2,621 research outputs found

    Relative Entailment Among Probabilistic Implications

    Get PDF
    We study a natural variant of the implicational fragment of propositional logic. Its formulas are pairs of conjunctions of positive literals, related together by an implicational-like connective; the semantics of this sort of implication is defined in terms of a threshold on a conditional probability of the consequent, given the antecedent: we are dealing with what the data analysis community calls confidence of partial implications or association rules. Existing studies of redundancy among these partial implications have characterized so far only entailment from one premise and entailment from two premises, both in the stand-alone case and in the case of presence of additional classical implications (this is what we call "relative entailment"). By exploiting a previously noted alternative view of the entailment in terms of linear programming duality, we characterize exactly the cases of entailment from arbitrary numbers of premises, again both in the stand-alone case and in the case of presence of additional classical implications. As a result, we obtain decision algorithms of better complexity; additionally, for each potential case of entailment, we identify a critical confidence threshold and show that it is, actually, intrinsic to each set of premises and antecedent of the conclusion

    Redundancy, Deduction Schemes, and Minimum-Size Bases for Association Rules

    Full text link
    Association rules are among the most widely employed data analysis methods in the field of Data Mining. An association rule is a form of partial implication between two sets of binary variables. In the most common approach, association rules are parameterized by a lower bound on their confidence, which is the empirical conditional probability of their consequent given the antecedent, and/or by some other parameter bounds such as "support" or deviation from independence. We study here notions of redundancy among association rules from a fundamental perspective. We see each transaction in a dataset as an interpretation (or model) in the propositional logic sense, and consider existing notions of redundancy, that is, of logical entailment, among association rules, of the form "any dataset in which this first rule holds must obey also that second rule, therefore the second is redundant". We discuss several existing alternative definitions of redundancy between association rules and provide new characterizations and relationships among them. We show that the main alternatives we discuss correspond actually to just two variants, which differ in the treatment of full-confidence implications. For each of these two notions of redundancy, we provide a sound and complete deduction calculus, and we show how to construct complete bases (that is, axiomatizations) of absolutely minimum size in terms of the number of rules. We explore finally an approach to redundancy with respect to several association rules, and fully characterize its simplest case of two partial premises.Comment: LMCS accepted pape

    A strengthening of rational closure in DLs: reasoning about multiple aspects

    Full text link
    We propose a logical analysis of the concept of typicality, central in human cognition (Rosch,1978). We start from a previously proposed extension of the basic Description Logic ALC (a computationally tractable fragment of First Order Logic, used to represent concept inclusions and ontologies) with a typicality operator T that allows to consistently represent the attribution to classes of individuals of properties with exceptions (as in the classic example (i) typical birds fly, (ii) penguins are birds but (iii) typical penguins don't fly). We then strengthen this extension in order to separately reason about the typicality with respect to different aspects (e.g., flying, having nice feather: in the previous example, penguins may not inherit the property of flying, for which they are exceptional, but can nonetheless inherit other properties, such as having nice feather)

    Reasoning about Minimal Belief and Negation as Failure

    Full text link
    We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic

    Redundancy in Logic I: CNF Propositional Formulae

    Get PDF
    A knowledge base is redundant if it contains parts that can be inferred from the rest of it. We study the problem of checking whether a CNF formula (a set of clauses) is redundant, that is, it contains clauses that can be derived from the other ones. Any CNF formula can be made irredundant by deleting some of its clauses: what results is an irredundant equivalent subset (I.E.S.) We study the complexity of some related problems: verification, checking existence of a I.E.S. with a given size, checking necessary and possible presence of clauses in I.E.S.'s, and uniqueness. We also consider the problem of redundancy with different definitions of equivalence.Comment: Extended and revised version of a paper that has been presented at ECAI 200

