == ()| (0,t) substitutions
Fig. 1. Syntax.

For the expression syntax (see Fig. 1), we use de Bruijn [1972] indices v; to represent variables. The
index i € N points to the ith enclosing binder of variable v;. Binders are lambda abstraction At and
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dependent function types IT*U T, which bind the 0th index in ¢ and T, resp. For instance, the term
Ax. x (Az. z) (Ay. x y) with named variables x, y, z has de Bruijn representation A. vq (1. vo) (4. v1 vp).

The notation IT*U T is an umbrella for three kinds of function types, where x € {+,:} is a
relevance annotation borrowed from Pfenning [2001]. IT'U T is the ordinary dependent function type,
IT'Size T is relevant size quantification, and IT* Size T is irrelevant size quantification. We omit the “:”-
markers from IT by default (and also in contexts I') and write V T for IT* Size T. Examples for relevant
size quantification IISize T are II Size Seto and II Size IT (Nat vo) Seto. In a syntax with named
variables and non-dependent function type they could be written as Size — Set, and (z:Size) —
Natz — Sety, resp. An instance of irrelevant quantification YT would be V.II (Natvo) (Nat v;)
which is Vz. Nat z — Nat z in a named syntax. Herein, Nat z denotes the type of natural numbers
below z. The expression Size is a possible instance of U in [I*U T, or a possible type of a variable in
a typing context I, but not a first-class type, i. e., we cannot construct our own functions on sizes.

Canonical natural numbers c are constructed by zero{a) and suc(a)t. A size expression a is either
a constant o € N, a variable v; + o possibly with increment o, or the limit ordinal co which stands
for w. The size argument a in the constructors zero and suc is a suggestion for the type checker but
bears no semantic significance. For example, in the declarative typing presented here, we can have
+ zero(5) : Nat 1. In the algorithmic typing however, I zero(5) £ Nat 1 will be an error. Note,
however, that + zero(a) : Nat 0 is impossible for any a, as zero is not strictly below 0 (when both
term and size are interpreted as natural numbers).

Regular application t u, relevant size application t a, and irrelevant size application ¢ (a) eliminate
functions ¢ and are subsumed under the form te with e == u | a | {a). We have two further
eliminations, which make sense when t stands for a natural number. These are case distinction
e = cases T t, ts and recursive function application e’ = fix,» T’ t’. Application of case distinction
zero(a) e will reduce to the zero-branch t,, and application (suc{a)t)e to the instantiation ¢, ¢
of the successor branch. The type annotation T in case allows us to infer the type of the whole
case statement t e as T t. The function call ce’ for a canonical number ¢ and elimination e’ =
fixg T’ t’ reduces to t’ (Ax. x e’) ¢ where we allowed ourselves the use of a named abstraction in
the presentation to the reader. The unfolding of fixed-points is thus restricted to application to
canonical numbers; this is the usual reduction strategy which converges for terminating functions
[Barthe et al. 2004].

For ordinary f-reduction we employ substitutions o. These are simply lists of terms that provide
one term as replacement for each free de Bruijn index in a term t. We write for the appli-

cation of substitution o to term ¢ which is defined as usual. Let lifting be the substitution
(Vk+m=1s - - - s Vk+1, Vk) Which accepts a term with m free indices and increases each of them by k. We
write 1, for the lifting 11, and for the identity substitution 19,. In general, we refer to liftings
by letter &. The substitution = (id,, u) replaces free index vo by term u and decrements the
other m free indices by 1. We drop subscript m from liftings and substitutions when clear from the
context. Substitution composition is the pointwise application of substitution 7 to the list of
terms o. In the proofs to follow, we freely use the following identities:
tid=t (to)r = t(or) cid=o idr=1 (po)t = p(or)
vo(o,t) =t No,t)=0o [t]o = (o, to) t] =id

As already done in some examples, we may use a named dependent function type notation as
syntactic sugar for the corresponding de Bruijn representation. For instance, (z:Size) — Natz —

Set, is sugar for IT Size IT (Nat vo) Set,. We abbreviate this type by , and let stand

for Vz. ((x : Natz) —» Tzx) — (x : Nat(z + 1)) = T (z + 1) x. Similarly to for IT, we use named
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lambda abstraction as sugar for de Bruijn abstraction. Named abstraction takes care of proper
lifting of de Bruijn indices, for instance, Ax. tx = A.(t1) vy if t is outside the scope of x. We may
also use names when we construct concrete contexts, for instance, if T is well-formed in context T,
we may write T z x in context I'.z:Size.x :Nat z to mean T1% vy vy in context I'.Size.Nat v,.

Inductively defined judgements (mutual).

FT context I' is well-formed

) =*T in context I', de Bruijn index i has type T and annotation x

T +Fa:Size in context T', size expression a is well-formed

F'ret:T in context I', term ¢ has type T

Fre=¢':T in context I', terms ¢ and ¢’ are equal of type T

FT+T<T in context T, type T is a subtype of T’

IF'to:A o is a valid substitution for A

F'ro=0"=71:A o/c’/t are a equal term/term/type-level substitutions for A
Derived judgements.

r+T = F'+T:s for some s

reT=T1 = I' T =T :s for somes

I' a=>b:Size = I'a:Sizeanda="»

I' a<b:Size = I' a:SizeandT + b :Sizeanda < b

I' -T:Adm¢ = I' +T:FixK¢andT.z:Sizex:Natz F Tzx < Toox

E:T<A = T r&:Aand & =1k withm = |Aland k = |T| - m

Fig. 2. Judgements.

In typing contexts I', we distinguish relevant (:) and irrelevant (<) bindings. When type checking
a variable, it needs to be bound in the context relevantly. However, when entering an irrelevant
position, for instance when checking size a in term suc(a)t we declare previously irrelevant
variables as relevant. This operation on the context has been coined resurrection by Pfenning [2001];

formally removes the “+”-markers from all bindings in T, i. e., replaces them by “:’-markers.
Note that, trivially, resurrection is idempotent: T®® = T'®,

Size increment for o’ € N extends addition by co + 0’ = oo and (v; +0) + 0" = v; + (0 +0").

Sizes are partially ordered; size comparison holds as expected if either b = 0o or 0 < 0’
where either a = oand b = 0o’ or a € {o,v; + o} and b = v; + o’. Different size variables are
incomparable.

Fig. 2 lists the inductive and derived judgements of our type theory and figures 3 and 4 the
inference rules. We have the rules dealing with irrelevant size application. Fig. 5 adds
the typing and equality rules for case distinction and recursion on natural numbers. Judgement
T + T : Adm € characterizes the valid type annotations T in recursion fix; T t. The type constructor
T has to be monotone in the size argument; this is a technical condition for type-based termination
[Barthe et al. 2004]. We will make use of it in Section 4.7. We write to express that & is a
derivation of judgement J.

In the typing judgement I' + ¢ : T, the term ¢ is in scope of T}, i. e., may not mention irrelevant
variables in relevant positions. However, the type T is in scope of the resurrected context I'®, hence,
can mention all variables declared in T. The other judgements are organized similarly. To understand
this distinction, consider judgement z + Size + Nat z. This would mean that z is irrelevant in Nat z
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(implies +T®) and |T()=*T| (impliesT'®  Tif r I).

FT I®+T T () =*T
O FL.T F T.*Size (T*T)0) = *T1 T)i+1)=*T1
(implies + T and T'® + a : Size).
FT FT +T I'(i) = ‘Size
- —o0€N ———0¢€
I + oo: Size T Fo:Size I Fv;+o0:Size
(implies + Tand T® + T [and '® + ¢ : T]. Note: no rule for T + Size : s.)
+T o<’ TrU:s TUF+T:s I.Size +T:s T +a:Size
— <
T' + Sety : Sety T'+rIUT :s T +II*SizeT : s T + Nata : Setg
FT TG) =T TAU v t:T Tre:TIUT T ru:U
——— T # Size
Trv:T Tri:T°UT Tt ru:T[ul

T rt:I1SizeT T'+a:Size T'vret:VT I'® v a,b: Size

T'+ta:Tlal T+ t{a): T[D]
T® ka,b: Size T® ka:Size T rt:Nath T+e:T T® v+ T<T
T + zero{a) : Nat (b + 1) T +suc{a)t : Nat (b + 1) Trt:T
(implies T + T,T’)
FT <t I' Fa < b:Size r+T=T1

T + Sety < Sety T + Nata < Natb Tr+T<T

T+U' <U T +T<T ISize +T <T’ FTr+T1<T, T+, <Ty
Trv+IIUT <TIU'T’ I' +I1*Size T < I1*Size T’ T'rFTh <715
(implies F T'and + A [andT® + 7:A]and T® + 7 : A®).
FT Trr:A A® +T IFrt:Tr
Tr():0 T +(z,t): AT
IF'rr:A T +a:Size F'rr:A I'® +a:Size
T +(7,a): A.Size T +(r,a): A.7Size

T+to=0'=7:A| (implies+Tand +AandT r7:AandT ko' =0 =1:A).

T T'to=0"=1:A A® v T T'tu=u=t:Tr
Frr0)=0=0:0 Ttk (o,u)=(c",u)=(1,t): AT
T'to=0'=71:A I'ta=d =b:Tr Tro=c'=1:A I'® va,a,b: Tt
T +(o,a)=(c",a’) =(z,b) : A.Size T +(o,a)=(c",a’) =(r,b) : A.7Size

Fig. 3. Typing, subtyping, and substitution judgements.
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Computation rules.

TUrt:T Tru:U TSize+rt:T T +a:Size I'"Size +t:T T® +a,b:Size
T+ (At)u = t{u] : T[u] I+ (At)a = t[a] : T[da] T+ (At){a) = t[a] : T[b]

Extensionality rules.

Trt:TIUT Trt:VT I'®.Size + a: Size
F'rt=Axtx:TUT I'rt=Axt{a): VT
Congruence rules. .
FT <t I +a:Size
<
T + Sety = Sety : Sety ' + Nata = Nata : Setg
rvrU=0U":s TU+T=T:s I.Size vT=T":s
IF'+IIUT=NU'T :s T + I1*Size T = I1*Size T’ : s
FT I =T T*Urt=¢t':T Frt=¢:0UT Tru=u':U
—— T # Size
FTrvi=v;:T TrAt=A':TI*UT T'rtu=t'v :Tlu]
I'rt=t:1SizeT T Fa:Size Trt=t':VT I'® ra,a’,b: Size
I'tta=t"a:T[a] T+ t{a) =t'{(a’) : T|b]
T'® +a,a’,b: Size T'® +a,a :Size I' -t=1t":Nath
T + zero(a) = zero{a’) : Nat (b + 1) T + suc{a)t = suc{a’)t’ : Nat (b + 1)

F'rt=t':T I®rT<T

Frt=t':T
Equivalence rules.
F'+t:T Tvrt=t':T Trti=t:T IF'rty=t3:T
F'ret=t:T Trt'=t:T Trthy=t3:T

Fig. 4. Definitional equality (impliesT® r TandT rt,t/: T [andT® + ¢t =1t":T]).

and thus, I' + Nata = Nata’ for all sizes T'® + a,a’ : Size. But this is exactly wrong! However,
judgement z + Size + zero(z) : Nat (z + 1) is fine, it implies I' + zero(a) = zero{a’) : Nat (b + 1) for
allT® ra,a’,b : Size.

Our substitution theorem needs to reflect the distinct scope of things left of the colon vs. things
right of the colon. In the last example we have applied the substitution triple I' + [a] = [a’] = [b] :
(z + Size) to judgement z + Size + zero(z) : Nat (z + 1). The first two substitutions apply to the
term side while the third substitution applies to the type side. The fact that we replace an irrelevant
variable z allows a, a’, b to refer to irrelevant variables from T, thus, they are in scope of T'®.

Typing requires from annotations (a) in a term only that they are well-scoped size expressions,
i.e., just mention relevant size variables. Let denote the erasure of term ¢, meaning that we
replace all annotations (a) in t by (o). Let relate terms that only differ in their annotations,
ie,t=u:= t* = u”. Erasure does not change the term modulo judgmental equality:
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Case distinction.
I'® + T : Nat(a+1) — Set,
I +u:Nat(a+tl) T +t,:T(zero{a)) T Fts:(x:Nata) — T (suc{a)x)
T'rucase,Tt,ts:Tu

I'® +T=T:Nat(a+1)— Set,
T'tu=u':Nat(a+1) T +t, =t : T (zero{a)) I Ftg=1t]:(x:Nata) = T (suc{a)x)

T rucasesTt,ts =u'case, T't,t, :Tu

T® ka,b:Size I'® +T:Nat(b+1)— Sety
T +t,: T (zero(b)) T kts:(x:Nath) - T (suc(b)x)

T + (zero(a)) case; T t, ts = t, : T zero(b)

I'® ra:Size T rt:Nath T® +T:Nat(b+1)— Sety
T rt,:T(zero(b)) T rts:(x:Natb) — T (suc(b)x)

T + (suc{a)t)case, Tty ts = tst : T (suc{b)t)

Recursion.
I'+u:Nata T® v T:Adm ¢ I'+t:FixTT
I' tufixeTt:Tau

I' +u=u':Nata I® +T=T":Adm ¢ IT'rt=t:FixTT
T rufixeTt=u'fixeT’t' : Tau

I'+c:Natb I'® a: Size I'® v T:Adm ¢ I'+t:FixTT
I FcfixeTt=t{a)(Ax.xfixgyTt)c:Thc

Fig. 5. Rules for case distinction and recursion.

LEMMA 3.1 (ERASURE AND SIMILARITY).
(1) IfT vt:TthenT rt=1¢t*:T.
@ T vrtu:Tandt ~uthenT rt=u:T.

We should remark here that we have neither type unicity nor principal types due to the irrelevant
size application rule. In the following, we list syntactic properties of our judgements. To this end,
let J match a part of a judgement.

LEMMA 3.2 (CONTEXT WELL-FORMEDNESS).

(1) If rT.Athen + T
(2) If T + J then + T.

All types in a context are considered in the resurrected context, which justifies the first statement
of the following lemma. A resurrected context is more permissive, as it brings more variable into
scope. As such, it is comparable to an extended context or a context where types have been replaced
by subtypes. This intuition accounts for the remaining statements but (4). The latter is a defining
property of substitutions: only replacement for irrelevant sizes may refer to irrelevant size variables.

LEMMA 3.3 (RESURRECTION).
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(1) FTiff + T®. ThenT® +id : T, which can be writtenid : T® < T.
(2) IfT + J thenT® + J.

B)IfT +o:A®thenT +o:A.

4 IfT +o:AthenT® ro:A®.

LEMMA 3.4 (SUBSTITUTION).

(1) fT ro:AandA v+ ] thenT + Jo.
@ IfTro=0"=t:AandA +t:T thenT +to:Tr andT +to’ : Tt.

LEMMA 3.5 (SPECIFIC SUBSTITUTIONS).

(1) If FT.A thenT.A + 1|0/ i T If + I.T thenT.T + 1 :T.
(2) If +T thenT rid:T.

@) IfT ru:UthenT F [u]:T.U.

The relationT + o = ¢’ = 7 : Ais a partial equivalence relation (PER) on term-side substitutions
o, 0’. Note that usually we cannot resurrect this judgement to I'® + ¢ = ¢’ = 7 : A®. For instance,
z1+Size. z;+Size + [z1] = [z2] = [o0] : z+Size holds but z;:Size. z3:Size + [z1] = [z2] = [o0] : z:Size
clearly not.

LEMMA 3.6 (SUBSTITUTION EQUALITY).
(1) Conversion:If T +o =0’ =7 :AandT® v =1, =7: A% thenT to=0' =12 : A.
(2) Reflexivity:If T + o : AthenT ro =0 =0:A.
(3) Symmetry:If T ro=0c"=7:AthenT ro’' =0 =1:A.
(4) Transitivity:If T v o1 =0y =71:Aandl + oy, =03 =7 :AthenT For =05 =7:A.
(5) Functionality: LetT o =0" =71 :A.

