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Abstract

I propose techniques to help with explaining entailment and non-entailment in
first-order logic respectively relying on deductive and abductive reasoning.

First, given an unsatisfiable clause set, one could ask which clauses are neces-
sary for any possible deduction (syntactically relevant), usable for some deduction
(syntactically semi-relevant), or unusable (syntactically irrelevant). I propose a
first-order formalization of this notion and demonstrate a lifting of this notion to
the explanation of an entailment w.r.t some axiom set defined in some descrip-
tion logic fragments. Moreover, it is accompanied by a semantic characterization
via conflict literals (contradictory simple facts). From an unsatisfiable clause
set, a pair of conflict literals are always deducible. A relevant clause is necessary
to derive any conflict literal, a semi-relevant clause is necessary to derive some
conflict literal, and an irrelevant clause is not useful in deriving any conflict
literals. It helps provide a picture of why an explanation holds beyond what one
can get from the predominant notion of a minimal unsatisfiable set.

The need to test if a clause is (syntactically) semi-relevant leads to a gen-
eralization of a well-known resolution strategy: resolution equipped with the
set-of-support strategy is refutationally complete on a clause set N and SOS M
if and only if there is a resolution refutation from N ∪M using a clause in M .
This result non-trivially improves the original formulation.

Second, abductive reasoning helps find extensions of a knowledge base to
obtain an entailment of some missing consequence (called observation). Not
only that it is useful to repair incomplete knowledge bases but also to explain
a possibly unexpected observation. I particularly focus on TBox abduction in
EL description logic (still first-order logic fragment via some model-preserving
translation scheme) which is rather lightweight but prevalent in practice. The
solution space can be huge or even infinite. So, different kinds of minimality
notions can help sort the chaff from the grain. I argue that existing ones are
insufficient, and introduce connection minimality. This criterion offers an inter-
pretation of Occam’s razor in which hypotheses are accepted only when they
help acquire the entailment without arbitrarily using axioms unrelated to the
problem at hand. In addition, I provide a first-order technique to compute the
connection-minimal hypotheses in a sound and complete way. The key technique
relies on prime implicates. While the negation of a single prime implicate can
already serve as a first-order hypothesis, a connection-minimal hypothesis which
follows EL syntactic restrictions (a set of simple concept inclusions) would re-
quire a combination of them. Termination by bounding the term depth in the
prime implicates is provable by only looking into the ones that are also subset-
minimal. I also present an evaluation on ontologies from the medical domain by
implementing a prototype with SPASS as a prime implicate generation engine.
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Zusammenfassung

Ich schlage Techniken vor, die bei der Erklärung von Folgerung und Nichtfol-
gerung in der Logik erster Ordnung helfen, die sich jeweils auf deduktives und
abduktives Denken stützen.

Erstens könnte man bei einer gegebenen unerfüllbaren Klauselmenge fragen,
welche Klauseln für eine mögliche Deduktion notwendig (syntaktisch relevant),
für eine Deduktion verwendbar (syntaktisch semi-relevant) oder unbrauchbar
(syntaktisch irrelevant). Ich schlage eine Formalisierung erster Ordnung dieses
Begriffs vor und demonstriere eine Anhebung dieses Begriffs auf die Erklärung
einer Folgerung bezüglich einer Reihe von Axiomen, die in einigen Beschrei-
bungslogikfragmenten definiert sind. Außerdem wird sie von einer semantischen
Charakterisierung durch Konfliktliteral (widersprüchliche einfache Fakten) be-
gleitet. Aus einer unerfüllbaren Klauselmenge ist immer ein Konfliktliteralpaar
ableitbar. Eine relevant-Klausel ist notwendig, um ein Konfliktliteral abzuleiten,
eine semi-relevant-Klausel ist notwendig, um ein Konfliktliteral zu generieren,
und eine irrelevant-Klausel ist nicht nützlich, um Konfliktliterale zu generieren.
Es hilft, ein Bild davon zu vermitteln, warum eine Erklärung über das hinausgeht,
was man aus der vorherrschenden Vorstellung einer minimalen unerfüllbaren
Menge erhalten kann.

Die Notwendigkeit zu testen, ob eine Klausel (syntaktisch) semi-relevant ist,
führt zu einer Verallgemeinerung einer bekannten Resolutionsstrategie: Die mit
der Set-of-Support-Strategie ausgestattete Resolution ist auf einer Klauselmenge
N und SOSM widerlegungsvollständig, genau dann wenn es eine Auflösungswider-
legung von N ∪M unter Verwendung einer Klausel in M gibt. Dieses Ergebnis
verbessert die ursprüngliche Formulierung nicht trivial.

Zweitens hilft abduktives Denken dabei, Erweiterungen einer Wissensbasis zu
finden, um eine implikantion einer fehlenden Konsequenz (Beobachtung genannt)
zu erhalten. Es ist nicht nur nützlich, unvollständige Wissensbasen zu reparieren,
sondern auch, um eine möglicherweise unerwartete Beobachtung zu erklären.
Ich konzentriere mich besonders auf die TBox-Abduktion in dem leichten, aber
praktisch vorherrschenden Fragment der Beschreibungslogik EL, das tatsächlich
ein Logikfragment erster Ordnung ist (mittels eines modellerhaltenden Überset-
zungsschemas). Der Lösungsraum kann riesig oder sogar unendlich sein. So
können verschiedene Arten von Minimalitätsvorstellungen helfen, die Spreu vom
Weizen zu trennen. Ich behaupte, dass die bestehenden unzureichend sind, und
führe Verbindungsminimalität ein. Dieses Kriterium bietet eine Interpretation
von Ockhams Rasiermesser, bei der Hypothesen nur dann akzeptiert werden,
wenn sie helfen, die Konsequenz zu erlangen, ohne willkürliche Axiome zu verwen-
den, die nichts mit dem vorliegenden Problem zu tun haben. Außerdem stelle ich
eine Technik in Logik erster Ordnung zur Berechnung der verbindungsminimalen

iv



Hypothesen in zur Verfügung korrekte und vollständige Weise. Die Schlüsseltech-
nik beruht auf Primimplikanten. Während die Negation eines einzelnen Primim-
plikant bereits als Hypothese in Logik erster Ordnung dienen kann, würde eine
Hypothese des Verbindungsminimums, die den syntaktischen Einschränkungen
von EL folgt (einer Menge einfacher Konzeptinklusionen), eine Kombination
dieser beiden erfordern. Die Terminierung durch Begrenzung der Termtiefe in
den Primimplikanten ist beweisbar, indem nur diejenigen betrachtet werden, die
auch teilmengenminimal sind. Außerdem stelle ich eine Auswertung zu Ontolo-
gien aus der Medizin vor, Domäne durch die Implementierung eines Prototyps
mit SPASS als Primimplikant-Generierungs-Engine.
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Introduction

Today, with the sheer amount of digital knowledge available, explaining a logical
statement in computer (or computerized) systems has become more important
than ever. On the one hand, if a sufficient amount of background knowledge is
available, there could be many ways to pick the axioms to perform deductive
reasoning. For example, given that there is some German-speaking minority in
Brazil, then we can deduce that there is a German-speaking minority outside
of Europe. But Brazil is not the only country useful for an explanation since
there are other countries with a sizable minority of German-speaking citizens
(e.g., South Africa). On the other hand, with partially available knowledge, an
explanation may be also provided via a consistent hypothesis. For instance, if
someone walks into a room soaking wet (but we do not know why), we may
instinctively ask if it is raining outside. This is known as abductive reasoning.
If we know that today is sunny from the weather report, then this hypothesis
is rejected. In other words, a hypothesis may only be acceptable if consistent
with the knowledge at hand. However, even with this restriction, there could be
other explanations (e.g., problem when fixing the kitchen sink) and the number
of hypotheses may be very large, if not infinite. Choosing the ones to use is thus
not an easy task. I propose new notions to help picking axioms or hypotheses
in both cases.

For the first task, when there is a sufficient amount of knowledge, I propose
a notion of relevance according to how the axioms are used in the possible
deductions. For the previous German speaker example, the knowledge about
what constitutes a minority (e.g., up to 10% of the population) is necessary
and thus called relevant. The fact that Brazil hosts some German-speaking
population can be used, but it is not relevant due to it being replaceable by
South Africa. In other words, this is semi-relevant. The fact that Antarctica
is in the southern hemisphere is simply irrelevant. In a more formal setting,
existing notions usually come with additional restrictions (e.g., subset minimality,
preference for shorter deductions, etc.). However, I argue here that simply using
deduction with no further preconditions can more naturally model our intuitive
notion of relevance. Moreover, as I will illustrate later via a semantic argument,
having additional preconditions may, in some cases, come at the price of losing
something interesting.

For the second task, when the knowledge at hand is not sufficient to prove an
observation, I propose a notion to restrict the hypotheses to the ones using parts
of the background knowledge that are ”connected” to the considered statement.
This follows the principle of parsimony (Occam’s razor) because disconnected
statements are not used. I call this connection minimality. For example, upon
coming to a university, if a new student overheard that ”Students pay less in
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the cafeteria” and he knows that ”I will get a student card”, ”The cafeteria
accepts payment by cards”, and ”The university is subsidized”, then he can
guess that ”The cafeteria charges less with student card payment and its price
difference is taken from the subsidy”. The student uses his current knowledge
only when related to the observation (e.g., ”student card” is related to ”student”
and ”subsidy” to ”paying less”). Even though he may guess incorrectly (It could
be that, the cafeteria takes some money from students’ tuition fee instead), it
makes much less sense to involve something unrelated such as ”There is an
art museum near my apartment”. I would further argue that this consideration
for ”connectedness” is very natural with many familiar examples: A detective
interrogating people having both motivations and means to perform a crime
(not a random janitor in the other building), someone losing a key tracing back
only the places he visited (not asking a security guard in a random nearby
supermarket), etc. I therefore believe that the potential goes beyond the logical
formalism considered in this dissertation.

Both notions are respectively formalized in first-order logic and EL descrip-
tion logic. In technical terms, the tasks amount to explaining entailment and
non-entailment. For the first task, entailment can be shown specifically via a
refutation for an unsatisfiable set of clauses. Dealing with unsatisfiable sets of
clauses is convenient in first-order logic, since an arbitrary entailment can be
easily reduced to an entailment of the empty clause. Existing literature heavily
relies on the notion of a subset-minimal set of axioms that is still unsatisfiable
(minimal unsatisfiable set MUS) in particular if one deals with propositional
logic. This is because if the input clauses of a propositional refutation do not
correspond to a MUS, then for sure there is a clause that can be inferred from the
others (redundant) in it. Both refutations and MUSes have shortcomings. On the
one hand, a refutation may still use redundant clauses (the ones implied by the
other clauses) in the input. In other words, it may include clauses that are not
that interesting. On the other hand, as we will see later, using MUS may subtly
exclude some interesting clauses. To show this, I also provide a semantic charac-
terization for this refutation-based relevance. A set of clauses is unsatisfiable if
there are satisfiable instantiations of some of the clauses entailing two conflicting
facts (called conflict literal). Then, this semantic characterization shows how a
clause may contribute to the number of conflict literals: a relevant clause must
be used to infer any conflict literals, a semi-relevant clause must be used to infer
some conflict literal otherwise it is irrelevant. Via this semantic notion, I will
show what kind of interesting clauses are missing if a notion based on MUS is
used. On the one hand, MUS is not completely gone. Here, it must be related to
the ground instantiation of the original clauses. On the other hand, redundancy
must also be refined in terms of its ground instantiation. This, however, may
turn the set of MUSes infinite and many MUS-based reasoning tasks that are
often available in propositional logic (e.g., listing all MUSes, computing their
union) cannot be performed anymore. Thus, our notion of relevance may serve
not only as an alternative to MUS-based notions but also offers something new.

In the case of a non-entailment, existing works include using interpretations
as counter-examples and using abductive reasoning. The first one is the obvious
way because it uses its definition: there is a model of the background knowledge
that is not a model of the observation. The disadvantage of this is that a model
may contain parts that are unrelated to the entailment. The considered fragments
may also problematically allow infinite models. The predominant approach is
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via abductive reasoning. That is, we want to find some set of clauses to add to
the original clause set to obtain the entailment. Our approach is formalized in
the description logic EL. Different from other notions, our proposed connection-
minimality notion follows the principle of parsimony (Occam’s razor) by not
using the axioms unrelated to the problem at hand. It is based on the fact
that, in EL, if we have a set of terminological axioms (TBox) T and an is-a
relation U1 v U2 between simple concepts s.t. T |= U1 v U2, then there is a
possibly complex concept V (called connecting concept) s.t. T |= U1 v V and
T |= V v U2 (and vice versa). Connection-minimality tries to form hypotheses
essentially by forming a connecting concept via two concepts V1 and V2 s.t.
T |= U1 v V1 and T |= V2 v U2. A connecting concept is constructed by
considering the syntactical structure of V1 and V2 which enables our hypotheses
to entail U1 v U2. The computation works by translating the problem into
first-order logic, generating first-order prime implicates, then reconstructing a
solution by combining the prime implicates. I show that it is sound, complete,
and terminating for a class of hypotheses that are subset minimal.

To show the potential of our connection-minimality in practice, I also present
the result of an experiment on publicly available EL ontologies from the bio-
medical domain. SPASS [WSH+07] serves as a prime implicate generation engine
and the pre- and postprocessing tasks take advantage of some DL tools such
as ELK and OWL API. At the first-order level, the SOS strategy [WRC65,
HTW21] and a restriction on the number of variables in any derived clauses
are employed. Note that there exist resolution-based calculi devised natively in
DL and have been used immediately for ontology [KDTS20] and ABox [DS19]
abduction. In [KES11] first-order SOS resolution (similar to ours) serves as
a reasoning tool for ABox abduction in ALC. Apart from being defined on
different abduction tasks, the notion of connection-minimality additionally serves
as a semantic characterization of the generated hypotheses. This is a novelty
that may be viewed independently without any first-order logic terminology.
Thus, its adoption by DL community should arguably be comparatively better
than [KES11]. Since this minimality notion is then calculus agnostic, either one
wants to use first-order prime implicates or native DL calculi, any advances in
both can be beneficial for its computation.

The following two sections provide illustrations for these notions on a more
technical level.

Explaining Entailment via a New Notion of Relevance

I introduce a syntactic notion of relevance defined on the clauses in terms of how
they are used to derive the empty clause. In particular, we rely on the notion
of a refutation: a sequence of clauses starting from some input clauses s.t. all
the later clauses are generated via the resolution and factoring inferences from
the previous clauses and every clause in it is used by at least one later clause
except for the last (which is the empty clause). Given an unsatisfiable clause
set N , C ∈ N is syntactically relevant if any refutation must use this clause,
it is syntactically semi-relevant if it appears in some refutation otherwise, it
is syntactically irrelevant. The refutation-based notion of relevance is useful in
relating the involvement of a clause to refutation (goal conjecture). This also
promises applicability in car industry where product scenarios are built from
construction kits [FWW16,WFK17]. In [FWW16], an online auditor is attached
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to a car to determine, for instance, whether some clean air/emission regulation,
engine safety, etc. are satisfied. The notion of relevance would then be useful
to identify what may cause a violation (e.g., GPS data, gas consumption, car
location, etc.). In [WFK17], when car construction violates some constraints
(represented in propositional logic), its diagnosis can be delivered via a maximal
satisfiable subset and minimal correction subset. In particular, the minimal cor-
rection subset is related to our syntactically relevant clauses. Its use cases have
also been shown for real-world automotive configuration data of three German
car manufacturers.

As an illustration, we provide an example of how our notion can be useful
in explaining an entailment. Consider the following set of formulas

Φ = {∀x1.¬deal(x1, amd),

(∃x2.deal(x2, asus))→ deal(asus, amd),

deal(microsoft, intel)}

representing the following axioms in natural language:

– no one signs a contract with Amd,

– if a company signs a contract with Asus, then Asus will also sign a contract
with Amd, and

– Microsoft signs a contract with Intel.

In Φ, it holds that ”Intel has no contract with a company”:

Φ |= ∃x3.¬deal(intel, x3)

One possible way to get this informally is from the first axiom: since no one signs
a contract with Amd, it means that Intel does have a contract with Amd. First,
we clausify Φ and add the negation of ∃x3.¬deal(intel, x3) to get the following
clause set N .

N = {¬deal(x1, amd),

¬deal(x2, asus) ∨ deal(asus, amd),

deal(microsoft, intel),

deal(intel, x3)}

The translation is rather straightforward. No Skolemization takes place and the
original formulas have a one-to-one correspondence with the clauses. It even holds
that, N \ {contract(intel, x3)} is equivalent to Φ. From the clause set M1 ⊆ N

M1 = {¬deal(x1, amd),

deal(intel, x3)}

we know that N is unsatisfiable as can be shown by the refutation in Fig. 1.

As can be seen from the variable grounding, Intel has no contract with Amd,
proving the sentence ∃x3.¬deal(intel, x3).
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⊥

deal(intel,x3)¬deal(x1,amd)

{x3 7→ amd}{x1 7→ intel}

Figure 1: A refutation tree from M1 ⊆ N with overall substitution σ1 = {x1 7→
intel, x3 7→ amd}

Figure 1 is apparently not the only possible refutation. Figure 2 shows another
one using the following clauses from N .

M2 = {¬deal(x1, amd),

¬deal(x2, asus) ∨ deal(asus, amd),

deal(intel, x3)}

⊥

¬deal(x2,asus)

¬deal(x2,asus) ∨ deal(asus,dell)¬deal(x1,amd)

deal(intel,x3)

{x2 7→ intel}

{x1 7→ asus}

{x3 7→ asus}

Figure 2: A refutation tree from M2 ⊆ N with overall substitution σ2 = {x1 7→
asus, x2 7→ intel, x3 7→ asus}

From these two refutations, we can conclude that in N , we have M1 consisting
of the syntactically relevant clauses, M2 consisting of the syntactically semi-
relevant clauses. The remaining one clause deal(microsoft, intel) is an irrelevant
clause since it is not even possible to resolve it with anything.

A lot of works have been done in propositional logic and rely on the notion
of minimal unsatisfiable set MUS (where removing a clause would render it
satisfiable). Propositional clauses outside of any MUSes in some clause set N
are either redundant or syntactically irrelevant. For the following clause set,

N = {P,¬P,¬P ∨Q,¬Q ∨ P}

the last two clauses are implied by the other. They are not in the only MUS
{P,¬P} but can be involved in a refutation as in Fig. 3.

⊥

P¬P

¬Q

¬P¬Q ∨ P

¬P ∨Q

Figure 3: A propositional refutation with dependent clauses
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It is obvious that the sub-tree rooted at the non-leaf ¬P is superfluous.
One can simply use the last inference between P and ¬P . I do not cherry pick
this example and I will prove that the slightly general case always holds: if a
clause in a ground first-order clause set is outside of any MUSes then it will
either be irrelevant or redundant. Nonetheless, first-order logic is different. Some
interesting clause that is syntactically semi-relevant may actually be outside
of any MUSes. From the example, we know that there is a single MUS M1 =
{deal(intel, x3),¬deal(x1, amd)} but the semi-relevant clauses in M2 \M1 are not
empty yet they are not redundant.

To make it more precise what is meant by ”interesting”, I now describe a
semantic relevance accompanying this syntactic notion. First, we need the notion
of conflict literal. A ground literal L is a conflict literal in a clause setN ifN1 |= L
and N2 |= comp(L) for some satisfiable sets N1 and N2 containing instances of
clauses in N . On the one hand, expressing that a clause set is unsatisfiable via
the absence of a model (as is defined) is not very helpful since an absence means
there is nothing in the first place. On the other hand, using MUS in first-order
logic by considering the ground instances (as we will require later on) would
mean that the union of the MUSes could be infinite and thus not computable,
as in the case in propositional logic. A conflict literal provides some sort of
trade-off between the absence of a model and MUSes. Furthermore, I argue that
it is more intuitive in the sense that there is a contradiction (in the form of two
contradictory simple facts) in the considered clause set.

Similar to propositional logic, first-order clause sets may also contain redun-
dant clauses. However, the usual semantic redundancy is rather too strong and
thus we need a refinement done via instantiation called independence: A clause
set is independent if it does not contain clauses with instances implied by satisfi-
able sets of instances of different clauses out of the set. With this, we now have
the semantic relevance: given an unsatisfiable independent set of clauses N , a
clause is relevant in N if there is no conflict literal in N \ C, it is semi-relevant
if C is necessary to some conflict literals, and it is irrelevant otherwise.

As we have seen earlier, M2 \M1 consists of the syntactically semi-relevant
clauses (but outside of the MUS) and M1 is the syntactically relevant clauses.
Unlike in the propositional case, any clause in M2 \M1 is not redundant w.r.t.
the other clauses. Upon a closer look, even though M1 ( M2, this does not
hold anymore when the substitutions are respectively applied: M1σ1 6⊆ M1σ2.
Moreover, M1σ1 and M1σ2 are MUSes. M1σ1 already consists of the conflict
literals (¬)deal(intel, amd) because each of them is already a satisfiable instance
on N (thus entailed by themselves). This is also in accordance with our informal
explanation that there is a company that Intel does not have a contract with
(i.e., Amd). Nevertheless, (¬)deal(intel, asus) are conflict literals because they are
also entailed by some satisfiable instances of N :

{¬deal(x1, amd),¬deal(x2, asus) ∨ deal(asus, amd)} |= ¬deal(intel, asus)

{deal(intel, asus)} |= deal(intel, asus)

This conflict literal also hints that Intel also does not have a contract with
Asus. This can serve as an alternative explanation for the original formula
∃x.¬contracts(intel, x): we can infer that ”Intel does not have a contract with
Asus” instead of the original one with Amd. Semantically, Both of the following
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hold:

Φ |= deal(intel, amd)

Φ |= deal(intel, asus)

I argue that both should alternatively be useful and it does not make sense to
exclude Asus in favor of Amd. However, the entailment Φ |= deal(intel, asus) needs
a clause that is not in the original MUS M1: {¬deal(x1, amd), deal(intel, x3)}. In
summary, the notion of relevance would then be as follows.

– ¬deal(x1, amd) and deal(intel, x3) are relevant

– ¬deal(x2, asus) ∨ deal(asus, amd) is semi-relevant

– deal(microsoft, intel) is irrelevant

I emphasize here that ¬deal(x2, asus)∨deal(asus, amd) is not irrelevant. In the car
industry, this example should also sufficiently illustrate that a similar problem
may arise when identifying the cause of a constraint violation in a car construc-
tion recipe [WFK17], or the car components causing a runtime violation of some,
e.g., safety/clean air regulations [FWW16] when defined in first-order logic.

Generalized Completeness for the SOS Strategy

The notions described in the previous section naturally prompt the need for a test.
The main calculus used for this is the resolution calculus with the set-of-support
(SOS) strategy [WRC65]. This was the first refinement of the refutational com-
pleteness proven shortly after the formulation of first-order resolution [Rob65].
The SOS strategy splits the given clause set into two sets, namely N and M ,
and allows only resolution inferences involving at least one parent from the set-
of-support M and puts back the resulting clause to M . Wos et al. [WRC65]
proved the SOS strategy complete with the restriction that N is satisfiable. The
motivation by Wos et. al. for the SOS strategy was getting rid of “irrelevant”
inferences. If N defines a theory and M contains the negation of a conjecture
(goal) to be refuted, the strategy emphasizes resolution inferences involving the
conjecture. This can be beneficial in terms of efficiency because deductive com-
pleteness (modulo subsumption) [Lee67,NdW95] allows the resolution inferences
solely performed on clauses from N to enumerate all semantic consequences,
even if they are not potentially useful in refuting N ∪M .

The established SOS refutational completeness is already well suited to test
if a clause is (syntactically) relevant. Taking out a (syntactically) relevant clause
from an unsatisfiable clause set would turn it satisfiable. This already fits the
condition for the existence of an SOS refutation: a clause C ∈ N is relevant iff
N \ {C} is satisfiable and there is an SOS refutation from N \ {C} with SOS
{C}.

The key result which guarantees the possibility to test for (syntactic) semi-
relevance is the generalization of the original completeness result for the SOS
strategy: The resolution calculus with the SOS strategy is complete if and only
if there is a clause in M used in a resolution refutation from N ∪M , Th. 3.2.7.
The key to showing this is via a proof transformation technique. Any (non SOS)
refutation from N ∪M can be turned into an SOS refutation with SOS M , if
the original refutation uses at least a clause in M .
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Syntactic Relevance for Description Logics

Description logic [BHLS17] is used to represent terminological and assertional
knowledge in which the key syntactical constructs are concepts (unary predicate),
roles (binary predicates), and individuals (constants). It has been used in areas
like bio-medicine or the semantic web. The lightweight description logic EL
has been particularly useful to represent knowledge in the biomedical domain.
They often consist of a hundred thousand axioms. For instance, SNOMED CT1

contains over 350,000 axioms, and the Gene Ontology GO2 defines over 50,000
concepts. Explaining entailments—i.e., explaining why a DL axiom holds—is
rather well-known in the literature and also featured in the standard ontology
editors [HPS08a,KKS17].

Now, I show how first-order refutations can be used for description logic
entailment3 as described in our workshop paper [HKTW20]. An axiom set O in
description logics is called an ontology and usually further consists of two sets T
and F which are terminological knowledge (is-a relation between concepts such as
Human v LivingBeing) and ground facts respectively. Some of its fragments would
not allow for unsatisfiable ontologies via its syntactic restriction. The axiom α
in an entailment O |= α is not empty. We consider the clauses translated from
O and the negation of clauses from α. An axiom is then syntactically relevant
if any refutation always contains some clause out of this axiom, syntactically
semi-relevant if there is a refutation containing some clause out of this axiom
and syntactically irrelevant otherwise.

As an example, given an ontology O = T ] F with

T = { ∃withBase.PizzaBase u ∃withTop.PizzaTopping v Pizza}
F = { withTop(tunaPizza, tuna),PizzaTopping(tuna),

withTop(tunaPizza, cheese),PizzaTopping(cheese),

pizzaBase(plain),withBase(tunaPizza, plain),

PizzaTopping(salami)}

It holds that T ] F |= Pizza(tunaPizza). The axiom

∃withBase.PizzaBase u ∃withTop.PizzaTopping v Pizza

would be translated into

¬withBase(x, y)∨¬PizzaBase(y)∨¬withTop(x, z)∨¬PizzaTopping(z)∨Pizza(x)

while all facts in F can immediately be considered as ground clauses. We would
then have syntactically relevant axioms

– ∃withBase.PizzaBase u ∃withTop.PizzaTopping v Pizza

– PizzaBase(plain), withBase(tunaPizza, plain)

syntactically semi-relevant axioms

– withTop(tunaPizza, tuna),PizzaTopping(tuna)

1https://www.snomed.org/
2http://geneontology.org/
3A similar notion is mentioned also in [BOPP20] for the DL fragment ELHr
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– withTop(tunaPizza, cheese),PizzaTopping(cheese)

and a syntactically irrelevant axiom PizzaTopping(salami).
The refutation in Fig. 4 shows that the PizzaTopping(tuna) is syntacti-

cally semi-relevant. It is moreover not relevant since all occurences of the con-
stant tuna can be replaced with cheese resulting in another refutation without
PizzaTopping(tuna) (The refutation starts with the only non-ground clause. The
shading helps track the inference results).

⊥

Pizza(tunaPizza)

¬PizzaTopping(tuna) ∨ Pizza(tunaPizza)

withTop(tunaPizza,tuna)¬withTop(tunaPizza,z) ∨ ¬PizzaTopping(z) ∨ Pizza(tunaPizza)

¬PizzaBase(plain) ∨ ¬withTop(tunaPizza,z) ∨ ¬PizzaTopping(z) ∨ Pizza(tunaPizza)

withBase(tunaPizza,plain)¬withBase(x,y) ∨ ¬PizzaBase(y) ∨ ¬withTop(x,z) ∨ ¬PizzaTopping(z) ∨ Pizza(x)

pizzaBase(plain)

PizzaTopping(tuna)*

¬Pizza(tunaPizza)

{z 7→ tuna}

{x 7→ tunaPizza,y 7→ plain}

Figure 4: A refutation tree for Pizza(tunaPizza)

Explaining Non-Entailment via Connection-Minimal Abduc-
tion

For the task of explaining non-entailment, we focus on a description logic frag-
ment called EL. Abduction is about finding extensions to a knowledge base that
are sufficient to imply some given entailment. To avoid undesirable hypothe-
ses, abduction is often equipped with additional restrictions on the solution
space and/or minimality criteria that help sort the chaff from the grain.I argue
that existing minimality notions suffer from certain limitations, and introduce
connection minimality as a new notion that overcomes the limitations of ear-
lier notions. Furthermore, we developed and evaluated a method to compute
connection-minimal solutions in practice.

Connection-minimality follows Occam’s razor in which hypotheses construc-
tion do not take into account concept inclusions unrelated the concepts in the
observation via T . In other words, for an observation U1 v U2, connection mini-
mality only accepts those hypotheses in which every CI in it is ”connected” to
both U1 and U2 in T . The formulation of connection minimality follows the
following ideas:

1 Hypotheses for the abduction problem have to create a connection between
U1 and U2, in the form of a concept V that satisfies T ∪ H |= U1 v V ,
V v U2.

2 To ensure that Occam’s razor is followed, we want this connection to be
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based on concepts V1 and V2 for which we already have T |= U1 v V1 and
T |= V2 v U2.

3 We additionally want to make sure that the connecting concepts are not
more complex than necessary, and that H only contains CIs that directly
connect parts of V2 to parts of V1 by closely following their structure.

We call V a connecting concept : A concept V connects U1 to U2 in T if and
only if T |= U1 v V and T |= V v U2. Note that if T |= U1 v U2 then both U1

and U2 are connecting concepts from U1 to U2, and if T 6|= U1 v U2, it means
no concept connects them. In Sect. 4.1.1, the connection between V1 and V2

is defined formally using a notion of homomorphism between the description
trees of V2 and V1. We show that this notion of minimality is deeply connected
with the generation of prime implicates in first-order logic. That is, using a
translation scheme from abduction problems to first-order clauses, we are able
to reconstruct the connection-minimal hypotheses using the prime implicates of
the translation. In addition to soundness and completeness, we show a quadratic
bound on the depth of the terms occurring in the prime implicates, which gives us
a termination condition for our method and ensures completeness for hypotheses
that are both connection-minimal and subset-minimal.

We implemented a prototype consisting of two components: a Java com-
ponent that takes care of preprocessing, translation into first-order logic, and
construction of the hypotheses from prime implicates, and a first-order reasoning
component that uses a modified version of the theorem prover SPASS for the
prime implicate generation. The prototype was evaluated on a set of ontologies
from the medical domain for which we generated abduction problems in different
ways, showcasing the practicality of our approach.

We are focusing here on TBox abduction, where the ontology and hypothesis
are TBoxes and the observation is a concept inclusion (CI), i.e., a single TBox
axiom.

To illustrate this problem, consider the following TBox, about academia,

Ta = { ∃employment.ResearchPosition u ∃qualification.Diploma v Researcher,

∃writes.ResearchPaper v Researcher, Doctor v ∃qualification.PhD,

Professor ≡ Doctor u ∃employment.Chair,

FundsProvider v ∃writes.GrantApplication }

that states, in natural language:

– “Anyone with a research position and a diploma must be a researcher.”

– “Anyone who writes a research paper is a researcher.”

– “Being a doctor means having completed a PhD level education.”

– “A professor is similar to a doctor having a (university) chair.”

– “A funds provider writes a grant application.”

We intuitively know that “a professor is a researcher” (αa = Professor v
Researcher) but it’s in fact missing from Ta. TBox abduction then comes into
play to recover this entailment.
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There are many ways to recover this entailment. An expert may syntactically
restrict the hypotheses to only use a predefined set of abducible axioms [CLM+20,
PH17], abducible predicates [KDTS20,Koo21a], or syntactic patterns on of the
hypotheses [DWM17a]. This external restriction may also be combined with a
minimality criterion relying solely on the knowledge base at hand, such as subset
minimality, size minimality, or semantic minimality [COSS13]. Even combined,
I argue that these minimality criteria are still in some way insufficient. More
specifically, they are not in line with the principle of parsimony, (Occam’s razor)
in a sense that the resulting hypothesis must involve concept inclusions in the
TBox that are not in any way related to the given observation. As an illustration,
let us return to the previous academia example. Extending Ta with the following
TBoxes

Ha1 = { Chair v ResearchPosition, PhD v Diploma} and

Ha2 = { Professor v FundsProvider, GrantApplication v ResearchPaper}

would complete it to also include Professor v Researcher.. Following our intu-
ition, we would prefer Ha1 to Ha2 as the concept inclusions in it make more
sense. A professor in general does not provide funds while a grant application is
definitely not a research paper. Nevertheless, both of them are subset-minimal,
of equal cardinality, and are not semantically comparable. Thus, both of them
are indistinguishable w.r.t. these existing notions.