    On a notion of abduction and relevance for first-order logic clause sets

    Get PDF
    I propose techniques to help with explaining entailment and non-entailment in first-order logic respectively relying on deductive and abductive reasoning. First, given an unsatisfiable clause set, one could ask which clauses are necessary for any possible deduction (\emph{syntactically relevant}), usable for some deduction (\emph{syntactically semi-relevant}), or unusable (\emph{syntactically irrelevant}). I propose a first-order formalization of this notion and demonstrate a lifting of this notion to the explanation of an entailment w.r.t some axiom set defined in some description logic fragments. Moreover, it is accompanied by a semantic characterization via \emph{conflict literals} (contradictory simple facts). From an unsatisfiable clause set, a pair of conflict literals are always deducible. A \emph{relevant} clause is necessary to derive any conflict literal, a \emph{semi-relevant} clause is necessary to derive some conflict literal, and an \emph{irrelevant} clause is not useful in deriving any conflict literals. It helps provide a picture of why an explanation holds beyond what one can get from the predominant notion of a minimal unsatisfiable set. The need to test if a clause is (syntactically) semi-relevant leads to a generalization of a well-known resolution strategy: resolution equipped with the set-of-support strategy is refutationally complete on a clause set NN and SOS MM if and only if there is a resolution refutation from NMN\cup M using a clause in MM. This result non-trivially improves the original formulation. Second, abductive reasoning helps find extensions of a knowledge base to obtain an entailment of some missing consequence (called observation). Not only that it is useful to repair incomplete knowledge bases but also to explain a possibly unexpected observation. I particularly focus on TBox abduction in \EL description logic (still first-order logic fragment via some model-preserving translation scheme) which is rather lightweight but prevalent in practice. The solution space can be huge or even infinite. So, different kinds of minimality notions can help sort the chaff from the grain. I argue that existing ones are insufficient, and introduce \emph{connection minimality}. This criterion offers an interpretation of Occam's razor in which hypotheses are accepted only when they help acquire the entailment without arbitrarily using axioms unrelated to the problem at hand. In addition, I provide a first-order technique to compute the connection-minimal hypotheses in a sound and complete way. The key technique relies on prime implicates. While the negation of a single prime implicate can already serve as a first-order hypothesis, a connection-minimal hypothesis which follows \EL syntactic restrictions (a set of simple concept inclusions) would require a combination of them. Termination by bounding the term depth in the prime implicates is provable by only looking into the ones that are also subset-minimal. I also present an evaluation on ontologies from the medical domain by implementing a prototype with SPASS as a prime implicate generation engine.Ich schlage Techniken vor, die bei der Erklärung von Folgerung und Nichtfolgerung in der Logik erster Ordnung helfen, die sich jeweils auf deduktives und abduktives Denken stützen. Erstens könnte man bei einer gegebenen unerfüllbaren Klauselmenge fragen, welche Klauseln für eine mögliche Deduktion notwendig (\emph{syntaktisch relevant}), für eine Deduktion verwendbar (\emph{syntaktisch semi-relevant}) oder unbrauchbar (\emph{syntaktisch irrelevant}). Ich schlage eine Formalisierung erster Ordnung dieses Begriffs vor und demonstriere eine Anhebung dieses Begriffs auf die Erklärung einer Folgerung bezüglich einer Reihe von Axiomen, die in einigen Beschreibungslogikfragmenten definiert sind. Außerdem wird sie von einer semantischen Charakterisierung durch \emph{Konfliktliteral} (widersprüchliche einfache Fakten) begleitet. Aus einer unerfüllbaren Klauselmenge ist immer ein Konfliktliteralpaar ableitbar. Eine \emph{relevant}-Klausel ist notwendig, um ein Konfliktliteral abzuleiten, eine \emph{semi-relevant}-Klausel ist notwendig, um ein Konfliktliteral zu generieren, und eine \emph{irrelevant}-Klausel ist nicht nützlich, um Konfliktliterale zu generieren. Es hilft, ein Bild davon zu vermitteln, warum eine Erklärung über das hinausgeht, was man aus der vorherrschenden Vorstellung einer minimalen unerfüllbaren Menge erhalten kann. Die Notwendigkeit zu testen, ob eine Klausel (syntaktisch) semi-relevant ist, führt zu einer Verallgemeinerung einer bekannten Resolutionsstrategie: Die mit der Set-of-Support-Strategie ausgestattete Resolution ist auf einer Klauselmenge NN und SOS MM widerlegungsvollständig, genau dann wenn es eine Auflösungswiderlegung von NMN\cup M unter Verwendung einer Klausel in MM gibt. Dieses Ergebnis verbessert die ursprüngliche Formulierung nicht trivial. Zweitens hilft abduktives Denken dabei, Erweiterungen einer Wissensbasis zu finden, um eine implikantion einer fehlenden Konsequenz (Beobachtung genannt) zu erhalten. Es ist nicht nur nützlich, unvollständige Wissensbasen zu reparieren, sondern auch, um eine möglicherweise unerwartete Beobachtung zu erklären. Ich konzentriere mich besonders auf die TBox-Abduktion in dem leichten, aber praktisch vorherrschenden Fragment der Beschreibungslogik \EL, das tatsächlich ein Logikfragment erster Ordnung ist (mittels eines modellerhaltenden Übersetzungsschemas). Der Lösungsraum kann riesig oder sogar unendlich sein. So können verschiedene Arten von Minimalitätsvorstellungen helfen, die Spreu vom Weizen zu trennen. Ich behaupte, dass die bestehenden unzureichend sind, und führe \emph{Verbindungsminimalität} ein. Dieses Kriterium bietet eine Interpretation von Ockhams Rasiermesser, bei der Hypothesen nur dann akzeptiert werden, wenn sie helfen, die Konsequenz zu erlangen, ohne willkürliche Axiome zu verwenden, die nichts mit dem vorliegenden Problem zu tun haben. Außerdem stelle ich eine Technik in Logik erster Ordnung zur Berechnung der verbindungsminimalen Hypothesen in zur Verfügung korrekte und vollständige Weise. Die Schlüsseltechnik beruht auf Primimplikanten. Während die Negation eines einzelnen Primimplikant bereits als Hypothese in Logik erster Ordnung dienen kann, würde eine Hypothese des Verbindungsminimums, die den syntaktischen Einschränkungen von \EL folgt (einer Menge einfacher Konzeptinklusionen), eine Kombination dieser beiden erfordern. Die Terminierung durch Begrenzung der Termtiefe in den Primimplikanten ist beweisbar, indem nur diejenigen betrachtet werden, die auch teilmengenminimal sind. Außerdem stelle ich eine Auswertung zu Ontologien aus der Medizin vor, Domäne durch die Implementierung eines Prototyps mit SPASS als Primimplikant-Generierungs-Engine