(@ IfAvrt:TthenT rto=to’ :Trt.

() If Avrt=1t":T thenT rto =t'c’:Tr.

(c) Corollary:1If A v+ T < T’ thenT +To < To’.

LEMMA 3.7 (INVERSION OF TYPING).

() IfT +v; : T thenT(i) =°T andT® + T < T’ for someT.

(2) If T v At : T’ theneitherT.U +t:T andT® + IUT < T’ for someU, T orT.*Size + ¢ : T
andT® + [1*Size T < T’ for someT.

B)IfT +tu:T thenT +t:TIUT andT +u:U andT® + T[u] < T’ for some U, T.

4 IfT +ta:T thenT v+t :1SizeT andT + a: Size andT® + T[a] < T’ for someT.

G)IfT +t(a): T thenT +t:¥T andT® + a,b : Size andT® + T[b] < T’ for someT, b.

(6) ... Analogous properties for the remaining term and type constructors.

Proor. Each by induction on the typing derivation, gathering applications of the conversion
rule via transitivity of subtyping. O

4 SEMANTICS AND COMPLETENESS OF NORMALIZATION BY EVALUATION

In this section we present an operational semantics of our language, define the NbE algorithm,
construct a PER model, and demonstrate that NbE is complete for definitional equality, i. e., if
T rt=1t":T,thent and t’ have the same normal form up to annotations.

Ne >m:u=v;|mov|ma|m{a)| mcases, Vv, v | mfixg Vo neutral n.f.
Nf 2 v == m| Av | zero{a) | suc{a)v | Sety | Nata | IV, V; | [T*Size V normal form

For the operational semantics, instead of defining a separate language of values, we extend the
syntax of expressions by de Bruijn levels xi to be used as generic values (unknowns), and type
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Semantics (f) feD
4 §
-n X
Semantics (fn) d € DNf n € DNe <——  j € Level
R RE k=(1+)
> E) v .
Syntax t € Exp v e Nf m € Ne i € Index

Fig. 6. Type-assignment NbE in locally nameless style.

annotations T4n and |4t for lazy realizations of the reflection and reification operations of NbE.

Terms are expressions that do not contain these new expression forms. Values| f,g,A B,F € D
are expressions with no free de Bruijn indices, where each neutral n is under a reflection marker
14n. The types A that direct reflection T4n and reification |4 f also live in the value world.

NeExp > n  a= - |xg de Bruijn level k

Up > N == n reflection of neutral term n as value of type A
Whnf > w u= -+ |N reflected neutral is weak head normal

Exp > t e UAF reification of value f at type A

De Bruijn levels are the mirror images of de Bruijn indices. While de Bruijn indices index the context
from the right, i. e., vy refers the last type that entered the context, de Bruijn levels index it from
the left, i. e., xq refers to the first type in the context. This way, de Bruijn levels are stable under
context extensions, and suitable to represent unknowns.

Size values are size expressions that use de Bruijn levels instead of de Bruijn indices.
Comparison of size values & < f§ is analogous to comparison of size terms a < b. In the following,
we will reuse letter a for a value if it cannot be confused for a size term.

Finally, we identify two expression classes for NbE. Neutrals n € DNe are the ones that will appear
in values under the reflection marker T4. Reified values d € DNf are values under a reification
marker |4,

DNe > n vi|nd|na|n{a)|ncase,Dd,ds | nfixeDd unreflected neutral value
DNf > d == |[Af reified value

Figure 6, adapted from Abel [2013] summarized the syntactic categories and main operations
involved in NbE in what is called locally nameless style. The red path Exp — D — Dys — Nf
decomposes fn-normalization into three steps.

(1) First, we close the term ¢ with an environment 7 that maps the free de Bruijn indices of ¢
to reflected de Bruijn levels. Reflection of de Bruijn levels follows the blue path Level —
DNe — D: Levels embed via constructor x into semantic neutrals DNe which are labeled
with their type A € D to become an element 1x; € D.
(2) Then, we label value ty € D with its type A to obtain |4t € DNf.
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(3) Finally, read back Ri |4ty produces a long normal form v € Nf, converting de Bruijn levels
back to indices. Herein, k should be the length of the context the original term ¢ lived in. If
this is the case, each de Bruijn level encountered during read back is below k and can be
safely converted to a de Bruijn index.

4.1 Weak Head Reduction

We define the operational semantics of our language by the weak head evaluation relation
which is defined on expressions, thus works on values as well as on terms. It is defined mutually

with auxiliary relation stating that weak head normal form w is eliminated by e

into weak head normal form w’. ,
EN\y W w@e N\, w

‘t\,w‘and‘w@e\,w’

te \yw
Hul \yw tfla] \y w tla]l \,w B\ W
A)@u N\ w A @a\yw At) @ (a) \yw (zero{ar)) @ casep Tt ts \, W
tst N\, W t{a) Ax.xfixg Tt)e \y w
(suc{a)t) @ casep Tty ts \, W c@fixgTt\,w ¢ € {zero{a), suc(aju}
For NbE, we add evaluation rules that deal with elimination of delayed reflection:
A\ IIAB AN, IISize B AN, VB

Mm@u\T1B@m 4w (M) @ a TP (na)  (14n) @ () \, T81*)(n{a))

(TAn) @ case; B fz fs \‘ TB (T4n) p casep (lNat wﬁSet(B) (lB zero(oo)fz) (l(x:Nat 00)—B (suc(oo)x)fs)

() @ fix B nfixg (L7B) (17T )

4.2 Read Back

The read back phase of NbE [Grégoire and Leroy 2002] transforms a reified value d into a normal
form v. It is specified via an inductively defined relation Ri d N\, v and several auxiliary relations.
The number k, will be instantiated by the length of the context I later. It allows us to transform
a de Bruijn level [ into a de Bruijn index i, via the law i + [ + 1 = k. At this point, we do not
ensure that the k is large enough to accommodate the de Bruijn levels in d. Levels [ > k which are
to big will simply be mapped to de Bruijn index 0. The correct k is later ensured by our logical
relation (Section 5). Even though read back operates on values in practice, formally it is defined on
expressions.

Read back reified value d.
U\ s R;CYT\,V U\, Nata RIu N v UNN Rzpu\m
RklUT\,V RklUu\,v RklUu\,m

UNTIAB  Reur LPI(F 1x0) N v
Re lVf N\ Av

UNTISizeB  Rear IPM4(fx0) o UNVYB  Ripy IPP(f () o
Re lVf N\ v Re lUf N\ v
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R:p t \, m | Read back neutrals under annotation. (The annotation is ignored.)

t\1Tn REEn\ym
up
Re t\um

RPat + N v | Read back natural number value.

I

RPN\ m t\ zero{a) Ri™ o\ a £\, suc{a)u Ri™a N\ a R u N\ v
RIZ Ny m Rp £\ zero(a) RI £\ suc(a)v

sze a \, a| Read back size value a.

Riize 00\, 00 Rf{ize o\ o0 Riize Xj + 0\ Vkz(14j) + 0
Ri¢n ™, m|and Ri""‘ e\, eV | Read back unreflected neutral.
Ri”m e; \ e foralli Rpd \ v Riize a ™\ b Riize a™\yb

R x; € N\ Vie(147) €7 L AN REM g N, b REM™ (@) N\, (b)

RkD N\ V R d, "\, v, Ri ds N\ vs Rk D\, V Red \yv

R?c“m (casey Dd, ds) \ case; Vv, v Rz”m (fixe Dd) "\ fixe Vv
R;Cy T\, V| Read back type value.
T\ Set, T\, Nata Ri™a N\ b RET N\ m
RY T\, Set, RYT \, Natb R/ T\, m

TN\IIAB  RYAN V. RY, B\ V, T\, II*SizeB RY, B\, V
RYT NIV, V; RY T\ II*Size V

4.3 Partial Equivalence Relations
A type T will be interpreted as a partial equivalence relation (PER) o on terms, i. e., a relation which
is symmetric and transitive. The domain dom(sf) of the relation can be thought of as the set of
terms which denotes the extension of the type; on dom(sf) = {a | 3a’. (a, a’) € o} the relation o is
in fact an equivalence relation. We write a = a’ € o for relatedness in o and a € o if a € dom(oA).
The PERs Ne and Nf characterize (neutral) normalizing values. For instance, two values n and n’
are related in Ne if at any k € N they can be read back to neutral normal forms m and m’ which
are identical up to annotations.

= R}* n\ymand RI* n"\ym’ and m~m’ foralk
= Rr dN\v and Ry d'\ v and v=v' forallk
= Ri"m e\ e, and Ri“"‘ e’ e, and e, ~e) forallk
= RZY AN,V and R;cy ANV’ and V=V’ forall k

Once we have established useful closure properties of these PERs, they abstract most of the reasoning
about the read-back relation from our proofs. This idea is due to Coquand [Abel et al. 2009].
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LEMMA 4.1 (CLOSURE PROPERTIES OF Me).
(1) xx = xx € Ne.
2)If n=n"e Neande = e’ € Elimthenne =n"e’ € Ne.

LEMMA 4.2 (CLOSURE PROPERTIES OF élim).

(1) If d =d’ € Nf thend = d’ € €lim.

(2) If @ € Size thena = a € Elim.

(3) If a,a’ € Size then () = (a’) € Elim.

4) If A=A" € Ty andd,=d} € Nf and d;=d; € Nf then case; Ad, ds = case; A’ d, d; € Elim.
(5) If D=D’ € Nf andd = d’ € Nf then fix; Dd = fixp D’ d’ € €lim.

Now we define some PERs and PER constructors on values. All these PERs o are closed under
weak head equality, meaning if a = b € of and a’ has the same weak head normal form as a, then
a’ = b e d. (By symmetry, o is also closed under weak head equality on the second argument.)

PER W€ interprets all neutral types.

t=t' e N8| = t\ 1 nand ' \,1"'n’andn=n’ € Ne.

interprets Nat « and is defined inductively by the following rules.

£\ zero{a) £\ suc{a)u t’ N\ suc{a’)u’
t=t' e NE t’' N\ zero{a’) u=u" € Nat(p)
t =1t € Nat(f) t=t' € Nat(f+1) t=t"e€Nat(f+1)

interprets Size and is a discrete PER of size values:

o0 = o0 € Size 0 =0 € Size Xk + 0 =X + 0 € Size
Let o be a PER (including o = Size) and F a family of PERs over of such that F(u) = F(u’)
whenever u = u’ € 9. We define

= {(tt) | tu=tu € F(u)forallu=u €d)}.

For a family F over Size we also have the irrelevant function space
= {(t,1') | t{@) = t'(a’) € F(P) forall a, ', f € Size}.
4.4 PER Model

Semantic types and their interpretation as PERs are now defined via a family of inductive-recursive
definitions [Dybjer 2000], one for each universe level £. The construction follows Abel et al. [2007].
By induction on £ € N we define the PER family _ = _ € Set, of types together with the extension

LT (for T = T’ € Sety) which is a PER of values of type T. The rules for are listed

in Fig. 7. All relations involved here are closed under weak head equality.

LEMMA 4.3 (WELL-DEFINEDNESS). Let D :: Ty = T € Sety.
(1) Symmetry: T, = Ty € Sety.

(2) Transitivity: If T, = Ts € Sete then Ty = Ts € Sety.

(3) Extension: 6L¢(Ty) = 6L¢(T2) and “both” are PERs.

LEMMA 4.4 (DERIVATION INDEPENDENCE OF EXTENSION). If @1 =T =T; € Sety, and Dy = T, =
Te Setgz then cgfgl (T) = %ffz (7).

Since €¢(T) does not depend on ¢ nor the derivation that introduced T = T” € Set,;, we may
simply write t = ¢’ € €((T) orevent =1t" € T.
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T=T e€N& EE(T) = NE
T =T € Sety o) =
T\, Nat « T’ \, Nat «
&C¢(T) = Nat
T =T € Sety «(T) = Nat(e)
T ™\, Sety T’ ™\, Sety ,
T=1 ¢ Set, <t €ly(T) = Setyr

TN\JIIAB T \JIIA'B" A=A €Set;
Blu] = B'[u’] € Sete for all u = u’ € El,(A)
T =T’ € Sety

T\, [ISize B T’ \ [1Size B’
Bla] = B’[a] € Set, for all « € Size
T =T’ € Sete

T\\VB T"\\ VB
Bla] = B'[a] € Set, for all a € Size
T =T € Sety

Le(T) = [1(€Le(A), u > E€Le(Blul))

Le(T) = [1(Size, a — ELe(Bla]))

&le(T) = Y(a > €Le(Blal))

Fig. 7. Semantic types and their interpretation.

4.5 Subtyping
The semantic types (PERs) admit subsumption:

LEMMA 4.5 (SUBSUMPTION).

(1) If a < p then Nat(a) € Nat(p).

2) If F(a) € F'(a) forall a € Size, then VF C VF'.

3) Ifd’' A andF(u) C F'(u) forallu € A’, then [[AF C [] A’ F'.
(4) If € < ' then Setp C Sety.

We define subtyping of type values|T < T’ € Jype | by induction on T € Set; and T’ € Set.

Simultaneously, we need to prove correctness, namely that T < T’ € Jype implies €((T) € EL(T).
The correctness follows from Lemma 4.5 and we do not spell it out here.

T=T e€NE TN\ Natae T '\ Nata’ a<da T\ Sets, T' ™\ Sety <4
T <T’ € Jype T <T’' e Jype T <T' e Jype

T\IIAB T"\IIA'B A" < AeType Blu] < B'[u’] € Typeforallu =u’ € A’
T <T €Jype

T \, [T*Size B T’ \, [1*Size B’ Bla] < B’[a] € Type for all a € Size
T <T €Jype

LEMMA 4.6 (SUBTYPING IS A PREORDER).
(1) If T=T" € Sety thenT < T’ € Type.
2 IfTh <T, e Typeand T, < Ts € Type then T; < Tz € Type.
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TN SN TNIOAB SNITA'B AS A" Blu]l]cB[u]forallu=u"€A
TES TES

T\ Sety S\, Sety T \, IISize B S\, IISize B Bla] € B’[a] for all a € Size
TES TES

T\, Nata S\ Natp T\ VB SN\ VB Bla] € B’[a’] for all a, @’ € Size
TES TES

Fig. 8. Type shapes .

4.6 Type Shapes

Reflection and reification perform n-expansion so that we arrive at an n-long f-normal form. To
perform the n-expansion, the precise type is not needed, just the approximate shape, in particular,
whether it is a function type (do expand) or a base type (do not expand). For the logical framework,
the shape of a dependent type is just its underlying simple type [Harper and Pfenning 2005].
However, in the presence of universes and large eliminations, there is no underlying simple type.
Of course, we can take a type as its own shape, but we want at least that Nat & and Nat  have the
same shape even for different a, . Also all neutral types can be summarized under a single shape.

We make our intuition precise by defining a relation T & S between type values, to express that
S is a possible shape of type T. The asymmetry of this relation stems from the case for function
types. At function types [IAB S IIR S, we take S to be a family over domain A, not R! We cannot
take R since we have to compare families B and S at a common domain, and A and R are not equal.

Fig. 8 defines for T € Setp. We call T the template and S one of its possible shapes. Note
that T € Sety and T = S do not imply S € Set,. Type shapes are not well-defined types in general.
For instance, assume a term F : Nat 0 — Set, which diverges if applied to a successor term. Then
T := (x:Nat0) — F x is a well-defined type; we have T € Set;. Now consider S := (x:Nat co) — F x.
We have T £ S, but S is not well-defined; S ¢ Set,.

LEMMA 4.7 (TYPES ARE THEIR OWN SHAPES). If T =T’ € Set; thenT = T'.
LEMMA 4.8 (TEMPLATES ARE UP TO EQUALITY). If T =T’ € Sety and T’ = S thenT & S.