Let us now look more closely at the concepts in Ha1. Here, Chair and
ResearchPosition occur in Ta in concept inclusions where the concepts in αa

also occur. In addition, both PhD and Diploma are similarly related to αa but
via the role qualification. In contrast, Ha2 involves the concepts FundsProvider
and GrantApplication that are not related to αa in any way in Ta. Here, one
can pick any concept inclusion P v ∃writes.Q to construct a hypothesis similar
to Ha2 where P replaces FundsProvider and Q replaces GrantApplication. For
example, if we use Student v ∃writes.Homework (assume it exists in Ta), then
we can get the hypothesis {Professor v Student,Homework v ResearchPaper. It
is exactly the involvement of such unrelated concept inclusions that makes the
hypothesis not parsimonious.

Dissertation Structure

This dissertation is generally divided into three parts. The beginning consists of
a preliminary (Ch. 1) and a state-of-the-art chapter (Ch. 2). The second part
consists of two contribution chapters describing the new notion of relevance
(Ch. 3) and the new notion of minimality for abduction (Ch. 4). The dissertation
is finalized by a conclusion also describing future works (Ch. 5).

Chapter 1 is the preliminary chapter explaining the considered logical frag-
ments, some relevant transformations/translations within and between them,
and the resolution calculus as the main reasoning engine. The first fragment I
focus on is first-order logic (Sect. 1.1). I explain the syntax and semantics in
Sect. 1.1.1 and the basic clausification technique for it in Sect. 1.1.2. Second, I
describe two description logic fragments (ALC and EL) in Sect. 1.2. The syntax
and semantics are in Sect. 1.2.1 and a normalization technique necessary for the
later abduction work in Sect. 1.2.2. Lastly, the resolution calculus along with
the set-of-support strategy is described in Sect. 1.3 as the main reasoning engine
for both first-order logic and description logic.
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Chapter 2 is the state-of-the-art chapter giving a literature review related to
entailment explanation (Sect. 2.1) and non-entailment explanation (Sect. 2.2).
Both sections are further divided w.r.t. the used key notions considering the
parallels to the proposed notions in this dissertation. For the entailment explana-
tion, I consider the notion of proof (Sect. 2.1.1), MUS (Sect. 2.1.1), justification
(Sect. 2.1.1), irredundant equivalent subset, and conflict variable (Sect. 2.1.1).
For the other part regarding non-entailment, I show the notion of counter ex-
ample (Sect. 2.2.1), an alternative abduction approach (Sect. 2.2.2), and the
common abduction approach (Sect. 2.2.3).

Chapter 3 is the first contribution chapter proposing a new notion of relevance
and its test via the resolution calculus with set-of-support strategy. The notion
itself is described in Sect. 3.1 consisting of the syntactic relevance (Sect. 3.1.1)
and its semantic characterization (Sect. 3.1.2). Afterward, the generalized SOS
completeness is proved in Sect. 3.2. This completeness result is used for a test as
presented in Sect. 3.3. Last but not least, I also demonstrate its use in description
logic (Sect. 3.4).

Chapter 4 is the second contribution chapter proposing a new minimality no-
tion for abduction in the EL description logic. The proposed notion (connection-
minimality) is described in Sect. 4.1. Its computation is done via a first-order
prime implicate-based abduction in Sect. 4.2. For this technique, I further elab-
orate on how to make it more efficient in Sect. 4.3 and additionally derive a
termination condition in Sect. 4.4. Efficiency is considered in two levels. First,
at the first-order level, some inferences can be avoided (Sect. 4.3.1). Second,
at the description logic level, one can perform a set of preprocessing steps to
remove some of the unrelated concept inclusions (Sect. 4.3.2). Finally, everything
discussed thus far is implemented to perform experimentation as described in
Sect. 4.5.

Chapter 5 is the last chapter concluding everything that has been done and
explaining the possible future works. This is divided into two parts (entailment
and non-entailment) also following the division in the contributions.

Contribution Summary

In the most general setting, this dissertation provides new means of explaining
entailment and non-entailment. The former is via a pair of syntactic and seman-
tic relevance while the latter is via abduction with a novel minimality notion
called connection-minimality. More specifically, the primary contributions are
as follows:

– A new notion of syntactic relevance accompanied by a test via resolu-
tion with the SOS strategy (which completeness is also generalized in
this dissertation) [HTW21], its semantic characterization [HW22] , and a
demonstration of how it applies in description logic [HKTW20].

– A new notion of connection-minimality for the EL description logic via a
translation to first-order logic [HKT21a,HKTW22a].

They are not stand-alone contributions and as some necessary companions, I
also present procedures, (semi-)decidability results, demonstration in a specific
fragment, an implementation, and experiments. Nevertheless, due to the need
to prove them and to relate them to other notions, there are many other (not
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necessarily) smaller contributions which may be interesting on their own and in
one way or another.

Some of the other contributions are extensions or generalizations of existing
notions/results:

– a generalization of the SOS completeness4 where the completeness guar-
antee requiring the satisfiability of the non-SOS clause set [WRC65] is no
longer needed and replaced by a more general condition where any clause
involved in a refutation can be used in the initial SOS set,

– the notion of a T -homomorphism to characterize entailment w.r.t. the
TBox T generalizing the existing notion from [BKM99] which only deals
with subsumption between concepts,

– a notion of conflict literal in first-order logic generalizing the one in propo-
sitional logic (e.g. in [JMRS17]),

– a semi-relevance notion generalizing the notion of the propositional lean-
kernel (e.g. in [KK09,Kul00]), and

– a dependency notion refining the usual redundancy notion (e.g. in [BR00,
Lib05]) via ground instantiation.

Another class of contributions is where the existing notions are used in a
slightly different manner. These, in one way or another, give a different outlook
in relation to how they are used in the existing works:

– using MUS in first-order clauses via instantiation (different from the works
e.g. [MM20]) as an alternative characterization of the proposed semantic
relevance,

– using the Herbrand domain for the canonical model [BKM99] (instead
of strings built from the symbols of individuals, roles, and concepts as
in [BO15]) to create some sort of a universal model for the original EL
axiom set via the positive prime implicates, and

– using an additional renaming technique accompanying a FOL translation
(the one used here is from [HS02]) to make some relevant concept inclusions
recoverable in EL even after the non-equivalence-preserving Skolemization
step.

Another kind of contribution is where a projection of a more general idea is
used in a more specific setting. An example of this is:

– using modularization technique [GHKS08] to make the input for the con-
sidered abduction problem smaller while preserving subsumee/subsumers
in EL.

To summarize, these are collected in Table 1 and 2 linked to their correspond-
ing locations in this dissertation. The former provides the list of contributions
in relation to the notion of relevance while the latter is reserved for connection-
minimality notion.

4The generalized SOS completeness is a particularly interesting contribution as it non-
trivially improves a well-known strategy published in 1965 by Wos et. al. [WRC65].
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Table 1: Contribution Summary for Entailment Explanation
Contribution Reference

Syntactic relevance Definition 3.1.4
(SOS) deduction/refutation Definition 3.1.1 and 3.1.2

Relation to resolution derivation Corollary 3.1.3
Procedure

Relevance test Lemma 3.3.1
Semi-relevance test Lemma 3.3.1 and 3.3.4

(Semi-)decidability for Semi-relevance Corollary 3.3.3
Syntactic relevance (DL) Definition 3.4.1

Decidability via bounded model property Lemma 3.4.2
Semantic relevance Definition 3.1.11

Conflict literal Definition 3.1.5
Conflict literal vs ground MUS Lemma 3.1.8
Conflict literal test Lemma 3.3.6

(In)dependency Definition 3.1.10
Propositional case w.r.t. the usual MUS Lemma 3.1.14
First-order case w.r.t. ground instantiated MUS Lemma 3.1.15

Syntactic vs semantic relevance Theorem 3.3.5
Generalized SOS completeness Theorem 3.2.7

Table 2: Contribution Summary for Non-Entailment Explanation
Contribution Reference

Connection-minimality Definition 4.1.3
Entailment via T -homomorphism Lemma 4.1.6
Computability via prime implicates Corollary 4.2.11

FOL translation preserving subsumee/subsumer Section 4.2.1
Universality of the positive prime implicates Lemma 4.2.4
EL concept reconstructibility from FOL

Subsumer from positive prime implicates Lemma 4.2.5 and 4.2.6
Subsumee from negative prime implicates Lemma 4.2.9

Decidability via bounded term depth Theorem 4.4.15
Modularization in EL

Subsumer-preserving Lemma 4.3.5
Subsumee-preserving Lemma 4.3.6

CAPI (implementation) Section 4.5.1
Evaluation showing its usefulness

Success rate Table 4.2
Statistical summary Table 4.1

The content of this dissertation is based on the papers published during my
study. There are three primary conference publications:

– Fajar Haifani, Sophie Tourret, and Christoph Weidenbach. Generalized
completeness for SOS resolution and its application to a new notion of rele-
vance. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction
- CADE 28 - 28th International Conference on Automated Deduction, Vir-
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tual Event, July 12-15, 2021, Proceedings, volume 12699 of Lecture Notes
in Computer Science, pages 327–343. Springer, 2021

– Fajar Haifani and Christoph Weidenbach. Semantic relevance. In Au-
tomated Reasoning - 11th International Joint Conference, IJCAR 2022,
Held as Part of the Federated Logic Conference, FloC 2022, Haifa, Israel,
August 8-10, 2022, Proceedings, 2022

– Fajar Haifani, Patrick Koopmann, Sophie Tourret, and Christoph Weiden-
bach. Connection-minimal abduction in EL via translation to FOL. In
Automated Reasoning - 11th International Joint Conference, IJCAR 2022,
Held as Part of the Federated Logic Conference, FloC 2022, Haifa, Israel,
August 8-10, 2022, Proceedings, 2022

The first two introduce syntactic [HTW21] and semantic relevance [HW22] while
the last one introduces the connection-minimality notion [HKTW22a]. These
are accompanied by the following workshop papers and an arxiv preprint:

– Fajar Haifani, Patrick Koopmann, Sophie Tourret, and Christoph Weiden-
bach. On a notion of relevance. In Stefan Borgwardt and Thomas Meyer,
editors, Proceedings of the 33rd International Workshop on Description
Logics (DL 2020) co-located with the 17th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2020), On-
line Event [Rhodes, Greece], September 12th to 14th, 2020, volume 2663 of
CEUR Workshop Proceedings. CEUR-WS.org, 2020

– Fajar Haifani, Patrick Koopmann, and Sophie Tourret. Abduction in EL
via translation to FOL. In Renate A. Schmidt, Christoph Wernhard, and
Yizheng Zhao, editors, Proceedings of the Second Workshop on Second-
Order Quantifier Elimination and Related Topics (SOQE 2021) associated
with the 18th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR 2021), Online Event, November 4, 2021,
volume 3009 of CEUR Workshop Proceedings, pages 46–58. CEUR-WS.org,
2021

– Fajar Haifani, Patrick Koopmann, and Sophie Tourret. Introducing connection-
minimal abduction for el ontologies. In XLoKR workshop, 2021

– Fajar Haifani, Patrick Koopmann, Sophie Tourret, and Christoph Weiden-
bach. Connection-minimal abduction in el via translation to fol–technical
report. arXiv preprint arXiv:2205.08449, 2022

The first one [HKTW20] demonstrates how the syntactic relevance is lifted to
description logic. The other three concerns abduction. In particular, the second
one is a workshop paper showing a partial result about the use of first-order
prime implicates for EL abduction [HKT21a]. The third one is an informal
workshop paper introducing the connection-minimality notion without compu-
tation [HKT21b]. The last one is an extended technical report for the primary
abduction paper where all of the technical proofs are presented [HKTW22b].
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Chapter 1

Preliminaries

1.1 First Order Logic

First-order logic (FOL) is an important logic dealing with objects, functions and
relations. In this section, I introduce the syntax and semantics of first-order logic
along with some basic notions we will use in this dissertation.

1.1.1 Syntax and Semantics

I assume a standard unsorted first-order language over a signature ΣFOL =
(ΩFOL,ΠFOL) where ΩFOL is a non-empty set of function symbols, ΠFOL a non-
empty set of predicate symbols both coming with their respective fixed arities
denoted by the function arity.

Definition 1.1.1 (Term, Atom, and Literal). Given a first-order signature
ΣFOL = (ΩFOL,ΠFOL), the set of terms over an infinite set of variables X is
denoted by T(ΣFOL,X ) and recursively defined as (i) a variable x ∈ X or (ii)
f(t1, . . . , tk) with arity(f) = k. An atom A is of the form P (t1, . . . , tk) with
arity(P ) = k. A literal is either an atom A or its negation ¬A. The complement
of a literal is denoted by the function comp: for any atom A, comp(A) = ¬A and
comp(¬A) = A. Terms, atoms, and literals are ground if they do not contain
any variable, and T(ΣFOL) denotes the set of ground terms. A literal is positive
(negative) if it is of the form A (¬A).

Definition 1.1.2 (Formula and Clause). A formula1 is either an atom or it
takes the following form (suppose that ϕ and ψ are formulas):

Syntax Description
⊥ false
> true
ϕ ∧ ψ conjunction
ϕ ∨ ψ disjunction
¬ϕ negation

1We will only concern ourselves with closed formulas where variables can only occur below
quantifiers.
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ϕ→ ψ implication
ϕ↔ ψ equivalence
∀x.ϕ universal quantification
∃x.ϕ existential quantification

A formula is function-free if it contains no function symbols. A clause is a
formula of the form L1 ∨ . . . ∨ Lk where Li are literals for all 1 ≤ i ≤ k and
all variables are implicitly universally quantified (the symbol ∀ is not written).
A clause is Horn if it contains at most one positive literal; definite Horn if it
contains exactly one positive literal; positive (negative) if it contains only positive
(negative) literals; ground if it contains only ground literals; unit if it contains
only a single literal. For convenience, we identify a clause with the multiset of its
literals. A set of clauses can then be considered as a conjunction of its clauses.

A,B denote atoms; L,K denote literals; P,Q,R, S, T denote predicates (also
propositional variables in the case of propositional logic); t, s denote terms;
f, g, h, sk denote functions where sk is specifically for a function coming out
of Skolemization; a, b, c, d denote constants; and x, y, z denote variables; ϕ,ψ
denote formulas, C,D denote clauses; M,N,O denote clause sets; Φ denotes a
set of formulas; all possibly annotated. As a clause is a specific kind of formula,
Φ, ϕ, and ψ may also be used for clauses.

By means of substitution, variables in clauses can be replaced by any terms
in particular when dealing with clauses.

Definition 1.1.3 (Substitution). Substitutions σ, τ are total mappings from
variables to terms, where dom(σ) := {x | xσ 6= x} is finite and codom(σ) := {t |
xσ = t, x ∈ dom(σ)}. A renaming σ is a bijective substitution with codomain
in X . It can be written as pairs {x1 7→ t1, . . . , xk 7→ tk} and used in a postfix
notation xσ when applied. In this case, xσ is called an instantiation of x. The
application of substitutions is extended to literals, clauses, and sets/sequences
of such objects in the usual way.

The semantics of these formulas is defined in terms of interpretations and
variable assignments.

Definition 1.1.4 (Interpretation). Given the signature ΣFOL = (ΩFOL,ΠFOL),
an interpretation is a tuple I = (∆I , ·I) made of a non-empty domain ∆I and
an interpretation function ·I which assigns

– a total function fI : ∆I × . . .×∆I︸ ︷︷ ︸
n

7→ ∆I s.t. arity(f) = n for all f ∈

ΩFOL,

– a relation P I ⊆ ∆I × . . .×∆I︸ ︷︷ ︸
n

to every P ∈ ΩFOL s.t. arity(P ) = n.

An interpretation I = (∆I , ·I) is a Herbrand Interpretation if

– ∆I = T(ΣFOL),

– fI : (t1, . . . , tk) 7→ f(t1, . . . , tk) with arity(f) = k for all f ∈ Ω and
t1, . . . , tk are ground.
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A Herbrand Interpretation I can also be uniquely represented as a set of ground
atoms2 satisfying

P (t1, . . . , tk) ∈ I if and only if (t1, . . . , tk) ∈ P I .

Definition 1.1.5 (Variable Assignments). Given an interpretation I, a valua-
tion β is a total function X → ∆I . For a given valuation β, the assignment of
some variable x can be modified to a ∈ ∆I by β[x 7→ a]. It is extended to terms
I(β) : T(ΣFOL,X )→ ∆I with

(i) I(β)(x) = β(x), where x ∈ X and

(ii) I(β)(f(t1, . . . , tn)) = fI(A(β)(t1), . . . , A(β)(tn)), where f ∈ ΩFOL, arity(f) =
n.

Definition 1.1.6 (Semantics). Interpretations and variable assignments are
extended to formulas as follows.

I(β)(⊥) := 0
I(β)(>) := 1

I(β)(P (t1, . . . , tn)) := 1 if (I(β)(t1), . . . , I(β)(tn)) ∈ P I and 0 otherwise
I(β)(¬ϕ) := 1− I(β)(ϕ)

I(β)(ϕ ∧ ψ) := min(I(β)(ϕ), I(β)(ψ))
I(β)(ϕ ∨ ψ) := max(I(β)(ϕ), I(β)(ψ))
I(β)(ϕ→ ψ) := max(1− I(β)(ϕ), I(β)(ψ))
I(β)(ϕ↔ ψ) := 1 if I(β)(ϕ) = I(β)(ψ) and 0 otherwise
I(β)(∃x.ϕ) := 1 if I(β[x 7→ a])(ϕ) = 1 for some a ∈ ∆I and 0 otherwise
I(β)(∀x.ϕ) := 1 if I(β[x 7→ a])(ϕ) = 1 for all a ∈ ∆I and 0 otherwise

A formula ϕ is satisfiable if there is an interpretation I such that I(β)(ϕ) = 1
for some variable assignment β. In this case, I is called a model of ϕ, which is
denoted as I |= ϕ. Otherwise, ϕ is called unsatisfiable or inconsistent . We can
also say that I satisfies ϕ. In the case of a set of clauses N , then it is satisfiable if
there is I which satisfies all of the clauses in it (also similarly written as I |= N).

Given two formulas (or clauses) ϕ and ψ, ϕ entails ψ (ϕ |= ψ), if for any
interpretation I, if I |= ϕ then I |= ψ. The formulas ϕ and ψ are equivalent
(ϕ↔ ψ), if ϕ |= ψ and ψ |= ϕ. The formulas ϕ and ψ are called equisatisfiable,
when ϕ is satisfiable if and only if ψ is satisfiable (not necessarily in the same
models). Given two clauses C and D, if there exists a substitution σ such that
Cσ ⊆ D then we say that C subsumes D (D is subsumed by C). In this case
C |= D.

The notions of entailment, equivalence and equisatisfiability are naturally
extended to sets of formulas by considering them as conjunctions of formulas:
Given formula sets M1 andM2,M1 |= M2, if for any interpretation I, if I |= ϕ for
every ϕ ∈M1 then I |= ψ for every ψ ∈M2. The sets M1 and M2 are equivalent,
written M1 ↔ M2, if M1 |= M2 and M2 |= M1. Given an arbitrary formula
ϕ and a formula set M , M |= ϕ is written to denote M |= {ϕ}; analogously,
ϕ |= M stands for {ϕ} |= M . It has many names in the literature3 (MUS) if any
strict subset of N is satisfiable [PY84].

2We abuse notations by using the letter I to represent a Herbrand interpretation and its
unique associated set. The context will be given when necessary.

3It has been called differently in the literature (e.g. minimally unsatisfiable subset, minimal
unsatisfiable core, etc.). Here, I use ”set” to avoid confusion because in this dissertation, MUSes
can be acquired via instantiation.
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Given a clause set N , a clause C is an implicate of N , if N |= C; C is a prime
implicate of N , if for any other implicate D of N s.t. D |= C, it also holds that
C |= D.

A model is finite if it has a finite domain and bounded if the size of the
domain has an upper bound w.r.t. the input formula (e.g. exponential or doubly
exponential). A fragment of first-order logic has a finite (resp. bounded) model
property if for any formula ϕ in this language if ϕ is satisfiable then it has a
finite (resp. bounded) model. Boundedness here is stronger than finiteness in
the sense that if a model is bounded, then it is also finite.

An unsatisfiable clause set (possibly infinite) enjoys the property of being
refutable from a finite subset of it. This is called the compactness theorem.

Theorem 1.1.7 (FOL Compactness [Fit90]). Let N be a set of clauses in first-
order logic. Then N is unsatisfiable if and only if there is a finite subset N ′ ⊆ N
such that N ′ is unsatisfiable.

An important fragment of FOL which will be considered in this dissertation
is propositional logic. The difference is that only predicates with arity 0 are
allowed. Atoms are written without brackets (i.e. simply P instead of P ()) and
called propositional variables. Functions can simply be considered empty. No
formulas are quantified and thus substitutions are also not needed. Its semantics
also naturally follows FOL but simplified.

1.1.2 Clausification

All notions proposed in this dissertation are applicable to a family of logic
fragments called description logics via a suitable translation scheme. A key
aspect of the translation is that it still produces non-clausal formulas while the
calculus I use operates on sets of clauses (also called conjunctive normal form).
So, in this section, I show a well-known satisfiability preserving clausification
technique [NW01]. Bringing the results back from first-order logic to description
logic will be some of the non-trivial parts of our contributions.

The clausification works first by transforming a formula into a prenex normal
form and by Skolemization. A formula is in a prenex normal form if it takes
the shape of Q1x1 . . .Qkxk.ϕ where ϕ is quantifier free and Qi ∈ {∃,∀} for all
1 ≤ i ≤ k. In other words, all quantifiers occur in the prefix of the formula . Once
a formula is in prenex normal form, a simple Skolemization proceeds by picking
the outer-most existential quantifier ∃x and replacing all occurrences of x with
a fresh function symbol sk taking all variables that x depends on as arguments.
One Skolemization step would transform a formula (here, ϕ may still contain
quantifiers) as follows:

∀x1, . . . ,∀xk∃x.ϕ −→sk ∀x1, . . . ,∀xk.ϕ[sk(x1, . . . , xk)/x].

This must be done until all existential quantifiers are removed.
The number of arguments in the fresh Skolem functions is reducible depend-

ing on the syntactical characteristics of the formula. One technique is by a
rewriting rule that chooses variables as arguments in a more effective manner
with the help of negation normal form transformation, miniscoping, and variable
renaming [NW01]. I will not present it here since the need for Skolemization in
this dissertation is rather simple and this optimization would have no effects in
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our context anyway. Moreover, care must be taken when performing any reason-
ing tasks involving clause generation with some optimized reasoning tools. This
is because there is a strong Skolemization technique [NRW98](which is still satis-
fiability preserving) which non-trivially affects the way clauses are generated. In
SPASS, such technique is turned on by default and has to be explicitly disabled
to support our reasoning need.

Clausification is described in Table 1.1. At this point, the existential quanti-
fiers are already eliminated and any application of the rules does not reintroduce
any existential quantifier. Therefore, we get a set of clauses where all variables
are universally quantified once the rules are exhaustively applied.

Table 1.1: Clausification rules

(ϕ↔ ψ) −→cl (ϕ→ ψ) ∧ (ψ → ϕ)
(ϕ→ ψ) −→cl (¬ϕ ∨ ψ)
¬(ϕ ∨ ψ) −→cl (¬ϕ ∧ ¬ψ)
¬(ϕ ∧ ψ) −→cl (¬ϕ ∨ ¬ψ)
¬¬ϕ −→cl ϕ

(ϕ ∧ ψ) ∨ φ −→cl (ϕ ∨ φ) ∧ (ψ ∨ φ)
(ϕ ∧ >) −→cl ϕ
(ϕ ∧ ⊥) −→cl ⊥
(ϕ ∨ >) −→cl ⊥
(ϕ ∨ ⊥) −→cl ϕ

The rules in Table 1.1 are the basic ones and there are in fact optimized
techniques [NRW98, NW01] to reduce the number of generated clauses (e.g.
renaming technique). However, similar to the fact that only simple Skolemization
technique is needed, this clausification approach is sufficient for this dissertation.

1.2 Description Logic

Two description logic fragments of interest in this dissertation are ALC and
EL, which are both translatable for FOL. ALC is the basic description logic
which is rather expressive despite being intractable for most common tasks in
description logic. EL is a lightweight fragment of ALC admitting more efficient
procedures for many of these tasks. EL is also widely used in the industry despite
its simplicity. Our notion of relevance, which we later introduce, applies to both
EL and ALC, as well as any DL fragments translatable to FOL.

1.2.1 Syntax and Semantics

I now describe the syntax and semantics ofALC and EL description logic [BHLS17].
The signature in DL is a pair ΣDL = (ΩC,ΩR) where ΩC and ΩR are pair-wise
disjoint, countably infinite sets of atomic concepts and roles, respectively. The
choice of symbols in the signature is according to how they are translated into
first-order language: we use letters P , Q, S, T for atomic concepts; U, V,W for
possibly complex concepts; R for roles4; a, b, c, d for individuals; M for modules

4In most DL papers, roles are usually written in lowercase but we choose uppercase for
compatibility with our FOL notations
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and all are possibly annotated. ALC concepts are built according to the syntax
rule

U ::= > | ⊥ | U | ¬U | U u U | U t U | ∃R.U | ∀R.U
where, in EL, ⊥, ¬U , U t U , and ∀R.U are excluded.

An ontology O is a pair (T ,F) where the TBox T is a finite set of concept
inclusions (CIs) of the form U v V . U ≡ V stands for U v V and V v U .
The Abox F consists of ground truth called instance assertion of the form U(a)
(U is an atomic concept in EL) and R(a, b). The concept inclusion v here can
also be called subsumption between concepts similar to the other literatures
where, if U v V holds, we also say that V subsumes U , U is subsumed by
V , U is a subsumee of V , and V is a subsumer of U . Note that this subsume
terminology is an overloading as it was already defined for clauses. A concept
inclusion or an instance assertion may also be called a DL axiom, a and b
individuals that correspond to constants in first-order logic. While there are other
syntactic features that can be added to have more expressivity (e.g. number
restrictions, nominals, etc.) concepts, roles and individuals remain the basic
ingredients existing in most description logic fragments. Another important
aspect of EL TBox is that it may contain cycles. Here we distinguish two types
of them5 as follows.

Definition 1.2.1 (Cycle). Given an EL TBox T , an atomic concept P is a
concept with

– forward cycle if T |= P vW , and

– backward cycle if T |= W v P

in T , where P occurs under some role restriction in some W . T is cyclic if there
is a concept with either a forward cycle or a backward cycle.

The distinction between forward and backward cycles is useful in the context
of our abduction task because, as we will see later, only the existence of both
cycles which may cause a termination issue.

Many DL fragments are expressible in first-order logic via a suitable semantic-
preserving translation. Furthermore, they have a close relationship with cer-
tain modal logic. Table 1.2, following a modal logic-related translation scheme
in [HS02], shows the translation of ALC to first-order logic where the definitional
form from [HS02] is left out as it is not needed in this dissertation. A translation
of some DL ontology is the conjunction of all axioms in the TBox and ABox
after translation. The function fo is used to similarly translate concepts, TBox,
ABox, and the whole ontology. For simplicity, its clausification is omitted. Note
that I will primarily use clausification and Skolemization and use the symbol sk
specifically for functions resulting from the Skolemization. For this, ΠS denotes
the set Skolem functions resulting from such translation (with no Skolemiza-
tion, all formulas are in fact function-free). The signature of the resulting FOL
clauses would then be (ΩC ] ΩR,ΠS) (The symbols for atomic concepts and
roles are immediately used as predicate symbols while functions only come from
Skolemization).

5In the literature (e.g. [BHLS17]), cycle is usually defined for Tbox containing only defini-
tional axioms of the form P ≡W . A Tbox T is cyclic if there is P ≡W ∈ T where P occurs
in W even transitively.
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Table 1.2: ALC to First-Order Translation

Concepts
fo(>, x) = >
fo(P, x) = P (x)

fo(U u V, x) = fo(U, x) ∧ fo(V, x)

fo(∀R.U, x) = ∀y.(R(x, y)→ fo(U, x))

fo(⊥, x) = ⊥
fo(¬U, x) = ¬ fo(U, x)

fo(U t V, x) = fo(U, x) ∨ fo(V, x)

fo(∃R.U, x) = ∃y.(R(x, y) ∧ fo(U, x))
TBox Axioms

fo(U v V ) = ∀x.(fo(U, x)→ fo(V, x))

fo(U ≡ V ) = ∀x.(fo(U, x)↔ fo(V, x))
ABox Axioms

fo(U(a)) = fo(U, a)

fo(R(a, b)) = R(a, b)

Since the semantics of this description logic and its translation coincide [Bor94,
BCM+03], it is possible to consult Table 1.2 for the DL semantics by looking
at the FOL translation. Nevertheless, as we will work more heavily with EL, I
will show its semantics for the axioms as mostly described in the literature. An
interpretation I = (∆I , ·I) maps atomic concepts P ∈ ΩC to sets P I ⊆ ∆I

and roles R ∈ ΩR to relations RI ⊆ ∆I ×∆I . The interpretation function ·I is
extended to complex concepts as follows:

>I = ∆I (U u V )I = UI ∩ V I

(∃R.U)I = {d ∈ ∆I | ∃(d, e) ∈ RI s.t. e ∈ UI}.

It holds that I |= U v V , if UI ⊆ V I .
All semantical notions except for (prime) implicates and MUS are lifted

from FOL as well. These include entailment, equivalence, equisatisfiability, and
bounded/finite model property 6. Nevertheless, there exist analogous notions of
prime implicate and MUS in description logics. For prime implicates in DL, one
can simply refer to [Bie07] since only the notion of prime implicate in FOL is
used in this dissertation. A notion analogous to that of a MUS in description
logic is called justification: Given a TBox T and a DL axiom α s.t. T |= α,
T ′ ⊆ T is a justification for α if T ′ |= α but no strict subset of T ′ entails α.

1.2.2 Normalization

A TBox can be normalized to simplify the shape of the concept inclusions
while preserving entailment of concept inclusions in the former signature [BN03,
BHLS17]. This can often help us prove certain properties more conveniently. In
EL, a normalized TBox would have only normalized concept inclusions of the
following shape.

P v Q P1 u P2 v Q ∃R.P v Q P v ∃R.Q

Table 1.3 shows a normalization technique for EL where U ′ and V ′ are strictly
complex concepts, Q is an existing atomic concept, P is a fresh atomic concept,

6ALC is an example of a DL fragment possessing the bounded model property
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and U and V are any concepts. It only takes a linear number of these applications
until a TBox is normalized.

Table 1.3: Normalization rules for EL
U ′ v V ′ −→nr U ′ v P, P v V ′

U u V ′ v Q −→nr V ′ v P,U u P v Q
V ′ u U v Q −→nr V ′ v P, P u U v Q
∃R.V ′ v Q −→nr V ′ v P,∃R.P v Q
Q v ∃R.V ′ −→nr P v V ′, Q v ∃R.P
Q v U u V −→nr Q v U,Q v V

This results in a conservative extension of the original TBox. That is, an
entailed concept inclusion in the original signature will remain entailed after
normalization.

Proposition 1.2.2 (Normalization [BN03, BHLS17]). If an EL TBox T ′ is
obtained from T by applying one of the rules of Table 1.3, then T ′ |= T and T ′
is a conservative extension of T .

This normalization technique helps in many aspects of our abduction work.
In the following lemma, we show another property of conservative extensions
useful to turn abductive solutions of a normalized TBox to solutions for the
original TBox without the fresh concepts.

Lemma 1.2.3. For every EL TBox T , we can compute in polynomial time
an EL TBox T ′ in normal form such that for every other TBox H and every
CI U v V that use only names occurring in T , we have T ∪ H |= U v V iff
T ′ ∪H |= U v V .

Proof. Based on Prop. 1.2.2, we have

1. T ′ |= T , and

2. for every model I of T , there exists a model I ′ of T ′ s.t. for every concept
name P occurring in T , P I = P I

′
, and for every role name R ∈ ΩR

occurring in T , RI = RI
′
.

Now let H be a TBox and U v V a CI such that both only use names
occurring in T . If T ∪ H |= U v V , we observe that by Item 1, we have
T ′ ∪ H |= T ∪ H, and thus by transitivity of entailment, T ′ ∪ H |= U v V .
Assume T ∪H 6|= U v V . Then there exists a model I of T ∪H s.t. I 6|= U v V .
Since H, U and V only use names occurring in T , by Item 2, we can find a model
I ′ of T ′ s.t. I ′ |= H and I ′ 6|= U v V , and consequently, T ′ ∪H 6|= U v V . We
obtain that T ∪ H |= U v V iff T ′ ∪H |= U v V .