    Beyond Q-Resolution and Prenex Form: A Proof System for Quantified Constraint Satisfaction

    Get PDF
    We consider the quantified constraint satisfaction problem (QCSP) which is to decide, given a structure and a first-order sentence (not assumed here to be in prenex form) built from conjunction and quantification, whether or not the sentence is true on the structure. We present a proof system for certifying the falsity of QCSP instances and develop its basic theory; for instance, we provide an algorithmic interpretation of its behavior. Our proof system places the established Q-resolution proof system in a broader context, and also allows us to derive QCSP tractability results

    Defeasible Reasoning in SROEL: from Rational Entailment to Rational Closure

    Full text link
    In this work we study a rational extension SROELRTSROEL^R T of the low complexity description logic SROEL, which underlies the OWL EL ontology language. The extension involves a typicality operator T, whose semantics is based on Lehmann and Magidor's ranked models and allows for the definition of defeasible inclusions. We consider both rational entailment and minimal entailment. We show that deciding instance checking under minimal entailment is in general Π2P\Pi^P_2-hard, while, under rational entailment, instance checking can be computed in polynomial time. We develop a Datalog calculus for instance checking under rational entailment and exploit it, with stratified negation, for computing the rational closure of simple KBs in polynomial time.Comment: Accepted for publication on Fundamenta Informatica
    corecore