However, templates are not closed under subtyping in either direction because subtyping is
contravariant for function type domains but the shape relation is covariant.

Further, it is not true that equal types make equally good shapes. We do not have that T £ §
and S = S’ € Sety imply T & S’. This property fails for function types. Given IIU T = ITRS and
IIRS =IIR'S’ € Sety we would need to show that T[u] & S’[u'] for all u = u” € U, but we only
have S[u] = S’[u’] € Set, for all u = u’ € R, thus the induction does not go through. The fact that
U & R does not give us a handle on their inhabitants, we would need a stronger relation such as
U < R € Jype.Itis possible to construct an actual counterexample, using IR’ S’ = (x:Nat0) — Fx
from above and ITR S = (x:Nat 0) — G x such that G is defined on all of Nat co but agrees with F
only on x € Nat0. Then ITU T = (x:Nat o) — G x gives the desired counterexample.

Shapes are used to direct n-expansion when we reflect neutrals into semantic types and reify
semantic values to long normal forms. The following theorem is the heart of our technical develop-
ment.

THEOREM 4.9 (REFLECTION AND REIFICATION). Let T € Sety and T = Sy and T £ S,.
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(1) If ny = ny € Ne then 5ty =150, € T.
(2) If ty =t, € T then |51ty = |52ty € Nf.

Proor. By induction on T € Setp and casesonT £ Sy and T & Sy.
Case T \, V B with B[a] € Set, for all « € Size

S1 \\ VB; Bla] € By[a’] for all a, a’ € Size
TES;

S2 \\ VB, Bla] € By[a’] for all @, a” € Size
TES,

(1) To show 5'ny = T52n, € T assume arbitrary ay, az, f € Size. Since ni{a;) = na{az) € Ne
by Lemma 4.1, we obtain T81%](n, (a;)) = 15:(%](n,(a,)) € B[] by induction hypothesis.
Thus, (1%'n1){e1) = (1%2ny){a2) € B[B] by weak head expansion, which entails the goal by
definition of €4(T).

(2) Assume k € N and note that x; = x € Size, hence, t; (xk) = t2 (xx) € B[xx]. Thus, by
induction hypothesis, Ry lBi["k](ti (xx)) \ v; with v; = v, and finally Rg [5it; \, Av;
by definition of read back. O

COROLLARY 4.10. Let T € Setg.
1) fn=n"€ Nethen]Tn=1Tn"€T.
@) Ift=t" €T then|Tt=]Tt' € Nf.

4.7 Computation with Natural Numbers

In this section we show that the eliminations for natural numbers are accurately modeled.

LEmMA 4.11 (CASE). If a = a’ € Nat(a+ 1) and B = B’ € Nat(a + 1) — Sety and f, = f] €
B(zero(f)) and f; = f] € (x:Nata) — B(suc(y)x) then acase; B f, fs = a’ case; B’ f] f] € Ba.

Proor. By induction on a = a’ € Nat (« + 1). O

LEMMA 4.12 (Nat 18 COCONTINUOUS). Nat(c0) = |Jy <o Nat(@).

Proor. By induction on a = a’ € Nat(o0), we can easily show a = a’ € Nat(«) for some a < co.
For instance, a could be the number of uses of the successor rule plus one. O

As the semantic counterpart of judgement I’ + T : Adm ¢, let us write| B= B’ € Adm ¢ |iff B= B’ €

FixK ¢ and for all § € Sizeand a € Nat fwehave Bfa < Booa € Typeand B’ fa < B’ coa € Type.

LEMMA 4.13 (F1x). Letg = afix¢B f and g’ = a’fix; B’ f’.If a=a’ € Nata and B = B’ € Adm<{
and f = f’ € FixTB theng =g’ € Baa.

Proor. By well-founded induction on a. O

4.8 Fundamental Theorem

In this section we show that the declarative judgements are sound, in particular, well-formed
syntactic types map to semantic types, and definitionally equal terms map to related values in the
PER model. The proof runs the usual course. First, we define inductively a PER of substitutions
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=0 = true
|= T.*Size — T
=T.s = T
=T.T = |[ETandT® =T
TEs = T
TET = TET=T
reT=T == T ET=T:sforsomes
T'ET:Adm ¢ = T'|ET:Fixk€andTnp =Ty’ € Adm (foralln=n"=peTl
TET<T = TRETandT' T andTn < T'n’ € Gypeforalln=n"=p €T
TEt:T = Tt=t:T
TeEt=t':T = [l.Tandtn=t'n" eTpforalln=n"=pel
TkEo:A = Tko=0c=0:A
I''EFo=0'=7:A & |=Tand FAandon=0'y' =rpeAforaln=n"=pel
Fig. 9. Semantic judgements.
n=n=pel|
n=n"=peTl Tp € Sety u=u"=teTp
0=0=0€0 (muw)=(.w)=(p.t) eT.T
n=n=pel a € Size n=n=pel a,a’,p € Size

(n,a) =(n',a) = (p,a) € T Size (n,a) = (n',a’) = (p, p) € I.7Size
WewritepeTforp=p=pel.

LEMMA 4.14 (RESURRECTION). If n =1’ =p €T thenp € T®.

Then, in Fig. 9, we define semantic counterparts of our declarative judgements by recursion on the
length of the context.

THEOREM 4.15 (FUNDAMENTAL THEOREM).

(1) If + T then|=T.

(2) If T v J thenT |= J.

Proor. Simultaneously, by induction on the derivation. O

4.9 Completeness of NbE

From the fundamental theorem, we harvest completeness of NbE in this section, i. e., we show that
definitionally equal terms have the same normal form. We may write simply T for its length |T|
when there is no danger of confusion, for instance in de Bruijn level xr or in read back Rr. We
define the identity environment by induction on T, setting p() = () and pr *size = (pr,xr) and
pr.r = (pr, 177" xr).

LEMMA 4.16 (IDENTITY ENVIRONMENT). If + T then pr € T.
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We now define the normalization relation := Rr TP (tpr) \, v. Whenever

nbelrt \\ U, we may write nbelft for v.

THEOREM 4.17 (COMPLETENESS OF NBE). If ' + t = t’ : T then there are normal formsv ~ v’ such
that nbegt \, v and nbegt’ N v

Proor. By the fundamental theorem, Tpr € Set, for some ¢ and tpr = t’'pr € Tpr. By reification
(Cor. 4.10) we have [TPr(tpr) = |TPr(t'pr) € Nf which implies the theorem by read back with
k=T O

5 SOUNDNESS OF NORMALIZATION BY EVALUATION
In this section, we show that NbE is sound for judgmental equality, i.e., that same normal form
implies definitional equality. The proof follows Abel et al. [2007] and Fridlender and Pagano [2013]
and defines a Kripke logical relationT +¢: T ® f € Abetween a well-typed term T +t:T and a
value f € A.

First, let us define some auxiliary judgements that relate a well-formed syntactic object to a value,
via read back. They will constitute the logical relation for base types, but need to be strengthened
for function types.

[+a=R%qg & VE:T'<T. R¥a\ af
TFT=RYA:s &= V&:I'<T. IV.RYVANV andI’' v TE=V s
IT'rt =Rd:T — V&:IV<T. Fo. Rpd v andI’ v+t =v:T¢
T+t =R™n:T = VE:T'<T. I3mR¥n\ym andI’ +tf=m:TE
By definition, these relations are closed under subsumption and weakening, e.g.,if I' -t = Rd : T
andT +T <T'thenT rt =Rd:T’,andif £ : ' < T thenI’ + t& = Rd : T¢E.
LEMMA 5.1 (CLOSURE PROPERTIES FOR NEUTRALS).
(1) T rt=R"“n:IUT andT +ru=Rd:U thenT +tu =R"nd: T[u].

(2 IfT +rt=R™n:MSizeT andT + a = R%q thenT +ta = R na : T[al.
3 Ft= n: an Fa,b:Size and a € Size thenT F t{a) = n{a) : .
IfT R"n:VT andT® b:Si d N henT R"¢ T[b

Let|T + T\, W : s |denote the conjunction of T \, W and T + T = W : 5. We simultaneously
deﬁneforF FT sand‘l" Ft:T'"® feA' |[forT +t:T and f € A’ by

induction on A’ € s.

Case A’ \ N neutral.
FTrT"®A €s = T +T’\ n:sfor someneutralnandT + T’ = RY A’ :s.
Trt:T"® feA = Trt=RJAf:T.

Case A’ \, Nat a.

FTrrT"®A €s = T +T'\ Nata:sforsomeaandT ra = R%q.
T+t:T"® feA = T® T \, Nata:sforsomeaandI'® I a = R¥*¢
andT ¢t =R|Yf: Nata.
Case A’ "\, Setyr.
FTrT"®A €s = T T’ Sety:s.
T+tU:T"®BeA = T®rT \ Sety:sandl + U ® B € Sety.
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Case A’ \(IIAB.
THFT'®A €5 — T +rT'\IUT :sforsomeU,TandT rU® A€ s
and V& : IV <T. I"+ru:Ué®aeA = T’ +T(é,u) ® Bla] €.
Trt:T"® feA = T®rT' \VOUT:sforsomeU,TandT® rU® A€s
and V& : IV <T. I"+u:Uéf®aecA = T' +téu:T(E,u) ® fa e Blda].
Case A’ \ IISizeB.
FTrT"®A €s = T T\ IISizeT : s for some T
and V& : T/ <T. IV Fa =R a = T’ + T(£,a) ® Bla] € s.
F+t:T"® feA = T®+T \/IISizeT:sforsome T
andVE: IV <T. I ra=R"a = I" +tfa:T(¢,a) ® fa e Bla].
Case A"\, VB.
FrrT"® A es &= T +T' (VT :sforsomeT
andVE: T’ <T, I" + b:Size, f €Size. T’ +b =R = T’/ + T(£,b) ® B[f] €s.
Trt:T'®feA = T®rT' \\VT:sforsomeT
and V&€ : T/ <T, I'® +a,b: Size, a, § € Size.
I"® b =RB = I’ r t&{a) : T(£,b) ® f{a) € B[B].
We may prove theorems “by inductiononT + T ® A € s”, even if in reality this will be proofs by

induction on A € sand casesonT + T ® A € s. We write if I +T ® A € s for some
sort s. The logical relations are closed under weakening.

THEOREM 5.2 (INTO AND OUT OF THE LOGICAL RELATION). LetT + T ® A€ s and A< S. Then:
) FTrt=R"*n:TthenT rt:T®SneA

@ IfT rt:T®feAthenT Ft=R|5f:T.

(B)T FT=RYA:s.

Proor. Simultaneously by inductiononI + T ® A€ s. O

LEMMA 5.3 (SEMANTIC IMPLIES JUDGMENTAL SUBTYPING [FRIDLENDER AND PAGAaNO 2013]).
(1) IfT +a=Rq andT +b = RB and a < B thena < b.
@ IfTr+Te®Aandl +T'® A’ and A< A’ € Type thenT + T < T'.

LEMMA 5.4 (SUBSUMPTION FOR THE LOGICAL RELATION [FRIDLENDER AND PAGgANO 2013]). If
I+ T®AandT +T"® A’ and A< A’ e TypethenT +t:T® f € AimpliesT +t:T"® fe A’

Fig. 10 defines a logical relation for substitutions‘ F'ro=1t:A®n=p ‘ We write

forT rr=7:A®p=p.
The following judgements are used to state the fundamental theorem of typing.

TlFe:T = TI'trto:Tr@tneTpforalll ro=1:T®n=p
IFFoy:A &= T ' rtopo=0cr:A®cgn=cppforalll’ ro=r:T®np=0p

THEOREM 5.5 (FUNDAMENTAL THEOREM OF TYPING).

(1) IfT vt:TthenTIF¢t:T.
2T ro:AthenTIFo:A.

Proor. Each by induction on the derivation. O

LEMMA 5.6 (IDENTITY ENVIRONMENT). If +T thenD +id:T ® pr.
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T Tto=r:A®np=p T +a:Size T ka= Ry
Frr0=0:020=0 T r(c,a) = (r.a): ASize ® (1,a) = (p, @)

Trto=1t:A®p=p I'® ka,b:Size a,BeSize T®rb=Reg
T +(0,a) = (r,b): A7 Size ® (n,) = (p, f)

Tto=r:A®@p=p A®+T Tru=t:Tr Trt:Tr® feTp f=geTp
I'k(ou) = (r,0): AT ® (1, f) = (p,q)

Fig. 10. Logical relation for substitutions‘ Tro=1t:A®n=p ‘

COROLLARY 5.7 (SOUNDNESS OF NBE).

(1) If T +t:T thenT v t = nbelt: T.

() IfT rt,t': T andnbel't ~ nbelt’ thenT rt=1":T.

Proor. (1) For the identity environmentI' + id : T ® pr (Lemma 5.6) the Fundamental Theorem

for Typing givesT + t : T ® tpr € Tpr. This implies Ry |77)(¢pr) \, v for some normal form v and
I' +t =v: TbyThm.5.2. Then (2): From (1), using Lemma 3.1: T + t = nbegt = nbe%t’ =¢t':T. O

COROLLARY 5.8 (DECIDABILITY OF JUDGEMENTAL EQUALITY). If ' + t,t’ : T then the test whether
nbegt ~ nbe;t’ terminates and decidesT +t =1t": T.

From correctness of NbE and the logical relations we can further prove injectivity of type
constructors, inversion of subtyping, and subject reduction. The proofs follow roughly Fridlender
and Pagano [2013], for details, see the long version of this article.

6 ALGORITHMIC SUBTYPING

Fig 11 defines an incremental subtyping algorithm , Neutral types are subtypes iff
they are equal, which is checked using NbE.

T\yn T\ n Nbern ~ Nbern’ T ™\ Sety T’ ™\, Sety P
<

F'rT<:T T'rT<:T -
T\, Nata T’ \, Nata’ , T, \[I*SizeTy T, \(II*SizeT, T.Size +T; <: T,
<
TrT<T 4= T rTj <:T)

Tll\,HUlTl TZ,\,HUQTZ T'+U, <: Uy TU, + T1 <: T,
T < T,

Fig. 11. Algorithmic subtyping .

LEMMA 6.1 (SOUNDNESS OF ALGORITHMIC SUBTYPING). If I' v T <: T” thenT + T < T".

Proor. By induction onT" + T <: T’, soundness of NbE, and subject reduction. O
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LEMMA 6.2 (SEMANTIC SUBTYPING IMPLIES ALGORITHMIC SUBTYPING).
IfTrT®AandT +T'® A" and A< A’ € Type thenT + T <: T'.

Proor. By inductiononT +T® AandT + T’ ® A’ and cases on A < A’ € Type. m]
COROLLARY 6.3 (COMPLETENESS OF ALGORITHMIC SUBTYPING). If I + T < T” thenT + T <: T'.

Proor. By the fundamental theorems T + T ® Tpr andT + T’ ® T’pr and Tpr < T’ pr € Type.
By Lemma 6.2, + T <: T". O

LEMMA 6.4 (TERMINATION OF ALGORITHMIC SUBTYPING). If I' r T ® A andT + T’ ® A’ then the
queryT v T <: T’ terminates.

Proor. By inductionon A € sand A’ € s’ and caseson +T® AandT + T ® A’. ]
THEOREM 6.5 (DECIDABILITY OF SUBTYPING). If I' + T,T’, thenT + T < T’ is decided by the query
T+T<:T.

Proor. By the fundamental theorem of typing, T + T ® Aand T + T’ ® A/, thus, the query
T + T <: T’ terminates by Lemma 6.4. If successfully, then T’ + T < T’ by soundness of algorithmic
equality. Otherwise I' + T < T" is impossible by completeness of algorithmic equality. O

7 TYPE CHECKING

In this section, we show that type checking for normal forms is decidable, and succeeds for those
which can be typed via the restricted rule for size polymorphism elimination:

T kst:VT I'® +a: Size
T s t{a):Tla]

We refer to the restricted typing judgement as , and obviously, if I' +s ¢ : TthenT +¢:T.
Figure 12 displays the rules for bidirectional typing of normal forms. Note that we could go
beyond normal forms, by adding inference rules for the Nat -constructors:

I'® +a:Size I'® ka: Size I+t Nata
T + zero(a) = Nat(a+1) T +suc{a)t =% Nat(a+1)

THEOREM 7.1 (SOUNDNESS OF TYPE CHECKING). Let +T.