.

1.3 Deduction using Resolution and SOS Strat-
egy

I introduce the usual resolution calculus for clause sets and the set-of-support
strategy. This will serve as the primary reasoning engine for both first-order
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logic and description logic (by means of translation). The calculus consists of
two inference rules: Resolution and Factoring [Rob65,RV01]. The rules operate
on a state (N,M) where the initial state for a classical resolution refutation from
a clause set N is (∅, N), and for an SOS (set-of-support) refutation with clause
set N and initial SOS M the initial state is (N,M). I describe the rules in the
form of abstract rewrite rules operating on states (N,M). As usual, we assume
for the resolution rule that the involved clauses are variable-disjoint. This can
always be achieved by substituting similar variables in different clauses.

Two terms t1 and t2 are unifiable if there exists a substitution σ so that
t1σ = t2σ. The substitution σ is then called a unifier of t1 and t2. The unifier σ
is called most general unifier , written σ = mgu(t1, t2), if any other unifier σ′ of
t1 and t2 can be represented as σ′ = σσ′′, for some substitution σ′′.

Resolution (N,M ] {C ∨K}) ⇒RES (N,M ∪ {C ∨K, (D ∨ C)σ})
provided (D ∨ L) ∈ (N ∪M) and σ = mgu(L, comp(K))

Factoring (N,M ]{C ∨L∨K}) ⇒RES (N,M ∪{C ∨L∨K}∪{(C ∨L)σ})
provided σ = mgu(L,K)

The clause (D ∨ C)σ is called the result of a Resolution inference between
its parents. The clause (C ∨ L)σ is called the result of a Factoring inference of
its parent. The parents can also be called premises. The result of an inference
is also called resolvent . A sequence of rule applications (N,M)⇒∗RES (N,M ′)
is called a resolution derivation7. It is called an (SOS) resolution derivation if
N 6= ∅. In case ⊥ ∈M ′ it is called a (SOS) resolution refutation. A derivation
is linear when the resolvent of one inference is always a premise of the next
inference. A clause D ∈ N is redundant in N if there is a resolution derivation
from N \ {D} to some C s.t. C subsumes D (and irredundant otherwise).

First-order logic is not decidable. Nevertheless, resolution calculus has been
shown to be sound and refutationally complete. That is, given an unsatisfiable
clause set M , there is a finite sequence of the rule applications (∅,M) ⇒∗RES
(∅,M ′) s.t. ⊥ ∈M ′. Moreover, by adding the restriction that N is satisfiable in
the initial pair (N,M), the same also holds true for SOS resolution.

Theorem 1.3.1 (Soundness and Refutational Completeness of (SOS) Resolu-
tion [Rob65,WRC65]). Resolution is sound and refutationally complete [Rob65].
If for some clause set N and initial SOS M , N is satisfiable and N ∪ M is
unsatisfiable, then there is a derivation of ⊥ from (N,M) [WRC65].

In more restrictive settings, the set-of-support strategy can still be complete
for the clause set N with SOS M . For example, if N is saturated by superposi-
tion and does not contain the empty clause (which cannot happen for satisfiable
N), then it is also complete under the strong superposition inference restric-
tions [BG94].

An important property of the resolution calculus for our deductive reasoning
task is that for any entailed clause, a subsuming clause can always be derived.

Theorem 1.3.2 (Deductive Completeness of Resolution [NdW95,Lee67]). Given
a set of clauses N and a clause D, if N |= D, then there is a resolution derivation
of some clause C from (∅, N) such that C subsumes D.

7When the context is clear, one can use derivation as well
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Chapter 2

State-of-the-Art

There has been a lot of work in regard to explaining entailment and non-
entailment. In this section, I will give a brief summary in particular for two
fragments: first-order logic and description logic (and in related fragments when
relevant). Bear in mind that there are other works in answer set programming,
logic programming, non-monotonic reasoning, modal logic, etc. and different ar-
eas such as machine learning and NLP have been useful to help with clause set
explanation such as finding a shorter proof or relevant axioms (interested readers
may refer to, for example, [RS21]) but I consider these to be beyond the scope
of this dissertation. In contrast, the works I included here have not necessarily
stated that they are for clause set explanations. This is to be expected since a
notion may often be useful for a lot of other things such as debugging and repair.
The aim here is to collect works that can be put into the perspective of clause
set explanation having parallels with the notions proposed in this dissertation.

2.1 Entailment Explanation

In general, I categorize works related to entailment explanation into four domains:
relevancy, quality measure, abstraction, and presentation. Relevancy deals with
choosing clauses to use for a deduction, the quality measure provides notions
of preference on deductions, abstraction deals with intermediate lemmas, and
presentation deals with different ways a proof can be delivered to users.

I will primarily focus on relevancy because it is the one related to the first
contribution of this dissertation. In addition, one could also argue that inconsis-
tency degree deserves a separate section but I put it here due to it being related
to the proposed relevancy notion in this dissertation. So, it must be kept in mind
that, despite being brief in this section, the other ones do not necessarily lack
interesting references.

2.1.1 Relevancy

A relevancy notion deals with what clauses/axioms to use to show an entailment.
Existing works related to relevancy rely on proofs or a notion of a minimal set
(e.g. MUS, justification, and irredundant equivalent clause set). Clauses are often
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defined in terms of whether they are in all of the considered sets/proofs, in at
least one of the set/proof, or not at all.

Proof

A clause used in all refutations, in our terminology, is a syntactically relevant
clause. In first-order logic, it can be checked via the classical set-of-support
strategy [WRC65]. This is more well-known than our notion of syntactic semi-
relevance and it can alternatively be defined via MUS, justification (in DL), or
irredundant equivalent subset.

A clause used in some refutation, in our terminology, is syntactically semi-
relevant clause. In propositional logic, it is called a usable clause in [KLM06]
and defined to be in the plain clause set in [KK09]. Usable clauses outside of
any MUSes are semantically superfluous (which is not the case in our first-order
setting). In [BOPP20], a result that resembles our notion of semi-relevance is
presented (but also not in full first-order logic). DL axioms are classified w.r.t.
how they are used in the possible first-order refutations via a translation scheme.

MUS

The following notion is comparable to our notion (they even coincide for clause
sets with no redundant clauses). This is because characterizing clause relevance
via MUS in propositional logic makes sense since a clause outside of any MUSes
would either be irrelevant or redundant.

Definition 2.1.1 (MUS-based Relevance [KLM06]). Given an unsatisfiable
clause set N in propositional logic, a clause C ∈ N is

– necessary if it occurs in all MUSes,

– potentially necessary if it occurs in some MUS,

– never necessary if it is not in any MUS.

A different but related notion has also been applied for propositional abduc-
tion [EG95].

The use of MUS has also been explored in first-order logic [MM20]. There,
the formulation is more general: The given set of clauses N is divided into
N = N ′ ] N ′′ where N ′ is a non-relaxable clause set while N ′′ is a relaxable
clause set which must be satisfiable. a MUS is defined as a subset M of N ′′ s.t.
N ′]M is unsatisfiable but removing a clause from M would render it satisfiable.
In this setting, this definition does not strictly conform to ours.

Computation MUS is apparently predominant in propositional logic [PY84,
Kul00, KK09, MKIM19, KLM06]. An example of the earliest works regarding
complexity is the problem of determining whether a clause set is a MUS. It was
proven in [PW88] to be Dp-complete1 for a propositional clause set with at most
three literals per clause and at most three occurrences of each propositional
variable .

1A language is in Dp if it is in the intersection of a language in NP and a language in
coNP [PY84]
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There are also some works in satisfiability modulo theory (SMT) [ZXZ+11,
GST16,CGS07,CGS11]. A deletion-based approach well-known in propositional
logic has also been lifted for MUS extraction in SMT [GST16]. In [CGS07,
CGS11], the approach is to combine an SMT solver with some external propo-
sitional core extractor. Recursive clause removals using depth-first-search on
some graph representation of the subformulas may also serve as an alternative
approach [ZXZ+11].

For the function-free and equality-free first-order fragment FEF, there is a
”decompose-merge” approach to compute all MUSes [XL16,LL18].

Other works include counting [BM21] and computing union [MKIM19], and
enumeration [BK16,AMM15].

Justification

In description logic, a notion that is related to MUS is called justification usually
identified via axiom pinpointing [KPHS07, SC03, BP10, BOPP20]. The defini-
tion is similar in spirit but normally used for an entailment problem instead
of unsatisfiability: justification is basically a minimal axiom set entailing some
given DL axiom α. It is in fact loosely related to MUS. For example, if we
have {P1 v P2 u P3, P2 v P4} |= P1 v P4 the set {P1 v P2 u P3, P2 v P4}
is a justification but when reformulated in FOL as an unsatisfiable set, we get
{¬P1(x) ∨ P2(x),¬P1(x) ∨ P3(x),¬P2(x) ∨ P4(x), P1(sk0),¬P4(sk0)} which is
actually not a MUS due to P1(x) ∨ P3(x).

In [CMPY22], the set of axioms occurring in all justifications and the ones
in a justification are distinguished. Both are in some way related to our notion
of relevant and semi-relevant clauses respectively. The test of whether an axiom
exists in some justification is also discussed in [PS17].

Justifications are in some way related to the so-called pinpointing formula
(which is a useful alternative to describe the relation between inferences the
considered entailment). Given an entailment α and an ontology O, a pinpoint-
ing formula is a monotone propositional formula ϕ over the axioms in O (as
propositional symbols) s.t. every model of the formula entails α, and the set
of justifications corresponds exactly to the set of minimal models of ϕ. Thus,
we can use pinpointing formulas to generate justifications. There are methods
to compute pinpointing formulas by intercepting reasoning procedures, as, for
instance, done for EL in [BPS07]. Pinpointing formulas are in some way related
to provenance semirings in database access [GKT07], recently investigated also
in the context of DLs [BO19]. Here, a notion of provenance polynomial formula is
useful to link a query result to the database entries involved in its computation.

Computation In general, there are two approaches to compute justifications:
black box and white box. On the one hand, a black-box approach interacts with
an external reasoner but only looks into the input and output [KPHS07]. On the
other hand, white box approach immediately modifies the internal workings of a
reasoner (e.g. Tableau [BP10,SC03]). For the sake of efficiency, the computation
of the lean kernel can approximate the union of them [PMIM17].
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Irredundant Equivalent Subset

In propositional logic, there exists a notion based on the semantic equivalence
[Lib05].

Definition 2.1.2 (Equivalence-based relevance). Given a clause set N in propo-
sitional logic, a clause C is

– necessary , if it is in all irredundant N ′ ⊆ N s.t. N ′ ↔ N ;

– useful , if it is in some irredundant N ′ ⊆ N s.t. N ′ ↔ N ; and

– useless, if it is not in any irredundant N ′ ⊆ N s.t. N ′ ↔ N .

where a clause C is redundant in N if N \ {C} |= C (and irredundant otherwise)

This notion does not impose the clause set to be unsatisfiable. In the case of
unsatisfiable clause set, it coincides with the previous MUS-based relevance (if
N is unsatisfiable, then the given N ′ would be unsatisfiable and irredundancy
restriction excludes any clause outside of any MUSes from N ′). An approach to
compute a minimal irredundant equivalent subset is discussed in [BJLM12].

Inconsistency Degree

Inconsistency degree measures how inconsistent a propositional clause set is.
In [HK10], a more general set of axioms that must be satisfied for such degrees
is defined. It also provides examples such as the number of MUSes or simply
the drastic measure where a clause set gets the measure of 1 when unsatisfiable
and 0 otherwise. Despite that works in this direction often do not define some
relevancy notion explicitly, this can in fact be useful. For example, also in [HK10],
a clause that does not contribute to inconsistency is called free formula (related
to the proposed irrelevant clause in this dissertation). A clause set with an
inconsistency degree of zero is satisfiable (related in some way to the proposed
relevance clauses in this dissertation).

A lot of works proposed different ways to define such measure, but due to its
resemblance to the proposed notion of conflict literal in Def. 3.1.5, I specifically
focus on a notion of inconsistency degree via the so-called conflicting variables
from [JMRS17].

Definition 2.1.3 (Conflicting Variable). Given an unsatisfiable propositional
clause set N , an atom P is a conflicting variable if there exist two satisfiable
sets N ′, N ′′ ⊆ N s.t.

– N ′ |= P ,

– N ′′ |= ¬P

– N ′ ∪N ′′ is a MUS

The existence of such variables implies unsatisfiability and vice versa.

Lemma 2.1.4 (Conflicting Variables for Unsatisfiability [JMRS17]). Given a
propositional clause set N , N is inconsistent if and only if N has at least one
conflicting variable.
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The inconsistency degree of an unsatisfiable clause set in propositional logic
is the ratio between the number of conflicting variables and the number of
all variables. analogous notions have also been defined in description logic, for
example in [MQHL07].

2.1.2 Quality Measure

In propositional logic, there has been some interest in finding small refutations.
It has been shown that the size of a refutation can be exponential [Hak85] and
finding a short refutation is intractable [Iwa97,ABMP98].

In [ABB+21], the notion of proof quality measure is generalized via a class
of measures called the recursive quality measure. This applies to a wide variety
of measures (defined on some calculi) such as size [ABB+20a,ABB+20b], depth,
and tree width (if proofs are assumed to be in tree shape).

2.1.3 Abstraction

Works in this domain provide intermediate abstraction or lemmatization to
cover users from tedious details in proofs [Hua94,KUV15]. Protégé [KKS17], a
DL tool, can also perform some lemmatization when visualizing a proof from a
justification.

2.1.4 Presentation

This line of work aims towards transforming or delivering proof that is more
easily understandable to users. One way to present proofs is via a linear format.
A proof here has also been translated into a natural language (e.g. english). The
work in [Cos96] uses functional proof representation.

Another approach is via a non-linear graphical representation. For this, a
number of DL tools are available: Evonne [ABB+22], Protégé [KKS17], and
ELK [KKS14].

In [Pfe84], it is argued that natural deduction proofs are more comprehensible
than refutation proofs and proposed a transformation technique. A notion of
proof redirection [Bla13] has also been proposed to output a natural deduction
proof with additional features such as case analysis and nested subproof.

Cognitive science has been used also to take into account user cognition [Fie05].
In [DHS06], resolution is used as a basis for an explanation of a DL proof. It works
in three steps: translation, finding a refutation, and explanation by traversal of
its graph representation.

2.2 Non-Entailment Explanation

I classify three ways of explaining a non-entailment. This is primarily due to
[Koo21b] for description logic but I also consider the model-based approach as
separate (because it is apparently not uncommon in the FOL literature and
that this immediately exploits the definition of non-entailment). The first one
tries to find a counter-example that holds for N but not for ϕ. The second one
tries to find an extension of the ontology s.t. any model of this extension is not
the model of the observation. Last, abduction is in essence finding some other
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axiom set N ′ s.t. N ]N ′ |= ϕ. The first approach using counter-example has an
apparent weakness because models may contain too many parts not useful for
the explanation while the second one is reducible to abduction. The one that
is rather predominant (and comparatively relevant to our contribution) in the
literature is actually abduction. So, in the following, I only present the first two
briefly and focus more on abduction.

2.2.1 Counter Example

Suppose we have a non-entailment N 6|= ¬Cat(x) ∨ Dog(x) where the domain
consists of some finite set of animal breeds, habitats, and preys. We can explain
this by finding a cat that is not a dog for example Cat(bobTail) but ¬Dog(bobTail).
One that can be used is the readily available notion of interpretation. We try to
find a model I of N that is not a model of α. This is the most straightforward
approach as it directly exploits the definition of an entailment. However, this
could be problematic if only models with an infinite domain are available. Even
with fragments satisfying the bounded model property such as EL and ALC, a
model can be very large and may contain information that is not necessarily
useful. For example, information regarding the habitat of bobTail may be forced
to exist by N for a model of N satisfying Cat(bobTail) even though, e.g., cats
and dogs in N share the same habitat, and thus habitat is not a distinguishing
factor.

Finding a finite model (if it exists at all) for a counter-example can be done
using a model finder tool. Because N 6|= φ iff N ] {¬φ} is satisfiable, a model
of N ] {¬φ} certifies the non-entailment. There are many that one can use
in first-order logic. A few of them are Alloy Analyzer [Jac06], KodKod [TJ07],
Paradox [CS03], Mace4 [McC03], and SEM [ZZ95], etc. Interested reader can
refer to [ZZ13] for more. In description logic, we can use Tweezer [WP07], Su-
perModel [BSP09], and Protégé2 [KKS17,BB07].

2.2.2 Extension with Models not Satisfying the Observa-
tion

The idea of this approach is to extend the given background knowledge to
prevent the addition of any axioms which could make the observation entailed.
This approach is only recently introduced in the workshop paper [Koo21b]. This
can in some way be reduced to an abduction problem. There, it is argued that,
the other approaches may be too restrictive due to the open-world assumption
(unknown axioms are not necessarily false if they do not contradict the existing
knowledge). Due to the lack of first-order literature, I explain this specifically
for description logic: given an ontology O and a DL axiom α, we try to find
another ontology H s.t.

(i) O ]H is consistent, and

(ii) for any interpretation I, if I |= O ]H then I 6|= α.

Interested readers may also consult this work for a bit of an outlook for how it
may be done via ABox abduction along with its challenges.

2with an additional plugin invoking the first-order tool Mace4
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2.2.3 Abduction

Abduction is an approach to explaining a non-entailment that is rather prevalent
in the literature. Its formulation may come in different flavors [EG95] but I
only focus on the logic-based abduction where we try to find an extension of
a clause set to make it entail some observation. The number of hypotheses for
an abduction problem can be huge and some minimality notions have also been
defined. In [EG95] the following notions are discussed: subset minimality, size
minimality, priority functions, and penalization function. One way to compute
the hypotheses is via prime implicates [Pop73]. This is in essence a resolution-
based approach. As alternatives, tableau and sequent calculi have also been
considered [MP93] where, different from the resolution calculus, they do not
require the initial clausification.

In description logic, abduction problems may also be formalized differently for
various purposes. Concept abduction tries to find the subsumees of an atomic
concept w.r.t. a TBox [Bie08, CNS+04]. Relaxed abduction problems define
multiple observations in which not all of them need to be entailed [Hub16]. Here,
the preference regarding which one to entail is restricted via some notion of partial
ordering. Abduction where the observation is a single axiom (which I will focus
more on) has also attracted a lot of research (e.g., TBox abduction [DWM17b,
WDL14]).

There are also other abduction works in first-order related fragments worth
mentioning: first-order modulo theories [EPS18], ground equational logic [Tou16],
modal logic [MP95]. In fact, the works in [EPS18,Tou16] were initially the ones
considered for the prime implicate-based abduction technique to be exploited
for the connection-minimality notion. Even though this dissertation eventually
generated the prime implicates using the resolution calculus as a white box,
these works may still be reconsidered for a computation technique. In contrast,
the work in [MP95] may also be interesting due to the close relationship between
ALC and modal logic.

In the following two sections, I will only elaborate more on prime-implicate
based abduction in FOL while TBox abduction along with its relevant minimality
notions will be the focus of the description logic paragraphs. This is simply due
to their importance in our proposed notion of abduction.

First-Order Abduction

While this is not the only problem formalism, the kind of first-order abduction
considered here is as follows: given a set of clauses N and another clause ψ
s.t. N 6|= ψ, abduction tries to find another set of clauses N ′ s.t. N ]N ′ |= ψ.
As pointed out in [Pop73], we can rely on deduction. This is the case with the
resolution calculus previously introduced. If it holds that N 6|= ψ and we have
ϕ = L1∨· · ·∨Lk as a prime implicate of N ]{¬ψ}, then N ′ = {comp(L1)∧· · ·∧
comp(Lk)} would be our abductive solution because of the following equivalence.

N ] {¬ψ} |= ϕ iff N ] {¬ϕ} |= ψ

In other words, there is some sort of duality between abduction and deduction.
Some abduction mechanisms using the resolution calculus have been based
on this dualism [Mar91, Pop73, CP86, Pop73]. Here, ϕ is a result of deductive
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reasoning from N ] {comp(ψ)}. The key property that any abductive solution
must satisfy is that its extension N ]N ′ must be consistent.

DL Abduction

The kind of abduction under consideration in this dissertation is where we try
to find an extension of an axiom set to make it entail some observation. I distin-
guish four kinds of basic abduction problems that are more closely related our
setting: Concept abduction [Bie08, CNS+04], ABox abduction [Koo21a, DS19,
CLM+20,PH20,PH17,COSS13,DWS14,DQSP12,HB12,KES11], TBox abduc-
tion [DWM17b,WDL14] and knowledge base abduction [KDTS20,EKS06].

Definition 2.2.1 (Basic DL abduction problem). The following are the basic
abduction problems in DL.

– (Concept Abduction) Given an ontologyO, a set of atomic concepts Σ ⊆ ΩC,
and an atomic concept Q, find {P1, . . . , Pn} ⊆ Σ s.t. O |= P1u· · ·uPn v Q.

– (ABox Abduction) Given an ontology O, and an ABox axiom α s.t. O 6|= α,
find a set of ABox assertion H s.t. O ]H |= α.

– (TBox Abduction) Given a TBox T , and a concept inclusion U1 v U2 s.t.
T 6|= U1 v U2, find a set of concept inclusions H s.t. O ]H |= U1 v U2.

– (Ontology Abduction) Given an ontology O and either a TBox or an ABox
axiom α s.t. O 6|= α, find another ontology H s.t. O ]H |= α.

Here, H is called a hypothesis.

The concept abduction does not explicitly state some non-entailment condi-
tion, but this can still be formulated as one is first-order: O |= P1u· · ·uPn v Q iff
fo(O)∧¬Q(sk0) |= ¬P1(sk0)∨ . . .∨¬Pn(sk0) and thus fo(O) 6|= Q(sk0) with fo

translates O to equivalent first-order formulas and sk0 is a constant. From this,
we get the following abduction problem: given a non-entailment fo(O) 6|= Q(sk0)
find subset-minimal set of atoms {P1(sk0), . . . , Pn(sk0)} s.t. when added to
fo(O), we get the wanted entailment. Another variation of concept abduction is
defined in [CNS+04]: Given a non-entailment O 6|= U1 v U2, find another concept
V s.t. O |= U1 uV v U2. One can easily look into the definitions that TBox and
ABox abductions are special cases of ontology abduction. In the following, I will
focus more on TBox abduction.

The number of hypotheses can potentially be very large or even infinite.
Many ways to select them have been devised. I classify these approaches into two
sets. The first one takes into account some expert knowledge while the second
provides a means of saying ”this hypothesis is preferred to that hypothesis”
only via properties intrinsic to the abduction problem itself. It is not a strict
classification since one can (and usually does) mix and match them together.

Expert knowledge may come in various forms. Signature restriction for ex-
pressive DL is used in [KDTS20] (in conjunction with semantic minimality in-
troduced later). In fact, TBox abduction is usually accompanied by a restriction
that one can only use simple concept inclusions of the form P v Q with atomic
concepts P and Q. This immediately turns the solution space into a finite set.
In [DWM17b, HLP10], a pattern-based restriction from which the hypotheses
should be instantiable is defined. An oracle function [WDL14] can also be used
to simply limit the possible axioms in the hypotheses.
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Definition 2.2.2 (Hypotheses selection with expert knowledge). Given a TBox
T and a concept inclusion U1 v U2 s.t. T 6|= U1 v U2, a hypothesis H can be
accepted via the following restriction:

(i) Signature [KDTS20]: if H is built over some predefined signature Σ ⊆
ΩC ] ΩR

(ii) Justification pattern [DWM17b]: ifH is instantiated from some justification
pattern (i.e. a set of TBox axioms where all atomic concepts and roles in it
are considered variables, disjoint from ΩC ]ΩR, and replaceable injectively
only by atomic concepts and roles in ΩC and ΩR).

(iii) Oracle function [WDL14]: if axioms in H may only be taken from some
predefined set.

The second approach does not rely on any external information. In essence,
all of them provide some sort of means to compare hypotheses with each other.

Definition 2.2.3 (Hypotheses selection via internal properties [WDL14]). Given
a TBox T , and a concept inclusion U1 v U2 s.t. T 6|= U1 v U2, the hypothesis
satisfies

(i) subset minimality if there is no other hypothesis H′ s.t. H′ ( H

(ii) size minimality if there is no other hypothesis H′ s.t. |H′| < |H|

(iii) semantic maximality if there is no other hypothesis H′ s.t. T ] H′ |= H

(iv) semantic minimality if there is no other hypothesis H′ s.t. T ] H |= H′

(v) weak semantic minimality if there is no other hypothesis H′ s.t. H |= H′

Subset minimality removes axioms from a hypothesis if it preserves the result-
ing entailment. Size minimality prefers hypotheses with a smaller size. Semantic
minimality prefers something that is semantically closest to the observation and
in particular, must generally be accompanied by some other ways to restrict
the solutions (e.g. with signature restriction [DS17]) to avoid the trivial hypoth-
esis {U1 v U2}). Semantic maximality (the opposite of semantic minimality)
prefers something more ”informative”: in a more general sense of abduction, if
T ] H′ |= H, then H′ is also an abductive explanation for H. H′ is therefore
more informative than H. In [WDL14], there are three different ways of combin-
ing semantic maximality and subset minimality (minmax, maxmin, and skyline
optimal) which will not be explained further here.

In general, there is really no consensus regarding what constitutes ”good”
hypotheses. The easiest one to notice is semantic minimality versus semantic
maximality because they are directly in opposition to each other. (Weak) se-
mantic minimality is also in some way in opposition with the subset minimality
because if H ( H′ then H |= H and also T ,H |= H for any T . The following
Ex. 2.2.4 shows how the previous minimality notions may disagree with each
other. Here, H1 is preferred to H2 w.r.t. (i), (ii), and (iii) while H2 is preferred
to H1 w.r.t. (iv) and (v). Without signature restriction, semantic minimality
here even accepts only H3. One might wonder why H2 may even be accepted
in the first place. This is due to the way T is used. H1 may be generated by
axioms in T involving R2 while H2 involves R1.
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Example 2.2.4 (Existing minimality notions). Given

T = {U1 v P, U1 v ∃R1.Q, U1 v ∃R2.P,

S u ∃R1.T v U2,∃R2.S v U2}

s.t. T 6|= U1 v U2. The following are three possible hypotheses.

H1 ={P v S} H2 ={P v S,Q v T} H3 ={U1 v U2}
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Chapter 3

Explaining Entailment via a
new Notion of Relevance

I introduce a notion of syntactic relevance relying on refutations along with
semantic relevance which can serve as its semantic characterization. The semantic
relevance makes use of an alternative notion called conflict literals to describe
unsatisfiability. In addition, the need for a test of these relevance notions leads
to a generalization for the completeness of the set-of-support strategy.

Syntactic Relevance

I distinguish clauses into the ones that are necessary for any refutations called syn-
tactically relevant, from clauses that are useful called syntactically semi-relevant,
and from clauses that are not needed at all called syntactically irrelevant. For
an illustration, consider the following unsatisfiable clause set N with Fig. 3.1
showing a refutation of N in a tree form.

N = {(1) : P (f(a)) ∨ S(x3),

(2) : ¬S(x7),

(3) : ¬Q(c,a) ∨Q(b,f(x6)),

(4) : Q(x1,x2) ∨R(x1),

(5) : ¬R(x5),

(6) : ¬P (x4) ∨ ¬Q(b,x4)}

This means all of the clauses in N are syntactically semi-relevant. Unlike the
other syntactically semi-relevant clauses, clause (3) is not relevant because there
exists another refutation without (3) depicted in Fig. 3.2.

In propositional logic, it is sufficient to consider MUSes to explain unsatisfia-
bility on the original clause level, Lemma 3.1.14. However, it is not the case with
first-order logic. N \ {(3) : ¬Q(c, a) ∨Q(b, f(x6))} is a MUS, for which Fig. 3.2
shows a refutation from these clauses. Clause (3) : ¬Q(c, a) ∨Q(b, f(x6)) is not
in any MUS but I argue that this should not be disregarded. This is because
the refutation involving (3) uses a different instantiation for the other clauses
than the one without (3). In the refutation of Fig. 3.1 clause (5) : ¬R(x5) is
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(11) ⊥

(10) R(c)

(8) ¬Q(b,f(a))

(6) ¬P (x4) ∨ ¬Q(b,x4)(7) P (f(a))

(1) P (f(a)) ∨ S(x3)(2) ¬S(x7)

(9) Q(b,f(x6)) ∨R(c)

(4) Q(x1,x2) ∨R(x1)(3) ¬Q(c,a) ∨Q(b,f(x6))

(5) ¬R(x5)

{x4 7→ f(a)}

{x3 7→ x7}

{x6 7→ a}

{x1 7→ c, x2 7→ a}

{x5 7→ c}

Figure 3.1: A refutation of N depicted as a tree

(11):⊥

(14):R(b)

(13):¬Q(b,f(a))

(12):S(x3) ∨ ¬Q(b,f(a))

(6):¬P (x4) ∨ ¬Q(b,x4)(1):P (f(a)) ∨ S(x3)

(2):¬S(x7)

(4):Q(x1,x2) ∨R(x1)

(5):¬R(x5)

{x3 7→ x7}

{x4 7→ f(a)}

{x1 7→ b, x2 7→ f(a)}

{x5 7→ b}

Figure 3.2: A refutation of N without (3) : ¬Q(c, a) ∨Q(b, f(x6))

instantiated with {x5 7→ c} where in the refutation of Fig. 3.1 it is instantiated
with {x5 7→ b}. This means that the two refutations are different and clause
(3) : ¬Q(c, a) ∨Q(b, f(x6)) should also be taken into account.

Semantic Relevance

As a companion to the syntactic relevance, I also propose a semantic relevance
based on the notion of a conflict literal. A ground literal L is a conflict literal
in a clause set N if there are some satisfiable sets of instances N1 and N2 from
N s.t. N1 |= L and N2 |= comp(L). I argue that relying on conflict literals is
useful for two reasons. First, explaining that a clause set is unsatisfiable via the
absence of a model is not very helpful since there is nothing to deal with in the
first place. Second, the notion of MUS (as we have seen before) can only partially
explain an entailment. In some sense, a conflict literal provides a middle ground
to explain how a clause relates to unsatisfiability between the lack of models
and MUSes. It also better reflects our intuition that there is a contradiction (in
the form of two simple ground consequences that cannot be both true at the
same time) in an unsatisfiable set of clauses.

From Fig. 3.1, it can be deduced that the literals R(c) and ¬R(c) are conflict
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literals because

N \ {(5) : ¬R(x)} |= R(c)

{(5) : ¬R(x)} |= ¬R(c)

where both {(5) : ¬R(x)} and N \ {(5) : ¬R(x)} are satisfiable. From the
refutation in Fig. 3.2, one can see that (5) : ¬R(x) is syntactically relevant due
to N \ {(3) : ¬Q(c, a) ∨Q(b, f(x6))} being a MUS. We will also show that in a
ground MUS, any ground literal in it is a conflict literal, Lemma 3.1.15. In the
example, it is still possible to identify the conflict literals by looking into the
ground MUS constructed from the instantiations of the refutations in Fig. 3.1
and Fig. 3.2. This leads to the following conflict literals for N , see Def. 3.1.5:

conflict(N) = {(¬)P (f(a)),

(¬)Q(b, f(a)), (¬)Q(c, a),

(¬)R(b), (¬)R(c)} ∪
{(¬)S(t) | t is a ground term}

We can acquire these conflict literals by applying the substitutions in the refuta-
tions from Fig. 3.1 and Fig. 3.2 towards the input clauses. They correspond to
two first-order MUSes M1 and M2. Here, if a literal is ground then it is a conflict
literal. The other conflict literals can be obtained by grounding the variables.

M1 = {(5) : ¬R(c), (2) : ¬S(x7),

(1) : P (f(a)) ∨ S(x3),

(3) : ¬Q(c, a) ∨Q(b, f(a)),

(4) : Q(c, a) ∨R(c),

(6) : ¬P (f((a))) ∨ ¬Q(b, f(a))}
M2 = {(5) : ¬R(b),

(4) : Q(b, f(a)), (2) : ¬S(x7),

(1) : P (f(a)) ∨ S(x3),

(6) : ¬P (f(a)) ∨ ¬Q(b, f(a))}

Here, even though (3) : ¬Q(c, a) ∨ Q(b, f(x6)) is not in the only MUS on the
first-order level, an instance of it does occur in some ground MUS, take M1 and
an arbitrary grounding of x3 and x7 to the identical term t, and the conflict
literal (¬)Q(c, a) depends on clause (3). Note that in general, determining conflict
literals is not obvious since we do not necessarily know beforehand which ground
substitution to apply. In addition, it is possible that the number of such ground
MUSes is not finite and its size is unbounded.