W IfT® +TandD =T +t =T thenT rst:T.
QDT+t =T thenT® +TandT rst:T.

LEMMA 7.2 (WEAK HEAD REDUCTION OF SUBTYPES). Let @ =T + T <: T".
(1) If T" \y Nata’ then T \y Nata andT + a <: a’ : Size.

(2) If T" ™\, Sety then T ™\ Sety and € <: {'.

() If T \\TIA' B then T \\ITAB andT + A’ <: AandT.A’ + B <: B
(4) If T \\ [1*Size B’ and T \, 1*Size B and T .Size + B <: B’.

ProoOF. By cases on 9, since weak head evaluation is deterministic. O

This lemma also holds in the other direction of subtyping, i.e., when T <: T” and T weak head
evaluates, then T’ weak head evaluates to a type of the same form.

LEMMA 7.3 (SUBSUMPTION FOR TYPE CHECKING). Letid : T/ <T.
WIFDuTrt=TandlT® v+ T <T' thenl’ +t =T
QDT rt=3Tthenl' +t =T andT’® + T <T'.
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Checking . Input: T, t, T. Output: yes/no.

T \s T +a:Size T’ \ Sety <t
I' -Nata&= T T +Sety =T

T'\s FrU s TUGRT &5 T N\s TSize v+ T &5
IrrfIUT &T I' FII*SizeT & T’

T’y Natb T® +a+1<b:Size T’ Nath T® ra+1<b:Size T+t Nata
T +zero{a) =T’ T +suc{ayt =T’

T"\N[I*UT T*UvrteT ret=T T+ T<:T

reAteT rvteT
Inference . Input: T, t. Output: T or no.
() =T rvt=3 1’ T"\IUT TruesU
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Fig. 12. Bidirectional type-checking of normal forms.

Proor. Simultaneously by induction on &, using lemma 7.2 and soundness and completeness of
algorithmic subtyping. o

THEOREM 7.4 (COMPLETENESS OF TYPE CHECKING FOR NORMAL TERMS).

WO)IfDuT rsv:TthenT roveT.

@ IfDuT rsm:TthenT +m=Uandl® +U <T.

Proor. Simultaneously by induction on &, using (strong) inversion and Lemma 7.3. O

LEMMA 7.5 (TERMINATION OF TYPE CHECKING). Let T

(1) The queryT +t = ? terminates.
(2) If T® + T then the queryT + t &= T terminates.

Proor. By induction on t, using type weak head normalization and soundness of type checking,
to maintain well-formedness of types. And, of course, decidability of subtyping. O

THEOREM 7.6 (DECIDABILITY OF TYPE CHECKING FOR NORMAL TERMS). Let + T andT® + T. Then
I' s v: T isdecided byT' rv & T.



136 Chapter 6. Normalization by evaluation for sized dependent types

8 DISCUSSION AND CONCLUSIONS

In this article, we have described the first successful integration of higher-rank size polymorphism
into a core type theory with dependent function types, a sized type of natural numbers, a predicative
hierarchy of universes, subtyping, and n-equality. This is an important stepping stone for the smooth
integration of sized types into dependently-typed proof assistants. In these final paragraphs, we
discuss some questions and insights that follow from our work and go beyond it.

It is now straightforward to add a unit type 1 with extensional equality t = % : 1 for all # : 1. We
simply extend reification such that |'a = . Further, 1 is a new type shape with rule 1 £ 1.

In the long run, we wish for a type-directed equality check that does not do normalization in
one go, but interleaves weak head normalization with structural comparison. Such an equality test
is at the heart of Agda’s type checker and it generates constraints for meta variables involved in
type reconstruction [Norell 2007]. However, the usual bidirectional construction [Abel and Scherer
2012] does not seem to go through as we lack uniqueness of types (and even principal types).

For now, we have only exploited shape-irrelevance of sized types, but this directly extends
to universe levels. If we consider all universes as a single shape Set,, & Sety,, we can quantify
over levels irrelevantly, as Set is a shape-irrelevant type constructor. This is a stepping stone for
integrating universe cumulativity with Agda’s explicit universe-polymorphism. If levels are no
longer unique (because of subsumption), they will get in the way of proofs, analogously to sizes.
With an irrelevant quantifier we can ignore levels where they do not matter. We will still respect
them where they matter, thus, we keep consistency.

Our reflections on level irrelevance lead us to the question: can a type theory T with a stratified
universe hierarchy be understood as a sort of refinement of the inconsistent System U (Type:Type)?
Intuitively, when checking two terms of T for equality, could we ignore the stratification in the
type A which directs the equality check (thus, consider A coming from U)? Such a perspective
would put stratification in one pot with size assignment: Size annotations and levels are both just
annotations for the termination checker, but do not bear semantic relevance. We could switch the
universe checker temporarily off as we do with the termination checker—cf. the work of Stump
et al. [2010] on termination casts.

Finally, we would like a general theory of shape-irrelevance that extends beyond size-indexed
types. For instance, any data type constructor could be considered shape-irrelevant in all its indices,
with the consequence that index arguments in the data constructors could be declared irrelevant.
However, our notion of judgmental equality does not support irrelevant arguments of dependent
type. It works for the non-dependent type Size, but we also relied on having a closed inhabitant co
in Size. More research is needed to tell a more general story of shape-irrelevance.
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Decidability of Conversion for Type Theory in Type Theory
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Type theory should be able to handle its own meta-theory, both to justify its foundational claims and to obtain
a verified implementation. At the core of a type checker for intensional type theory lies an algorithm to check
equality of types, or in other words, to check whether two types are convertible. We have formalized in Agda
a practical conversion checking algorithm for a dependent type theory with one universe a la Russell, natural
numbers, and n-equality for IT types. We prove the algorithm correct via a Kripke logical relation parameterized
by a suitable notion of equivalence of terms. We then instantiate the parameterized fundamental lemma twice:
once to obtain canonicity and injectivity of type formers, and once again to prove the completeness of the
algorithm. Our proof relies on inductive-recursive definitions, but not on the uniqueness of identity proofs.
Thus, it is valid in variants of intensional Martin-L6f Type Theory as long as they support induction-recursion,
for instance, Extensional, Observational, or Homotopy Type Theory.
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1 INTRODUCTION

A fundamental component of the implementation of a typed functional programming language is
an algorithm that checks equality of types; even more so for dependently-typed languages where
equality of types is non-trivial, as it depends on the equality of terms. In this paper, we consider
a dependent type theory with one universe a la Russell, natural numbers, and n-equality for IT
types. The algorithm we implement follows the structure of the one used by the dependently-typed
language Agda [2017], and has been discussed and refined before in the literature [Abel et al.
2016; Abel and Scherer 2012; Coquand 1991; Harper and Pfenning 2005]. In short, the algorithm
will reduce the types or terms under comparison to weak head normal form, compare the heads,
and, if they match, recurse on the bodies. Additionally, when comparing terms there is an extra
type-directed phase which takes care of 7-equality: at function type, we apply the terms under
comparison to a fresh variable and continue comparing the results. The type-directed phase could
be easily extended to n-equality for other types, by comparing how their elements behave under
their eliminators, like it is done in Agda for records, singleton types and others. The proof that the
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algorithm correctly implements equality of types is based on a Kripke logical relation and follows
Abel and Scherer [2012] and Abel et al. [2016].

Our novel contribution is a full formalization of the algorithm and its proof of soundness,
completeness, and termination, in Martin-L6f Type Theory [Martin-Lof 1975] with intensional
equality, plus some well-understood extensions such as induction-recursion [Dybjer 2000]. As a
mechanization language, we use Agda itself in its latest version, using the language variant without
Streicher’s Axiom K [1993]." Consequently, our proof is directly transferable to related foundations
such as Homotopy Type Theory extended by induction-recursion.

The Agda formalization is quite sizeable: around 10.000 lines of code (500.000 characters). Es-
pecially the proof of the fundamental theorem of logical relations is substantial (5.000 lines). The
congruence rule for the recursor for natural numbers alone requires a lemma that stretches over
more than 500 lines. It is not that the proof is mathematically deep, once the right definition of
the logical relation and the right formulation of the fundamental theorem are in place—it is just
that a formalization requires us to get all the technicalities right. In research articles with pen
and paper proofs only, the proof of the fundamental theorem is often skipped or reduced to the
single sentence “proof by induction on the typing and equality derivations”. Yet checking that each
case of the induction goes through would require a reviewer many hours of disciplined technical
reasoning. Written out, the proof would stretch over many pages.

In previous works [Abel et al. 2007; Abel and Scherer 2012; Harper and Pfenning 2005], two
logical relations and two fundamental theorems are needed for the meta theory: one that entails
soundness of the algorithmic equality, and one for completeness. While in pen-and-paper proofs
we could get away with remarks like “proof analogous”, a formalization would require us to do the
proof exercise a second time; in our case, a truly intimidating task. Instead, we have been able to
formulate a more abstract version of the fundamental theorem which we instantiate twice. The
properties of judgemental equality which we obtain for the first instantiation are actually necessary
to establish the preconditions for the second instantiation; a single, most general instantiation of
the fundamental theorem is not possible to the best of our knowledge.

The abstract version of the fundamental theorem requires a logical relation parametrized on
a generic notion of typed equality that is specified by 8 properties (see Section 3.1). We were
able to extract these conditions by evolving the original, specific version of fundamental theorem
and logical relation into the abstract one. Here, we have been harvesting the first fruit of our
formalization: Once a proof is formalized, it can be safely refactored like a piece of software to make
it more general. The mechanical proof checker ensures we are not introducing mistakes during the
factorization. Our abstract formulation of the fundamental lemma is thus not only a necessity, but
also an outcome of the formalization. We have been able to advance the meta-theory of dependent
types by our formalization efforts.

The simpler proof technique of Harper and Pfenning [2005] which considers only the approximate
shape of types by erasing the dependencies is not applicable in our case because our types might be
determined by computations involving those dependencies, e.g., by recursion on natural numbers.
An alternative technique to prove decidability of conversion is Normalization by Evaluation [Abel
et al. 2007], however reducing terms to normal form before comparing them is often wasteful, so
such a proof technique would not directly prove the correctness of a practical conversion checking
algorithm. Highly related is the work of Barras [2010] which formalizes impredicative type theory
in set theory which is in turn formalized in the type-theoretic proof assistent Coq [INRIA 2017].
Barras uses axiomatic inaccessible cardinals to model universes; we try here to cut out the set theory
and formalize type theory directly in type theory. Altenkirch and Kaposi [2016; 2017] formalize type

lagda --without-K implements pattern matching without the K axiom.
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theory in type theory using intrinsically well-typed object syntax via quotient inductive types in
the meta-language. They prove normalization by evaluation in Agda. However, their formalization
is less comprehensive than ours: their object type theory lacks inductive types, and their universe
lacks function types.

Overview. Logical relations have been used for many purposes and with equally varied definitions,
here we try to give an overview of the design principle used for ours. After specifying the syntax
and rules of our type theory ™Y, in Section 2 we prove only a minimal amount of properties by
direct induction on typing or equality judgements. In particular, we prove the weakening lemma,
i.e., that all the judgments still hold if we apply well-typed renamings. The remaining properties
are derived from the logical relation later. We believe this makes the proof more extensible and
resilient to changes in the formulation of the typing rules. In Section 2 we also define a typed
weak head reduction relation which we prove deterministic. Using a typed variant of reduction
gives us the soundness of reduction immediately, which is otherwise established by the subject
reduction theorem. Subject reduction relies on the injectivity of the function type constructor which
is difficult to prove for a dependent type theory with universes. In fact, it is only a consequence of
the logical relation argument. Further, typed reduction is more flexible than untyped reduction
and could be equipped with type-directed reduction rules needed in extensions of type theory, for
instance, by singleton types or strict equality.

In Section 3 we define a Kripke logical relation, i.e., for each judgment I' + J we define a
corresponding relation I' |- J which exhibits the inductive structure of types and their normalization
properties. Many expected consequences of the judgments are actually non-trivial to derive. The
logical relation rationalizes their meaning by focusing on which observations are supposed to make
sense for each term. So for example I'l-¢ : T not only tells us that T' + ¢ : T but that the same
judgment holds respectively for the weak head normal forms, a and A, of t and T, and that the
possible observations of a also belong to the logical relation. What we mean by observation depends
on the type: if A is the universe then a has to either be neutral or a type former whose subterms also
belong in the logical relation, if A is the type of natural numbers then a must be neutral or either
zero or suct for a t in the logical relation, and finally if A is the type of dependent functions, then
applying a to a term in the logical relation must produce another such term. Equality judgments
are similarly refined by comparing how the weak head normal forms of the terms involved react to
observations. In Section 4 we present the conversion algorithm and use the consequences of the
fundamental theorem to prove its termination. We prove the properties necessary to instantiate
the logical relation with the conversion algorithm and use the fundamental theorem to derive its
completeness. With this we can derive the decidability of the conversion judgments, which proves
the conversion algorithm’s correctness.

In summary, our work makes the following contribution to the programming language and type
theory:

o A complete formalization of the decidability of conversion for a dependent type theory with
one inductive type and one universe.

e Meta-theory based on typed weak head reduction.

o A single inductive-recursive Kripke logical relation which can be instantiated twice to first
prove soundness and then completeness of the conversion algorithm. As a condition of the
definition, the logical relation is indexed by a semantic type derivation, but we show proof
irrelevance for these derivations.

We have restricted our investigation to the minimal core of type theory which gives us large
elimination, to expose the structure of the metatheoretical development in its pure form.” We

%In contrast, the development of Abel and Scherer [2012] is slightly veiled by in addition of an irrelevance modality.
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believe that our development can serve as a model for the justification and meta-theoretical
investigations of extensions of type theory.

This paper is best read in a PDF viewer, because definitions and lemmata in blue are clickable
and will open the corresponding Agda code in a browser, which is available online.?

2 A CORETYPE THEORY WITH ONE UNIVERSE

In this section, we introduce AUV, a dependent type theory with natural numbers and recursion,

dependent function types, and one universe. Using the recursor into the universe, we can define
types whose shape depends on a value, for instance, the type of functions of arity n € N. Such
recursively defined types are sometimes called large eliminations [Werner 1992]; their presence
makes the type theory fully dependent in the sense that value-dependencies cannot be erased from
types when constructing a model.*

2.1 Syntax

The grammar in Fig. 1 describes the raw syntax of A"V in de Bruijn style. Expressions t € Exp may

or may not be in weak head normal form (Whnf), which in turn may or may not be neutral (Ne).
An expression in Whnf is an expression that cannot be further reduced by the weak head reduction
rules which we will later present. Expressions which are not in Whnf can all be deterministically
reduced by these rules. Neutral expressions have a variable in head position that blocks further
reductions.

In the formalization, Whnf and neutral are formalized as predicates over expressions. This allows
us to use a simple data structure for expressions and, thanks to Agda’s dependent pattern matching,
it is easy to inspect them.