Based on the notion of conflict literals, I introduce a notion of semantic rele-
vance, Def. 3.1.11 which may also characterize the syntactic relevance. Because
redundant clauses may induce unexpected behaviors, we additionally impose a
refinement of redundancy upon the clause set at the first-order level. This is
the notion of independency: a clause set is independent if it does not contain
clauses with instances implied by satisfiable sets of instances of different clauses
out of the set. Given an unsatisfiable independent set of clauses N , a clause C
is relevant in N if N without C has no conflict literals, it is semi-relevant if C
is necessary to some conflict literals, and it is irrelevant otherwise.
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Relevant clauses are the ones whose removal does not preserve the unsatisfia-
bility. Irrelevant clauses can be freely identified once we know the semi-relevant
ones. The more interesting case is the semi-relevant clauses. For the running
example, (3) : ¬Q(c, a) ∨Q(b, f(x6)) is semi-relevant because it is necessary for
the conflict literals (¬)R(c) and (¬)Q(c, a). More specifically, the set of conflicts
for N \ {(3) : ¬Q(c, a) ∨Q(b, f(x6))} does not include (¬)R(c) and (¬)Q(c, a):

conflict(N \ {(3) : ¬Q(c, a) ∨Q(b, f(x6))}) = {(¬)P (f(a)), (¬)Q(b, f(a)), (¬)R(b)}
]{(¬)S(t)|t is a ground term}

These conflict literals can be seen from M2: Suppose that the variables x3

and x7 in M2 are both grounded by an identical term t. Take some ground literal,
for example, P (f(a)) ∈ conflict(N \ {¬Q(c, a) ∨Q(b, f(x6))), and define

N∅ = {R ∈M2|P (f(a)) 6∈ R and ¬P (f(a)) 6∈ R}
= {(5) : ¬R(b), (4) : Q(b, f(a)), (2) : ¬S(t)}

NP (f(a)) = {R ∈M2|P (f(a)) ∈ R}
= {(1) : P (f(a)) ∨ S(t)}

N¬P (f(a)) = {R ∈M2|¬P (f(a)) ∈ R}
= {(6) : ¬P (f(a)) ∨ ¬Q(b, f(a))}

N∅∪NA(f(a)) and N∅∪N¬P (f(a)) are satisfiable because of the Herbrand model
{Q(b, f(a)), P (f(a))} and {Q(b, f(a))} respectively. In addition,

N∅ ∪NA(f(a)) |= P (f(a))

N∅ ∪N¬P (f(a)) |= ¬P (f(a))

because P (f(a)) can be acquired using resolution between (1) and (2) for N∅ ∪
NP (f(a)) and ¬P (f(a)) can be acquired using resolution between (4) and (6) for
N∅ ∪ N¬P (f(a)). We can similarly show that the other ground literals are also
conflict literals.

Generalized SOS Strategy

An SOS refutation is a refutation where there is initially a dedicated non-
empty clause set called SOS in which the inferences always involve at least
one clause in the SOS and put the resulting clause back in it. So, the refuta-
tion in Fig. 3.1 is not an SOS refutation from the syntactically semi-relevant
clause (3) : ¬Q(c,a) ∨ Q(b,f(x6)), because only the shaded part represents an
SOS refutation starting with this clause. More specifically, there are two in-
ferences ending in (8) : ¬Q(b,f(a)) which violates the condition for an SOS
refutation. Nevertheless, it can be transformed into an SOS refutation where
clause (3) : ¬Q(c,a) ∨ Q(b,f(x6)) is in the SOS, Fig. 3.3. Please note that
N \ {(3) : ¬Q(c, a) ∨ Q(b, f(x6))} is still unsatisfiable and classical SOS com-
pleteness [WRC65] is not sufficient to guarantee the existence of a refutation
with SOS {(3) : ¬Q(c,a)∨Q(b,f(x6))}. In fact, I describe how the transformation
can be done in Sect. 3.2 to prove Th. 3.2.7, which is a generalization of the SOS
strategy that is useful to test for (syntactic) semi-relevancy.
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(11):⊥

(10):R(c)

(8’):S(x3) ∨R(c)

(1):P (f(a)) ∨ S(x3)(7’):¬P (f(x6) ∨R(c))

(6):¬P (x4) ∨ ¬Q(b,x4)(9):Q(b,f(x6)) ∨R(c)

(4):Q(x1,x2) ∨R(x1)(3):¬Q(c,a) ∨Q(b,f(x6))

(2):¬S(x7)

(5):¬R(x5)

{x3 7→ x7}

{x6 7→ a}

{x4 7→ f(x6)}

{x1 7→ c, x2 7→ a}

{x5 7→ c}

Figure 3.3: Semi-relevant clause (3) : ¬Q(c, a) ∨Q(b, f(x6)) in the SOS

3.1 A New Notion of Relevance

I now introduce the syntactic notion of relevance and its characterization formally.
This will be done first by introducing the necessary notions. The notion of
refutation is used for syntactic relevance while its semantic characterization
relies on conflict literals and dependency.

3.1.1 Syntactic Relevance

Before we jump into the formal definition, one thing that must be clear is
that calculus is basically a procedure to test for unsatisfiability. As such, in a
derivation, a clause not related to the final derived clause may be generated. For
our notion of deduction and refutation, we do not need such clauses. I call a
compact form of derivation a deduction where any unrelated clauses are omitted.

Definition 3.1.1 (Deduction). A deduction πN = [C1, . . . , Cn] of a clause Cn
from some clause set N is a finite sequence of clauses such that for each Ci the
following holds:

1.1 Ci is a renamed, variable-fresh version of a clause in N , or

1.2 there is a clause Cj ∈ πN , j < i s.t. Ci is the result of a Factoring inference
from Cj , or

1.3 there are clauses Cj , Ck ∈ πN , j < k < i s.t. Ci is the result of a Resolution
inference from Cj and Ck,

and for each Ci ∈ πN , i < n:

2.1 there exists exactly one factor Cj of Ci with j > i, or

2.2 there exists exactly one Cj and Ck such that Ck is a resolvent of Ci and
Cj and i, j < k.

The subscript N in πN can be omitted if the context is clear.
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A deduction π′ of some clause C ∈ π, where π, π′ are deductions from
N is a subdeduction of π if π′ ⊆ π, where for the latter subset relation we
identify sequences with multisets. A deduction πN = [C1, . . . , Cn−1,⊥] is called
a refutation.

We assume that deductions are variable disjoint and take the form of trees.
Variable disjointness can be achieved via variable renamings while one can recall
that this notion of a deduction implies a tree structure. Both assumptions allow
for the existence of overall grounding subsitutions. A grounding of an overall
substitution τ of some deduction π is a substitution τδ such that codom(τδ)
only contains ground terms and dom(δ) is exactly the variables from codom(τ).

Definition 3.1.2 (SOS Deduction). A deduction πN∪M = [C1, . . . , Cn] is called
an SOS deduction with SOS M , if the derivation (N,M0)⇒∗RES (N,Mm) is an
SOS derivation where C ′1, . . . , C

′
m is the subsequence from [C1, . . . , Cn] with

input clauses removed, M0 = M , and Mi+1 = Mi ∪M ′i+1.

Corollary 3.1.3 (Deduction Refutations versus Resolution Refutations). There
exists a resolution refutation (N,M) ⇒∗RES (N,M ′ ∪ {⊥}) if and only if there
exists a deduction refutation π(N∪M) = [C1, . . . , Cn−1,⊥] where Ci ∈ (N ∪M ′)
for all i, modulo variable renaming.

On the one hand, a resolution derivation (N,M) ⇒∗RES (N,M ′) shows a
sequence of inferences deriving new clauses from (N,M) not necessarily useful
to derive ⊥. On the other hand, a deduction minimally focuses on the derivation
of a single clause, e.g., the empty clause ⊥ in case of a refutation. In deductions,
every clause is assumed to be used exactly once (thus the tree shape). This is
a purely technical restriction, see Corollary 3.1.3, that enables the deduction
transformation technique to not worry about of variable renamings beyond
the input clauses. More specifically, if the refutation is not in tree form, then
there must be a clause that is used only used more than once. We can then
simply duplicate such clause and use a different variable set for each duplicate.
Corresponding variables may be substituted differently depending on the later
clauses using it. For example, if P (x1) ∨Q(x1) is resolved with ¬P (a) ∨ R(x2)
and ¬P (b), then we can add a new clause P (x1) ∨Q(x1). s.t. x1 is substituted
with a while x2 is substituted by b. In the tree form, clauses are then used only
once (even though some clauses were originally from a single clause).

Definition 3.1.4 (Syntactic Relevance). Given an unsatisfiable set of clauses
N , a clause C ∈ N is syntactically relevant if for all deduction refutations π of N
it holds that C ∈ π. A clause C ∈ N is syntactically semi-relevant if there exists
a deduction refutation π of N in which C ∈ π. A clause C ∈ N is syntactically
irrelevant if there is no deduction refutation π of N in which C ∈ π.

3.1.2 Semantic Characterization

In this section, I present a semantic relevance that also serves as a semantic
characterization for the previous notion of syntactic relevance. As we will see
later, this also illustrates that the previous syntactic notion of relevance may
have a weakness that it may use redundant clauses while the notion of MUSes are
also in some way insufficient. I will first provide an alternative characterization
of unsatisfiability via conflict literal. Then, I present a refinement of the notion
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of redundancy for first-order logic via instantiation. Using these two notions, I
describe a semantic relevance where it coincides with the MUS-based relevance
in propositional logic while showing that there are first-order cases in which this
notion captures more than what can be offered by the usual MUSes.

Conflict Literal

I provide an alternative for what it means for a clause set to be unsatisfiable. As a
first observation, except for the trivially false clause ⊥, the simplest contradiction
occurs when we have a pair of ground literals K and L such that K = comp(L).
They will be termed conflict literals. In propositional logic, conflict literals can
be be defined like in Def. 2.1.3 from [JMRS17]. However, its first-order logic
version should reflect the relation of literals and clauses to their respective ground
instantiations (recall the compactness theorem for unsatisfiability).

Definition 3.1.5 (Conflict Literal). Given a set of clausesN over some signature
Σ, a ground literal L is a conflict literal in a clause setN if there are two satisfiable
clause sets N1, N2 such that

1. the clauses in N1, N2 are instances of clauses from N and

2. N1 |= L and N2 |= comp(L).

conflict(N) denotes the set of conflict literals in N .

Obviously, conflict literals always come in pairs which we may call a pair of
conflict literals.

The following is a rather simple example where, for every pair of conflict
literals A and comp(A), the satisfiable clause sets N1 and N2 entailing them
come from two different subsets of N .

Example 3.1.6 (Conflict literal 1). Given

N = { ¬R(z), R(c) ∨ P (a, y),

Q(a),¬Q(x) ∨ P (x, b),

¬P (a, b)}

its conflicts are

conflict(N) = { P (a, b),¬P (a, b),

R(c),¬R(c),

Q(a),¬Q(a)}

For example, if we take the pair P (a, b) and ¬P (a, b), then they will respec-
tively be entailed by the following clause sets.

N1 = {¬R(z), R(c) ∨ P (a, y)}
N2 = {¬P (a, b)}

However, this may not happen all the time as the following example shows.
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Example 3.1.7 (Conflict literal 2). Given an unsatisfiable set of clauses over
the signature Σ = ({a, b, c, d, f}, {P}):

N = {¬P (f(a, x)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(y, b))}

Consider the following satisfiable sets of instances from N

N1 = {¬P (f(a, d)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(a, b))}
N2 = {¬P (f(a, b)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(c, b))}

P (f(a, b)) is a conflict literal because N1 |= P (f(a, b)) and N2 |= ¬P (f(a, b))

Here, all clauses in N1 and N2 come from the instantiation of both clauses in
N . The first one uses {x 7→ d, y 7→ a} while the second one uses {x 7→ b, y 7→ c}.

The existence of a conflict literal alternatively characterizes the unsatisfia-
bility of a clause set. This can be viewed as a generalization of Lemma 2.1.4
from [JMRS17]. First, I present this for ground clauses where all literals in a
ground MUS are conflict literals.

Lemma 3.1.8 (Minimal Unsatisfiable Ground Clause Sets and Conflict Literals).
If N is a minimal unsatisfiable set of ground clauses (ground MUS) then, any
literal occurring in N is a conflict literal.

Proof. Take any ground atom A such that A occurs in N . N can be split into
three disjoint clause sets:

N∅ = {C ∈ N |A 6∈ C and ¬A 6∈ C}
NA = {C ∈ N |A ∈ C}
N¬A = {C ∈ N |¬A ∈ C}

Since N is minimal, NA and N¬A are nonempty, because otherwise, A is a
pure literal and its corresponding clauses can be removed from N preserving
unsatisfiability. Obviously, N∅ ∪NA must be satisfiable, for otherwise, the initial
choice of N was not minimal. However, N∅ ∪ N ′A, where N ′A results from all
NA by deleting all A literals from the clauses of NA, must be unsatisfiable, for
otherwise, we can construct a satisfying interpretation for N . Thus, every model
of N∅ ∪NA must also be a model of A: N∅ ∪NA |= A. Using the same argument,
N∅∪N¬A is satisfiable and N∅∪N¬A |= ¬A. Therefore, A is a conflict literal.

In addition, it is possible to lift Lemma 3.1.8 to clause set with variables
with the help of the Compactness Theorem.

Lemma 3.1.9 (Conflict Literals and Unsatisfiability). Given a set of clauses
N , conflict(N) 6= ∅ if and only if N is unsatisfiable.

Proof. ”⇒” Let L ∈ conflict(N). By definition, there are two satisfiable subsets
of instances N1, N2 from N such that N1 |= L and N2 |= comp(L). Towards
contradiction, suppose N is satisfiable. Then, there exists an interpretation I
with I |= N and therefore it holds that I |= N1 and I |= N2. Furthermore, by
definition of a conflict literal, I |= L and I |= comp(L), a contradiction.
”⇐” Given an unsatisfiable clause set N , we show that there is a conflict literal
in N . Since N is unsatisfiable, by compactness of first-order logic Th. 1.1.7,
there is a minimal set of ground instances N ′ from N that is also unsatisfiable.
By Lemma 3.1.8, any literal occurring in N ′ is a conflict literal. This means
conflict(N ′) is not empty and thus conflict(N) is also not empty due to N ′ being
instances from N .
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Dependency

Intuitively, removing a clause implied by the others (redundant clause) is se-
mantic preserving. However, this may in some be harmful to completeness when
performed during the execution of a calculus [NR01, BG01]. Yet, regardless of
its compatibility with completeness, how we deal with redundancy is very im-
portant in terms of efficiency, e.g., in propositional logic [BR00,Lib05]. It is also
apparently important when we try to define a semantic notion of relevance. I
will show this via some non-trivial examples later but as an easy example, a
syntactically relevant clause would step down to be syntactically semi-relevant
when duplicated. So, in order to have a semantically robust notion of relevance
in first-order logic, we need to use the following notion of (in)dependency. One
can see this as a refinement of the redundancy notion via instantiation.

Definition 3.1.10 (Dependency). A clause C is dependent in N if there exists
a satisfiable set of instances N ′ from N \ {C} such that N ′ |= Cσ for some σ. If
C is not dependent in N it is independent in N . A clause set N is independent
if it does not contain any dependent clauses.

In propositional logic (and ground first-order clauses), a clause is dependent
if and only if it is redundant. A subsumed clause is obviously a dependent clause.
However, for the first-order case, there could also be non-subsumed clauses that
are dependent. For example, in the set of clauses

N = {P (a, y), P (x, b),¬P (a, b)}

P (x, b) is dependent because there is an instance P (a, b) of P (x, b) entailed by
P (a, y). With the same argument, P (a, y) is then also dependent.

Semantic Relevance

Now, we are ready to define the semantic notion of relevance based on conflict
literals and dependency.

Definition 3.1.11 (Semantic Relevance). Given an unsatisfiable set of indepen-
dent clauses N , a clause C ∈ N is

1. relevant , if conflict(N \ {C}) = ∅

2. semi-relevant , if conflict(N \ {C}) ( conflict(N)

3. irrelevant , if conflict(N \ {C}) = conflict(N)

One might think that the set of clauses being independent is rather too re-
strictive. It is correct in the sense that, it is simply not defined on full first-order
clauses that are not independent. While this is by no means closed for future
work, I argue that such restriction is still reasonable. This is not only because of
(as already mentioned before) incompatibility with completeness [NR01,BG01]
but also that, w.r.t. the proposed notions, their existence may non-trivially in-
fluence the other clauses. This affects both the syntactic relevance (Ex. 3.1.12)
and its semantic characterization (Ex. 3.1.13). Nevertheless, even with this re-
striction, I argue that our semantic notion here is already a better refinement
even considering full first-order logic (remember the contract example in the
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introduction section). To further strengthen this argument, I will also show in
Lemma 3.1.14 that, in the propositional case, MUSes can be used as an alter-
native characterization similar to what existed in the literature. Second, for
first-order logic, I will show how MUSes should be related to the original clause
set in Lemma 3.1.15 and additionally show the weakness in Ex. 3.1.16 when it
is not adhered to.

Example 3.1.12 (Syntactic semi-relevance vs dependent clause set). Given a
clause set

N = { P,¬P,
¬P ∨Q,¬R ∨ P,
¬Q ∨R},

the existence of the dependent clauses ¬P ∨Q and ¬R∨P causes an independent
clause ¬Q ∨R to be a syntactically semi-relevant clause.

A refutation for N in Ex. 3.1.12 is shown in Fig. 3.4. When both of the
dependent clauses are removed resulting in the clause set N ′ = {P,¬P,¬Q∨R},
the clause ¬Q ∨ R is actually irrelevant. Semantically, it is thus not clear how
¬Q ∨R should even be treated in the face of the dependent clauses.

⊥

Q

P¬P ∨Q

¬Q

¬R

¬R ∨ P¬P

¬Q ∨ R

Figure 3.4: A refutation in which an independent clause ¬Q ∨R is only usable
due to dependent clauses

The following example additionally shows that extending our notion to in-
clude dependent clauses in propositional logic is not as easy as performing the
removal of dependent clauses. This is because, if there are more than one de-
pendent clause, on the one hand, it is not always possible to simply remove
all of them (without preserving unsatisfiability) while on the other hand, it is
not obvious which subset of the dependent clauses should be removed. This
justifies the need for independence restriction already for propositional logic not
to mention first-order logic. This is illustrated by the following Ex. 3.1.13.

Example 3.1.13 (Semantic semi-relevance vs dependent clause set). Given a
clause set

N = { P,¬P ∨Q,
R,¬R ∨Q,
¬Q},
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¬P ∨Q and ¬R ∨Q are dependent because

{R,¬R ∨Q} |= ¬P ∨Q
{P,¬P ∨Q} |= ¬R ∨Q

From Ex. 3.1.13, only one of the dependent clauses can be removed without
making N satisfiable. More specifically, its respective removals would give us the
following unsatisfiable clause sets.

N1 = {P,R,¬R ∨Q,¬Q}
N2 = {P,R,¬P ∨Q,¬Q}

Here, we have a problem: R and P are respectively semi-relevant in N1 and N2

but irrelevant in N2 and N1. The removal of both is even worse because it turns
N into a satisfiable clause set N3 = {P,R,¬Q}.

Propositional Logic Case Our notion of (semi-)relevance can also be charac-
terized by MUSes in propositional logic. As a comparison, we consider Def. 2.1.1
from [KLM06]: A clause C ∈ N is necessary if it occurs in all MUSes, it is
potentially necessary if it occurs in some MUS, otherwise, it is never necessary.
This is related to the proposed notion via the following lemma where we consider
only independent propositional clause sets.

Lemma 3.1.14 (Propositional Clause Sets and Relevance). Given an indepen-
dent unsatisfiable set of propositional clauses N , the relevant clauses coincide
with the intersection of all MUSes and the semi-relevant clauses coincide with
the union of all MUSes.

Proof. For the case of relevance: Given C ∈ N , C is relevant if and only if
conflict(N \ {C}) = ∅ if and only if N \ {C} is satisfiable by Lemma 3.1.9 if and
only if C is contained in all MUSes N ′ of N .

For the case of semi-relevance: Given C ∈ N , we show C is semi-relevant if and
only if C is in some MUS N ′ ⊆ N .
“⇒”: Towards contradiction, suppose there is a semi-relevant clause C that is not
in any MUS. By definition of semi-relevant clauses, there are satisfiable sets N1

and N2 and a propositional variable P such that N1 |= P , N2 |= ¬P but the
MUS M out of N1 ∪N2 does not contain C. By Th. 1.3.2 there exist deductions
π1 and π2 of P and ¬P from N1 and N2, respectively. Since a deduction is
connected, some clauses in M and (N1∪N2)\M must have some complementary
propositional literals Q and ¬Q, respectively to be eventually resolved upon in
either π1 or π2. At least one of these deductions must contain this resolution step
between a clause from M and one from (N1∪N2)\M . Now by Lemma 3.1.8 the
literals Q and ¬Q are conflict literals in M . Thus, there are satisfiable subsets
from M which entail Q and ¬Q, respectively. Therefore, the clause containing
Q or ¬Q in (N1 ∪N2) \M is dependent contradicting the assumption that N
does not contain dependent clauses.
”⇐”: If C is in some MUS N ′ ⊆ N , then, N ′ \ {C} is satisfiable. So invoking
Lemma 3.1.8 any literal L ∈ C is a conflict literal in N ′. In addition, L is not a
conflict literal in N \ {C} for otherwise, C is dependent: Suppose L is a conflict
literal in N \ {C} then, by definition, there is satisfiable subset from N \ {C}
which entails L. However, since L |= C, it means C is dependent.
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First-Order Logic Case I will show that even though notions from propo-
sitional logic can often be immediately used as a generalization to first-order
logic, in the context of relevance, this is not the case. In our case, MUSes must
be considered at its ground level via instantiation as a characterization of the
proposed notion of semantic relevance.

Lemma 3.1.15 (Relevance and MUSes on First-Order Clauses). Given an
unsatisfiable set of independent first-order clauses N . Then a clause C is relevant
in N , if all MUSes of unsatisfiable sets of ground instances from N contain a
ground instance of C. The clause C is semi-relevant in N , if there exists a MUS of
an unsatisfiable set of ground instances from N that contains a ground instance
of C.

Proof. (Relevance) Since all ground instances from N contain a ground instance
of C, then, if N \ {C} contains a ground MUS from N it means that some
ground instance of C is entailed by N \ {C}. This violates our assumption that
N contains no dependent clauses. Thus, N \ {C} contains no ground MUSes.
This further means that N \ {C} is satisfiable by the compactness theorem
of first-order logic. Thus, by Lemma 3.1.9, it has no conflict literals and C is
relevant.
(Semi-Relevance) Take some ground MUS M containing some ground instance
C ′ of C. Due to Lemma 3.1.8, any literal P ∈ C ′ is a conflict literal in M and
consequently also in N . In addition, P is not a conflict literal in N \ {C} for
otherwise, C is dependent: Suppose P is a conflict literal in N \ {C}. Then,
by definition, there is some satisfiable instances from N \ {C} which entails P .
However, since P |= C ′, it means C is dependent. In conclusion, P ∈ conflict(N)\
conflict(N \ {C}) and thus C is semi-relevant.

I illustrate the necessity of this lemma via an example demonstrating that the
MUSes where the clauses are simply taken from the original clause set (without
instantiation) cannot capture the proposed semi-relevancy notion.

Example 3.1.16 (First-Order (Semi-)Relevant Clauses). Given a set of clauses

N = { P (a, y),¬P (a, d) ∨Q(b, d),

¬P (x, c),¬Q(b, d) ∨ P (d, c), Q(z, e)}

over Σ = ({a, b, c, d, e}, {P,Q}). The conflict literals are

{(¬)P (a, c), (¬)Q(b, d), (¬)P (d, c), (¬)P (a, d)}.

First, P (a, y) is a relevant clause. To show this via the definition, we consider the
literals entailed by some satisfiable instance set N ′ from N where P (a, y) 6∈ N ′
are {¬Q(b, d)} ] {¬P (a, t),¬Q(t, e)|t ∈ {a, b, c, d, e}}. It is not difficult to see
that no two of them contradict each other and thus conflict(N \{C}) = ∅. Second,
the clause ¬P (a, d) ∨Q(b, d) is semi-relevant because we have a conflict literal
Q(b, d) 6∈ conflict(N \ {¬P (a, y) ∨Q(b, d)}). Last, clause Q(z, e) is irrelevant.

The only MUS from N is {P (a, y),¬P (x, c)} with grounding substitution
{x 7→ a, y 7→ c}. This means the notion of MUS cannot capture the clause
¬P (a, d) ∨Q(b, d) from Ex. 3.1.16 which is not in any MUSes. However, in first-
order logic we should not ignore the clauses ¬P (a, d)∨Q(b, d), ¬Q(b, d)∨P (d, c),
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because together with the clauses P (a, y),¬P (x, c) they result in a different
grounding {x 7→ d, y 7→ d}. So, we argue that MUS-based (semi-)relevance on
the original clause set is not sufficient to characterize the way clauses are used
to derive a contradiction for full first-order logic. However, it does so if ground
instances are considered. In the example, we could identify two ground MUSes:

{P (a, c),¬P (a, c)}

and

{P (a, d),¬P (a, d) ∨Q(b, d),¬P (d, c),¬Q(b, d) ∨ P (d, c)}

This means that the notion of MUS is not necessarily gone. The semantic rel-
evance can still be viewed in terms of ground MUSes with the help of Lemma
3.1.15. First, P (a, y) is a relevant clause because every MUS contains an instance
of it (P (a, c) and P (a, d)). Second, The clause ¬P (a, d)∨Q(b, d) is semi-relevant
since it is contained in the second MUS. Third, the clause Q(z, e) is irrelevant
since we can see that no MUS contains any instance of Q(z, e).

Note that, in first-order logic,the set of MUSes becomes possibly infinite.
Thus, some popular MUS-related tasks such as counting [BM21] and computing
union [MKIM19], and enumeration [BK16] are not possible anymore.

3.2 Generalization of Set-of-Support Strategy

Unlike testing for relevant clauses, the semi-relevancy test cannot be supported
by the existing SOS refutational completeness. The need for an effective semi-
relevancy test led us to a sharper generalization of the existing refutational
completeness for SOS in Th. 1.3.1 by [WRC65].

3.2.1 Refutation Transformation

The generalized completeness result of SOS is proven by transforming non-SOS
refutations into SOS refutations. As an illustration of the proof transformation
technique, we consider the following unsatisfiable set of clauses N .

N = {(1):{1}¬Q(x3,f(a)) ∨ {2}P (f(a)), (2):{3}¬P (x4) ∨ {4}¬Q(b,x4),

(5):{5}¬Q(b,a) ∨ {6}Q(x1,f(x6)),

(6):{7}Q(b,x2) ∨ {8}R(x2) ∨ {9}T (c,x1),

(9):{10}¬R(x5), (11):{11}¬T (c, b)}

Literals are labeled inN by a singleton set of a unique natural number [LAWRS07].
We will refer to the literal labels during proof transformation in order to keep
track of the relevant resolution and factorization steps. The labels are inher-
ited in a resolution inference and united for the factorized literal in a factoring
inference. See the factoring inference on clause (3), Fig. 3.5.

Figure 3.5 shows a resolution refutation
π = [(5), (6), (7), (1), (2), (3), (4), (8), (9), (10), (11), (12)]

from N . This resolution refutation is also an SOS refutation with SOS M =
{(2), (5)} and the remaining clause set N \M . It is not an SOS refutation with
SOS M = {(5)} and the remaining clause set N \M because the resolution step
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(12):⊥

(11):{11}¬T (c, b)(10):{9}T (c,b)

(8):{8}R(a) ∨ {9}T (c,b)

(4):{1, 4}¬Q(b,f(a))

(3):{1}¬Q(x3,f(a)) ∨ {4}¬Q(b,f(a))

(2):{3}¬P (x4) ∨ {4}¬Q(b,x4)

(1):{1}¬Q(x3,f(a)) ∨ {2}P (f(a))

(7):{6}Q(x1,f(x6)) ∨ {8}R(a) ∨ {9}T (c,x1)

(6):{7}Q(b,x2) ∨ {8}R(x2) ∨ {9}T (c,x1)

(5):{5}¬Q(b,a) ∨ {6}Q(x1,f(x6))

(9):{10}¬R(x5)

{x3 7→ b}

{x4 7→ f(a)}

{x1 7→ b, x6 7→ a}

{x2 7→ a}

{x5 7→ a}

Figure 3.5: Refutation of π of N

between clauses (1) and (2) is not an SOS step. The shaded part of the tree
belongs to an SOS deduction with M = {(5)}.

With respect to the clause set N and its refutation in Fig. 3.5, clause (5)
is semi-relevant but not relevant, because the clauses (1), (2), (6), (9), (11) are
already unsatisfiable. In contrast, clauses (1), (2), (6), (9), (11) are all relevant.

The transformation works by picking a clause closest to the leaves of the
tree, obtained by resolution, that has one parent with SOS subdeduction, but
the other parent is not in the SOS nor an input clause. For our example with
starting SOS M = {(5)} this is clause (8). The parent (7) is already a result of a
subdeduction with SOS M but the other parent (4) is not. The overall grounding
substitution of π is τ = {x1 7→ b, x2 7→ a, x3 7→ b, x4 7→ f(a), x5 7→ a, x6 7→ a}.
Now, in a single step of the transformation, we perform the resolution step on the
labeled literal {1, 4}¬Q(b,f(a)) and the respective literal {6}Q(x1,f(x6)) of the
SOS derivable clause (7) already on the respective literals from the input clauses
yielding (8), here clauses (1) and (2). To this end the derivation [(5), (6), (7)] is
copied(where we also introduce fresh variables to make it variable-disjoint), see
Fig. 3.6, yielding the clauses (7) and (7′) used in the refutation π′ below, see
also Fig. 3.7.

(7):{6}Q(x7,f(x9)) ∨ {8}R(a) ∨ {9}T (c,x7)

(6):{7}Q(b,x8) ∨ {8}R(x8) ∨ {9}T (c,x7)(5):{5}¬Q(b,a) ∨ {6}Q(x7,f(x9))

{x8 7→ a}

Figure 3.6: The copied subdeductions deriving (7)

The two freshly renamed copies (7) and (7′) are resolved with the respective
input clauses (1) and (2). Finally, the rest of the deduction yielding clause (8) is
simulated with the resolved input clauses, see Fig. 3.7. Now (8′′′) is exactly clause
(8) from the original deduction π, but (8′′′) is derived by an SOS deduction. The
deduction can then be continued the same way it was done in π and in this case
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(8′′′):{8}R(a) ∨ {9}T (c,b)

(8′′):{8}R(a) ∨ {9}T (c,x3) ∨ {9}T (c,b)

(8′):{8}R(a) ∨ {9}T (c,x3) ∨ {8}R(a) ∨ {9}T (c,b)

(2′):{8}R(a) ∨ {9}T (c,b) ∨ {4}¬P (f(x11))

(2):{3}¬P (x4) ∨ {4}¬Q(b,x4)

(7′):{6}Q(x10,f(x11)) ∨ {8}R(a) ∨ {9}T (c,x10)

(1′):{8}R(a) ∨ {9}T (c,x3) ∨ {2}P (f(a))

(7):{6}Q(x7,f(x9)) ∨ {8}R(a) ∨ {9}T (c,x7)

(1):{1}¬Q(x3,f(a)) ∨ {2}P (f(a))

{x3 7→ b}

{x11 7→ a}

{x4 7→ f(x11)}

{x10 7→ b}
{x8 7→ a, x7 7→ x3}

Figure 3.7: The new SOS deduction yielding a copy of clause (8)

will already yield an SOS refutation.
π′ = [(5), (6), (7), (5′), (6′), (7′), (1), (1′), (2), (2′), (8′), (8′′), (8′′′),

(9), (10), (11), (12)].
The example motivates the use of literal labeling. Firstly, they help keep track
which literals in input clauses to resolve: here by looking into the label of
{1, 4}¬Q(b,f(a)), we can see that it results from a factoring of the literals
{1}¬Q(x3,f(a)) and {4}¬Q(b,x4). Secondly, they guide additional factoring
steps in π′ during the simulation of the non-SOS part from π: here the fac-
toring between the two literals labeled {8} in clause (8′) and the two literals
with label {9} in clause (8′′). The transformation always works because the
overall grounding substitution of the initial refutation π is preserved. We only
need to extend it to cover the extra variables appearing in the freshly renamed
copies of clauses.