N > x de Bruijn indices

Exp > tu,v,A,B u= T|tu|natrecAtuv expressions

Whnf > ¢ = n|suct|zero|At|U|N|IIAB weak head normal forms
Ne > nmN,M == i,|nt|natrecAtun neutral expressions

Cxt > I,A = €|[A contexts

Wk > p x= id|[Tp|fMplpop weakenings

Subst > o x= p|lo|flo|oooc’|o,t substitutions

Fig. 1. Grammar of ATUN,

Expressions consist of the functional expressions: function application t u, abstraction At, depen-
dent function type IT A B; as well as the natural number expressions: zero, successor suc t, natural
number type N, natural number recursion natrec At u v; and variables i, and universe type U. We
use to denote syntactical equality of terms, which corresponds to propositional equality in
the Agda formalization. For variables, we use de Bruijn [1972] indices i, with x € N. The following
positions bind one de Bruijn index: the sole argument of A, the second argument of IT and the first
argument of natrec. Note that the formalization does not enforce well-scopedness of expressions,
instead we rely on the typing judgments to implicitly guarantee well-scopedness. In practice this
has allowed for some mistakes when formalizing the typing rules, which we had to go back and
correct, so intrinsically well-scoped syntax might have been a better choice.

3 https://mr-ohman.github.io/logrel-mltt/decofconv/
4 An example for a not fully-dependent type theory would be the Calculus of Constructions [Coquand and Huet 1988] which
can be erased to F [Geuvers 1994].
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Expressions encompass values and types. For instance, A(1ip), which would be AA. Ax. x with
variable names, is the polymorphic identity function of type IT U (IT i i1 ), which is II(A:U). I1(x:A). A
with names. Some expressions serve both as an object (term) and a type. For instance, N is the type
of zero but also an inhabitant of universe U.

Contexts ' are snoc-lists of (type) expressions to record the types of the free variables of a term
or its type. We number the entries in contexts from right to left. For instance, the 3-element context
(e, C, B, A), associates the variables iy and i; and i, with types A and B and C, respectively.

Weakenings p, if executed on a term ¢ as t[p], can raise free de Bruijn indices of term ¢. The
identity weakening id does nothing, the shifting of a weakening Tp adds one to all indices, the
lifting of a weakening {lp is for traversing under binders, and composition p o p” (pronounce: p
after p’) lets us execute first weakening p’ and then p.

Substitutions o, executed as t[c], replace the free de Bruijn indices of term ¢ by new terms.
The substitution action #[c] is defined by recursion on the term, in Fig. 2 we give the relevant
rewrite rules that follow from that. For instance, substitution (o, t) would replace variable iy by ¢
and the others according to 0. We abbreviate the singleton substitution action t[id, u] by t[u]; it
just replaces iy by u and leaves the other variables unchanged. Weakenings are implicitly coerced
to substitutions; this defines t[p]. Weakenings and substitutions obey the usual laws, for instance,

flooTid =Tido 0.

Ule] = U iy [id] = iy
(IIFG)[o] = N F[c]G[fo] ix [Tid] = ixu
N[g] = N ix [Tl = (ix[oDITid]
(An)[e] = At[fo] io [Mle] =g
(tw)o] = tlo]ulo] ix+1[fle] = (ix[oDITid]
zero[o] = zero iy [o,t] =t
(suct)[oc] = suct|o] ixi1[o,t] = ixlo]
(natrecAtua)loc] = natrec A[ffo]t[o]ul[o]a[o] ix [co0’]= (ix[o'])[o]

Fig. 2. Rewrite rules for substitutions.

For non-dependent function types, we introduce the arrow notation. We define it as a IT type
with its second element weakened:

A — B £ I AB[Tid]

Observe that (A — B)[o] = (ITAB[Tid])[c] = U A[c](B[Tid][tc]) = ML A[c] (B[c][Tid]) =
Alo] — Blo] as expected, according to the substitution laws.

The expression natrec U A (AA(N — iy)) n, with names natrec U A (Am.AB.N — B) n, codes type
N" — A which is short for N — (--- — (N — A)...) with n occurrences of N. It is an example of
a large elimination of value n into universe U, producing a (small) type.

In the remainder of this paper, we reserve and exclusively use names n, m, N, M for neutral
expressions, I', A for contexts, p for weakenings and o for substitutions. Other names, for instance
t,u, A, B, are used for expressions. Names with a bar, for instance 1, are used for expressions in
Whnf. Note that symbols ¢ and t are distinct, and ¢ need not necessarily denote the Whnf of ¢.
However, we will often use them in that way.
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T'rA
T THA +T +T T'+F ILF+G T'rA:U
Fe FT,A TFU  TFN TFIFG TrA
[ TrHA 'rA=B I'tA=B I'tB=C
o : A[Tid] € T, A TFrA=A TrB=A TrA=C
ix:A€l [+F T+F=H T,FrG=E TrA=B:U
ix1: AlTid] €T, B TFIFG=THE TrA-B
FT THF:U ILFrG:U FT i:Ael THF ILFrt:G
THFN:U T'rIIFG:U T'ri:A TrAt:IIFG
'tg:1IFG Il'ra:F FT F'rt:N F'rt:A 'rA=B
I'tga:Glal I+ zero: N [+suct:N T+t:B
I'N+G T+ z : G[zero] I'+s:IIN(G — G[Tid, sucip]) F+t:N
I+ natrecGzst : G[t]

T'rt:A Trt=u:A TF'rty=t:A Trty=t3:A T'rt=u:A IT'tA=B
Trt=t:A Tru=t:A T'rti=t3: A T'rt=u:B

I'rF I'tF=H:U IFrG=E:U
T'+IIFG=IIHE:U

T+f=¢g:IFG Tra=b:F
Trfa=gb:Gla]

I'rF Trf:IIFG Trg:IFG T,Fr f[id]io = g[Tid]io: G
Trf=g:IFG

F'rt=u:N

I'tsuct=sucu:N

T+F ILF+t:G Tra:F T,NrF Ttrz:Flzero] T+rs:IIN(F— F[Tid,sucip])
T+ (At)a =t]a] : Gla]

I + natrec F zs zero = z : F[zero]

ILN+F I+ z: Flzero] I'+s:IIN(F — F[Tid,sucip]) F'rt:N
T + natrec Fzs(suct) = (st)(natrec Fzst) : F[suct]

I'NrF=F T+ z=2z: F[zero] I'ts=s":IIN(F — F[Tid, sucip])

I+ natrecFzst = natrecF’ z’ s’ t' : F[t]

F'rt=t':N

Fig. 3. Inference rules of ATVN,
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[T+rA—Bland[T+t—u:A

T'+F I,Frt:G T'ta:F I'tf—g:1IIFG T'ta:F
T+ (At)a — t[a] : Gla] I'tfa—ga:Glal

ILN+F I+ z: Flzero] I'+s:IIN(F — F[Tid, sucip])

T + natrec F zs zero — z : F|zero]

I'N+F I+ z: F[zero] I'+s:IIN(F — F[Tid, sucip]) F'rt:N
I+ natrec Fzs(suct) — (st)(natrec Fzst) : F[suct]

I,NrF T+ z: Flzero] T+s:IIN(F — F[Tid, sucip]) '+tt—u:N

I+ natrecFzst — natrec Fzsu : F[t]

I'+A— B:U T'rt—u:A T'+rA=B
I'tA— B I'tt— u:B

T+A— " Bland[Tri—"u:A

'r+A IT'tA— B T+B—*"C Trt:A T'tt—u:A Tru—"a:A
TrFA—*A IT'tA—*C Trt—*t: A T'rt—*a:A

Fig. 4. Weak head reduction rules.

2.2 Rules and Semantics

In Fig. 3 we define the judgements for well-formed contexts, for well-formed types,

for conversion of types, for type membership and for conver-

sion of terms. These are all defined simultaneously: If we look at the following rules, we can see
how the judgements depend on each other:

THA:U T'tA=B:U Trt:A 'rA=B T'rt=u:A T'tA=B
THA T'tA=B T'rt:B T'tt=u:B

The first two rules let us lift a term or a term equality to the type level if it is of type U. This
shows us that the judgements for types, I + AandI' A = B, depend on the judgements for terms
Trt:AandT +t =u: A respectively. The last two rules are the conversion rules, which let us
take a term or a term equality to another, equivalent type. Here we see that both I' + ¢ : A and
I' -t =u:AdependonT + A = B. Additionally, with the reflexivity rules, we can see that the
equality judgements refer to the typing judgements, thus, all the judgements depend on each other
and need to be defined simultaneously.

In Fig. 4 we list the reduction rules of AV, Judgement performs a single
weak head reduction step from ¢ to u, and is its reflexive-transitive closure. Our

grammar for Whnf captures exactly the well-typed terms that cannot be reduced further with
these judgements. Any well-typed term not in Whnf will in finitely many steps reduce to a term in
Whnf, yet this fact requires proof by logical relation and will appear quite late in our meta-theoretic
development, see the Weak Head Normalization Theorem (3.28). Weak head normalization allows
us to find the canonical head constructor of an expression if there is one.
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Note that the reduction rules are typed, which is one of the main technical innovations of

Abel, Coquand, and Manna [2016]. We immediately get that reduction is included in conversion.

In contrast, with untyped reduction, we would need a type preservation (aka subject reduction)
theorem which requires function type injectivity (aka IT injectivity) which in turn needs proof by a
logical relation [Abel et al. 2007; Abel and Scherer 2012; Goguen 1994].

Below, we prove some key properties of the rules.

LEMMA 2.1 (WELL-FORMED CONTEXT). If T' + J then+ I for any typing or conversion judgement J.
Proor. By induction on the judgement. ]

LEMMA 2.2 (REDUCTION SUBSUMED BY EQUALITY).

(1) IfeitherT'+ A— BorI'+ A—" BthenT + A= B.

(2) IfeitherT+t — u:AorT'rt — u:AthenT +t=u: A

Proor. By induction on the judgement. ]

With typing, we can also show that the first element of a reduction is a well-formed type or term.

LEMMA 2.3 (SUBJECT TYPING).

(1) IfT+rA—> BthenT + A.

@) fT+t—u:AthenTrt:A

Proor. By induction on the reduction and by the well-formedness of the context (2.1). ]

The analogue of this lemma, to derive I' + BfromI'+F A — BandT Fu: AfromT Ft — u: A,
will be proven as a consequence of the fundamental theorem (see Thm. 3.26).

LEMMA 2.4 (WHNFS DO NOT REDUCE). We cannot step from a weak head normal form.

(1) T+ A —s A’ is impossible.

(2) T+t —> t’': B is impossible.

Furthermore, a reduction sequence starting with a Whnf goes nowhere:

(B)IfTFA—* A thenA=A'.

4) IfTrt—*t' :Cthent=t'.

Proor. By induction on the reduction. O

Reduction is deterministic; each expression has at most one reduct.

LEMMA 2.5 (REDUCTION IS DETERMINISTIC).

(1) f T+A— BandT+ A—> B’ thenB = B’.

@ fTr+t—u:AandT+t — u' : Athenu=u'.
B)IfTFA—*AandT+A—* A’ thenA= A'.

@ IfTrt—*t:AandTrt —*1t : Athent =1

Proor. By induction on the reduction, using the fact that Whnfs do not reduce (2.4). ]

We classify the weakenings p from T to A by judgement , inductively given by the
rules to follow. If we apply a well-formed weakening p : A < T to a term ¢ in I, we obtain a term
t[p] in A.

p:ALT p:ALT
id: T<T Tp:(AA) T fp: (A Alp]) £ (T,4A)
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The rule for weakening composition is missing, because it is admissible.
LEMMA 2.6 (WEAKENING COMPOSITION). If p: A" < Aandp’ : A<T thenpop’: N <T.

Proor. By induction on the structure of well-formed weakenings. ]

In the remainder of this article, we shall implicitly assume well-formedness of both contexts, - A
and + T, whenever we mention p : A <T.

To prove the Weakening Lemma (2.7) we strengthened our typing rules slightly, leading to the
hypotheses marked in | grey. For instance, in the case of ' + At : II F G, it is not enough to only have
I',Frt: G since we also need I + F. While we can extract T’ + F from T, F + ¢t : G via the context
+ T, F, it does not immediately follow that the extracted derivation of T I F is a smaller than the
original derivation of I + At : IT F G, which means that the use of the induction hypothesis would
not be justified a priori. Hence, we have strengthened the premises of our rules by an additional
hypothesis I - F whenever the context extension I', F appears in a hypothesis. A similar technique
has been applied by Harper and Pfenning [2005].

Alternatively, we could use sized types in the metalanguage [Abel and Pientka 2016; Hughes et al.
1996; Sacchini 2013]. This would involve making our judgments sized, so that when we extract
T+ FfromT,F+t:Gviacontext+ I, F, the sizes would witness that I’ + F is smaller than + I, F
which is in turn smaller than T, F + ¢ : G. Thus, we could justify the use of the induction hypothesis
onI + F.

LEmMA 2.7 (WEAKENING). Letp : A < T.If T + J then A + J[p] for any typing, conversion, or
reduction judgement J.

Proor. By induction on the judgement. O

Finally, we define well-formed substitutions and their equality as‘ Aro:T ‘and‘ Aro=0":T)|
inductively by the rules to follow.

Aroofid:T A+ iplo] : Alo o Tid]
Avro:e Aro:T,A

Arooflid=c"oTid: T A+ iglo] = iglo’] : Alo o Tid]
Aro=0":¢€ A+ro=0:T,A

We may consider a non-empty substitution A + ¢ : ', A as a pair (o o Tid, iy[c]) of a substitution
o oTid and a term iy[ o], where we call the second component the head of o and the first component
the tail of o.

Similarly to well-formed weakenings, we shall henceforth assume that the contexts I and A are
well-formed when we mention A+ o : I or A + ¢ = ¢’ : I'. Unlike well-formed weakenings, we
do not need to immediately prove that well-formed substitutions can be applied to well-formed
expressions to create new well-formed expressions. Instead, this will follow from the fundamental
theorem (see Thm. 3.31).

3 KRIPKE LOGICAL RELATIONS

To prove decidability of AT™V'’s judgemental equality, we will show that it is equivalent to a more

structured equality relation, called algorithmic equality T + t &= u : A. For one, algorithmic
equality will have no rule for transitivity, because the transitivity rule is very non-deterministic:
If searching for a derivation of I' - t = v : A we have to find au such thatT' -t = u : A and
'+ u = v : A, itis not clear how to guarantee progress. Instead, transitivity for algorithmic



153

equality will be admissible. Secondly, we will prove that to derive I' + t = u : A, it is sufficient
to derive equality T + # = u : A of the weak head normal forms of ¢ and u. This way, we can
exploit the structure of objects during equality check; for instance, injectivity of constructors:
Trsuct=suct’ :Nholdsiff T+t =1":N.

For AT and related type theories, the essential properties like weak head normalization and
injectivity of constructors are not provable directly by induction on the typing and equality
judgements. Instead a logical relation is needed which represents the structure of objects explicitely,
such as

e canonicity: a closed term of type N reduces either to zero or suct, or
o function type injectivity: if two function types are equal, then their domains and codomains
are equal.

In this section, we will construct a logical relation 'l ¢ = u : A, pronounced “t and u are
reducibly equal at type A (of level ¢ in context I').” This relation will be Kripke in the sense that
it is closed under weakening. It will expose the inductive structure of objects such that we can
prove desired properties like normalization, canonicity, and injectivity. Analogously, we will define
reducibility predicates and relations for the other main judgements of A™Y, namely I' + A and
TrA=BandT+t:A

Reducible equality I'I-¢ t = u : A will be a subrelation of judgemental equality I'  t = u : A, but
we will later need a similar relation that is a subrelation of algorithmic equality. Thus, we define
it as a subrelation of a generic equality relation I' + t = u : A which can be instantiated for both
purposes. To prove that judgemental equality is in turn a subrelation of reducible equality, i.e.,
reducible equality is complete, we have to introduce a third relation, valid equality T IF} t = u : A.
Fig. 5 summarizes these relations and their connections.

Ittt u:A

Soundness (4.3) Instance 2

Subsumption

F'rt=u:A F'rt=zu:A
(Property 1)

Fundamental Escape
Theorem (3.21) Lemma (3.2)
Identity
FlEyt=u:A Tlet=u:A

substitution (3.17)

Fig. 5. Proof outline.