The above example shows the importance of keeping track the literals in a
deduction in such a way that is easy to identify where they come from in the
input clauses. A labeled literal is a pair ML where M is a finite non-empty set
of natural numbers called the label and L is a literal. We identify literals with
labeled literals and use the function lb to refer to the label. The function lb
is extended to clauses via the union of its respective literal labels. We extend
the notion of a clause to that of a labeled clause built on labeled literals in a
straightforward way. We call a deduction πN label-disjoint if the clauses from
N in the deduction have unique singleton labels. Labels are propagated in a
deduction as follows: in the case of a Resolution inference, the labels of the
parent clauses are inherited and in the case of the Factoring inference, the label
of the remaining literal is the union of labels of the factorized literals.

In general, we need to identify the parts of a deduction that are already
contained in an SOS deduction, this is called the partial SOS of a deduction,
Def. 3.2.1. Then this information can be used to perform the above transforma-
tion on any deduction π.

Definition 3.2.1 (PSOS of a Deduction). Let π be a deduction from N ]M ,
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then the partial SOS (PSOS) O∗ of 〈π,N,M〉 is defined as O∗ =
⋃m
i=0O

i, where
O0 = M , Oi+1 = Oi ∪ {Cj} provided Cj ∈ π, Cj 6∈ Oi and Cj is either the
factor of some clause in Oi or the resolvent of two clauses in π where at least
one parent is from Oi, and where Om is such that there is no longer such a Cj
in π.

The partial SOS is well-defined because the resulting O∗ is independent of
the sequence Oi used. For example, for the deduction π from N presented in
Fig. 3.5 the set O∗ = {(5), (6), (7)} is the PSOS of 〈π,N, {5}〉. Next we present
a criterion when the PSOS of a deduction actually signals an SOS deduction.

Lemma 3.2.2 (SOS Deduction). Let O∗ be the PSOS of 〈π,N,M〉. Then π is
an SOS deduction if O∗ \M = π \ (N ∪M)1, i.e., all inferred clauses in π are
contained in O∗.

Proof. Let πN∪M = [C1, . . . , Cn] and [C ′1, . . . , C
′
m] be the subsequence of πN∪M

with input clauses removed. LetO∗ be the PSOS of 〈π,N,M〉. Then [C ′1, . . . , C
′
m] =

O∗ \M = π \ (N ∪M) by assumption. We show that (N,M0)⇒∗RES (N,Mm)
is an SOS derivation, following Def. 3.1.2 by induction on m. If m = 0 then π
only consists of input clauses and there is nothing to show. For the case m = 1,
the clause C ′1 is the result of a factoring inference from M or the result of a
resolution inference from N ∪M such that at least one parent is in M as for
otherwise C ′1 6∈ (O∗ \M). So (N,M0)⇒∗RES (N,M0 ∪ {C ′1}) is an SOS deriva-
tion. For the induction case, assume the property holds for i. If C ′i+1 is the
result of a factoring inference, then its parent C ′′ is contained in M i because
otherwise C ′′ ∈ N ( because π is a deduction) and, therefore C ′i+1 6∈ (O∗ \M),
a contradiction. If C ′i+1 is the result of a resolution inference, then again all its
parents are contained in N ∪M i because π is a deduction. If both parents are
from N , then C ′i+1 6∈ (O∗ \M), a contradiction. So, by the induction hypothesis,
(N,M0)⇒∗RES (N,M i)⇒RES (N,M i+1) is an SOS derivation.

The rest of this section describes the transformation in detail. Then, we prove
the new generalized completeness result for the set-of-support strategy.

Let π be a label-disjoint deduction from N ∪M and let Ck ∈ π be a clause of
a minimal index such that Ck is the result of a resolution inference from clauses
Cj ∈ O∗ and Ci 6∈ (N ∪O∗). Let τ be an overall ground substitution for π. We
transform π into π′ to make it “closer” to an SOS derivation by changing the
deduction of Ci while preserving τ . Let

Cj = C ′j ∨ L
Ci = C ′i ∨K
Ck = (C ′i ∨ C ′j)σ

(3.1)

where σ = mgu(K, comp(L)). Without loss of generality, we assume that

π = [C1, . . . , Ci, Ci+1, . . . , Cj , Ck, Ck+1, . . . , Cn] (3.2)

where [C1, . . . , Ci] and [Ci+1, . . . , Cj ] are subdeductions of π, and the prefixes
of these sequences are exactly the introduced renamed copies of input clauses
from N that are used to derive Ci and Cj , respectively. Moreover, we will keep
track of new clauses that are taken from the previous ones or transformed using

1Here, we refer to the removal of all input clauses from O∗ and π, respectively.
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a notion of associated clause and prove its properties later. The transformed
derivation will be

π′ = [C1
i+1, . . . , C

1
j , . . . , C

m
i+1, . . . , C

m
j , D1, . . . , Dl, C

′
k+1, . . . , C

′
n] (3.3)

where

(a) the subsequences [Coi+1, . . . , C
o
j ] are freshly variable-renamed copies of the

sequence [Ci+1, . . . , Cj ] where m = | lb(K)|. For the copies [Coi+1, . . . , C
o
j ]

we keep the labels of literals of the original sequence [Ci+1, . . . , Cj ] for
reference in the transformation. The clauses Coj are decomposed into C ′oj ∨
L′, in the same way, that the clause Cj is decomposed into C ′j ∨ L. Thus,
for each clause from N in the sequence [C1, . . . , Ci] containing a literal K ′

with lb(K ′) ⊆ lb(K) we add a deduction deriving a renamed copy of Cpj ;
let δp be the renaming substitution from the old to the freshly renamed
sequence, then we extend τ to τ ′ as follows: τ ′0 = τ , τ ′p+1 = τ ′p◦{xδp+1 7→ t |
x ∈ dom(δp+1), t = xτ} for 1 ≤ p ≤ m yielding the overall new grounding
substitution τ ′ = τ ′m for π′;

(b) the clausesD1, . . . , Dl are generated by simulating the deduction [C1, . . . , Ci]
eventually producing Ck, up to possible variable renamings: Let Cp be the
current clause out of this deduction and let D1, . . . , Dq be the clauses
generated so far until Cp−1;

(i) if Cp is an input clause not containing a literalK ′ with lb(K ′) ⊆ lb(K),
then Dq+1 = Cp and we associate Dq+1 with Cp;

(ii) if Cp is an input clause containing a literal K ′ with lb(K ′) ⊆ lb(K),
then Dq+1 = Cp and Dq+2 is the resolvent between Dq+1 and a so
far unused clause Coj on the literals K ′ ∈ Dq+1 and L′ ∈ Coj where
lb(K ′) ⊆ lb(K) and lb(L′) = lb(L) and we associate Dq+2 with Cp;

(iii) if Cp is the resolvent between two clauses Ci′ , Cj′ then we perform
the respective resolution step between the associated clauses and re-
spective associated literals from Dq′ , Dq′′ yielding Dq+1 and associate
Dq+1 with Cp;

(iv) if Cp is the factor on some literal K ′ with lb(K ′) ⊆ lb(K), then we
perform the respective factoring steps Dq+1, . . . , Dq+s for respective
literals with labels from C ′j , where s = |C ′j | and we associate Dq+s

with Cp,

(v) if Cp is the factor on some literal K ′ with lb(K ′) 6⊆ lb(K), then we
perform the respective factoring step on the respective literals with
identical labels from clause Dq′ yielding Dq+1 and we associate Dq+1

with Cp;

(c) the clauses C ′k+1, . . . , C
′
n are obtained by simulating the generation of

clauses Ck+1, . . . , Cn where Ck is substituted with Dl.

Note that by assumption, the generation of clauses Ck+1, . . . , Cn does not
depend on clauses C1, . . . , Ci, Ci+1, . . . , Cj but only on Ck and the input clauses.
We will prove that Ckτ = Ckτ

′ = Dlτ
′ which is then sufficient to prove Cnτ =

Cnτ
′ = C ′nτ

′ and for the above to be well-defined. In general, the clause Dl is
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not identical to Ck because we introduce fresh variables in π′ and do not make
any specific assumptions on the unifiers used to derive Dl.

Mapping the transformation to our running example, Fig. 3.5: Cj = (7),
Ci = (4), and Ck = (8). We need two copies of (7) because K = {1, 4}¬Q(b, f(a))
so m = |{1, 4}| = 2 and L = {6}Q(x1, f(x6)).

3.2.2 SOS Generalized Completeness

In this section, I show that when the previous transformation is done repeatedly
on any deduction, we will get an SOS deduction, given that at least one clause
from the SOS occurs in the original deduction. Firstly, we show that associated
clauses of the transformed deduction preserve the main properties of the original
deduction. The extended substitution is identical to the original substitution
on old clauses and the changed part of the deduction ends in exactly the same
clause.

Lemma 3.2.3 (Properties of Associated Clauses). Let Cj , Ci, Ck, L, K, π, π′,
τ , τ ′ be as defined in (3.1), (3.2), and (3.3), page 52. For each clause C out of
[C1, . . . , Ci] and clause D associated with C:

1. Cτ = Cτ ′,

2. K ′τ ′ = L′τ ′ if lb(K ′) = lb(L′) for any K ′, L′ occurring in either π or π′,

3. lb(C) \ lb(K) = lb(D) \ lb(C ′oj ) and lb(C ′oj ) ⊆ lb(D) if there is K ′ ∈ C with
lb(K ′) ⊆ lb(K),

4. Cτ \ {K ′τ ∈ C | lb(K ′) ⊆ lb(K)} = Dτ ′ \ {L′τ ′ ∈ Dτ ′ | lb(L′) ∈ lb(C ′oj )}
and C ′oj τ

′ ⊆ Dτ ′ if there is K ′ ∈ C with lb(K ′) ⊆ lb(K),

5. Ckτ = Dlτ
′.

Proof. 1. By definition of τ ′ the additional variables in τ ′ do not occur in C
while τ ′ is identical to τ on the variables of C, hence Cτ = Cτ ′.

2. By induction on the generation of π′. For the base case, every literal occurring
in N ∪S has a unique label and any renamed clause Com for some Cm ∈ (N ∪S)
has the labels kept. So, for any two literals K ′ and L′ in any non-inferred clauses
in π and π′, K ′τ ′ = L′τ ′ when the labels are equal. For the induction step, for
inferred clauses, lb(K ′) = lb(L′) happens when the label of K ′ is inherited from
L′ through an inference. The inference uses an mgu which is compatible with τ ′

due to τ ′ being an overall ground substitution, so K ′τ ′ = L′τ ′.

3. We prove this property by induction on the length of the derivation [C1, . . . , Ci].
Let C = Cp, 1 ≤ p ≤ i, and let D1, . . . , Dq be the clauses generated until Cp−1

for which, by the induction hypothesis the property already holds.

(i) If C is an input clause not containing a literal K ′ with lb(K ′) ⊆ lb(K),
we have C = Cp = Dq+1 = D and {K ′ ∈ Cτ | lb(K ′) ⊆ lb(K)} = {L′ ∈
Dqτ

′ | lb(L′) ⊆ lb(C ′oj )} = ∅.

(ii) IfC is an input clause containing a literalK ′ with lb(K ′) ⊆ lb(K) then D =
Dq+2 results from a resolution inference between C = Cp and an unused
Coj on the literals K ′ and L′ ∈ Coj with lb(L′) = lb(L). Let C = C ′ ∨K ′.
Then, Dτ ′ = (C ′∨C ′oj )τ ′ and hence lb(C)\ lb(K) = lb(D)\ lb(C ′oj ) because
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lb(C) ∩ lb(Coj ) = ∅ as π is a label-disjoint deduction and lb(Cj) = lb(Coj )
by construction.

(iii) If C is a resolvent of Ci′ = C ′i′ ∨L′i′ and Cj′ = C ′j′ ∨L′j′ on literals L′i′ , L
′
j′ ,

then Cτ = C ′i′τ ∨ C ′j′τ , and Dq+1 is a resolvent of some Dq′ = D′q′ ∨ L′′q′
and Dq′′ = D′q′′ ∨ L′′q′′ associated with Ci′ and Cj′ respectively. We have
lb(L′i′) = lb(L′′q′′) and lb(L′j′) = lb(L′′q′′) and none of these literals has a
label from lb(K) or lb(C ′oj ). Hence, the conjecture holds by the induction
hypothesis.

(iv) If C results from a factoring on K ′ from Cp−1, we get Dq+s by a sequence
of s factoring inferences from Dq+1 associated with Cp−1. Any factorings
on Cp−1 and Dq+1 do not change literal labels because we factorize literals
of identical label. So, this property holds by the induction hypothesis. This
holds regardless of whether lb(K ′) ⊆ lb(K).

4. From Lemma 3.2.3.3 we know that lb(C) \ lb(K) = lb(D) \ lb(C ′oj ) and
lb(C ′oj ) ⊆ lb(D) if there is K ′ ∈ C with lb(K ′) ⊆ lb(K). Since the labels
coincide, using Lemma 3.2.3.2, we have Cτ ′ \ {K ′ ∈ Cτ ′ | lb(K ′) ⊆ lb(K)} =
Dτ ′ \ {L′ ∈ Dτ ′ | lb(L′) ∈ lb(C ′oj )} and C ′oj τ

′ ⊆ Dτ ′ if there is K ′ ∈ C with
lb(K ′) ⊆ lb(K). This hypothesis holds by applying Lemma 3.2.3.1 on literals
and clauses from π in the equation.

5. The clause Ck is the result of a resolution inference between Ci and Cj upon
K and L: Ckτ = C ′iτ ∪ C ′jτ . By translation and because {K ′ ∈ Ci | lb(K ′) ⊆
lb(K)} = {K}, the clause Ci is associated with Dl ∈ π′ and Ciτ \ {Kτ} =
Dlτ

′ \ {L′ ∈ Dlτ
′ | lb(L′) ∈ lb(C ′oj )}. Since C ′oj τ

′ = C ′jτ = Cjτ \ {Lτ}, we have
{L′′ ∈ Dlτ

′ | lb(L′′) ⊆ lb(L′) for some L′ ∈ C ′oj } = Dlτ
′∩Coj \{Lτ} = Cj \{Lτ}.

So Ci \ {Kτ} = Dlτ
′ \ (Dlτ

′ ∩ Cj \ {Lτ}) = Dlτ
′ \ (Cj \ {Lτ}). We can add

Cjτ \ {Lτ} to both sides and get Ckτ = Ciτ ∪ Cjτ \ {Kτ,Lτ} ⊇ Dlτ
′. In

addition, since lb(K) ⊆ lb(K), this means Cjτ = C ′oj τ
′ ⊆ Dqτ

′. Therefore
Ckτ = Ciτ ∪ Cjτ \ {Kτ,Lτ} = Dlτ

′.

Next, we need a well-founded measure that decreases with every transforma-
tion step and in case of reaching its minimum signals an SOS deduction.

Definition 3.2.4 (SOS Measure). Given a clause set N and an initial SOS S,
the SOS measure of a deduction π is µ(π) where µ(π) =

∑
Ci∈π µ(Ci, π) and

µ(Ci, π) = 0 if Ci ∈ N ∪O∗ otherwise µ(Ci, π) = 1.

Lemma 3.2.5 (Properties of µ). Given a clause set N , an initial SOS S, and a
deduction π that contains at least one resolution step,

1. µ(π) ≥ 0, and

2. if µ(π) = 0 then π is an SOS deduction.

Proof. 1. Obvious because it is a sum non-negative numbers (0 for input clauses
and 1 otherwise).

2. Towards contradiction, suppose π = [C1, . . . , Cn] is not an SOS deduction.
This means O∗ \ S ( π \ (N ∪ S) by Lemma 3.2.2. Consider a clause Ci ∈
(π\(N∪S))\(O∗\S) of minimal index. Then Ci must be the result of an inference
on some Cj and Ck such that both are not in O∗. This means Ci 6∈ (N ∪ O∗).
For this clause, µ assigns a nonzero value: µ(Ci, π) > 0. Therefore, µ(π) 6= 0.
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Next, we combine the properties of associated clauses in one transformation
step with the properties of the measure resulting in an overall deduction trans-
formation that can be recursively applied and deduces the same clause modulo
some grounding.

Lemma 3.2.6 (Properties of the Transformation). Given a deduction π of a
clause Cn from N∪S that contains at least one resolution step such that π∩S 6= ∅,
an overall ground substitution τ of π and the transformed deduction π′ of a
clause C ′n as defined in (3.1), (3.2), and (3.3) with overall ground substitution
τ ′, we have:

1. π′ is a deduction from N ∪ S,

2. Cnτ = C ′nτ
′, and

3. µ(π′) < µ(π).

Proof. 1. We show that π′ is a deduction following Def. 3.1.1. These properties
will be carried over from π. Observe that, if π1 is a deduction of Ck from N ∪ S
and π2 is a deduction from N ∪S∪{Ck} using Ck only once, their concatenation
π1 ◦ π2 is a deduction from N ∪ S. Firstly, the subsequences [Coi+1, . . . , C

o
j ] are

deductions of Coj from N ∪ S since they are only the renamed copies of the
subdeduction [Ci+1, . . . Cj ] of π. Secondly, the subsequence [Ck, . . . , Cn] is a
deduction of Cn from N ∪ S ∪ {Ck} since the clauses after Ck do not use any
clauses before Ck by the way π is represented as a sequence. Now, by showing
that [C1

j , . . . , C
m
j , D1, . . . , Dl, Ck] is a deduction of Ck from N ∪S ∪{Coj }o∈[1,m],

the sequence [D1, . . . , Dl] would then connect the initial copied sequences and
the tailing subsequence. Each Coj is used for exactly one resolution inference
producing some Dq, the other required clauses are copied, and the later resolution
and factoring steps in [D1, . . . , Dl] are sound while the deduction properties of
[C1, . . . , Ci] are preserved in its associated clauses: for an inference where Cp′

(and Cp′′) generates Cp, we have a unique inference between their associated
clauses Dq′ , (Dq′′ ,) Dq+1 where Dq′ (and Dq′′) generates Dq+1, possibly with
additional factoring inferences in between. If Cp is an input clause not containing
a literal K ′ with lb(K ′) ⊆ lb(K), then Dq+1 = Cp ∈ N . The clause Dq+1 is
used in π′ as Cp is used in π; if Cp is an input clause containing a literal
K ′ with lb(K ′) ⊆ lb(K), the resolution between Dq+1 and a so far unused
clause Coj is sound as K ′ and comp(L′) are unifiable by τ ′. Here, all Coj will be
eventually used as there are m = | lb(K)| literals in the clauses from N ; if Cp
is the resolvent between two clauses Ci′ , Cj′ then the respective resolution step
between the associated clauses Dq′ , Dq′′ upon the respective associated literals
K ′ and L′ is sound because we can get K ′τ ′ = comp(L′)τ ′ using Lemma 3.2.3;
if Cp is the factor on some literal K ′ with lb(K ′) ⊆ lb(K), then the respective
factoring steps Dq+1, . . . , Dq+s are also sound: each pair of the s associated

literals M and M ′ from Coj and Co
′

j are unifiable because Mτ ′ = M ′τ ′; if Cp is
the factor of Cp−1 upon some literal K ′ and L′ with {lb(K ′), lb(L′)} 6⊆ lb(K), the
respective factoring step on the associated clause Dq′ is also sound by Lemma
3.2.3. Therefore π is a deduction from N ∪ S.

2. By Lemma 3.2.3.5, Ckτ = Dlτ
′. The derivation of clauses Ck, Ck+1, . . . , Cn

only depends on the input clauses by assumption. By an inductive argument we
get Ck+1τ = C ′k+1τ

′ yielding Cnτ = C ′nτ
′.
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3. The clauses in [Coi+1, . . . , C
o
j ] have the measure 0 as their original ones in

[Ci+1, . . . , Cj ] because they are in N∪O∗. The clauses in [Ck, . . . , Cn] also retain
their original measures. The clauses in [D1, . . . , Dl] are s.t. Σlk=1µ(π′, Dk) <
Σik=1µ(π′, Ck). More specifically, any C ∈ [C1, . . . , Ci] that is not in N ∪O∗(with
measure µ(C, π) ≥ 1) and containing K ′ with lb(K ′) ⊆ lb(K) is associated with
Dq ∈ O∗ \ N having the measure µ(Dq, π

′) = 0, while all other clauses in
[D1, . . . , Dl] are either copied from π with the same measure as before or new
in π′ but have the measure 0.

By induction on the length of the sequence [C1, . . . , Ci] we prove the following
property: if D is associated with a clause C ∈ [C1, . . . , Ci] and C contains some
literal in {K ′ | lb(K ′) ⊆ lb(K)}, then D ∈ N ∪O∗ and µ(D,π′) = 0. Let C = Cp.
Let D1, . . . , Dq be the clauses generated until Cp−1 s.t. the property already
holds.

(i) If Cp is an input clause with no literals in {K ′ | lb(K ′) ⊆ lb(K)}, it is
associated with Dq = Cp s.t. µ(Cp, π) = µ(Dq, π

′) = 0;

(ii) If Cp is an input clause containing {K ′ | lb(K ′) ⊆ lb(K)}, it is resolved
with some Coj ∈ O∗ resulting in Dq+1 ∈ O∗. Here we have µ(Cp, π) =
µ(Dq, π

′) = 0;

(iii) If Cp is the resolvent between two clauses Ci′ , Cj′ then we perform the
respective resolution step between the associated clauses Dq′ , Dq′′ yielding
the clause Dq associated with Cp. If either Ci′ or Cj′ contains some literal
from {K ′ | lb(K ′) ⊆ lb(K)} then Cp contains this literal as well and either
Dq′ ∈ O∗ or Dq′′ ∈ O∗ by the induction hypothesis. So, we get Dq ∈ O∗
and µ(Dq, π

′) = 0. Otherwise, µ(Dq, π
′) = µ(Cp, π) = 1;

(iv) If Cp is the factor of Cp−1 on some literal K ′ with lb(K ′) ⊆ lb(K), then
we have the respective factoring steps Dq+1, . . . , Dq+s where Dq+1 is as-
sociated with Cp−1. By the induction hypothesis, Dq+1 ∈ O∗. Therefore
Dq+1, . . . , Dq+s ∈ O∗ with µ(Dq+t, π

′) = 0 for 1 ≤ t ≤ s;

(v) If Cp is the factor of Cp−1 (associated with Dq) on some literal K ′ and
L′ with {lb(K ′), lb(L′)} 6⊆ lb(K), the factoring happens to the associated
clauses in π′ with similar measure.

Finally, by the choice of Ci, Cj , and Ck, there must exist at least one Cp
with some literal from {K ′ | lb(K ′) ⊆ lb(K)} but associated with some D
such that D ∈ O∗ from case (iii) or (iv) before. This also means µ(D,π′) = 0.
The clause Ci has this property as it contains K. In addition, any Cp has a
nonzero measure because Ci 6∈ N ∪ O∗ and Cp is used to prove Ci. Therefore,
we have µ(Cp, π) > µ(D,π′) = 0. As these clauses are never copied to π′,
µ(π′) < µ(π).

One transformation step decreases the SOS measure and eventually, by an
inductive argument, the main result can be proven since at some point the
measure will become zero and we get the SOS resolution refutation.

Theorem 3.2.7 (Generalized SOS Completeness). There is an SOS resolution
refutation from (N,M) if and only if there is resolution refutation from N ∪M
that contains at least one clause from M .
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Proof. “⇒”: Obvious: If there is no refutation from N ∪M using a clause M
then there can also not be any SOS resolution refutation from (N,M).

“⇐”: If there is a deduction refutation π from N ∪M that contains at least one
clause from M , then by an inductive argument on µ it can be transformed into an
SOS deduction refutation with SOS M , and the result follows by Corollary 3.1.3.
If µ(π) = 0 then π is already an SOS deduction, Lemma 3.2.5. For otherwise, we
transform the deduction π into a deduction π′ according to (3.1), (3.2), and (3.3).
A refutation always contains at least one resolution step, so by Lemma 3.2.6,
π′ is also a refutation from N ∪M and µ(π′) < µ(π). Eventually, π′ can be
transformed into a label-disjoint deduction by assigning fresh labels to all used
clauses from N ∪M .

For the “⇒” direction, we can consider the clause set N = {P,¬P} and SOS
M = {Q}. Here, it is easy to see that there is no refutation of N ∪M using Q
and there is no SOS refutation. Th. 3.2.7 also guarantees that the consecutive
application of the proof transformation steps (3.1), (3.2), and (3.3), page 52,
results in an effective recursive procedure that transforms non-SOS refutations
into SOS refutations.

3.3 Test for (Syntactic) Semi-Relevance

In this section, I describe a test for the syntactic and semantic notion of rel-
evance. The primary tool for this is basically the resolution calculus with the
set-of-support strategy. For the semi-relevancy test, in particular, the generalized
completeness proven in the previous section will be necessary.

Syntactic Relevance

First, I show a lemma useful to test whether a clause C ∈ N is syntactically
relevant. Even though the proof is obvious, note that we must also test if N \{C}
is satisfiable which could be problematic in full first-order logic.

Lemma 3.3.1 (Syntactic Relevance). Given an unsatisfiable set of clauses N ,
the clause C ∈ N is syntactically relevant if and only if N \ {C} is satisfiable.

Proof. Obvious: if N \ {C} is satisfiable, there is no resolution refutation and
since N is unsatisfiable, C must occur in all refutations. If C occurs in all
refutations, there is no refutation without C so N \ {C} is satisfiable.

For the syntactically semi-relevant clauses, the generalized completeness for
the SOS strategy comes into play.

Lemma 3.3.2 (Syntactic Semi-Relevance Test). Given a set of clauses N , and a
clause C ∈ N ,C is syntactically semi-relevant if and only if (N \{C}, {C})⇒∗RES

(N \ {C}, S ∪ {⊥}).

Proof. If (N\{C}, {C})⇒∗RES (N\{C}, S∪{⊥}) then we have found a refutation
containing C. On the other hand, by Th. 3.2.7, Lemma 3.2.2 and Corollary 3.1.3,
if there is a refutation containing C, then there is also an SOS refutation with
SOS {C}.

An immediate consequence of the above lemma is the following corollary.
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Corollary 3.3.3 ((Semi-)decidability of the Semi-Relevance Test). Testing syn-
tactic semi-relevance in first-order logic is semi-decidable. It is decidable for all
fragments where resolution constitutes a decision procedure.

Fragments where our syntactic semi-relevance test is guaranteed to terminate
are for example first-order fragments enjoying the bounded model property, such
as the Bernays-Schoenfinkel fragment [BS28] and the description logic ALC.

The procedure for syntactic semi-relevance in any clause sets was proven in
a technically heavy manner. For independent clause sets, we can apparently use
the MUS characterization to show that a semi-relevant clause can be identified
using SOS strategy. This is shorter as Th. 3.2.7, Lemma 3.2.2 and Corollary 3.1.3
are no longer used.

Lemma 3.3.4 (Semi-Relevance Test (Alternative Proof)). Given an indepen-
dent clause set N , and a clause C ∈ N , C is semi-relevant if and only if
(N \ {C}, {C})⇒∗RES (N \ {C}, S ∪ {⊥}).

Proof. If C is semi-relevant in the independent clause set N , then there is a
ground MUS M using an instance C ′ of C then there is an SOS resolution from
(M \ {C ′}, {C ′}) because {M \ C ′} is satisfiable and Th. 1.3.1. By using the
original clauses in N to be used in π, we get the SOS resolution as unifiability
is obviously preserved. if there is a refutation containing C, then there is also
an SOS refutation with SOS {C}.

Semantic Relevance

For syntactic and semantic relevance, they obviously coincide. However, semi-
relevance coincides only for independent clause sets. This means a test for syntac-
tic (semi-)relevance is also useful for semantic (semi-)relevance on independent
clause set.

Theorem 3.3.5 (Semantic versus Syntactic Relevance). Given an independent,
unsatisfiable set of clauses N in first-order logic, then (semi)-relevant clauses
coincide with syntactically (semi)-relevant clauses.

Proof. We show the following: if N contains no dependent clause, C is (semi-
)relevant if and only if C is syntactically (semi-)relevant. The case for relevant
clauses is a consequence of Lemma 3.1.9. Now, we show it for semi-relevant
clauses.
”⇒” Let L be a ground literal with L ∈ conflict(N) \ conflict(N \ {C}). We can
construct a refutation using C. There are two satisfiable subsets of instances
N1, N2 from N such that N1 |= L and N2 |= comp(L) where N1∪N2 contains at
least one instance of C, for otherwise L 6∈ conflict(N) \ conflict(N \ {C}). By the
deductive completeness, Th. 1.3.2, and the fact that L and comp(L) are ground
literals, there are two variable disjoint deductions π1 and π2 of some literals
K1 and K2 such that K1σ = L and K2σ = comp(L) for some grounding σ.
Obviously, the two variable disjoint deductions can be combined to a refutation
π1.π2.⊥ containing C. Thus, C is syntactically semi-relevant in N .
”⇐” Given an SOS refutation π using C, i.e., an SOS refutation π from N \
{C} with SOS {C} and overall grounding substitution σ, we show that C is
semantically semi-relevant. Let N ′ be the variable renamed versions of clauses
from N \ {C} used in the refutation and S′ be the renamed copies of C used
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in the refutation. First, we show that N ′σ is satisfiable. Towards contradiction,
suppose N ′σ is unsatisfiable and let Mσ ⊆ N ′σ be its MUS. Since π is connected,
some clauses in Mσ and S′σ ∪ (N ′σ \ Mσ) contains literals L and comp(L)
respectively. By Lemma 3.1.8, L and comp(L) are also conflict literals in Mσ.
So, by Def. 3.1.10, the clause containing comp(L) in S′σ∪(N ′σ\Mσ) is dependent
violating our initial assumption.
Now, since N ′σ is satisfiable, there is a ground MUS from (N ′ ∪S′)σ containing
some C ′σ ∈ Sσ. Due to Lemma 3.1.8, any L ∈ C ′σ is a conflict literal in
N ′ (and consequently also in N). In addition, L is not a conflict literal in
N \ {C} for otherwise C is dependent: Suppose L is a conflict literal in N \ {C}.
Then, by definition, there is some satisfiable instances from N \ {C} which
entails L. However, since L |= C ′σ, it means C is dependent. In conclusion,
L ∈ conflict(N) \ conflict(N \ {C}) and thus C is semi-relevant.

In the case of a ground MUS, all of the literals in it are conflict literals.
However, identifying the conflict literals of a full first-order clause set is not trivial.
A naive approach is by enumerating all MUSes and checking if L is contained
in some. This works for propositional logic even though it is computationally
expensive. In first-order logic, this is problematic because there could potentially
be an infinite number of MUSes and determining a MUS is not even semi-
decidable, in general. The following lemma provides a semi-decidable test via
resolution with the set-of-support strategy.

Lemma 3.3.6. Given a ground literal L and an unsatisfiable set of clauses N
with no dependent clauses, L is a conflict literal if and only if there is an SOS
refutation from (N, {L ∨ comp(L)}).

Proof. ”⇒” By the deductive completeness, Th. 1.3.2, and the fact that L and
comp(L) are ground literals, there are two variable disjoint deductions π1 and
π2 of some literals K1 and K2 such that K1σ = L and K2σ = comp(L) for
some grounding σ. Obviously, the two variable disjoint deductions can be com-
bined to a refutation π1.π2.⊥. We can then construct a refutation π1.π2.(L ∨
¬L).(comp(L)).⊥ where K2 is resolved with L∨ comp(L) to get comp(L) which
will be resolved with K1 from π1 to get ⊥. By Th. 3.2.7, it means there is an
SOS refutation from (N, {L ∨ ¬L})
”⇐” Given an SOS refutation π using {L ∨ comp(L)}, i.e., an SOS refutation π
from N \ {{L ∨ comp(L)}} with SOS {{L ∨ comp(L)}}, Let N ′ be the variable
renamed versions of clauses from N and overall grounding substitution σ. N ′σ
is a MUS for otherwise there is a dependent clause: Suppose N ′σ \M is an
MUS where M is non-empty. Since π is connected, some clause D′ in M must
be resolved with some D ∈ N ′σ upon some literal K. Thus, by Lemma 3.1.8,
K and comp(K) are also conflict literals in N ′σ \M . So, by Def. 3.1.10, the
clause subsuming D′ in N is dependent violating our initial assumption. Finally,
because L occurs in N ′σ and N ′σ is an MUS, by Lemma 3.1.8, L is a conflict
literal.

As a final remark, the fact that the clause sets are used in three different
settings should not cause any issues: (1) In the derivations generated by the
resolution calculus, clauses can be used multiple times (via possibly different
instantiations) and some generated clauses may even be useless for the final refu-
tation; (2) For the transformation, refutations are assumed to be in tree-form
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where clauses are ground and used exactly once; (3) In the relation between syn-
tactic and semantic relevance, the coincidence between them must be predicated
upon the fact that the clause sets are independent. Derivations and tree-shaped
ground refutations from (1) and (2) are related via the overall substitution. The
fact that clauses are used only once in the trees is helpful to prove the generalized
SOS completeness by enabling µ from Def. 3.2.4 to strictly decrease due to the
transformation (Lemma 3.2.6). Besides the copying only happens for clauses that
are already in the SOS and therefore does not affect the SOS measure. For (3),
defining semantic relevance for independent clause sets means we do not even
concern multiple clauses that can interchangeably be used to derive a conflict
literal. For example, in the clauses N = {P (a, b),¬P (a, x),¬P (y, b)}, we cannot
relate the syntactic semi-relevance (Def. 3.1.4) to its semantic characterization
(Def. 3.1.11) because ¬P (a, x) and ¬P (y, b) are dependent w.r.t each other.

3.4 Syntactic Relevance Notion in Description
Logic

In this section, I demonstrate how the proposed notion of syntactic relevance
can be useful in explaining entailment for fragments with a translation technique
to FOL [HKTW20]. As an illustration, I will use the description logic ALC.

Lifting the Syntactic Relevance to DL Axioms

This works via translation via Table 1.2. Whenever we want to prove the entail-
ment of a DL axiom ϕ from an ontology O, O |= ϕ, we refute the clausification
fo(O) ∪ fo(¬ϕ) using the resolution calculus.

Definition 3.4.1 (DL Syntactic Relevance). Given an entailment O |= φ and
a clausification Φ of fo(O) ∪ fo(¬ϕ), the DL axiom φ is

– syntactically relevant , if any refutation of Φ uses a clause from fo(φ),

– syntactically semi-relevant , if a refutation of Φ uses a clause from fo(φ),
and

– syntactically irrelevant , otherwise

a silent labeling of clauses is assumed to keep track of different versions of the
same clause.

The silent labeling of clauses is needed since multiple DL axioms may pro-
duce some equivalent clauses [LAWRS07]. Note that a relevant DL axiom may
translate into several clauses consisting of more than one semi-relevant clauses
which are not relevant individually.

Our notion of relevance can be effectively tested for a number of description
logics, including EL and ALC.

Many description logics satisfy the finite model property, in which the relevant
finite model for some clause set can be explicitly a priori generated [HS02]. In
this case, the logics enjoy the bounded model property. In particular, if resolution
is not a decision procedure for the logic under consideration, an explicit bound
on the Herbrand universe is needed.
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In [HS02], the bounded model property of EL, ALC, and other logics is used
to provide for a translation-based decision procedure for these logics. In general,
this approach can however be used for many description logic fragments that
have the finite model property, including more expressive description logics such
as SHOI.

Lemma 3.4.2 (Syntactic (Semi)-Relevance Decidability in Description Log-
ics). For ontologies in a DL fragment that enjoys the bounded model property,
syntactic (semi-)relevance of an axiom for a given property is decidable.

Proof. We translate both the (negated) property and the ontology to first-order
logic. For relevance, we first check satisfiability of the resulting clause set without
the clauses from the axiom via resolution using the bounded model property.
This terminates because we only have to consider terms out of the finite Herbrand
base generated by these logics [HS02]. If the clause set is unsatisfiable, the axiom
is either irrelevant or semi-relevant but not relevant. If this clause set is satisfiable
the axiom is either relevant or irrelevant because then semi-relevance implies
relevance. In both cases, testing for semi-relevance provides the final classification
of the axiom.

To test for semi-relevance, we perform an SOS resolution proof attempt where
the set of support contains the clauses corresponding to the axiom. If this results
in a refutation, the axiom is semi-relevant or relevant for the property depending
on the previous test, otherwise it is irrelevant.

All resolution proof attempts terminate, because they can be stopped once
the generated terms exceed the expected bounded Herbrand universe.

Example 3.4.3. As an illustration for our notion of relevance in the DL context,
we consider an EL ontology O = T ∪ F , where

T = {LuxurySedan u ∃hasEngine.HighPerformanceEngine vPerformanceCar,

LuxurySedan t PerformanceCar vExecutiveCar}

In natural language, the first axiom says, a luxurious sedan with a high
performance engine is a performance car. The second one says, luxurious sedans
and performance cars are executive cars. Suppose, in addition, we also have an
ABox:

F = {LuxurySedan(mercedes),

hasEngine(mercedes, v8),

HighPerformanceEngine(v8)

PerformanceCar(lamborghini)}.

The first-order translation of T according to Table 1.2 results in

¬LuxurySedan(x) ∨ ¬hasEngine(x, z) ∨ ¬HighPerformanceEngine(z) ∨ PerformanceCar(x)

(¬LuxurySedan(x) ∧ ¬PerformanceCar(x)) ∨ ExecutiveCar(x)

and we want to prove the entailment O |= ExecutiveCar(mercedes). In order to
find (semi-)relevant axioms for this entailment, we consider¬ExecutiveCar(mercedes)
and the translation of O to first-order logic.
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The following refutation π1 (in linear format) can be used to show that
O |= ExecutiveCar(mercedes).

π1 = [(1) : ¬LuxurySedan(x) ∨ ExecutiveCar(x)

(2) : LuxurySedan(mercedes),

(3) : ExecutiveCar(mercedes)

(4) : ¬ExecutiveCar(mercedes)

(5) : ⊥].

π1 is not the only possible refutation. Another refutation with different clauses
is as follows.

π2 = [(1) : ¬LuxurySedan(x) ∨
¬hasEngine(x, z) ∨ ¬HighPerformanceEngine(z) ∨
PerformanceCar(x),

(2) : ¬PerformanceCar(x) ∨ ExecutiveCar(x)

(3) : LuxurySedan(mercedes),

(4) : hasEngine(mercedes, v8), (5) : HighPerformanceEngine(v8),

(6) : ¬LuxurySedan(x) ∨
¬hasEngine(x, z) ∨ ¬HighPerformanceEngine(z) ∨
ExecutiveCar(x),

(7) : ¬hasEngine(mercedes, z) ∨ ¬HighPerformanceEngine(z) ∨
ExecutiveCar(mercedes),

(8) : ¬HighPerformanceEngine(v8) ∨ ExecutiveCar(mercedes),

(9) : ExecutiveCar(mercedes)

(10) : ¬ExecutiveCar(mercedes)

(11) : ⊥].

The clauses (1) to (5) are the input clauses. The next four clauses result from
consecutive resolution steps between clause (1) and the other clauses (2) to (5)
from τ(A). This will result in the respective clauses (6) to (9). Clause (9) is then
resolved with the negated conjecture, (10), resulting in ⊥.

The concept inclusion LuxurySedantPerformanceCar v ExecutiveCar is there-
fore syntactically relevant since both proofs must contain at least one clause
out of its first-order translation. The ABox axiom LuxurySedan(mercedes) is also
syntactically relevant. Moreover, the TBox axioms

LuxurySedan u ∃hasEngine.(HighPerformanceEngine) v PerformanceCar

and the ABox axioms

LuxurySedan(mercedes),

hasEngine(mercedes, v8),

and HighPerformanceEngine(v8)

are syntactically semi-relevant but not syntactically relevant. Finally, the ABox
axiom

PerformanceCar(lamborghini)

is irrelevant.
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Comparison between Axioms Involved in Refutations and Justifica-
tions

Analogous to the comparison between MUS-based and refutation based relevance
in FOL, we now compare our notions with the one using justification. Consider
the ontology O = T ∪ F consisting of the following TBox and ABox.

T ={P v Q,Q uR v S,Q t S v T}
F ={P (a), R(a)}

and consider the entailment O |= T (a). There is only one justification for this
entailment, namely {P v Q,Q t S v T, P (a)} so that only those axioms are
MinA-relevant for T (a). In contrast, all axioms in the ontology are syntactically
semi-relevant for T (a). A first proof in first-order logic uses, in addition to the
negation of T (a) the axioms P (a), P v Q, and QtS v T as is shown in Fig. 3.8.

⊥

¬T (a)T (a)

Q(a)

P (a)¬P (x) ∨Q(x)

¬Q(x) ∨ T (x)

{x 7→ a}

{x 7→ a}

Figure 3.8: A refutation in FOL for the ALC ontology T ] F using P (a)

The second proof also uses P (a), P v Q, and Q t S v T , but additionally
includes R(a) and Q uR v S as shown in Fig. 3.9.

⊥

¬T (a)T (a)

S(a)

R(a)¬R(a) ∨ S(a)

Q(a)

P (a)¬P (x) ∨Q(x)

¬Q(x) ∨ ¬R(x) ∨ S(x)

¬S(x) ∨ T (x)

{x 7→ a}

{x 7→ a}

{x 7→ a}

Figure 3.9: A refutation in FOL for the ALC ontology T ] F using R(a)

Due to the fact that syntactic semi-relevance is based on the first-order
translation of its axioms, this notion then possesses a connection to laconic
justifications [HPS08b]. On the one hand, a syntactically semi-relevant DL axiom
may be translated into several clauses where some of them are irrelevant at first-
order level. On the other hand, a laconic justification can be seen as resulting from
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some sort of axiom simplifications (such as conjunct elimination) in a justification.
In some way, a simplification of DL axiom would amount to irrelevant clauses
elimination.

Relation between Syntactically Relevant Axioms and DL Repairs

Relevant axioms are related to the (classical) repairs where we want to remove
some unwanted consequence. A repair for an entailment O |= α is a subset-
minimal set R ⊆ O s.t. O\R 6|= α [PSK05]. In this case, a repair for O |= α then
always contains one axiom from every justification for O |= α. In the context of
syntactic relevance, a relevant axiom corresponds to the special case of a repair
of size one. Thus relevancy test also provides a test for whether a set of size one is
a repair. This can be an alternative approach to the existing justification-based
method (via minimal hitting set algorithm) [Rei87].

Relations between Syntactically Semi-Relevant Axioms and Lean Ker-
nel/ MinA-preserving module

Syntactically semi-relevant axioms are related to the following: lean kernel [KK09,
Kul00] and MinA preserving module [PMIM17]. Given an unsatisfiable set F of
propositional clauses, the lean kernel Na(F ) ⊆ N consists exactly of the clauses
involved in some refutation of N and thus, the syntactically semi-relevant clauses.
This notion has been extended to description logics in [PMIM17] where arbitrary
consequence-based reasoning procedures are considered.

The notion of lean kernal is generalized to MinA-preserving module [PMIM17]:
given an ontology O and an axiom α, a MinA-preserving module for α in O is
a subset M ⊆ O s.t. every justification for O |= α is a subset of M. Subset
minimality is not imposed and thus a MinA-preserving module may contain
axioms outside of any justification. Since every axiom in a justification is also
semi-relevant, the set of all syntactically semi-relevant axioms is also a MinA-
preserving module.
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Chapter 4

Explaining Non-Entailment
via Connection-Minimal
Abduction

As we have seen in Sect. 2.2, explaining a non-entailment can be done in many
ways. One that I will focus on is abduction in EL. For this, I introduce a new
minimality criterion called connection minimality (Sect. 4.1). This criterion
characterizes hypotheses for T and α that connect the left- and right-hand sides
of the observation α directly without creating spurious connections involving
unrelated CIs.

To generate the connection-minimal hypotheses, I present a sound and com-
plete approach using first-order prime implicates. This consists of three steps
(Sect. 4.2). First, the abduction problem is translated to first-order clause set Φ.
Second, the prime implicates of Φ are generated, that is, a set of minimal logical
consequences of Φ that subsume all other consequences of Φ. Last, I construct
the wanted hypotheses from these generated prime implicates.

For the implementation, the SPASS theorem prover [WSH+07] is used as
a restricted SOS resolution [WRC65, HTW21] engine for the computation of
prime implicates (Sect. 4.3.1). At the DL level, efficiency is further improved
by performing some preprocessing steps in Java also taking advantage of the
OWL API [HB11] and the DL tool ELK [KKS14] (Sect. 4.3.2). Termination
is guaranteed for the class of hypotheses that are subset minimal (Sect. 4.4).
The resulting implementation is called CAPI (Sect. 4.5.1) and I used it to
perform experiments on some publicly available bio-medical ontologies in EL
(Sect. 4.5.2). The results show that, despite the possibly high theoretical cost, it
is not prohibitive in practice.

4.1 A New Minimality Notion for EL Abduction

I will now introduce the connection-minimality notion. This section is divided
into two parts. The first one offers an alternative way of characterizing the
entailment of a concept inclusion via T -homomorphism and connecting concept.
Afterwards, I introduce the connection-minimality notion taking advantage of
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this entailment characterization. Now, I recall the example in page 10 where Ha1

is the one that is connection-minimal.

Example 4.1.1 (Academia abduction).

Ta = { ∃employment.ResearchPosition u ∃qualification.Diploma v Researcher,

∃writes.ResearchPaper v Researcher, Doctor v ∃qualification.PhD,

Professor ≡ Doctor u ∃employment.Chair,

FundsProvider v ∃writes.GrantApplication }

The observation αa = Professor v Researcher is not entailed by Ta with consid-
ered hypotheses

Ha1 = { Chair v ResearchPosition, PhD v Diploma} and

Ha2 = { Professor v FundsProvider, GrantApplication v ResearchPaper}

This example will be referred to a couple of times later.

4.1.1 Acquiring EL Entailment via Connecting Concept

Ultimately, the goal of an abductive reasoning is to obtain an entailment. In
relation to the proposed connection minimality, I introduce in this section the
characterization of subsumption via connecting concepts and how it can be
constructed using T -homomorphism.

Connecting concept

I provide a simple yet useful notion of connecting concept. The idea is that if
we have an entailment T |= U1 v U2, then there is something in between which
“connects” them. Otherwise, they are disconnected (which is the case in the
abduction problem). Connection-minimality then constructs such a connection.
The notion of connecting concepts is formalized in the following.

Definition 4.1.2. Let U1 and U2 be concepts. A concept V connects U1 to U2

in T if and only if T |= U1 v V and T |= V v U2. D is thus called a connecting
concept between U1 and U2.

Note that if T |= U1 v U2 then both U1 and U2 are connecting concepts
from U1 to U2, and if T 6|= U1 v U2 neither of them are. Note that a connecting
concept may have removable conjuncts. In this case, it is preferable to find one
that is minimal. So, we define a partial order �u on concepts, s.t. U �u V if
we can turn V into U by removing conjuncts in subexpressions, e.g., ∃R′.Q �u
∃R.P u ∃R′.(Q uQ′). The following definition shows its formalization.

Definition 4.1.3. Let U and V be arbitrary concepts. Then U �u V if either:

– U = V ,

– V = V ′ u V ′′, and U �u V ′, or

– U = ∃R.U ′, V = ∃R.V ′ and U ′ �u V ′.

A concept V is �u-minimal w.r.t. some property if there is no other I s.t. U �u V
satisfying the same property.
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For subsumers, we have the following property: if T |= U v V , then for any
V ′ s.t. V ′ �u V , it holds that T |= U v V ′. Intuitively any possible conjunct
removal from V preserves subsumption. In contrast, for subsumees, we have the
following property: if T |= U v V , then for any U ′ s.t. U �u U ′, it holds that
T |= U ′ v V . Any addition of conjuncts in U preserves the subsumption relation.
So, in our case, it is preferable to remove conjuncts from the subsumee to get
the gist of the connecting concept.

Constructing a connecting concept via T -homomorphism

Now, by looking into the syntactic characterization of non-atomic concepts, we
can create the connection by means of a new T -homomorphism. In some sense, a
connection-minimal hypothesis would then provide the “missing link” in the T -
homomorphism. Semantically, subsumption U v V between two concepts means
there is subset inclusion between UI ⊆ V I for any I. In [BKM99], this can be
syntactically characterized via the existence of some notion of homomorphism
between the EL description trees of U and V . For this, I generalize a subsump-
tion characterization from [BKM99] by means of homomorphism between EL
description trees.

Our new notion of homomorphism also relies on the notion of EL description
tree. Given a concept U , we can construct a tree where the nodes hold the
information regarding the atomic concepts in U while the edges represent roles
(originally from Baader et al. [BKM99]). EL description trees capture the syntax
of concepts graphically.

Definition 4.1.4. An EL description tree is a labeled tree T = (V, E , v0, l)
where V is a set of nodes with root v0 ∈ V, the nodes v ∈ V are labeled with
l(v) ⊆ ΩC, and the (directed) edges vRw ∈ E are such that v, w ∈ V and are
labeled with R ∈ ΩR.

Relation between EL description trees and concepts Given a tree T =
(V, E , v0, l) and v ∈ V, we denote by T(v) the subtree of T that is rooted at v. If
l(v0) = {A1, . . . , Ak} and v1, . . ., vn are all the children of v0, we can define the
concept represented by T recursively using UT = P1 u . . . u Pk u ∃R1.UT(v1) u
. . . u ∃Rl.UT(vl) where for j ∈ {1, . . . , n}, v0Rjvj ∈ E . Conversely, we can define
TU for a concept U = P1 u . . . u Pk u ∃R1.U1 u . . . u ∃Rn.Un inductively based
on the pairwise disjoint description trees TUi

= {Vi, Ei, vi, li}, i ∈ {1, . . . , n}.
Specifically, TU = (VU , EU , vU , lU ), where

VU = {v0} ∪
⋃n
i=1 Vi,

EU = {v0Rivi | 1 ≤ i ≤ n} ∪
⋃n
i=1 Ei,

lU (v) = li(v) for v ∈ Vi,
lU (v0) = {P1, . . . , Pk}.

We are now ready to introduce the T -homomorphism generalizing the no-
tion from [BKM99]. If T = ∅, this corresponds exactly to the one introduced
in [BKM99].

Definition 4.1.5. Let T1 = (V1, E1, v0, l1) and T2 = (V2, E2, w0, l2) be two
description trees and T a TBox. A mapping φ : V2 → V1 is a T -homomorphism
from T2 to T1 if and only if the following conditions are satisfied:
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∅

Chair

employment

PhD

qualification

∅

ResearchPosition

employment

Diploma

qualification

Figure 4.1: Description trees of V1 (left) and V2 (right).

1. φ(w0) = v0

2. φ(v)Rφ(w) ∈ E1 for all vRw ∈ E2

3. for every v ∈ V1 and w ∈ V2 with v = φ(w), T |=
d
l1(v) v

d
l2(w)

If only 1 and 2 are satisfied, then φ is called a weak homomorphism.

T -homomorphisms for a given TBox T capture subsumption w.r.t. T . If there
exists a T -homomorphism φ from T2 to T1, then T |= UT1 v UT2 . This can be
shown easily by structural induction using the definitions. Weak homomorphisms
are used to reveal missing links between a subsumee V2 of U2 and a subsumer
V1 of U1, that can be added using a hypothesis.

Lemma 4.1.6. Let T1 = (V1, E1, v0, l1) and T2 = (V2, E2, w0, l2) be EL descrip-
tion trees, with a T -homomorphism Φ from T2 to T1. Then T |= UT1 v UT2 .

Proof. We prove this result by induction on the structure of T2.
If T2 = ({w0}, ∅, w0, l2), then UT2

= l2(w0). Moreover UT1
v l1(v0) by

definition of UT1 . Finally T |= UT1 v UT2 since T |=
d
l1(φ(w0)) v

d
l2(w0)

and φ(w0) = v0.
In the general case, let us consider any child wi of w0 in T2 since there must

be at least one. Then there is a corresponding child vi of v0 in T1 s.t. v = φ(w).
The T -homomorphism φ from T2 to T1 is also a T -homomorphism from T2(w)
to T1(v), thus by induction T |= UT1(v) v UT2(w), and in particular, for the Ri
such that w0Riw ∈ E2, we have T |= ∃Ri.UT1(v) v ∃Ri.UT2(w). This applies to
all the children w1, . . . , wn of w0, and since T |=

d
l1(v0) v

d
l2(w0), it follows

that T |=
d
UT1
v UT2

.

In the end a connection-minimal hypothesis for an abduction problem cre-
ates the connection between the concepts U1 and U2. As argued above, this is
established via concepts V1 and V2 that satisfy T |= U1 v V1, V2 v U2.

Example 4.1.7. Consider the concepts

V1 = ∃employment.Chair u ∃qualification.PhD

V2 = ∃employment.ResearchPosition u ∃qualification.Diploma

from Ex. 4.1.1. Fig. 4.1 illustrates description trees for V1 (left) and V2 (right).
The curved arrows show a weak homomorphism from TV2

to TV1
that can be

strengthened into a T -homomorphism for some TBox T that corresponds to the
set of CIs in Ha1 ∪ {> v >}.
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4.1.2 Connection-Minimality Notion

Before getting into the formalization, I present a TBox abduction problem that is
slightly different from the one usually formulated in the literature. In the existing
literature, TBox abduction normally restricts the hypotheses to consists of only
simple concept inclusion of the form P v Q. For our notion, it is somewhat too
restrictive and we need to relax it by allowing conjunctions. The problem would
then be formulated as follows.

Definition 4.1.8 (TBox Abduction). An EL TBox abduction problem (short-
ened to abduction problem) is a tuple 〈T ,Σ, U1 v U2〉, where T is a TBox called
the background knowledge, Σ is a set of atomic concepts called the abducible
signature, and U1 v U2 is a CI called the observation, s.t. T 6|= U1 v U2. A
solution to this problem is a TBox

H ⊆ {P1 u · · · u Pn v Q1 u · · · uQm | {P1, . . . , Pn, Q1, . . . , Qm} ⊆ Σ}

where m > 0, n ≥ 0 and such that T ∪ H |= C1 v C2 and, for all CIs α ∈ H,
T 6|= α. A solution to an abduction problem is called a hypothesis.

Existing minimality notions suffer from a certain limitation in that they may
unnecessarily use concepts that are completely unrelated to the observation.
This is not a good idea so far as Occam’s razor is concerned. In other words,
the common minimality notions are not parsimonious as already illustrated in
Ex. 4.1.1.

To address the lack of parsimony in the common minimality notions, I now
introduce the connection minimality. Intuitively, the connection minimality only
accepts those hypotheses ensuring that every concept inclusion in the hypoth-
esis is connected to both U1 and U2 in T , as is the case for Ha1 = {Chair v
ResearchPosition, PhD v Diploma} in Ex. 4.1.1. The definition of connection
minimality is based on the following ideas:

1 Hypotheses for the abduction problem have to create a connection between
U1 and U2, in the form of a concept V that satisfies T ∪ H |= U1 v V ,
V v U2.

2 To ensure that Occam’s razor is followed, we want this connection to be
based on concepts V1 and V2 for which we already have T |= U1 v V1 and
T |= V2 v U2.

3 We additionally want to make sure that the connecting concepts are not
more complex than necessary, and that H only contains CIs that directly
connect parts of V2 to parts of V1 by closely following their structure.

Definition 4.1.9 (Connection-Minimal Abduction). Given an abduction prob-
lem 〈T ,Σ, U1 v U2〉, a hypothesisH is connection-minimal if there exist concepts
V1 and V2 built over Σ ∪ ΩR and a mapping φ satisfying each of the following
conditions:

1. T |= U1 v V1,

2. V2 is a �u-minimal concept s.t. T |= V2 v U2,
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3. φ is a weak homomorphism from the tree TV2
= (V2, E2, w0, l2) to the tree

TV1
= (V1, E1, v0, l1), and

4. H = {
d
l1(φ(w)) v

d
l2(w) | w ∈ V2 ∧ T 6|=

d
l1(φ(w)) v

d
l2(w)}.

H is additionally called packed if the left-hand sides of the CIs in H cannot hold
more conjuncts than they do, which is formally stated as: for H, there is no H′
defined from the same V2 and a V ′1 and φ′ s.t. there is a node w ∈ V2 for which
l1(φ(w)) ( l′1(φ′(w)) and l1(φ(w′)) = l′1(φ′(w′)) for w′ 6= w.

The straightforward consequences of Def. 4.1.9 include that φ is a (T ∪ H)-
homomorphism from TV2

to TV1
and that V1 and V2 are connecting concepts

from U1 to U2 in T ∪ H so that T ∪ H |= U1 v U2 as wanted.
While minimality notions from Def. 2.2.2 with external information can be

very important in practice (e.g., for debugging), it is in some way difficult to
compare our notion with them due to the differing assumptions. On the one
hand, the idea of ”connectedness” relies only on the TBox without the necessity
of external help while on the other hand, external information such as an oracle
is often the key in controlling the preferred hypotheses but we have no means to
assess their quality (because they are simply given). For example, the signature
restriction (equipped with semantic minimality) must exclude some signature
in order to be meaningful (otherwise only {U1 v U2} is acceptable). On the
other hand, {U1 v U2} is perfectly acceptable w.r.t our notion. In the trivial
abduction problem with empty Tbox ∅ 6|= U1 v U2, even our notion would accept
{U1 v U2}. Moreover, I would further argue that relying on external information
can be like passing the bucket. Having an external guide may amount to having
another abduction problem at a different level (e.g., ”why is this justification
pattern meaningful?”). This can be fine, for example, when a domain expert
is trying to fix an ontology. Therefore, I think it is not possible to have an
apple-to-apple comparison.

So, it makes more sense to compare it with the notions relying on the problem
itself such as the ones defined in Def. 2.2.3. On the one hand, our notion excludes
a subset of the hypotheses accepted by the other minimality notions. On the
other hand, our minimality also offers hypotheses that are not accepted by others.
I show this in particular for the subset minimality notion.

Example 4.1.10 (Non-subset-minimal 1).

T = { Tycoon v CEO u BusinessOwner

CEO v ∃manages.Company u ShareHolder

BusinessOwner v ∃owns.Company

∃owns.Enterprise v SuperRich

∃manages.Enterprise u DividendReceiver v SuperRich}

if the observation is CEO v SuperRich, then one possible hypothesis is

H1 = {Company v Enterprise,ShareHolder v DividendReceiver}

constructed from

V1 = ∃manages.Company u ShareHolder

V2 = ∃manages.Enterprise u DividendReceiver
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If the observation is BusinessOwner v SuperRich, then one possible hypothesis is

H2 = {Company v Enterprise}

constructed from

V ′1 = ∃owns.Company

V ′2 = ∃owns.Enterprise

If the observation is Tycoon v SuperRich, then both of the previous hypotheses
are accepted but H1 is not subset minimal. This is because V1 and V2 are
also usable for Tycoon v SuperRich. In other words, our connection minimality
criterion considers that both H1 and H2 are important for Tycoon v SuperRich.
In conjunction with the ontology, H1 explains why the observation holds in
different manner than H2 and not just simply H2 with an additional superfluous
concept inclusion. That is, hypothesis H1 is accepted when we explain the
observation because tycoons are CEO’s and hypothesis H2 is accepted if we
consider tycoons to be business owners.

The second difference to consider is whether or not cycles (from Def. 1.2.1) are
used for constructing the connecting concepts. In the following, a forward cycle
and a backward cycle might turn out to be matching in a way that introduces
an extra mapping in the homomorphism.

Example 4.1.11 (Non-subset-minimal 2 + Termination Issue).

T = {Bat v ∃canBite.Bat,

Bat v ∃canBite.Human,

Bat v ∃canHost.Rabies,

DiseaseVector v Organism,

Human v Organism}
∃canBite.Organism u ∃canHost.Virus v DiseaseVector}

where we have a non entailment

T 6|= Bat v DiseaseVector

For Bat v DiseaseVector, we could have the following connection-minimal
hypotheses

H3 = {Bat v DiseaseVector}
H4 = {Rabies v Virus}
H5 = {Human v DiseaseVector,Rabies v Virus}

H3 is the obvious one because it is basically the observation. H4 represents
the fact that bats transfer viruses to humans. The concepts used to create a
connecting concept are

V1 = ∃canBite.Humanu∃canHost.Rabies

V2 = ∃canBite.Humanu∃canHost.Virus
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H5 is a connection-minimal hypothesis with the following concepts as the ingre-
dients for a connecting concept.

V ′1 = ∃canBite.Humanu∃canHost.Rabies

V ′2 = ∃canBite.DiseaseVectoru∃canHost.Virus

H5 also illustrates a termination problem. A rabies-carrying bat can transfer
the rabies to a different bat indefinitely before finally reaching a human. In
EL axiom, one can see that from Bat v ∃canBite.Bat u ∃canHost.Rabies, the
atomic concept Bat can always be replaced indefinitely by Batu∃canHost.Rabies
producing successively larger concepts. The same goes with ∃canBite.Organismu
∃canHost.Virus. Every repetition always produces a different pair of V1 and V2

with which we can produce a connection-minimal solution. However, these infinite
number of pairs will only be usable to generate H5.

4.2 Computation via First-Order Prime Impli-
cates

In order to compute connection-minimal hypotheses in practice, I propose a
method based on first-order prime implicates. This is illustrated in Fig. 4.2.

U1 v U2

T translation Φ PI generation

Σ

PIg+Σ (Φ)

PIg−Σ (Φ)

recombination H

Figure 4.2: EL abduction using prime implicate generation in FOL.

The problem is first translated into a set Φ of Horn clauses. Prime implicates
can be computed using an off-the-shelf tool [NIIR10,EPS18] or, in our case, a
slight extension of the resolution-based version of the SPASS theorem prover
[WSH+07] with some additional inference restrictions. We will only collect prime
implicates containing either only positive literals or only negative literals. Let
Σ ⊆ ΩC be a set of unary predicates. Then PIg+Σ (Φ) denotes the set of all
positive ground prime implicates of Φ that only use predicate symbols from
Σ ∪ ΩR, while PIg−Σ (Φ) denotes the set of all negative ground prime implicates

of Φ that only use predicates symbols from Σ ∪ ΩR. Since Φ is Horn, PIg+Σ (Φ)
contains only unit clauses. A final recombination step looks at the clauses in
PIg−Σ (Φ) one after the other. These correspond to candidates for the connecting
concepts V2 of Def. 4.1.9. Recombination attempts to match each literal in one
such clause with unit clauses from PIg+Σ (Φ) by looking into their ground terms.
If such a match is possible, it produces a suitable V1 (also from Def. 4.1.9) to
match V2, and allows the creation of a hypothesis to the abduction problem.
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4.2.1 Translation to First-Order Logic

Our abduction technique reconstructs EL hypotheses from first-order prime
implicates where we use a translation involving clausification with Skolemization.
Unsurprisingly, this breaks equivalence. However, using a concept renaming
technique and the fact that (Herbrand) models of the Skolemized clauses can be
used as models of the original TBox, one can still recover some useful entailed
concept inclusions, in particular the subsumers of U1 and the subsumee of U2. I
now present this in detail.

I assume the EL TBox in the input is in normal form, otherwise, a normaliza-
tion technique as in Table 1.3 can be used because it is supported by Prop. 1.2.2.
Thus, every CI is of one of the following forms:

P v Q P1 u P2 v Q ∃R.P v Q P v ∃R.Q

where P ,P1,P2,Q ∈ ΩC∪{>}. Every EL TBox can be transformed in polynomial
time into this normal form through the introduction of fresh atomic concepts.
Moreover, if we normalize an ontology T into T ′, then for any other TBox (and
possible hypothesis) H that is not using names introduced by the normalization,
T ∪ H and T ′ ∪H entail the same CIs in the signature of T ∪ H.

After the normalization, we eliminate occurrences of >, replacing this concept
everywhere by the fresh atomic concept P>. We furthermore add ∃R.P> v P>
and Q v P> in T for every role R and atomic concept Q occurring in T .
This simulates the semantics of > for P>, namely the implicit property that
U v > holds for any U no matter what the TBox is. In particular, this ensures
that whenever there is a positive prime implicate Q(t) or R(t, t′), P>(t) also
becomes a prime implicate. Note that normalization and > elimination extend
the signature, and thus potentially the solution space of the abduction problem.
This is remedied by intersecting the set of abducible predicates Σ with the
signature of the original input ontology. T is thus assumed to be in normal form
and without > in the rest of the paper. In the end, fo(T ) contains only formulas
of the following shapes:

∀x.¬P (x) ∨Q(x),

∀x.¬P1(x) ∨ ¬P2(x) ∨Q(x),

∀x.¬(∃y.R(x, y) ∧ P (y)) ∨Q(x),

∀x.¬P (x) ∨ ∃y.(R(x, y) ∧Q(y)).