3.1 Generic Equality

To prove decidability of conversion, we need to introduce two logical relations, one with the
conversion judgements for equality and another with algorithmic equality (see Section 4.1). The
first logical relation will be used to derive proofs which are necessary to prove the properties of
algorithmic equality, one being decidability, while the second logical relation will be used to prove
completeness of algorithmic equality. The proofs about these logical relations are quite large, and
with the two relations being quite similar, we would like to be able to not duplicate our work. We
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therefore introduce a notion of generic equality which we use to parameterize the definition of our
logical relation, such that it can be instantiated to get the two logical relations we need.

We here give a specification for a set of relations being a generic equality. A generic equality
consists of three relations that satisfy the properties we list below: for equality of

types, for equality of terms of a type and for equality between neutral

terms. In the formalization, this is implemented as a record type with one field for each of the three
relations and one field for each property.

PROPERTY 1 (SUBSUMPTION).

(1) IfT+t~u:AthenT vt = u: A (Neutral equality is included in generic equality.)
(2) IfT+A=B:UthenT + A= B. (Small types are included in large types.)

Further, generic equality is a subrelation of judgmental equality.

(3)IfT+A=BthenT + A=B.
@ IfTrt=u:AthenTrt=u:A

PROPERTY 2 (PARTIAL EQUIVALENCE RELATION). The three generic equality relationsT v _ = _ and
I't_=_:AandT v+ _~ _: Aaresymmetric and transitive.

PROPERTY 3 (CONVERSION). If T+t =u:AandT + A=BthenT vt = u : B. (Same for ~.)

PROPERTY 4 (WEAKENING). Generic equality is closed under weakning, i.e., ifp: A <T andT v J
then A v+ J[p], where J ranges over the three equality forms.

PROPERTY 5 (WEAK HEAD EXPANSION). '+ _ = _andT + _ = _ : A are closed under weak head
expansion.
(1) f TFA—*AandT+B—*BandT - A= BthenT - A = B.
2 IfT+A—*BandT +a —*a:BandT v b —* b : BandT v a = b : B then
T'ra=b:A

PROPERTY 6 (TYPE CONSTRUCTOR CONGRUENCE). If + T then:

() TrU=U.
2)TEFN=NandT'+ N=N:U.
@) IfT+F=Handl,F+rG=EthenT v+ IIFG = I1HE. (And analogously forT + _= _:U.)

PROPERTY 7 (VALUE CONSTRUCTOR CONGRUENCE AND 7)).

(1) If + T thenT + zero = zero : N.

@) IfTrt=u:NthenT Fsuct =sucu:N.

B)IfT+rFandT v f : IFGandT + g : IFG and I, F + f[Tid]ip = g[Tid]io : G then
I'rf=g:IIFG.

PROPERTY 8 (CONGRUENCE FOR NEUTRALS).

(1) IfTri:AthenTri~i:A
@) IfT+f~g:IIFGandT +ra=b:FthenT+ fa~gb:Glal
@) IT,NrF=F andT vz =2z :Flzero] andT + s = s’ : IIN(F — F[Tid,suciy]) and

IF'tn~n':NthenT + natrecFzsn ~ natrecF’ z’s"n’ : F[n].

Now that we have defined all the necessary properties, we will introduce our first instance of
generic equality, which is simply judgmental equality.
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INSTANCE 1 (JUDGMENTAL EQUALITY). The following instantiation of generic equality satisfies all
the required properties:

T+ A = B instantiated toT + A= B
T+t =u:AinstantiatedtoT +t=u: A
T'vt~u:AinstantiatedtoT vt =u: A

ProorF. Subsumption (Prop. 1) is obvious. The weakening property (Prop. 4) is satisfied by the
weakening lemma (2.7) and weak head expansion (Prop. 5) is proven by the fact that reduction
is subsumed by equality (2.2). The remaining properties are fulfilled by the inference rules of
judgmental equality. O

Note that for definitional equality we do not need the distinction betweenI'  t = u : A and
'+t ~ u: A However, for the algorithmic equality it is required, therefore it is part of the
specification.

3.2 A Logical Relation for Reducibility

In this section, we define reducibility judgements T I, ] for types, type equality, terms, and term
equality. These judgements take the form of logical predicates and relations [Friedman 1975]. They
entail well-formedness, i.e., if 'k, J thenT F J, see the Escape5 Lemma (3.2). The opposite direction,
I' + J implies I' I, J will be a consequence of the Fundamental Theorem of Logical Relations (3.21).
A logical relation on well-typed open terms is necessarily Kripke, i.e., closed under weakening: if
p: A <TandTIF, J then Al, J. Otherwise, the Fundamental Theorem would fail for binders (A
and IT).

The index ¢ denotes the type level and ranges over 0, 1. We shall define the reducibility judgements
by induction on ¢, i.e., first for small types (£ = 0) and then for large types (£ = 1), using the
judgements for small types. Spelled out, the reducibility judgements are:

I'lFeA A is a reducible type of level ¢ in context T’
TFrA=B A and B are reducibly equal types of level ¢ in context '
Tlket: A t is a reducible term of level-£ type A in context '

TlFpt=u:A t and u are reducibly equal terms of level- type A in context T

These judgements will imply that all involved objects are reducible [Girard 1972] (in the sense of
weak normalization), in particular, all involved objects have a weak head normal form. Further, the
judgements do not distinguish between objects that have the same weak head normal form. This is
achieved by defining the judgements on weak head normal forms and closing them under weak
head expansion.

The qualifier “logical” means that objects are characterized by their behavior, e.g., non-neutral
objects of type N should reduce to zero or suct for a reducible ¢, and functions should yield a
reducible result if applied to a reducible argument. As a first approximation, let us define 'l ¢ :
IIFGtoholdif T+t —*t:IIFGand forallT' -, a : F we have T'll; ¢ a : G[a]. Note that formula
I'lF¢a : F occurs negatively in this definition, which has dire consequences: First, we will not be
able to inductively prove weakening for this definition, thus, we have to build it into the definition.
Hence, we require instead that for all p : A < T and Al¢a : F[p] we have Al t[p]a: Glp, a].

Secondly, the negative occurrence prevents us to define I' -, t : A as inductive predicate. Instead,
we have to define it by recursion on the type A, but not simply on the size of the type expression A,
since this does not get smaller in the recursive calls, e.g., Al-¢ t[p] a : G[p, a]. We defineT'l-, ¢ : Aby
recursion on the derivation J of T'lF¢ A, written I :: T ¢ A, which in turn is an inductive predicate.

5The terminology escaping the logical relation was coined by Schiirmann and Sarnat [2008].
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Thus, the term reducibility judgement will depend on 9 and we write 'l ¢ : A/5. In turn, the
rule for I' I, IT F G will have to refer to reducible terms of type F, but we may assume Al-¢a : F/q
to be already defined since U :: T'l-¢ F is a subderivation mentioned in the premise of the rule.
This definition scheme of interleaving induction and recursion is called induction-recursion [Dybjer
2000]. While the dependence on derivation is necessary for the well-foundedness of the definition
process, the exact shape of the derivation should be irrelevant for the reducibility judgements. We
prove this a posteriori in Lemma 3.5.
We now to proceed to give the rules for the inductive predicate , each rule followed by
the clauses for the judgements that are simultaneously defined by recursion on its derivation J:
ke A=B/g ‘ and ‘ Tlkst:A/g |and ‘ Tlet=u:Alg ‘ In the following, we often refer to the
package of these four judgements as the logical relation. The logical relation is implemented under
an external well-founded induction on ¢, so that definitions for large types can make use of the
relations for small ones. Most rules are identical for both levels, as most of the type formers belong
to both small and large types—except for the universe U which is necessarily a large type.

Universe. U shall be a large reducible type.

T

’

'<¢t
T'l-,U

Since we have no reduction on the level of large types, and hence, nothing reduces to U, this rule is
trivially closed under weak head expansion. The side condition ¢’ <¢ could be written as £ = 1. But
since we doing a well-founded induction on ¢, our formulation is convenient, as it directly gives us
the induction hypothesis for ¢’.
For derivations I built with that rule we define:
e T'lF,U = B/g iff B= U. This means that only U is reducibly equal to itself.
o Tlkpt:U/g (tisareducible member of U)iff the following hold:
(1) There exists some t such that '+t :—>*: ¢t : Uand T + t =t : U, meaning t has a reflexive
whnf.
(2) Tlk¢ t, which means that t is a reducible small type (already defined by induction hypothesis).
o Tlkpt =u:U/g (t andu are reducibly equal members of U) iff:
(1) There are t and u such that T+t :—*:t: Uand T+ u:—*:u:UandT+t = u: U.
This means that t and u have whnfs related by the generic equality.
2 U :=TlFptandTlFpuand Tlkp t = u/qy, meaning that t and u are reducibly equal small

types.

Neutrals. Any type that has a neutral whnf N shall be reducible. Since generic equality is not
reflexive in general, we also require N to be reflexive.

TFA:—s"N TrN~N:U
Tl A

Here, is a short-hand for the conjunction of ' + AandT'+ N andT + A —* N.

For any relation ®, we will from now on use T’ A :®: B to signify the conjunction of T + A
andT + BandT + A ® B,anduse T + t :®: u : A to signify the conjunction of T' + ¢ : A and
Tru:AandT Ft ® u: A We introduce the extra well-formedness premises because we cannot
yet prove I' - A or I' + B from most of our relations, for instance, neither from I' + A = B nor from
I' + A —* B. The lacking property is known as syntactic validity [Harper and Pfenning 2005] or
presupposition [Goguen 2000]. It is non-trivial to derive because of the asymmetry present in some
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of the inference rules, like the congruence rule for application or II-types. We will obtain syntactic
validity (Thm. 3.26) later as a consequence of the fundamental theorem.
Given a derivation J :: I'l-; A built by the rule for neutral types we define:
e T'lk; A= B/g iff there is a neutral M such that T + B:—*: M andT'+ N ~ M : U.
Neutral types are reducibly equal to types that have an equal whnf up to generic neutral equality.
e I'l-yt:A/g iff thereis aneutral nsuch thatT'+ ¢ :—*: n: NandT' +n~n: N.
Neutral types are inhabited by terms that have a neutral whnf.
e I'Fyt=u:Alg iff Trt:—" n:NandT+u:—*m: NandT +n~ m: N for some
neutrals n, m.
At neutral type, objects are reducibly equal if they have the same whnf up to generic neutral

equality.
Natural Numbers. N and its well-formed weak head expansions are reducible types.
'-A:—"N
—A

For a derivation I built by that rule we define:
e I'lyA=B/y iff [+ B —"*N.
o Tlrpt:Alg iff which is defined to hold iff there exists a whnf f such that:
(1) Trt:—"1:N

(2Trt=t:N
(3) T IFN,, , which is inductively defined by the rules
I'FN ¢t I'rn:N I'tn~n:N
T IFN,, zero T IFN,, suct T'IFN,, n

With that inductive definition, we model the different properties of the possible constructions
of natural numbers. For the suct case, we require that ¢ is a reducible natural number, so
that we can properly use natural recursion on the number. For the neutral case, we require
that n is well-formed and neutrally reflexive. Finally, for the zero case, we have no additional

requirements.
e T'lkpt =u:A/g iff|T IFN t = u |which is defined to hold iff there exist whnfs  and u such
that:

O Trt:—*1:N
@Tru:—"u:N
3 Tr+t=u:N

t=1u

(4) T IFN,, t = u, which is analogously to T IFN,, t defined inductively by the rules
TIFNt=u I'rn~m:N
T IFN,, zero = zero I' IFNy, suct = sucu TIEFNy, n=m

Function Spaces. A type with whnf IT F G is reducible if both F and G are reducible in a way
detailed in the following rule:
r'+A:—"“IFG I'+F ILF+rG

U = (Vp AT, Al F[p]) N/AH (Vp A ST, Alkga: Flpl/aup = AH-[G[p,a])
Vp:A<T, w:=Alca: Flpl/aup)-

Alreb = Flpl/aup) = Alkea=1b:Flpl/up) = AlkeGlp,al = Glp,bl/vpu)
Tl A

The notation “::” denotes the assignment of a type to a variable in the meta-theory. It is the same

as Agda’s elementhood relation “:” and can for instance be used in Yw :: U. ¥ (w) which means
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“for all w of type U, there is ¥ (w).” For weakening, we abbreviate (Yp :: Wk. p: T <A = P)
to(Vp:T <A. P).

For A to be a reducible II-type, we first require A to reduce to Il F G, where F and G are well-
formed. Secondly, F has to be reducible under any weakening p. Thirdly, for any reducible term
a in F[p], the type G[p, a] has to be reducible. Finally, if a and b are reducibly equal of type F[p],
the types G[p, a] and G[p, b] are reducibly equal as well. The requirement of reducibility under
weakening is needed for proving reducibility under binder cases like A and II, and the last two
conditions model that G is a F-indexed family of types.

Given a derivation 9 built by the function space rule we define:

e I'lF; A= B/g iff there are F’ and G’ such that:

(1) T+B—*TFG

@ TrIFG=1FG

(3) Vp: A <T. Alk¢ Flp]l = F'[p]/aup)

4) Vp: AT, w:Alrea: Flpl/aup). AlFeGlp.al = G'[p,al/vp,w)
For B to be reducibly equal to A, the type B has to reduce to I1 F’ G" which is equal in generic
equality to the I1 F G, the type A reduces to. We also require that under weakening p, the types
Flp] and F’[p] have to be reducibly equal and for a of type F|p|, Glp, a] and G’|p, a] are
reducibly equal.

e T'l-,t:A/g iff there is a t such that:

M) T+t:—*t:IIFG

@) Tri=i:1FG

() Vp: A<T, w:Alkpa: Flpl/aup). Alretlpla:Glp,al/vpu)

(4) \7/p AT, wuAlka: F[p]/cu(p). AlFeb: F[p]/cu(p) = Alrpa=b: F[p]/cu(p) =

Alketlpla=tplb: Glp,al/vpu)

The requirement 3 effectively says that under weakening p, given a term a of type F|p], we can
apply a to t[p] with type G[p, a]. Requirement 4 basically says the same thing, but for equality.
Also note that the reducibility of b is not necessary to complete the definition, but will be helpful
in some of the proofs.

e I'lkyt =u:A/g iff thereis at and a & such that:

M) Trt:—*t:IIFG

@Tru:—"u:IlFG

()T+i=u:TFG

4) Tt : Alg

(5) TlFeu:Alg

(6) Vp: A <T, w:Alga: Flpl/u). Alretlpla=1ulpla: Glp,al/v(pu)
In requirement 6, we say that under weakening p, given a term a of type F[p], t[p] and u[p] are
equal under application of a. This is necessary to prove congruence of application.

Embedding. Reducible small types can also be viewed as reducible large types.

U :=Tlkp A
— <t
Tlke A

Given a derivation I built by that rule:
o TlkyA=B/giffTlFp A= B/e.
o Tlkpt:Afg it Tlkp t - A/ This allows type level embedding of reducible terms.
o Ilkpt=u:A/giffTlkpt=u:A/qy.



159

3.3 Properties of the Logical Relation

In this section, we establish some basic properties of the logical relation. We start by reflexivity,
showing that reducible objects are well-formed, and logically related objects are generically equal.

LEmMMA 3.1 (REFLEXIVITY). Given J : T I, A then:
(1) TIF,A=A/g.
@2)Tlkgt:Alg thenTlFpt=t: Alg.

Proor. By induction on J. O

LEMMA 3.2 (EscaPe LEMMA). Given T :: T'lp A then:
1) TrA

(2) IfTIFyA=B/g thenT + A= B.

B) IfTIpt:Alg thenT +t: A

4) IfTIpt=u:Alg thenT it =u:A

Proor. By induction on I and reduction being subsumed by equality (2.2). O

For much of the following proofs, we will need to use induction on two or more derivations
of type reducibility for types that are reducibly equal. As there are four different cases for typing
derivations (ignoring the embedding case, as one can immediately recurse on its premise), with two
derivations we would have 16 cases and with three derivation we would have 64 cases. However,
it turns out that a lot of cases can be refuted by the reduction properties. We would like to avoid
repeating this refutation process and instead only prove it once.