T − denotes the result of renaming all atomic concepts P in T using fresh
duplicate symbols P−. This renaming is done only on concepts but not on roles,
and on U2 but not on U1 in the observation. This ensures that the literals
in a clause of PIg−Σ (Φ) all relate to the conjuncts of a �u-minimal subsumee
of U2. Without it, some of these conjuncts would not appear in the negative
implicates due to the presence of their positive counterparts as atoms in PIg+Σ (Φ).
The translation of the abduction problem 〈T ,Σ, U1 v U2〉 is defined as the
Skolemization and clausification of

fo(T ] T −) ∧ ¬ fo(U1 v U−2 )

where sk0 is used as the unique fresh Skolem constant such that the Skolemization
of ¬ fo(U1 v U−2 ) results in {U1(sk0),¬U−2 (sk0)}. This translation is denoted
as Φ = FO(T , U1 v U2).
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Example 4.2.1. Consider the abduction problem 〈Ta,Σ, αa〉 with Σ from
Ex. 4.1.1. For the translation Φ of this problem, we have

PIg+Σ (Φ) = {Professor(sk0), Doctor(sk0), Chair(sk1(sk0)), PhD(sk2(sk0))}
PIg−Σ (Φ) = {¬Researcher−(sk0),

¬ResearchPosition−(sk1(sk0)) ∨ ¬Diploma−(sk2(sk0))}

where sk1 is the Skolem function introduced for Professor v ∃employment.Chair
and sk2 is introduced for Doctor v ∃qualification.PhD.

Detailed Example

Now, I illustrate the translation via a more detailed example. Consider the
abduction problem 〈T ,Σ, U1 v U2〉 where

T = {U1 v P1, U1 v P2, U1 v ∃R1.Q1,

Q1 v ∃R2.S1, Q1 v ∃R2.T1,

∃R1.W1 u P3 v U2, Q2 uW2 vW1,

∃R2.S1 u ∃R2.W3 vW2, T2 u P2 vW3 }

and Σ = {P1, P2, P3, Q1, Q2, S1, T1, T2, T3}. Consider the concepts

V1 = P1 u P2 u ∃R1.(Q1 u ∃R2.S1 u ∃R2.T1),

V2 = P3 u ∃R1.(Q2 u ∃R2.S1 u ∃R2.(T2 u T3)),

Indeed, the concepts V1 and V2 are such that T |= U1 v V1 and T |= V2 v U2.
Moreover, any concept V ′ s.t. V ′ �u V2 and V ′ 6≡ V2 is not a subsumee of U2.
So, V2 is a �u-minimal concept such that T |= V2 v U2. There is also a weak
homomorphism from TV2

to TV1
, as illustrated in Fig. 4.3. Thus,

H = {P1 u P2 v P3, Q1 v Q2, T1 v T2 u T3}

is a connection-minimal hypothesis. Note that the tautology S1 v S1, that is
one of the entailments that must hold in T ∪ H, as is visible in Fig. 4.3, is not
included in H since it is a tautology and thus T |= S1 v S1. The hypothesis H
is even packed. In contrast,

H1 = {P1 v P3, Q1 v Q2, T1 v T2 u T3} and

H2 = {P2 v P3, Q1 v Q2, T1 v T2 u T3}

that are both connection-minimal but lack either P1 or P2 on the left-hand side
of their first CI when compared with H, are not packed.

P1, P2

Q1

S1

R2

T1

R2

R1

P3

Q2

S1

R2

T2, T3

R2

R1

Figure 4.3: Two description trees with a weak homomorphism between them.
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Before the translation, the TBox under consideration must be normalized.
So, We additionally perform a normalization to T . The CIs to normalize are
∃R1.W1 u P3 v U2 and ∃R2.S1 u ∃R2.W3 v W2 for which we introduce the
fresh concepts V ′1 , V ′2 and V ′3 and corresponding CIs ∃R2.S1 v V ′1 , ∃R2.W3 v V ′2
and ∃R1.W1 v V ′3 , along with the normalized form of the two initial CIs, i.e.,
V ′3 u P3 v U2 and V ′1 u V ′2 vW2.

I do not show the axioms using P> to simulate > since it will not be needed
for the illustration of how hypotheses can be acquired here. The following shows
the result of the normalization for T and their first-order translation after Sko-
lemization (shown side-by-side).

U1 v P1 ¬U1(x) ∨ P1(x)

U1 v P2 ¬U1(x) ∨ P2(x)

U1 v ∃R1.Q1

{
¬U1(x) ∨R1(x, sk1(x))
¬U1(x) ∨Q1(sk1(x))

Q1 v ∃R2.S1

{
¬Q1(x) ∨R2(x, sk2(x))
¬Q1(x) ∨ S1(sk2(x))

Q1 v ∃R2.T1

{
¬Q1(x) ∨R2(x, sk′2(x))
¬Q1(x) ∨ T1(sk′2(x))

∃R1.W1 v V ′3 ¬R1(x, y) ∨ ¬W1(y) ∨ V ′3(x)

V ′3 u P3 v U2 ¬V ′3(x) ∨ ¬P3(x) ∨ U2(x)

Q2 uW2 vW1 ¬Q2(x) ∨ ¬W2(x) ∨W1(x)

∃R2.S1 v V ′1 ¬R2(x, y) ∨ ¬S1(y) ∨ V ′1(x)

∃R2.W3 v V ′2 ¬R2(x, y) ∨ ¬W3(y) ∨ V ′2(x)

V ′1 u V ′2 vW2 ¬V ′1(x) ∨ ¬V ′2(x) ∨W2(x)

T2 u P2 vW3 ¬T2(x) ∨ ¬P2(x) ∨W3(x)

The translation of T − is identical to that of T up to the replacement of every
unary predicate with its duplicate and the introduction of fresh Skolem functions
distinct from the ones used for T . Let Φ denote the full translation of the problem.
The ground prime implicates for Σ = {P1, P2, P3, Q1, Q2, S1, T1, T2, T3} are as
follows:

PIg+Σ (Φ) = { P1(sk0), P2(sk0), Q1(sk1(sk0)),

S1(sk2(sk1(sk0))), T1(sk′2(sk1(sk0)))}
PIg−Σ (Φ) = { ¬P−3 (sk0) ∨ ¬Q−2 (sk1(sk0)) ∨ ¬S−1 (sk2(sk1(sk0))) ∨

¬T−2 (sk′2(sk1(sk0))) ∨ ¬P−2 (sk′2(sk1(sk0)))}

where sk1 is the Skolem function corresponding to the existential quantifier intro-
duced by the translation of ∃R1.W1 to first-order logic, and where sk2 and sk′2
correspond respectively to ∃R2.S1 and ∃R2.W3. The only constructible hypoth-
esis out of this configuration is H, the packed connection-minimal hypothesis
already introduced. Finally, H3 is the smallest TBox that fixes all entailments
missing between V1 and V2, ensuring the connection minimality of H3 and it
is packed, contrarily to H1 and H2 that lack either P1 or P2 on the left-hand
side of their first concept inclusion. Note that the signature restriction has been
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made to capture only these hypotheses, but there would be many more if we
considered the whole signature after normalization for Σ. In particular, including
P> to Σ would produce all solutions where > replaces the left-hand side of some
concept inclusions in another hypothesis, so it should generally be avoided.

4.2.2 Canonical Model for EL Description Tree

In this section, I relate a set of atoms taken from the prime implicates, Herbrand
models, and concepts altogether. The domain for the models is the set of possible
ground terms (Herbrand universe) over Φ = FO(T , U1 v U2) denoted as Tsk0(ΠS)
where the set of Skolem functions ΠS]{sk0} is over Φ. First, I adapt the definition
of a canonical model from [BKM99] by using Tsk0

(ΠS) for the domain1 of the
EL-description tree T corresponding to a subsumer of C1.

Definition 4.2.2 (Canonical Model). Given a description tree T = (V, E , v0, l),
a Skolem labeling slT : V → Tsk0

(ΠS) of T maps the vertices of T to ground
Skolem terms. A canonical model M(slT) of T is a Herbrand interpretation
consisting of the following atoms:

– R(slT(v), slT(w)) for all vRw ∈ E

– P (slT(v)) for all P ∈ l(v) and v ∈ V

We denote by MΩC
(slT) the subset of M(slT) made of all atoms built over

unary predicates, and byMΩR
(slT), the rest ofM(slT), that contains all atoms

built over binary predicates.
It is always possible to find a canonical model of an EL-description tree T as

a subset in any Herbrand interpretation I for which (UT)I is not empty. This
is formally stated, and proven, in the following lemma.

Lemma 4.2.3. Given an EL-description tree T = (V, E , v0, l) and a Herbrand in-
terpretation I, if t ∈ (UT)I then there exists a Skolem labeling slT s.t. slT(v0) = t
and M(slT) ⊆ I

Proof. Given an EL-description tree T = (V, E , v0, l), a Herbrand interpretation
I and a Skolem term t, such that t ∈ (UT)I , let us construct the suitable Skolem
labeling slT. We proceed inductively on the depth of T.

slT(v) =

{
t if v = v0,
slT(w)(v) if v0Rw ∈ E for some R, and v ∈ VT(w),

where T(w) is the subtree of T rooted in w, VT(w) is the subset of V that occurs
in T(w) and slT(w) is defined as slT but on t′ instead of t, for a t′ such that
r(t, t′) ∈ I and t′ ∈ (UT(w))

I . Such a t′ must exist because ∃R.UT(w) is a conjunct
in UT and t ∈ (UT)I . Hence slT(w) is well-defined. This construction terminates
because the depth of all T(w) is strictly smaller than that of T.

If T is of depth 0, then slT is simply defined on v0 such that slT(v0) = t, and
UT is a conjunction of atomic concepts P ∈ l(v0). Thus, t ∈ (UT)I is equivalent
to P (t) ∈ I for all P ∈ l(v0). Hence, any atom P (slT(v0)) = P (t) ∈ M(slT) is
also in I for all P ∈ l(v0).

1In [BKM99], the canonical interpretation uses the set of vertices as its domain.
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If T is of depth i > 0, for any v ∈ V \ {v0}, there exists a w ∈ V such
that v0Rw ∈ E and v ∈ VT(w), i.e., v must belong to a subtree rooted in one
of the children w of the root of T. Then slT(v) = slT(w)(v). By induction,
M(slT(w)) ⊆ I. Moreover P (t) ∈ I for all P ∈ l(v0) as in the base case;
and R(t, slT(w)(w)) ∈ I and slT(w)(w) ∈ (UT(w))

I for all w children of v0 by
construction of slT(w). Thus I(slT) ⊆ I.

4.2.3 Subsumers of U1 and Positive Prime Implicates

I first establish the link between the positive prime implicates in PIg+Σ (Φ) and
the subsumers of U1, then I do the same for the negative side. Furthermore, I
show how to extend a canonical model so that it also satisfies T and link the
existence of such a model built for some UT and sk0 to the existence of the
entailment T |= U1 v UT, while showing that this model is in fact a subset of
PIg+Σ (Φ). This relation is established at the semantics level, by constructing a
Herbrand model of T and showing it necessarily contains the prime implicates
of Φ.

We assume Σ = ΩC. For Th. 4.2.11, the case where Σ ( ΩC trivially follows,
but that is not the case for the intermediate results.

First, I show that PIg+Σ (Φ) holds the role of universal Herbrand model for
Φ = FO(T , U1 v U2). The proof adapts a result by Bienvenu et al. [BO15] to the
case with only one constant but a possibly infinite domain.

Lemma 4.2.4 (PIg+Σ (Φ) as a universal model). Given the translation Φ of an

abduction problem, the set PIg+Σ (Φ) considered as a Herbrand interpretation is

a model of Φ and for any other Herbrand model I of Φ, PIg+Σ (Φ) ⊆ I.

Proof. By the definition of a prime implicate, any model of Φ must be a model
of any ϕ ∈ PIg+Σ (Φ). Moreover, a positive prime implicate can only be an atom
since Φ contains only Horn clauses. Thus all Herbrand models must contain
PIg+Σ (Φ).

To show that PIg+Σ (Φ) is itself a Herbrand model, we construct the Herbrand
Interpretation I =

⋃
i Ii for i ∈ N where:

– I0 = {U1(sk0)} and,

– given Ij ,

Ij+1 = Ij ∪ {Q(t) | t ∈ (V )Ij , ¬ fo(V, x) ∨Q(x) ∈ Φ}
∪ {Q(sk(t)), R(t, sk(t)) | t ∈ (P )Ij ,

¬ fo(P, x) ∨Q(sk(x)) ∈ Φ, ¬ fo(P, x) ∨R(x, sk(x)) ∈ Φ}
∪ {Q(t) | sk(t) ∈ (P )Ij , (t, sk(t)) ∈ RIj ,
¬R(x, y) ∨ ¬P (y) ∨Q(x) ∈ Φ}.

I show that I is a model of Φ. We know that I |= U1(sk0) by construction
of I0, and that all other clauses containing only non-duplicated literals are also
satisfied by I, again by construction. Note that there are cases where no Ij alone
is enough to satisfies a clause, but they are all satisfied at the limit by I (e.g.,
if T includes a concept inclusion P v ∃R.P , possibly leading to the presence
of infinitely many atoms of the form P (skn(t)) ∈ I). Regarding the remaining
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clauses in Φ, they all contain at least one literal of the form ¬P−(x) and since I
includes no atom P−(t) at all, I also satisfies that part, thus I is a model of Φ.

It remains only to show that I ⊆ PIg+Σ (Φ) to have PIg+Σ (Φ) = I, thus

showing that PIg+Σ (Φ) is a model of Φ. This is done by induction. Clearly

I0 ⊆ PIg+Σ (Φ), and, assuming Ij ⊆ PIg+Σ (Φ) for some j ≥ 0, then any atom
in Ij can be derived by resolution from Φ, thus, by construction, any atom in
Ij+1 \ Ij can be derived from Φ by one additional resolution step, making them
implicates of Φ. Because they are atoms, they must be prime implicates, thus
Ij+1 ⊆ PIg+Σ (Φ), completing the induction.

Note that if Φ was a set of definite Horn clauses, the above result would be
immediate because it is well-known in logic programming [Llo87]. The presence
of the negative clause ¬U−2 (sk0) ∈ Φ is what justifies the existence of the current
proof.

Now that PIg+Σ (Φ) has been established as the universal Herbrand model of
Φ, the atoms it contains can be used to reconstruct concepts subsuming U1 by
means of a canonical model.

Lemma 4.2.5 (Canonical Model and PIg+Σ (Φ)). Given an abduction problem
〈T ,H, U1 v U2〉, its first-order translation Φ and an EL-description tree T =
(V, E , v0, l), the entailment T |= U1 v UT holds if and only if there exists a
Skolem labeling slT such that slT(v0) = sk0 and M(slT) ⊆ PIg+Σ (Φ).

Proof. Given the preconditions of the lemma, let us first assume T |= U1 v U2

to show the existence of a Skolem labeling slT such that slT(v0) = sk0 and
M(slT) ⊆ PIg+Σ (Φ). Since U1(sk0) ∈ Φ by definition, we have sk0 ∈ (U1)I for
any Herbrand model J of Φ. Moreover, because T |= U1 v UT, it follows that
sk0 ∈ (UT)I for any Herbrand model J of Φ. By Lemma 4.2.4, we know that

PIg+Σ (Φ) can be seen as a Herbrand model of Φ, thus sk0 ∈ (UT)PI
g+
Σ (Φ). The

existence of a Skolem labeling with the desired properties follows by Lemma 4.2.3.
To prove the opposite implication, we assume a Skolem labeling verifying

slT(v0) = sk0 and M(slT) ⊆ PIg+Σ (Φ) and show that T |= U1 v UT by contra-
diction. Then sk0 ∈ (UT)M(slT) because slT(v0) = sk0. Towards contradiction,
we assume T 6|= U1 v UT. Then fo(T ) 6|= fo(U1 v UT), since the standard
translation from EL to first-order logic preserves entailment [BHLS17]. Thus,
fo(T ) ∧ ¬ fo(U1 v UT) is satisfiable and hence, the Skolemizations of

fo(T ) ∧ ¬ fo(U1 v UT) = fo(T ) ∧ ∃x.(U1(x) ∧ ¬ fo(UT, x))

are also satisfiable. Let us consider the particular Skolemization ϕ of fo(T ) ∧
¬ fo(U1 v UT) that coincides with Φ on the Skolemization of T and uses sk0

to Skolemize the existential variable in ¬ fo(U1 v UT). Let I ′ be a minimal
Herbrand model of ϕ. It verifies sk0 ∈ (U1)I

′
and sk0 6∈ (UT)I

′
. We show that

I ′ is a model of Φ, which will allow us to raise a contradiction on that last
statement. Since, by design, ϕ contains all the non-renamed clauses in Φ, it
follows that I ′ satisfies these non-renamed clauses also for Φ. Since ϕ does not
include renamed atoms, the minimality of I ′ ensures that it does not include
any renamed atoms. This ensures that I ′ also models the renamed part of Φ:
for any renamed U− v V −, it holds that (U−)I

′
= (V −)I

′
= ∅, and ¬U−2 (sk0)

is also true in I’. Thus, I ′ is a model of Φ. However, since M(slT) ⊆ PIg+Σ (Φ),

and PIg+Σ (Φ) ⊆ I ′ by Lemma 4.2.4, it follows that M(slT) ⊆ I ′ must hold.
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In addition, since UT(sk0) ∈ M(slT) because slT(v0) = sk0, it follows that
sk0 ∈ (UT)I

′
, a contradiction.

Lemma 4.2.5 establishes a relation between the FOL encoding Φ and the
original EL problem. Note that the tree and Skolem labeling is not necessar-
ily unique. For A = {R(sk0, sk1(sk0)), P (sk1(sk0)), Q(sk1(sk0))}, two possible
UT’s are ∃R.(P uQ) and ∃R.P u ∃R.Q.

Apparently, the prime implicates using role predicates are not even necessary
to get the subsumer of U1. We can prove a stronger result to know how to
construct the UT such that T |= U1 v UT from PIg+Σ (Φ). Lemma 4.2.6 does the
job, by showing that it is only necessary to collect the atomic prime implicates
about unary predicates (the ones from ΩC) to construct all relevant UT.

Lemma 4.2.6 (Construction of Subsumers of U1). Given an abduction prob-
lem 〈T ,H, U1 v U2〉, its first-order translation Φ and a set A = {P1(t1), . . . ,
Pn(tn)} ⊆ PIg+Σ (Φ) where n > 0, there exists T = (V, E , v0, l) and slT s.t.
A =MΩC

(slT) and T |= U1 v UT.

Proof. Given an abduction problem 〈T ,H, U1 v U2〉, its first-order translation
Φ and a set A = {P1(t1), . . . , Pn(tn)} ⊆ PIg+Σ (Φ) where n > 0, we notice that

every singleton set {Pi(ti)} ⊆ A also verifies that {Pi(ti)} ⊆ PIg+Σ (Φ). Thus to
prove the property for any A, we first show it for singletons and then we show
how to construct a description tree for any A given the description trees for each
singleton containing an element of A.

Let A = {P (t)} be a singleton. In practice, we need a slightly stronger
property: we show the existence of a T = (V, E , v0, l) and slT such that {P (t)} =
MΩC

(slT), slT(v0) = sk0 and M(slT) ⊆ PIg+Σ (Φ). Then T |= U1 v UT follows

by Lemma 4.2.5. By Lemma 4.2.4, PIg+Σ (Φ) is a Herbrand model of Φ and

thus U1(sk0) ∈ PIg+Σ (Φ). As shown in the proof of Lemma 4.2.4, we can write

PIg+Σ (Φ) as
⋃
i∈N Ii, where:

– I0 = {U1(sk0)} and,

– given Ij ,

Ij+1 = Ij ∪ {Q(t) | t ∈ (V )Ij , ¬ fo(V, x) ∨Q(x) ∈ Φ}
∪ {Q(sk(t)), R(t, sk(t)) | t ∈ (P )Ij ,

¬ fo(P, x) ∨Q(sk(x)) ∈ Φ, ¬ fo(P, x) ∨R(x, sk(x)) ∈ Φ}
∪ {Q(t) | sk(t) ∈ (P )Ij , (t, sk(t)) ∈ RIj ,
¬R(x, y) ∨ ¬P (y) ∨Q(x) ∈ Φ}.

Since P (t) ∈ PIg+Σ (Φ), there exists an i ∈ N that is the smallest such that
P (t) ∈ Ii. We construct T inductively, depending on the value of i. If i = 0, then
P (t) = U1(sk0) and thus defining T and slT as T = ({v0}, ∅, v0, {v0 7→ {U1}})
and slT = {v0 7→ sk0} ensures additionally that A = {U1(sk0)} =MΩC

(slT) =
M(slT) ⊆ PIg+Σ (Φ). Assuming we know how to construct suitable description
trees and Skolem labellings up to a given j ∈ N, when i = j+1, the construction
of T depends on the reason for which P (t) ∈ Ij+1 \ Ij .

– If P (t) ∈ {Q(t) | t ∈ (V )Ij , ¬ fo(V, x) ∨Q(x) ∈ Φ}, where V is in fact an
atomic concept Q then Q(t) ∈ Ij and thus Q(t) ∈ PIg+Σ (Φ). By induction,
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let T′ = (V ′, E ′, v0, l
′) and slT′ be a description tree and Skolem labeling

such that slT′(v0) = sk0, M(slT′) ⊆ PIg+Σ (Φ) and {Q(t)} = MΩC
(slT′).

Let v ∈ V ′ be the node such that lT′(v) = {Q} and slT′(v) = t. Then
the Skolem labeling slT is defined as identical to slT′ and we define T as
(V ′, E ′, v0, l

′[v 7→ {P}]), where l′[v 7→ {P}] denotes the function l′ except
on v for which the value returned is {P} so that {P (t)} = MΩC

(slT) as
wanted. SinceM(slT) ⊆ {P (t)}∪M(slT′) and P (t) ∈ PIg+Σ (Φ), it follows

that M(slT) ⊆ PIg+Σ (Φ).

– If P (t) ∈ {Q(t) | t ∈ (V )Ij , ¬ fo(V, x) ∨ Q(x) ∈ Φ}, where V is in fact
the conjunction of two atomic concepts Q1 and Q2, then both Q1(t) and
Q2(t) belong to Ij and thus to PIg+Σ (Φ). We adapt exactly as in the last
case any of the description trees T1 or T2 and associated Skolem labeling
slT1 or slT2 , that respectively correspond to Q1 and Q2 and verify the
properties by induction.

– If P (t) ∈ {Q(sk(t)) | t ∈ (P ′)Ij , R(t, sk(t)) ∈ Ij+1,¬ fo(P ′, x)∨Q(sk(x)) ∈
Φ,¬ fo(P ′, x) ∨ R(x, sk(x)) ∈ Φ} then t = sk(t′) for some sk and t′

such that P ′(t′) ∈ Ij , ¬P ′(x) ∨ P (sk(x)),¬P ′(x) ∨ R(x, sk(x)) ∈ Φ for
some R and P ′. Since P ′(t′) ∈ PIg+Σ (Φ), there exists a description tree
T′ = (V ′, E ′, v0, l

′) such that slT′(v0) = sk0, MΩC
(slT′) = {P ′(t′)}, and

M(slT′) v PIg+Σ (Φ). Let v′ be the leaf node such that l′(v) = {P ′}
and slT′(v) = t′. We introduce a fresh node v to define T as (V ′ ∪
{v}, E ′ ∪ {v′Rv}, v0, l

′[v′ 7→ ∅] ∪ {v 7→ {P}}) and slT = slT′ ∪ {v 7→ t}.
Therefore we have slT(v0) = slT′(v0) = sk0, MΩC

(slT) = {P (t)} and
M(slT) ⊆ {P (sk(t)), R(t, sk(t))} ∪M(slT′) ⊆ PIg+Σ (Φ) because it holds

that {P (sk(t′)), R(t′, sk(t′))} ⊆ PIg+Σ (Φ).

– If P (t) ∈ {Q(t) | sk(t) ∈ (P ′)Ij , (t, sk(t)) ∈ RIj , ¬R(x, y) ∨ ¬P ′(y) ∨
Q(x) ∈ Φ} then there exist P ′, R and sk such that P ′(sk(t)) ∈ Ij ,
R(t, sk(t)) ∈ Ij , and ¬R(x, y) ∨ ¬P ′(y) ∨ P (x) ∈ Φ. By induction, we
consider a description tree T′ = (V ′, E ′, v0, l

′) and associated Skolem label-
ing slT′ for which slT′(v0) = sk0, MΩC

(slT′) = {P ′(t′)}, and M(slT′) ⊆
PIg+Σ (Φ). Let v be the leaf in V ′ such that l′(v) = {P ′} and w be
its parent in the tree, such that wR′v ∈ E ′ for some R′. We define
T as (V ′ \ {v}, E ′ \ {wR′v}, v0, l

′[w 7→ {P}] \ {v 7→ {P ′}}) and slT =
slT′ \ {v 7→ sk(t)}. Thus, slT(v0) = slT′(v0) = sk0, MΩC

(slT) = {P (t)}
and M(slT) ⊆ {P (t)} ∪M(slT′) ⊆ PIg+Σ (Φ).

Let us now consider the case of non-singleton A = {P1(t1), . . . , Pn(tn)}
(n > 1). We have just seen how to obtain description trees Ti = (Vi, Ei, v0, li)
and Skolem labellings slTi

for i ∈ {1, . . . , n} such that {Pi(ti)} = MΩC
(slTi

),
slTi

(v0) = sk0 and M(slTi
) ⊆ PIg+Σ (Φ). We define T = (V, E , v0, l) and slT

by introducing a node v ∈ V for each t ∈
⋃n
i=1{slTi(v

′) | v′ ∈ Vi} and setting
slT(v) = t in each case. For t = sk0, the introduced node v ∈ V is named v0 and
declared as the root of T. It remains to define E and l. For E we collect all edges
from the description trees Ti to obtain

E =

n⋃
i=1

{vRw | v′Rw′ ∈ Ei, slTi(v
′) = slT(v), slTi(w

′) = slT(w)}.
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For l, we proceed similarly to collect labels, producing for each v ∈ V,

l(v) =

n⋃
i=1

{li(v′) | v′ ∈ Vi, slTi
(v′) = slT(v)}.

Thus

MΩC
(slT) = {P (slT(v)) | P ∈ l(v), v ∈ V}

=

n⋃
i=1

{P (slTi(v)) | P ∈ li(v′), v′ ∈ Vi}

=

n⋃
i=1

MΩC
(slTi) = A

and since also

MΩR
(slT) = {R(slT(v), slT(w)) | vRw ∈ E}

=

n⋃
i=1

{R(slTi(v
′), slTi(w

′)) | v′Rw′ ∈ Ei, slTi(v
′) = slT(v), slTi(w

′) = slT(w)}

=

n⋃
i=1

MΩR
(slTi),

we have M(slT) =
⋃n
i=1M(slTi) ⊆ PI

g+
Σ (Φ), and by Lemma 4.2.5, it holds

that T |= U1 v UT.

4.2.4 Subsumees of U2 and Negative Prime Implicates

I show how the renamed negative ground prime implicates, relate to the �u-
minimal subsumees of U2. However, I first need to present this for the not
necessarily prime implicate case and then strengthen it later.

To that aim, we need the canonical model again, but this time for the renamed
version of some UT subsumee of U2, with the restriction that there must exist a
weak homomorphism from a subsumer of U1 to this UT, the idea being that H
is built to provide the missing CIs that will turn the weak homomorphism into
a (T ∪ H)-homomorphism.

Lemma 4.2.7 (T -Homomorphism and Negative Implicates). Given an ab-
duction problem 〈T ,Σ, U1 v U2〉, Φ denotes its translation to first-order logic
and A = {P1(t1), . . . , Pk(tk)} ⊆ PIg+Σ (Φ). As allowed by Lemma 4.2.6, let
T1 = (V1, E1, v0, l1) and slT1

denote an EL-description tree and associated
Skolem labeling s.t. slT1

(v0) = sk0, A =MΩC
(slT1

) and T |= U1 v UT1
.

For any EL-description tree T2 = (V2, E2, w0, l2) with a weak homomorphism
φ from T2 to T1, the following equivalence holds:

(EL) T |= UT2 v U2

if and only if

(FO) there is a Skolem labeling slT2 for T2 such that

slT2
(v) = slT1

(φ(v)) for all v ∈ V2, and
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Φ |=
∨
v∈V2,Q∈lT2

(v) ¬Q−(slT2
(v)).

Proof. We first show that (EL) implies (FO). We thus assume that T |= UT2
v

U2. We define slT2
as slT2

(v) = slT1
(φ(v)) for all v ∈ VT2

. Since φ is a weak
homomorphism from T2 to T1, slT2(v) is a Skolem labeling for UT2 . It remains
only to show that Φ |=

∨
v∈V2,Q∈lT2

(v) ¬Q−(slT2
(v)).

By assumption T |= UT2 v U2, thus fo(T ) |= ¬ fo(UT2 , x) ∨ fo(U2, x) by a
direct translation, from which we deduce fo(T )∧¬ fo(U2, sk0) |= ¬ fo(UT2

, sk0).
This entailment also holds for the renamed versions of T , UT2

and U2 so Φ |=
¬ fo(U−T2

, sk0). The clause ¬ fo(U−T2
, sk0) has the following form:

¬ fo(U−T2
, sk0) =

∨
urv∈E2

¬R(tu, tv) ∨
∨

v∈V2, Q∈l2(v)

¬Q−(tv)

where, tw0
= sk0 and for all v ∈ VT2

\ {w0}, tv is a variable uniquely associated
with v.

Since M(slT1
) ⊆ PIg+Σ (Φ), in particular MΩR

(slT1
) ⊆ PIg+Σ (Φ). Moreover,

for each edge urv ∈ ET2
, Φ |= R(slT2(u), slT2(v)) and thus R(slT2(u), slT2(v)) ∈

MΩR
(slT1) can be derived from Φ using the resolution calculus. Each of these

atomic clauses can be resolved away with the corresponding literal ¬R(tu, tv) in
¬ fo(U−T2

, sk0). In this derivation, all tv variables are replaced with slT2
(v). In

addition sk0 = slT2
(w0), thus the clause

∨
v∈V2, Q∈l2(v) ¬Q−(slT2

(v)) is derivable

from Φ by resolution, and thus Φ |=
∨
v∈V2, Q∈l2(v) ¬Q−(slT2

(v)), so (FO) holds.

Let us now assume (FO) in order to prove (EL). We consider a Herbrand
interpretation I = PIg+Σ (Φ) ∪

⋃
i Ii where Ii for i ∈ N is defined inductively as:

– I0 = {Q−(t) | Q(t) ∈MΩC
(slT2

)} ∪MΩR
(slT2

) and,

– given Ij ,

Ij+1 = Ij ∪ {Q−(t) | t ∈ (V −)Ij , ¬ fo(V −, x) ∨Q−(x) ∈ Φ}
∪ {Q−(sk(t)), R(t, sk(t)) | t ∈ (P−)Ij ,

¬ fo(P−, x) ∨Q−(sk(x)) ∈ Φ,

¬ fo(P−, x) ∨R(x, sk(x)) ∈ Φ}
∪ {Q−(t) | sk(t) ∈ (P−)Ij , (t, sk(t)) ∈ RIj ,
¬R(x, y) ∨ ¬P−(y) ∨Q−(x) ∈ Φ}.

The Iis are built to collect all the elements necessary to make the renamed
part of Φ true, one step at a time, starting from an interpretation that satisfies∧
v∈VT2

,Q∈lT2
(v)Q

−(slT2
(v)) ⊆M(slT2

), and is thus incompatible with Φ under

the (FO) assumption. Indeed since T , and by extension T −, is in normal form,
it contains only concept inclusions of the form V v Q, P v ∃R.Q and ∃R.P v Q,
where V is either an atomic concept or a conjunction of two atomic concepts.
These correspond in Φ respectively to the clauses ¬ fo(V −, x)∨Q−(x), to the pair
of clauses {¬ fo(V −, x)∨Q−(sk(x)), ¬ fo(V −, x)∨R(x, sk(x))} and to the clause
¬R(x, sk(x)) ∨ ¬P−(sk(x)) ∨Q−(x). Hence, if t ∈ (V −)I (resp. sk(t) ∈ (P−)I

and (t, sk(t)) ∈ RI) then there exists some i ∈ N such that t ∈ (V −)Ii (resp.
sk(t) ∈ (P−)Ii and (t, sk(t)) ∈ RIi) and then all concept inclusions where V −

occurs on the right-hand side (resp. where ∃R.P− occurs on the right-hand side
for some R) are satisfied in Ii+1.
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Since I includes PIg+Σ (Φ), the satisfiability of U1(sk0) and the Skolemization
of fo(T ) can be shown as in Lemma 4.2.6. Thus, given that I |= Φ\{¬U−2 (sk0)}
but I 6|= Φ, necessarily I |= U−2 (sk0).

To make use of that fact, we must first prove the following statement:

(∗) For any set B = {Q−1 (t1), . . . , Q−k (tk)} ⊆ I, there exists T = (V, E , v0, l)
and slT s.t. B = {Q−(slT(v)) | Q ∈ l(v), v ∈ V} and T |= UT2 v UT.

Without loss of generality, we can consider the biggest such B, that is the set of
all atoms of the form P−(t) in I. The smaller Bs simply correspond to concepts
UT with fewer conjuncts.