We introduce what we call the shape view, which is an inductively defined relation on two or
more type reducibility derivations such that an instance of the view is only valid if the derivations
have a compatible inductive structure, i.e. either they are built with the same inference rule or one
of them is an embedding, for which we use the structure of the premise. For example, if we have
two type reducibility derivations I and U, and J is built using the natural number type rule:

T'rA:—*"N
Tl A

Then for U to be related by the view with 7, it must be built by the same rule either directly or
inside the embedding case. Pattern matching on proofs of the view then allows us to consider
only the compatible cases and not have to worry everywhere about the ones where e.g. both
A—*"IIFGand A—*N.

LEMMA 3.3 (SHAPE VIEW CONSTRUCTION) GivenJ =Tl AandJ’ =TIy B, if Ty A= B/g
then there is an shape view of I and T

Proor. By induction on I and I, as Whnfs do not reduce (2.4) and reduction is deterministic
(2.5). O

COROLLARY 3.4 (REFLEXIVE SHAPE VIEW CONSTRUCTION). Given T = TlkyAand T’ = Tlkp A,
there is an shape view of I and I

Proor. Directly by reflexivity of reducible equality (3.1) and shape view construction (3.3). O

LEMMA 3.5 (IRRELEVANCE). GivenJ =:TlkyAand T’ : Tk A then:

(1) If Tk A=B/g thenTlFp A= B/g.

2) IfTlkpt: Alg thenTlFpt: Algr.
3) IfTlket=u :Alg thenTlFpt =u: Alg.
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Proor. By induction on the shape view of 7 and J’ given by reflexive shape view construction
(3.4) and by determinism of reduction (2.5). ]

Even if  and I’ above can actually differ, e.g. by containing different typing derivations, our
irrelevance lemma shows that for the recursively defined judgements, the specific proof of type
reducibility I does not matter. We can therefore use these judgements more freely as we no longer
need to refer to a specific type reducibility derivation.

Based on this intuition, we will from here on drop the type derivation from the reducibility
judgements and instead implicitly state that there exists such a derivation for a judgement. More
formally, we let mean that T'lk, J : A/g holds for some I :: Tl A. However, this
definition is not practical in the implementation as often judgements will share the same type,
and thus using only the above definition would introduce extra complications. Therefore, in the
implementation, we use derivations explicitly.

LEMMA 3.6 (WEAKENING). For all judgements ] of the logical relation, given p : A < T andT I, ]
then Alk¢ J[p].

Proor. By induction on the derivation of type A and by weakening of well-formed expressions
(2.7) and irrelevance (3.5). O

LeEMMA 3.7 (CONVERSION). GivenT Iy A :=: B then:
(1) Tt Aiff Tlkpt : B.
(2) I“Il—gt:u:AiﬁI“II—gt:u:B.

Proor. By induction on the shape view (3.3) of equal types A and B, using determinism of
reduction (2.5) and irrelevance 3.5. The two directions of iff are proven simultaneously. O

LEMMA 3.8 (SYMMETRY).
(1) If TlFpA:=: BthenTIF¢B = A.
@) IfTIet=u:AthenTlFpu=1:A

Proor. By induction on the shape view (3.3) of the equal types A and B, using determinism of
reduction (2.5), irrelevance (3.5) and conversion for reducible equality (3.7). O

LEMMA 3.9 (TRANSITIVITY).

(1) IfTIFp A= A" andTIFp A’ :=: A” thenT -, A= A".

@) IfTIpt=t":AandTlFet' =t"”" : AthenT ot =1t" : A

Proor. By induction on the shape view (3.3) of type A, A’ and A”, using determinism of reduction
(2.5), irrelevance (3.5) and conversion of reducible equality (3.7). O

LEMMA 3.10 (NEUTRALS ARE REDUCIBLE). LetT'lFp A andT +n: A

(1) IfT+n:~n:AthenTlen: A

@) IfT+n":AandT Fn:~n": AthenTlFyn=n": A

Proor. By induction on the derivation of type A and by well-formed weakening (2.7), reduction
is subsumed by equality (2.2) and escape (3.2). O

LEMMA 3.11 (WEAK HEAD EXPANSION).
(1) If TIFyBandT + A—" BthenTlF¢ A:=: B.
2) IfTlFpu:BandT vt —" u:BthenTlFpt :=:u:B.

Proor. By induction on the reducibility of B, subject typing (2.3) and reflexivity (3.1). O
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LEMMA 3.12 (APPLICATION REDUCIBILITY). GivenT Ik IIF G andTlkpu : F and T I-¢ Glu] then:
(1) If Tlkpt : IIFG thenT ko tu : Glu].
@) IfTIpt=t":IIFGandTlrou:=:u’: F thenTIkptu =t"u" : Glu].

Proor. For case (1): By applying u instead of a in the following premise of the reducible term t:
Vp:A<T. Albga: Flp] = Alrgt[pla: Glp,al

Case (2) is solved similarly. This proof is accomplished with escape (3.2), irrelevance (3.5), conversion
(3.7), symmetry (3.8), transitivity (3.9) and weak head expansion (3.11). O

3.4 Validity Judgements

In Section 3.2, we have introduced reducible objects I'l-; ¢ : A, which are guaranteed to be well-
typed, T + ¢ : A, but we cannot prove the converse yet, i.e., that each well-typed term is reducible.
In other words, reducible objects do not directly provide a model of A'™VY, in the sense that the
interpretation function cannot be implemented by a naive induction on the derivation. The simplest
counterexample is the typing rule for A-abstraction:
ILFrt:G
TrAt:IIFG

By definition of T'l-; At : II F G, we have to show, amongst others, that for any p : A < T and any
Alr¢a : F, we have Al¢(At)[pla : G[p, a]. Using weak head expansion, it is sufficient to show
Al t[p, a] : Glp, a]. However, our induction hypothesis T, Fl-¢t : G is too weak to prove that.
We would need to substitute with A + (p,a) : (T, F), but reducible terms are not closed under
substitution. The way out is by blunt force: we define valid objects I' I ¢ : A to be objects that
are reducible under substitution with reducible objects. Those then model our syntax, i.e., we can
prove the fundamental theorem (3.21) which states that I' - ¢ : A implies I' I} ¢ : A. Applying
valid object t to the identity substitution (3.17), we obtain reducibility I'l-; ¢ : A and all the good
properties that follow from it.

For each of the reducibility judgments we then define their validity counterparts. We will make
use of judgments for validity of contexts € :: IV T, reducible substitutions § :: AlF* ¢ : I'/¢ and
their equality Al o = ¢’ : T'/¢/s which we will define just after through induction-recursion.

First we define valid types as those that are reducible under any reducible substitution and

respect their equality. | I' I} A/« |iff for all § :: Al o : T'/g it holds that:

(1) U :: Al Alo]

(2) Al o’ :T/gand Al o = ¢’ : T/¢/s imply Al-¢ Alo] = Alo”’]/«
Note that we will use the above enumeration indexes as projections, e.g., given J =: ' -} A/ the
notation J(8).1 stands for the proof of that A[o] is reducible.

Given J as above we define valid type equality, valid terms and valid term equality:

I'lFy A= B/g/g |iff forall § : Al-* o : T /¢ we have Alrp Alo] = Blo]/g(s).1-
LlFyt:Afg/g |iffforall § :: AlF* o : T'/g it holds that:

(1) Alketlo] : Alo]/g(s).1
2) AlF* o’ :T/gand AlF* o =0’ : T/g/s implyAH—[ tlo] = tlo’] :A[O']/ST(S)J

‘ TlFyt=u:A/g/g |iffforall S :: AlF* o : T/ we have Al t[o] = u[o] : Alo]/g(s).1-
By induction-recursion, we define inductively by two rules, one for the empty context and
and|[ Al 0 = o' :T/g/s |by

one for context expansion, and simultaneously define ‘ Ao :T/g
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recursion on the derivation € :|-Y T, the second depending on § :: Al* o : T'/. For the following
definitions, let A be a well-formed context.

Empty Context.

IFve
For derivations € built with that rule we define that A IF° o : €/¢ holds unconditionally and for all
S:AlFo:e/gwehave Al o =0’ :€/¢/s.

Extended Context.
€ :IF'T T =TI Alg
FT,A
For derivations G built with that rule we define:

e Ao :T,A/¢iff
(1) 8" = AlF° o o Tid : T/ meaning that the tail of o is reducible.
(2) AlFgig[o] = Alo o Tid]/g(s).1 meaning that the head of o is reducible.
e Forall§ : Al o :T,A/¢ wehave AlFP o =0’ :T,A/¢/s iff
(1) AlFfgolid=0"0Tid:T/e /s
(2) Aleigla] = iglo”’]  Alo o Tid]/gs.1)

Note that 8.1 stands for the proof that the tail of ¢ is reducible.

3.5 Properties of the Validity Judgements

In preparation for the fundamental theorem, we prove a few properties about validity and reducible
substitutions.

As the validity judgements are defined using induction-recursion, we will—similarly to the logical
relation—prove context and typing derivation irrelevance.

LEMMA 3.13 (IRRELEVANCE). Let 6 ::IFV T and €’ :|FY T.
(1) If § = AlF® o : T/ then there is a derivation 8" :: AlF5 o : T/
If further AlF* o =0’ : T/g/s then AlFS o =0’ : T/ /s
(2) If T =T Ik} A/ then there is a derivation T’ :: T |-} A/ . It also follows that:
(@) IfTIF, A=B/g/g thenT |-} A= B/g /g
) IfTIF, t:Alg/g thenT Iyt : Al /.
(© IfTIFyt=u:A/g/g thenT IF) t =u:Alg/g.

Proor. By induction on € and €’, using irrelevance for the reducibility judgements (3.5). O
Derivation irrelevance justifies that we from here on drop the context and type derivation
arguments from the validity judgements, as we do for reducibility. Further, when we state Al ¢ : T’

or AlF* o = ¢’ : T we presuppose IV T.
The escape lemma extends to reducible substitutions:

LEMMA 3.14 (ESCAPE FOR SUBSTITUTIONS).

(1) If Ao :T then A+ o :T.
@2 IfAlFPo=0¢":TthenAro=0":T.

Proor. By induction on IV T, using the escape lemma (3.2). ]

The following lemma is needed to make the fundamental theorem go through the binder cases
(A, II), in particular, to establish the well-formedness and well-typedness conditions there. It relies
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on weakening for the reducibility judgements, and is the reason why our logical relation is Kripke
in the first place.

LEMMA 3.15 (SUBSTITUTION WEAKENING). Givenp: A’ < Aand AlF* o : T then A’IFpoo :T.
If further AP o = ¢’ : T then A’ poo =poo’:T.

Proor. By induction on IF¥ T, using weakening for the reducibility judgements (3.6). O

LEMMA 3.16 (SUBSTITUTION LIFTING). GivenT I} A/g and Al o : T then A, Alo]IF*flo : T, A.
If further AIF° 0 = ¢’ : T then A, Alo]IF° flo = lo” : T, A.

Proor. By reducibility of neutrals (3.10) and substitution weakening (3.15). O

LEMMA 3.17 (IDENTITY SUBSTITUTION). If IFV T thent+ I' andT'IFid : T.

Proor. By induction on the validity of T, escape (3.2), irrelevance (3.5) and substitution lifting

(3.16). O
LEMMA 3.18 (SUBSTITUTION EQUIVALENCE). AlF®_ = _ : T is an equivalence relation on valid
substitutions.

(1) If AlFP o :T thenAlFf o =0 :T.
@2) IfAlFPo:=:0":T thenAlF° ¢’ =0 : T.
B)IfAIF o :=20":Tand Al ¢’ :=: ¢” : T then Al o = ¢” : T.

Proor. By induction on I T, using reflexivity (3.1), conversion (3.7), symmetry (3.8) and
transitivity (3.9) of reducible equality. ]

COROLLARY 3.19 (REDUCIBILITY OF VALIDITY). All valid types, terms and equalities are reducible.

Proor. By applying the reducible identity substitution (3.17) to the valid object and using
reducible irrelevance (3.5). O

While we can substitute valid objects with arbitrary reducible substitutions and get reducible
objects, we do not directly get valid objects. This is because reducibility is not closed under
substitution. Thus we will restrict ourselves to proving that substitution of a single term preserves
validity.

LEMMA 3.20 (SINGLE SUBSTITUTION). GivenT I F:

(1) If T IF; t : F and either T, F IF, G or T IF), IIF G then T IF; G[t].
(2 IfT Iy Fi=F andT Ik} t == t' : F withT Ik} t' : F’ and either T, F I}, G :=: G’ with
L[LF'IF, G"orTIF, TIF G :=: 1 F' G’ thenT I}, G[t] = G'[t'].

(3) IfTIFyt: FandT,FIFy, GandT,F Ity f : G thenT Iy f[t]: G[t].

(4) If T, F I w: F[Tid] then T, F I, G[Tid, u].

(5) If T,FIF, w:=:u": F[Tid] then T, F I} G[Tid, u] = G'[Tid,u'].

ProoF. We elaborate case (1): If I', F I} G, we deconstruct that validity judgement and re-
construct it such that when applying a substitution o, we instead apply (o, t[c]). Otherwise, if

I I} ILF G, we deconstruct the reducible object of the validity judgement and replace a with t[o]
in the following premise of reducible II:

Vp:A<T. Alrpa: Flp] = Alr¢Glp,a]

All in all, to prove this lemma we need escape (3.2), irrelevance (3.5), conversion (3.7) and
transitivity (3.9) of reducible equality, and reflexivity of substitution (3.18). m]
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With the above lemmas, we can now prove the fundamental theorem:

THEOREM 3.21 (FUNDAMENTAL THEOREM).

(1) If + T thenlFV T.

(2) If T+ AthenT Iy A.

(3) IfT+A=Bthenl H—‘[’,A::: B.

4 IfTrt:AthenT IF, AandT I} t: A
G)IfTrt=u:AthenT Ik, AandT I, t:=:1u: A

Proor. By induction on the well-formed judgements. The most salient cases are, II and II-
congruence, variables, A and n-equality, application and application-congruence, and finally natrec
and natrec-congruence.

This is accomplished with escape (3.2), reducible equality being a equivalence relation (3.1 & 3.8
& 3.9), conversion (3.7), irrelevance of reducibility (3.5) and validity (3.13), reducibility of neutrals
(3.10), weak head expansion (3.11), reducibility of application (3.12), substitution weakening (3.15)
and lifting (3.16), reflexivity of substitutions (3.18) and single substitution (3.20). O

With the fundamental theorem, escape lemma (3.2) and reducibility of validity (3.19) we have
effectively provenT + Jiff T IV J for the judgements J for types, terms and their respective equality.
From this we can also prove I' + Jiff T'IF J:

COROLLARY 3.22 (REDUCIBILITY OF WELL-FORMEDNESS). Any well-formed object is reducible.

Proor. Well-formedness implies validity by the fundamental theorem (3.21) instantiated to
judgemental equality (1). Further, validity implies reducibility (3.19). ]

We will also prove a fundamental theorem for substitutions:

THEOREM 3.23 (FUNDAMENTAL THEOREM FOR SUBSTITUTIONS). If A + ¢ : T for well-formed
contexts " and A then AlF o : T.

Proor. By induction on I' and with the judgmental instance (1): by fundamental theorem (3.21)
and reducible irrelevance (3.5), valid irrelevance (3.13) and identity substitution (3.17). O

3.6 Consequences of the Fundamental Theorem

We will here declare and prove some theorems we can now prove using the fundamental theorem
with generic equality instance 1.

THEOREM 3.24 (CANONICITY). Let suc®t £ t and suc™'t £ suc(suc”t). Given e r t : N then
there exists n such that € + t = suc” zero : N.

Proor. Since well-formed objects are reducible (3.22) we have € IFN ¢, on which we induct. O
THEOREM 3.25 (II-INJECTIVITY). If T+ IIFG=I1HE thenT + F=H andT',F+ G = E.

Proor. By well-formed objects being reducible (3.22) we have I'l-,II F G = I1 H E, from which
injectivity can be retrieved by escape (3.2), irrelevance (3.5) and reducibility of neutrals (3.10). O

THEOREM 3.26 (SYNTACTIC VALIDITY).

(1) f T+A=BthenT + AandT + B.

@) IfTrt:AthenT + A
B)IfT+rt=u:AthenTrt:AandT +u: A
(4) IfT+A—"BthenT - AandT + B.
G)IfTrt—"u:AthenT+t:AandT Fu: A
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Proor. By the fundamental theorem (3.21) and by reductions being subsumed by equality (2.2)
and escape (3.2). O

COROLLARY 3.27 (SYNTACTIC P1). If T+ IIFG thenT + F andT,F + G.
Proor. By lemma II-injectivity (3.25) and syntactic validity (3.26). ]

THEOREM 3.28 (WEAK HEAD NORMALIZATION).
(1) If T + A then there exists some A such thatT + A —* A.
(2) If T+ t : A then there exists some t such thatT vt —* 1 : A.

Proor. By well-formed objects being reducible (3.22) we get a reducible object for which we use
induction and reduction being subsumed by equality (2.2). O

THEOREM 3.29 (SYNTACTIC EQUALITY).

(1) fTrU=AthenU= A

(2 IfTFN=AthenN = A,

(3) If T + N = A then there exists M such that M = A.

(4) If T v I F G = A then there exist H and E such that TTHE = A.

Proor. By well-formed objects being reducible (3.22) and induction on the reducible equality
with reducible irrelevance (3.5). O

THEOREM 3.30 (SYNTACTIC INEQUALITY). For A,B € {U,N,N,IIFG}, if A# BthenT + A+ B.

Proor. By well-formed objects being reducible (3.22) and showing that there cannot exist an
instance of the shape view of types A and B using escape (3.2), shape view construction (3.3) and
reducible irrelevance (3.5). O

THEOREM 3.31 (SUBSTITUTION).

(1) If Aro:T andT + Athen A+ Alo].
2)IfAro=0":TandT + A=Bthen A+ Alo] = Blo’].
B)IfAro:TandT rt:AthenAr to] : Alo].

@ IfAro=0":TandT+t=u:Athen A+ t[o] =ulc’]: Alo].

ProoF. By the fundamental theorem (3.21) and fundamental theorem for substitutions (3.23),
escape (3.2) and valid irrelevance (3.13). O

THEOREM 3.32 (SUBSTITUTION COMPOSITION). Given A’ + o : AandA v+ o’ :T thenA' + coc’ : T
Proor. By induction on the well-formedness of I' and o, using the substitution theorem(3.31). O
THEOREM 3.33 (NEUTRAL TYPE EQUALITY). If '+ n:AandT +n:BthenT + A= B.

Proor. By induction on the syntactic structure of n and by II-injectivity (3.25), syntactic validity
(3.26) and substitution (3.31). O

THEOREM 3.34 (UNIVERSE MEMBERSHIP).

(1) If T + A and A has no occurrence of U thenT + A : U.
(2) If T + A = B and A and B has no occurrence of U thenT' + A= B: U.

Proor. By induction on the judgements and by syntactic validity (3.26). ]

THEOREM 3.35 (CONSISTENCY). I' + zero = suczero : N is impossible.
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Proor. By well-formed objects being reducible (3.22), using induction on the reducible instance
of the equality and using the fact that Whnf do not reduce (2.4) and reducible irrelevance (3.5). O

4 DECIDABILITY

To prove that our language has decidable conversion, we will now introduce an algorithm for
conversion of types and terms. The algorithm is defined as a relation which we then show decidable
and equivalent to the conversion judgements. In particular completeness is proven by constructing
a generic equality instance for the algorithmic equality, so that we can apply our fundamental
theorem.

4.1 Conversion Algorithm

Our conversion algorithm is defined inductively as seen in Fig. 6, with six different relations defined
simultaneously.

We first have the relationsT' F n «— m : Aand T + n <~ m : A, which is the algorithm that
determines equality between neutral terms, where the former relation enforces the type A to be in
Whnf. Secondly we have the relationsT + A &= Band T + A <= B, which determines equality
between types, where the former of the two relations enforces the types to be in Whnf. Lastly, we
have the relationsT +t & u: Aand T + t & u : A, which determines equality between terms.
Similarly to above the former enforces Whnf of the type and the two terms.

Of note is the third rule of these two relations. We do not check that the type N is equal to the
type M inferred by the neutral algorithm. Since we can derive this equality by Lemma 3.33, we can
be economic and drop this premise, thus simplifying the relation.

4.2 Properties of the Conversion Algorithm

Our next goal is to prove decidability and construct a generic equality instance for the logical
relation. It turns out that some of the properties necessary for instance validity is also necessary
for proving decidability, thus we will begin proving those properties.

To prove these properties, we also need a notion of context equality, which we will denote as

. We define it inductively:

FIT=A '-A=B
Fe=¢€ FT,A=A,B
LEMMA 4.1 (CONTEXT CONVERSION FOR TYPING JUDGEMENTS). Givent I' = A:

(1) A+ id : T and contextsT and A are well-formed.
(2) If T + J then A + ] for the syntactic judgements J of types, type membership and their respective
equality.

Proor. By induction on the context equality and by substitution (3.31). O
LEMMA 4.2 (CONTEXT CONVERSION FOR REDUCTION AND ALGORITHMIC EQUALITY). If +T = A
andT v+ J then A v+ J for the syntactic judgements ] of reduction and algorithmic equality.

Proor. By induction on the judgements and context conversion for typing judgements (4.1). O

LEMMA 4.3 (SOUNDNESS).

(1) Ifeither T+ A== Borl'+ A< BthenT + A=B.

(2) Ifeither T+t «—> u:AorTrt e u:AorT+t E u:AorT +t & u: Athen
F'rt=u:A
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Thiy:A xX=y Ttrne—m:IIFG T+t u:F

Thix =iy :A Trnt <> mu:Gl[t]

I'NFF&G 'tz & 2 : Flzero]
T'ts & s :IIN(F — F[Tid, sucig]) I'tne—m:N

T + natrec Fzsn «— natrecGz’s’m : F[n]

TFA—*A Trne<om:A

F'rne—m:A

I'+A—*A T+B—*B T+A=B TFNe—>M:U

TrrA<=a-3B TFNe—M
FT +T T+F I+ FH ILFrGE
T'tUe=U I't NN I'tIIFG<=IIHE

TFA—*A Trt—*1:A Tru—"u:A TrIieTu:A

Tttt u:A

T'tne—m:N T'tn:N T'tm:N Trne—m:M
'rne=m:N 'tnem:N

TFA:U T+B:U THrA<B FT Trt e u:N
Tr+Ae=B:U T'rzero = zero:N T Fsuct = sucu:N

T+F Trf:F Trg:F Trf[lidlic & g[Tid]is: G
T+feg:IFG

Fig. 6. Algorithm for conversion of neutrals, types and terms.

Proor. By induction on the judgements and by syntactic validity (3.26), universe membership
(3.34), neutral type equality (3.33), and reduction being subsumed by equality (2.2). ]

LEMMA 4.4 (CONVERSION).
Given+tT'=AandT+A=BandT+t & u:Athen A+t & u:B.

Proor. By induction on the judgements and by II-injectivity (3.25), syntactic validity (3.26),
weak head normalization (3.28), reduction being subsumed by equality (2.2) and context conversion
(4.1 and 4.2). O

We can now prove decidability for the algorithm.
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THEOREM 4.5 (DECIDABILITY OF ALGORITHMIC EQUALITY). Givent I' = A:

(W) IfTrte—>t:Aand A+ u <> u : B then it is decidable that there exists C such that
F'rte—u:C.

2 IfTr A< Aand A+ B &= BthenT + A<= B is decidable.

B)VIfTrtet:AandA+ru & u:Athenl +t & u: A is decidable.

Proor. By induction on the judgements and by II-injectivity (3.25), syntactic validity (3.26),
weak head normalization (3.28), strong equality (3.29), syntactic inequality (3.30), substitution (3.31),
neutral type equality (3.33), determinism of reduction (2.5), soundness (4.3), context conversion for
typing judgements (4.1) and conversion of algorithmic equality (4.4). O

LEMMA 4.6 (SYMMETRY). Givent ' = A:

(1) If T + t <~ u : A then there exists B such thatT + A=Band A+ u <t : B.
2 IfTHrAE= BthenA+ B & A.
BT+t u:AthenAru&sst: A

Proor. By induction on the judgements and by II-injectivity (3.25), syntactic validity (3.26),
weak head normalization (3.28), strong equality (3.29), substitution (3.31), context conversion (4.1
and 4.2), soundness (4.3) and conversion of algorithmic equality (4.4). O

LEMMA 4.7 (TRANSITIVITY). Givent I' = A:

(U)ITrt > u:AandA + u < v : A then there exists B such thatT + A = B and
F'rt«—>v:B.

@2 IfTrA=Band A+ B &= CthenT + A= C.

B)fTrte=u:AandAruv:AthenArt = v:A

Proor. By induction on the judgements and by II-injectivity (3.25), syntactic inequality (3.30),
substitution (3.31), neutral type equality (3.33), reduction being subsumed by equality 2.2, deter-
minism of reduction 2.5, context conversion (4.1 and 4.2) and soundness (4.3). O

LEMMA 4.8 (WEAKENING). For all algorithmic equality judgements J, givenp : A <T andT + |
then A + J[p].

Proor. By induction on the judgements and well-formed weakening (2.7). O

LEMMA 4.9 (WHNF LIFTING).

(1) IfTHrA<= BthenT+ A<= B.
@ IfTrie—u:AthenT+t < u: A

Proor. By syntactic validity (3.26) and soundness (4.3). ]

LEMMA 4.10 (NEUTRAL LIFTING). I[f T+t <> u: AthenT +t = u: A

Proor. By well-formed objects being reducible (3.22), induction on the reducible type and then
by syntactic validity (3.26), weak head normalization (3.28), reduction being subsumed by equality
(2.2), determinism of reduction (2.5), reducible neutrals (3.10), and soundness (4.3). O

We can now construct our instance.
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INSTANCE 2 (ALGORITHMIC EQUALITY INSTANCE). The following instantiation of generic equality
satisfies all the required properties for the logical relation:

T + A = B instantiated toT + A & B
T+t =u:Ainstantiated toT +t S u: A
T+t ~u: A instantiated to the pairT + A=BandT'+t «—> u: B

Proor. We get the necessary properties from the definition of the algorithm and soundness (4.3),
conversion (4.4), symmetry (4.6), transitivity (4.7), weakening (4.8), lifting (4.9) and neutral lifting
(4.10) of algorithmic equality. O

With the instance of generic equality, we can now use the logical relation and the fundamental
theorem to prove the completeness of algorithmic equality and finally decidability of conversion:

THEOREM 4.11 (COMPLETENESS OF ALGORITHMIC EQUALITY).

() IfT+A=BthenT + A & B.
@ IfTrt=u:AthenT+t = u:A

Proor. By the fundamental theorem (3.21) with algorithmic equality (2) and escape (3.2). O

THEOREM 4.12 (DECIDABILITY OF CONVERSION).

(1) If T+ AandT + B thenT + A = B is decidable.
@) IfTrt:AandT Fu:AthenT vt =u:Aisdecidable.

Proor. By completeness (4.11), soundness (4.3) and decidability of algorithmic equality (4.5). O

5 CONCLUSION

We have fully formalized a substantial part of the meta-theory of a fragment of Martin-L6f type
theory, using a limited set of features of Agda. Our formalization should be implementable in other
type theories that support dependent types, universes, and induction-recursion.

However, the gap between expressive power of the formalized type theory (the object type
theory) and the host type theory (the meta type theory) is fairly large: we require induction-
recursion on the meta level to formalize just one inductive type and one universe on the object
level. Yet the grand goal is boot-strapping type theory, meaning the implementation of type theory
in a small extension of itself. (An extension in proof-theoretical strength is needed due to Godel’s
incompleteness theorem.) A small extension would be, e.g., one more universe or one additional
axiom. To advance towards the grand goal, we have to bring object and meta type theory closer
together. Obviously, there are two directions: we can make the meta theory weaker, or the object
theory stronger.

The main strength of the meta theory comes from induction-recursion [Dybjer 2000; Dybjer and
Setzer 2001, 2003], which is a very powerful principle, proof-theoretically. Using iterated inductive-
recursive definitions in the meta-theory with just one universe, we can model a countable hierarchy
of universes of an object theory that lacks induction-recursion. Allowing more universes in the
meta-theory, it is likely possible to encode our inductive-recursive logical relation using iterated
inductive definitions only, placing the inductive definition of object-level universe n in meta-level
universe n. Similar techniques have been used for the semantic modeling and auto-validation
of impredicative type theories [Barras 2010; Werner 1994], using inaccessible cardinals which
are analogous to universes. Eliminating induction-recursion would require reworking the central
definition of the logical relation in our development, but could lead to a formalized boot-strapping
of intensional predicative Martin-L6f Type Theory in itself (plus an extra universe and/or axiom).



170 Chapter 7. Decidability of Conversion for Type Theory in Type Theory

Concerning the other direction, making the object theory stronger, this would amount to ex-
tending our logical relation to model induction-recursion. This is interesting future work, as it will
enhance our understanding of induction-recursion from a syntactic perspective. Recent advances
in understanding induction-recursion might aid this research [Ghani et al. 2015].

It remains interesting to investigate the relationship between the constructions in our proof
and standard notions of models of type theory like Categories with Families (CwFs) by Dybjer
[1995]. By contrast, Altenkirch and Kaposi [2016; 2017] directly define the syntax of type theory as
an internal formulation of the initial CwF, i.e., quotienting terms by judgmental equality. In our
case, however, we want to discuss reduction, which is only meaningful on terms that are not yet
quotiented. A way to bridge this gap could be to formulate a weaker notion of CwFs, where some
equations only have to hold up to some equivalence, and use it to restructure our proof, with the
intent of providing a more abstract and generalizable presentation.

As for our contributions to proof methods, we have used proof-relevant induction-recursion
to define a parameterized logical relation, which allows us to derive important properties like
consistency, normalization, and IT-injectivity. We have managed to show that the a priori proof-
relevant definitions are proof-irrelevant a posteriori, in the sense that the structure of the inductive
derivations we recurse on does not matter in the end, only the judgement it derives (Lemma 3.5).
Informally, this aspect is often glossed over; proof irrelevance is often assumed without officially
being present in the meta-theory.

We have also parameterized this logical relation such that we only need to prove the fundamental
theorem once, even though we have two slightly different instances. For the formalization, this
means that we have saved a lot of work, as the parameterization does not add much code considering
the size of the logical relation and the proof of the fundamental theorem, which add up to roughly
5000 lines of Agda code.

Our formalization comprises roughly 10.000 lines of Agda code (totaling 500.000 characters).
It took 10 man-months of development work and type-checks on a contemporary laptop (16 GB
memory, CPU speed 3.3GHz) in around 90 seconds. From this code we could extract the core
of a type checker for fully-elaborated terms of a small fragment of the Agda language. It would
neither be efficient nor could it do any type reconstruction, however, it could serve as a conceptual
double checker of elaborated terms. In contrast, Agda itself consists roughly of 100.000 lines of
Haskell code and features printer, parser, elaborator, termination and positivity analysis, pattern
matcher and coverage checker, and many other components that are needed for a practically usable
implementation of type theory. Verifying all these components with the same rigor as applied to
our formalization seems clearly out of reach for an academic institution. However, a verified double
checker for the full type theory behind Agda remains as a pursuable, grand challenge.
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