Since PIg+Σ (Φ) only contains non-renamed concepts, we prove (∗) by in-
duction on the Ij for j ∈ N. When j = 0, I0 = M(slT2

), thus UT = UT2

and the result directly follows. Assuming the result holds for a given Ij , let
B = {Q−1 (t1), . . . , Q−k (tk) | Q−i (ti) ∈ Ij+1}, and let B∗ = {Q−1 (t1), . . . , Q−l (tl) |
Q−i (ti) ∈ Ij}. The induction hypothesis applies to B∗ and we conclude that
there exists an EL-description tree T∗ = (V∗, E∗, v0, l∗) and a Skolem labeling
slT∗ s.t. T |= UT2

v UT∗ and B∗ = {Q−(slT(v)) | Q ∈ l∗(v), v ∈ V∗}. Let us
now consider the literals in B \ B∗. They are all of the form Q−(t) and belong
to Ij+1. We define T and slT by extending T∗ and slT∗ . The extension for each
Q−(t) depends of which set it originates from.

– If Q−(t) ∈ {Q−(t) | t ∈ (V −)Ij , ¬ fo(V −, x) ∨ Q−(x) ∈ Φ} \ Ij , let v be
the node in T∗ such that l∗(v) contains all atomic concepts from V and
slT∗(v) = t. We add Q to l∗(v) and the rest of T∗ and slT∗ is unchanged.
Note that, in that case, V v Q ∈ T by construction of Φ.

– If Q−(t) ∈ {Q−(t) | sk(t) ∈ (P−)Ij , (t, sk(t)) ∈ RIj , ¬R(x, y)∨¬P−(y)∨
Q−(x) ∈ Φ} \ Ij , let v be the node in T∗ such that vRw ∈ E∗, slT∗(v) = t,
slT∗(v) = sk(t), and P ∈ l∗(w). As in the previous case, we simply add Q
to l∗(v). In that case, ∃R.P v Q ∈ T for the corresponding R.

– IfQ−(sk(t)) ∈ {Q−(sk(t)), R(t, sk(t)) | t ∈ (V −)Ij , ¬ fo(V −, x)∨Q−(sk(x)) ∈
Φ, ¬ fo(V −, x) ∨ R(x, sk(x)) ∈ Φ} \ Ij , let v be the node such that
slT∗(v) = t. Then we add a fresh node w to V∗ as well as an edge vRw to E∗.
We also extend slT∗ so that w is mapped to t. In that case, P v ∃R.Q ∈ T
for the corresponding R.

Note that in all cases, T |= UT∗ v UT because the conjunct(s) added from UT∗

to UT is(/are) justified by the concept inclusion from T that is ultimately to
blame for the existence of Q−(t) in Ij+1 \Ij . Since, by the induction hypothesis,
T |= UT2 v UT∗ , T and slT are s.t. B = {Q−(slT(v)) | Q ∈ l(v), v ∈ V} and
T |= UT2

v UT, (∗) holds for that case and thus also for I.
Because I |= U−2 (sk0), necessarily U−2 (sk0) ∈ I. Thus, by (∗), T |= UT2 v U2

because the EL-description tree T from (∗) in that case is such that UT = U2.

Lemma 4.2.8 (EL-Description Tree and �u). Given two EL-description trees
T1 = (V1, E1, v0, l1) and T2 = (V2, E2, w0, l2), UT1

�u UT2
if and only if there is

an (injective) ∅-homomorphism from T1 to T2.

Proof. If UT1
≡ UT2

, we are done because then T1 and T2 obviously have the
same shape. Otherwise, the missing conjuncts in U1 would correspond to either:
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– some missing atomic concepts in some l2(w) from T2 or

– a subtree of T2 that is not in the image of the ∅-homomorphism from
T1.

Last, I show how prime implicates are related to the connection-minimal
solutions of the abduction problem.

Lemma 4.2.9 (T -Homomorphism and Negative Implicates). Given an abduc-
tion problem 〈T ,Σ, U1 v U2〉, Φ its translation to first-order logic, and a subset
of the positive prime implicates A = {P1(t1), . . . , Pk(tk)} ⊆ PIg+Σ (Φ). As al-
lowed by Lemma 4.2.6, let T1 = (V1, E1, v0, l1) and slT1 denote an EL-description
tree and associated Skolem labeling s.t. A = {P (slT1

(v)) | P ∈ l1(v), v ∈ V1}
and T |= U1 v UT1

.
For any EL-description tree T2 = (V2, E2, w0, l2) with a weak homomorphism

φ from T2 to T1, the following equivalence holds:

UT2 is a �u-minimal concept s.t. T |= UT2 v U2

if and only if

there is a Skolem labeling slT2
for T2 s.t.

slT2
(v) = slT1

(φ(v)) for all v ∈ VT2
, and∨

v∈V2,Q∈l2(v) ¬Q−(slT2
(v)) ∈ PIg−Σ (Φ).

Proof. Thanks to Lemma 4.2.7, we know that, in the conditions of the lemma,
the existence of a UT2

such that T |= UT2
v U2 is equivalent to the existence of

a Skolem labeling slT2
for T2 such that slT2

(v) = slT1
(φ(v)) for all v ∈ VT2

, and
Φ |=

∨
v∈V2,Q∈l2(v) ¬Q−(slT2(v)). It remains to show the equivalence between the

�u-minimality of UT2
and the fact that

∨
v∈V2,Q∈l2(v) ¬Q−(slT2

(v)) ∈ PIg−Σ (Φ).

By Lemma 4.2.8, for any two trees T′2 and T′′2 and corresponding Skolem
labellings slT′2 and slT′′2 for which there are respective weak homomorphisms φ1

and φ2 to T1, UT′2
�u UT′′2

if and only if {Q−(slT′2(v)) | v ∈ V ′2, Q ∈ l′2(v)} ⊆
{Q−(slT′′2 (v)) | v ∈ V ′′2 , Q ∈ l′′2 (v)}. Thus it is not possible for UT2

to be �u-
minimal if

∨
v∈V2,Q∈l2(v) ¬Q−(slT2

(v)) is not prime and vice-versa.

4.2.5 Hypothesis Reconstruction

We are now ready to see how to reconstruct the hypotheses in EL from the prime
implicates in FOL. This is basically a consequence of Lemma 4.2.9. We focus
on hypotheses of a certain shape called constructible hypothesis. A constructible
hypothesis is built from the concepts in one negative prime implicate in PIg−Σ (Φ)

and all matching concepts from prime implicates in PIg+Σ (Φ). The matching
itself is determined by the Skolem terms that occur in all these clauses. The
subterm relation between the terms of the clauses in PIg+Σ (Φ) and PIg−Σ (Φ) is
the same as the ancestor relation in the description trees of subsumers of U1

and subsumees of U2 respectively. The terms matching in positive and negative
prime implicates allow us to identify where the missing entailments between
a subsumer V1 of U1 and a subsumee V2 of U2 are. These missing entailments
become the constructible H. The condition UB,t 6�u UA,t is a way to write that
UA,t v UB,t is not a tautology, which can be tested by subset inclusion.
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Example 4.2.10. Consider the abduction problem 〈Ta,Σ, αa〉 where Σ = ΩC

from Ex. 4.1.1. For the translation Φ of this problem, we have

PIg+Σ (Φ) = {Professor(sk0), Doctor(sk0), Chair(sk1(sk0)), PhD(sk2(sk0))}
PIg−Σ (Φ) = {¬Researcher−(sk0),

¬ResearchPosition−(sk1(sk0)) ∨ ¬Diploma−(sk2(sk0))}

where sk1 is the Skolem function introduced for Professor v ∃employment.Chair
and sk2 is introduced for Doctor v ∃qualification.PhD. This leads to two con-
structible solutions: {Professor u Doctor v Researcher} and Ha1, that are both
packed connection-minimal hypotheses if Σ = ΩC.

Theorem 4.2.11. Let 〈T ,Σ, U1 v U2〉 be an abduction problem and Φ be its
first-order translation. Then, a TBox H′ is a packed connection-minimal solution
to the problem if and only if an equivalent hypothesis H can be constructed
from non-empty sets A and B of atoms verifying:

– B = {Q1(t1), . . . , Qm(tm)} s.t.
(
¬Q−1 (t1) ∨ · · · ∨ ¬Q−m(tm)

)
∈ PIg−Σ (Φ),

– for all t ∈ {t1, . . . , tn} there exists an P s.t. P (t) ∈ PIg+Σ (Φ),

– A = {P (t) ∈ PIg+Σ (Φ) | t is one of t1, . . . , tm}, and

– H = {UA,t v UB,t | t is one of t1, . . . , tm and UB,t 6�u UA,t}, where UA,t =d
P (t)∈A P and UB,t =

d
Q(t)∈BQ.

Proof. Let 〈T ,Σ, U1 v U2〉 be an abduction problem and Φ be its first-order
translation.

We begin by assuming given a packed connection-minimal hypothesis H.
Then there exist concepts V1 and V2, and weak homomorphism φ verifying
points 1-3 of Def. 4.1.9 while H verifies point 4 of the same definition for these
V1, V2 and φ. W.l.o.g., we consider that V1 is such that every node in TV1

is in the range of φ. Such a V1 can always be obtained from a V1 that has
too much nodes by pruning the extra nodes, since they cannot have children
that are in the range of φ. Since, by Def. 4.1.9 point 1, T |= U1 v V1, by
Lemma 4.2.5 there exists a Skolem labeling sl1 for TV1 = (V1, E1, v0, l1) s.t.
M(sl1) ⊆ PIg+Σ (Φ). Since H is packed, l1(v) is also maximal for each v, so

that MΩC
(sl1) = {P (sl1(v)) ∈ PIg+Σ (Φ) | v ∈ V1}. Note that MΩC

(sl1) cannot
be empty and that there are no two nodes in TV1

with the same Skolem label,
otherwise M(sl1) ⊆ PIg+Σ (Φ) would not hold since this would imply that two
occurrences of Skolem terms in Φ share the same Skolem function, which is
forbidden in the standard Skolemization procedure. From point 3 of Def. 4.1.9,
we know that φ is a weak homomorphism from TV2 to TV1 and from point 2 that
V2 is a �u-minimal concept s.t. T |= V2 v U2. Hence, by Lemma 4.2.9, there
also exists a Skolem labeling sl2 for TV2

= (V2, E2, w0, l2) s.t. sl2(v) = sl1(φ(v))
for all v ∈ V2 and

∨
v∈V2,Q∈l2(v) ¬Q−(sl2(v)) ∈ PIg−Σ (Φ). Since {Q(sl2(v)) | v ∈

V2, Q ∈ l2(v)} = MΩC
(sl2), we define B as MΩC

(sl2). Our choice of V1 allows
us to define A as MΩC

(sl1) since it holds that sl2(v) = sl1(φ(v)) and there are
no nodes in V1 outside the range of φ. Thus A and B verify the first two points
of Th. 4.2.11. Let us now consider any concept inclusion in H. It is of the formd
l1(φ(w)) v

d
l2(w) for some w ∈ V2 and s.t. T 6|=

d
l1(φ(w)) v

d
l2(w). For
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every v ∈ V1, consider all w1, . . . , wk ∈ V2 s.t. φ(w1) = . . . = φ(wk) = v. Then,
H contains {

d
l1(v) v

d
l2(w1), . . . ,

d
l1(v) v

d
l2(wk)} which is equivalent to

{
d
l1(v) v (

d
l2(w1)) u . . . u (

d
l2(w1))} = {UA,sl1(v) v UB,sl1(v)} and since

T 6|=
d
l1(v) v

d
l2(wi) for all i ∈ {1, . . . , k}, also T 6|= UA,t v UB,t for t =

sl1(v). This means in particular that this CI is not a tautology, ensuring that
UB,t 6�u UA,t. Thus H is equivalent to the constructible hypothesis built for A
and B as just defined.

Now, let us consider that H is a constructible hypothesis obtained from a
given A and B verifying the constraints from Th. 4.2.11. Then A is a subset of
PIg+Σ (Φ), thus, by Lemma 4.2.6, there is a description tree T1 = (V, E , v0, l1) and
associated Skolem labeling sl s.t. A =MΩC

(sl) and T |= U1 v UT1
. We define

T2 = (V, E , v0, l2), where for all v ∈ V, l2(v) = {Q | Q(sl(v)) ∈ B} and φ as the
identity over V. Then φ is a weak homomorphism from T2 to T1 and sl can also

be associated to T2 and it is such that
(∨

v∈V,Q∈l2(v) ¬Q−(sl(v))
)
∈ PIg−Σ (Φ).

Thus, by Lemma 4.2.9, UT2
is a �u-minimal concept s.t. T |= UT2

v U2. As seen
in the first part of this proof, sl must be injective on V due to its association
with T1, and thus, for all v ∈ V, UA,sl(v) =

d
l1(v) and by construction of T2,

UB,sl(v) =
d
l2(v). If T |=

d
l1(v) v

d
l2(v), then T |= UA,sl(v) v UB,sl(v). We

show that this implies UB,sl(v) �u UA,sl(v). Consider any t s.t. T |= UA,t v
UB,t. Then by translation, it means that Φ |= ¬ fo(UA,t) ∨ fo(UB,t) and since
both concepts do not contain role restrictions, it means in particular that Φ |=∨
P∈UA,t

¬P (x) ∨Q(x) for all Q ∈ UB,t. Since P (t) ∈ PIg+Σ (Φ) for all P ∈ UA,t,
Φ |= Q(t) for all Q ∈ UB,t and since those are atomic ground positive implicates,
for all Q ∈ UB,t, Q(t) ∈ PIg+Σ (Φ). Furthermore, by definition of A and UA,t,
this leads to Q ∈ UA,t for all Q ∈ UB,t, hence UB,t �u UA,t. In the particular
case that interests us, it means that UB,sl(v) �u UA,sl(v) as wanted. Hence H
is a connection-minimal hypothesis. It remains only to show that it is packed.
Any tree T′ built from T1 by extending the label of some v ∈ V must be such
that M(slT′) 6⊆ PIg+Σ (Φ), where slT′ is identical to sl but associated to T′,
since the labels of T1 are already maximal in that regard. Thus, by Lemma
4.2.5, T 6|= U1 v UT′ , hence any such UT′ cannot be used to create constructible
hypotheses, proving H packed.

As an illustration, consider

T = {U1 v ∃R1.(P uQ),

∃R1.U u ∃R1.V v U2}.

The negative prime implicate ¬U−(sk1(sk0)) ∨ ¬V −(sk1(sk0)) corresponds to
a tree and associated Skolem labeling as follows:

T2 = ({v0, v1, v2}, {v0R1v1, v0R1v2}, v0, l2)

s.t. l2(v0) = ∅, l2(v1) = {U} and l2(v2) = {V }; and slT2(v0) = sk0, slT2(v1) =
slT2(v2) = sk1(sk0) . For UT2 = ∃R1.U u ∃R1.V , and UT1 = ∃R1.(P u Q) the
set {P u Q v U,P u Q v V } is a packed connection-minimal hypothesis and
the equivalent constructible hypothesis {P u Q v U u V } is the one found by
applying Th. 4.2.11.
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4.3 Efficiency

Run-time improvement in the implementation is done on two aspects: Inference
restriction in SPASS and ontology size reduction in Java preprocessing. The first
includes using SOS strategy and restricting the number of variables. The second
one is based on the fact that connection-minimality does not use concept inclu-
sions unrelated to the problem at hand. We show that such concept inclusions
can be removed by using the locality-based module. Some of the results described
in this section will also be useful to derive termination in the next section.

4.3.1 Inference Restrictions in FOL

While resolution calculus is already sufficient to generate all useful prime impli-
cates, the clause shape allows for additional inference restrictions. Considering
the set of formulas fo(T ) after the translation, the sets Φ and Φp only contain
clauses of the following shapes:

I1: U1(sk0),

I2: ¬U−2 (sk0),

I3: ¬P1(x) ∨ P2(x),

I4: ¬P1(x) ∨ ¬P2(x) ∨ P3(x),

I5: ¬R(x, y) ∨ ¬P1(y) ∨ P2(x),

I6: ¬P1(x) ∨R(x, sk(x)), and

I7: ¬P1(x) ∨ P2(sk(x)),

where P1, P2 and P3 are either all original literals or all duplicate literals.
I abbreviate a “clause of the form Ix” as an “Ix:Cx-clause ” for x ∈ {1, .., 7}
with Cx its respective clause (possibly omitted). Observe that there is exactly
one I1:U1(sk0)-clause and one I2:¬U−2 (sk0)-clause, both for the same constant
sk0. Moreover, for every Skolem function sk occurring in Φ, there is exactly one
pair of clauses where one is an I6:-clause and the other an I7:-clause where a
given sk ∈ ΠS occurs. We call them the clauses introducing sk. To every Skolem
function sk, we associate the atomic concept Psk that occurs positively in the
I7:-clause introducing sk.

Before the prime implicate generation, we additionally compute the presatu-
ration Φp of the set of clauses Φ, defined as

Φp = Φ ∪ {¬P (x) ∨Q(x) | Φ |= ¬P (x) ∨Q(x)}

where P and Q are either both original or both duplicate atomic concepts. One
can easily see that the new clauses in Φp are I3:-clause and thus not introducing
new clause shapes.

The presaturation can be efficiently computed before the translation, using a
modern EL reasoner such as Elk [KKS14], which is highly optimized towards
the computation of all entailed concept inclusions shaped P v Q (where P and
Q are atomic). While the presaturation computes nothing a resolution procedure
could not derive, this is useful because it allows us to derive all prime implicates

89



of a certain depth without first deriving another one with a higher term depth.
By this presaturation, I now show that all the relevant prime implicates can be
computed if all inferences

R1 use at least one premise with a ground term, and

R2 derive a resolvent with at most one variable.

The first restriction R1 means that we can use SOS resolution derivation
Th. 3.2.7 [HTW21] with set of support {U1(sk0), U−2 (sk0)} (the only clauses with
ground terms in Φ). This restriction is possible because we only want ground
implicates, and that the non-ground clauses in Φ cannot entail the empty clause
(EL TBoxes are always consistent).

The second restriction R2 can be proven directly by looking into the possible
clause shapes and the fact that {U1(sk0), U−2 (sk0)} are necessary. In fact, for
PIg+Σ (Φ) it is even possible to restrict inferences to generating only ground
resolvents.

Relying on Φp allows to derive all ground implicates by increasing term depth,
which is possible thanks to the following result.

Lemma 4.3.1. It is not necessary to use clauses of the form I5:¬R(x, y) ∨
¬P1(y) ∨ P2(x) to derive PIg+Σ (Φ) from Φp by resolution.

Proof. Since Φ and Φp are equivalent, they have the same prime implicates,
that can be derived by resolution from any of them. We construct a Herbrand
model for Φ from all clauses in Φp except the I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-
clauses. Then, by Lemma 4.2.4, all clauses from PIg+Σ (Φ) will be included in
this model and thus derivable by resolution from the restriction of Φp to non-
I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clauses.

Let I =
⋃
i Ii for i ∈ N, such that:

– I0 = {U1(sk0)} and,

– given Ij ,

Ij+1 = Ij ∪ {Q(t) | t ∈ (D)Ij , ¬ fo(D,x) ∨Q(x) ∈ Φp}
∪ {Q(sk(t)), R(t, sk(t)) | t ∈ (P )Ij ,

¬ fo(P, x) ∨Q(sk(x)) ∈ Φp, ¬ fo(P, x) ∨R(x, sk(x)) ∈ Φp}.

This interpretation is similar to the one used in the proof of Lemma 4.2.4, but
uses the clauses in Φp, I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clauses excepted, instead
of the clauses in Φ. Thus every atom in I can be derived by resolution from the
clauses of Φp that are not I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clauses.

We show that I is a model of Φ. By construction, I |= U1(sk0) and all

– I1:U1(sk0),

– I3:¬P1(x) ∨ P2(x),

– I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x),

– I6:¬P1(x) ∨R(x, sk(x)), and

– I7:¬P1(x) ∨ P2(sk(x))
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with original predicates in Φ since they also occur in Φp. The clauses with
duplicate predicates are also satisfied since I contains no duplicates at all. It
remains only to show that the clauses of the form I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)
in Φ are true in I. By contradiction, consider that the clause ϕ = ¬R(x, y) ∨
¬P1(y)∨ P2(x) is not satisfied by I. Then there must exist terms t, t′ such that
R(t, t′) ∈ I, P1(t′) ∈ I but P2(t) /∈ I. By construction, t′ = sk(t) for some
Skolem function sk. The only clauses with sk in Φp are the clauses introducing
sk, that we denote by ϕ1 = ¬P3(x) ∨R(x, sk(x)) and ϕ2 = ¬P3(x) ∨ P4(sk(x))
for some original atomic concept P4. These clauses are the only possible cause
for the presence of R(t, sk(t)) and P1(sk(t)) in Ij for some j ≥ 1, and thus there
must be an i < j s.t. P3(t) ∈ Ii. The presence of ϕ1, ϕ2 and ϕ in Φ ensures
that Φ |= ¬P3(x) ∨ P2(x) and thus that ¬P3(x) ∨ P2(x) ∈ Φp. Combined with
the fact that P3(t) ∈ Ii, it means that P2(t) ∈ Ii+1 ⊆ I, a contradiction. Thus
I is also a model of all clauses of the form I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x) in Φ,
so it is a model of Φ and it is possible to derive all clauses in PIg+Σ (Φ) from Φp
without using the clauses of the form I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x).

A direct consequence of this lemma is that, regarding derivations of PIg+Σ (Φ),
we only need to consider those where every inference preserves or increases the
depth of terms from premises to conclusion, because the only way to decrease
this depth is by using an I5:¬R(x, y)∨¬P1(y)∨ P2(x)-clause. This allows us to
prove Th. 4.3.2

Theorem 4.3.2 (Restriction R2). Given an abduction problem and its trans-
lation Φ, every constructible hypothesis can be built from prime implicates that
are inferred under restriction R2.

Proof. By Th. 4.2.11, it suffices to show that all clauses in PIg+Σ (Φ) ∪PIg−Σ (Φ)
that contain no binary predicate can be derived using only inferences of clauses
with at most one variable.

Since I1:U1(sk0) is the only clause containing no negative literals, any
clause ϕ ∈ PIg+Σ (Φ) must be derived using the I1:U1(sk0)-clause. Moreover
I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clauses are the only ones in the input that would
introduce a variable when resolved with a ground clause. By Lemma 4.3.1, we
can ignore these clauses to infer ϕ ∈ PIg+Σ (Φ). Thus, any clause in PIg+Σ (Φ)
can be derived by inferring only ground clauses from Φp, which is even more
than what R2 requires.

For ϕ′ ∈ PIg−Σ (Φ), Lemma 4.3.1 does not apply. In general, any derivation
from Φp of a clause that contains a constant involves U1(sk0) or ¬U−2 (sk0) or
both, and only I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clauses would introduce a variable
into such a derivation. Let ϕ be the first clause with a variable that occurs
as a resolvent in the derivation of ϕ′ from Φp, and let ϕ′ be without binary
predicates, since it must be usable to build a constructible hypothesis following
Th. 4.2.11. The premises of the inference producing ϕ are a ground clause and
an I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clause, ¬R(x, y) ∨ ¬P1(y) ∨ P2(x). We show
that any occurrence of a variable in ϕ can be immediately eliminated by another
inference, creating a new derivation for ϕ′. Depending on the literal resolved
upon in the I5:¬R(x, y)∨¬P1(y)∨P2(x)-clause to obtain ϕ several cases occur.

– This literal cannot be ¬R(x, y), or ϕ would be ground because both x and
y would be unified with ground terms.
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– If the literal resolved upon is P2(x), then y occurs in ϕ as its only variable,
in the literals ¬R(t, y) for some ground t and ¬P1(y). The literal ¬R(t, y) is
eliminated later in the derivation since ϕ′ contains no binary predicate. All
positive occurrences of R that can be derived are of the form R(t′, sk(t′))
for some sk, because in the Φp, the only positive occurrences of R are found
in I6:¬P1(x) ∨ R(x, sk(x))-clauses. Thus, to obtain a clause in PIg−Σ (Φ)
without roles, we need to eventually unify the variable y with a ground
term of the form sk(t) for some sk. Since Φp is Horn, we can rearrange
any derivation from ϕ to ϕ′ so that we first resolve upon ¬R(t, y) in ϕ
with the suitable I6:¬P1(x) ∨R(x, sk(x))-clause, i.e., the one introducing
the appropriate sk. As a result, we obtain another ground clause with no
variables, before any further inference is performed if needed.

– If the literal resolved upon is ¬P1(y), then x occurs in ϕ in the literals
P2(x) and ¬R(x, t), where t is ground. The argument unfolds as in the
previous case, with the nuance that the considered sk function is the one
s.t. t = sk(t′) for some t′.

It follows that a derivation of ϕ′ that does not respect R2 can always be rear-
ranged to eliminate occurrences of variables (and binary literals) as soon as they
occur, before the next variable is introduced. The rearranged derivation respects
R2.

4.3.2 Locality-based Modules in DL

Realistic ontologies may be unnecessarily large in comparison to the relevant set
of axioms actually needed for the connection-minimality. If the subsumers of U1

and subsumees of U2 can be deduced from some smaller subset of the ontology,
then we can still get our desired hypotheses. By using module extraction, it is
possible to obtain such subset.

Given a signature Σ′ and an TBox T , a module M of T for Σ′ is a subset
of T that preserves all entailments of closed second-order formulas using only
predicates from Σ. The signature Σ′ from the abduction problem 〈T ,Σ, U1 v
U2〉 that are actually useful is not known in advance. For this, we need to
ensure that the module M preserves all subsumers of U1 and all subsumees of
U2, as these are the necessary ingredients of connection minimality (see Def.
4.1.9). This is doable using a special kind of locality-based modules, as presented
in [GHKS08]. More specifically, we shrink the abduction problem 〈T ,Σ, U1 v U2〉
into 〈M⊥U1

∪M>U2
,Σ, U1 v U2〉, whereM⊥U1

is the⊥-module of T for the signature

of U1, and M>U2
is the >-module of T for the signature of U2 [GHKS08]. What

is useful here is that M⊥U1
is a subset of T s.t. M⊥U1

|= U1 v V iff T |= U1 v V
for all concepts V , while M>U2

is a subset of T that ensures M>U2
|= V v U2 iff

T |= V v U2 for all concepts V .

Definition 4.3.3. A CI α is ∅-local (resp. ∆-local) for a signature Σ if every
interpretation I s.t. XI = ∅ (resp. XI = ∆) for all X ∈ (ΩC ∪ ΩR) \ Σ satisfies
I |= α.

Definition 4.3.4. The ∅-module (resp. ∆-module) of T for Σ is the smallest
subsetM⊆ T s.t. every axiom in T \M is ∅-local (resp. ∆-local) for Σ∪Σ(M),
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where Σ(M) denotes the restriction of the signature to the symbols occurring
in the TBox M.

This means the axioms outside of the ∅-module M are not useful to get
non-trivial entailments using the signature Σ ∪ Σ(M).

A fast approximation of ∅-modules are ⊥-modules 2. It is sufficient to show
the following: if M′ is the ⊥-module of T for Σ, and M a ∅-module of T for Σ,
then M⊆M′. In the same way, >-modules approximate ∆-modules.

Lemma 4.3.5 (⊥-module). For a concept U1 and a TBox T , the ⊥-moduleM
of T for Σ(U1) satisfies T |= U1 v V iff M |= U1 v V for all concepts V .

Proof. (sketch) Thanks to the relation between the ⊥-module and the ∅-module,
it suffices to prove that the ∅-module M’ for Σ(U1) satisfies the property to
obtain the same result for the ⊥-module M. We first observe that every non-
tautological axiom U v U ′ ∈ T s.t. Σ(U) ⊆ Σ(M) occurs in M. Otherwise, we
would have Σ(U ′) 6⊆ (M), and U ′I = ∅ for an interpretation ∅-local for Σ(M),
while UI 6= ∅, and thus I 6|= U v V . Moreover, in EL, all subsumers of U1 can
be generated by unfolding, i.e., by iteratively replacing sub-concepts U in U1 by
concepts U ′ s.t. U v U ′ ∈ T . By using our first observation, we obtain that any
axiom U v U ′ ∈ T that could be involved by such an unfolding operation must
be included in M. It follows then that M |= U1 v V iff T |= U1 v V for all
concepts V .

Lemma 4.3.6 (>-module). For a concept U2, the >-moduleM of T for Σ(U2)
satisfies T |= V v U2 iff M |= V v U2 for all concepts V .

Proof. (sketch) Can be shown in the same way as Lemma 4.3.5.

Lemma 4.3.5 helps preserve the subsumers of U1 while Lemma 4.3.6 helps pre-
serve the subsmees of U2. So, by also looking at the definition of connection-
minimality (Def. 4.1.9), replacing T in the abduction problem by the union of
the ⊥-module for Σ(U1) and the >-module for Σ(U2) still preserves the desired
hypotheses despite that the problem size decreases.

4.4 Termination

The number of prime implicates can be infinite when our TBox contains cycles.
For example, given T = {U1 v P, P v ∃R.P, ∃R.Q v Q,Q v U2}, the number
of the positive and negative ground prime implicates of Φ are infinite despite
that the set of constructible hypotheses is finite.

PIg+Σ (Φ) = {U1(sk0), P (sk0), P (sk(sk0)), P (sk(sk(sk0))), . . .},
PIg−Σ (Φ) = {¬U−2 (sk0),¬Q−(sk0),¬Q−(sk(sk0)), . . .}.

This means, naive generation of all prime implicates in Φ will not terminate. How-
ever, if we only consider the subset-minimal ones, termination can be obtained
by bounding the term depth.

2Interested readers may consult [GHKS08] for the exact definition
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The key result of this section is that we only need prime implicates with term
depths of at most n×m, where n = |ΩC| and m = |ΩR| for the given signature
ΩC and ΩR.

The proof relies on the notion of solution tree to summarize inferences leading
to a solution. This tree looks like a description tree, but with additional labeling
functions. The first label simply assigns a Skolem term to each node (similar to
the Skolem labeling for the canonical model). The second label (positive label)
assigns a set of atomic concepts. The third one (negative label) assigns a single
atomic concept. In the leaves, each node in someway represents matches in
a constructible hypothesis. A positive label takes the atomic concepts in the
positive prime implicates using that term. If we take any maximal antichain of
its nodes then their negative labels correspond to the predicates in a derivable
negative implicate while the ground terms are immediately taken from its Skolem
label. Combining the positive and negative labels of these leaves, we get a
constructible hypothesis, called the solution of the tree.

I show that, given a solution tree with solution H, we can construct a solution
tree with solution H′ ⊆ H s.t. any two nodes lying in one path do not have
both the same topmost Skolem function in their Skolem labeling and the same
negative label. Both of them are bounded by the number of Skolem functions n
and the number of atomic concepts m. This means, the depth of the solution tree
for any desired hypotheses that is also subset-minimal is bounded by n×m. This
is a rather loose bound. For the academia example, the bound is 22× 6 = 132
which is much higher than needed.

4.4.1 Summarizing the Inferences of Matching Prime Im-
plicates

The key idea to establish termination is to summarize inferences leading to a
matching set of prime implicates using a solution tree, that looks like a description
tree, but we give two additional labels that help identify intermediate ground
implicates that are used to derive the positive prime implicates and the negative
prime implicate with matching Skolem terms. A solution tree for a hypothesis H
is defined as a tuple (S, l+, l−), which is a tree-shaped labeled graph S = (V, E , s)
together with two additional labeling functions l+ and l− that maps the vertices
to the matching prime implicates used to construct the hypothesis following
Th. 4.2.11. So, the leaves v1, . . ., vn of a solution tree are such that

– l+(vi) ∈ PIg+Σ (Φ) is not empty for all i ∈ {1, . . . , n}, and

– ¬l−(s(v1))∨ . . .∨¬l−(s(vn)) ∈ PIg−Σ (Φ) up to the repeated occurrence of
some literals from different nodes.

The idea is to show how to reduce a solution tree to a smaller one when the
associated constructible hypothesis is not subset-minimal.

The final result is Th. 4.4.15. For this, I incrementally introduce the required
notions while at the same time present their relevant properties with the proofs.
To begin with, I introduce the notion of Skolem tree, which serves as some sort
of skeletal structure for the solution tree.

Definition 4.4.1 (Skolem Tree). A Skolem tree is a labeled tree S = (V, E , s)
where s assigns a Skolem term to every v ∈ V s.t. s(v0) = sk0 for the root
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v0 ∈ V, and for every (v, v′) ∈ E ,3 either s(v) = s(v′) or s(v′) = sk(s(v)) for
some Skolem term sk.

(Anti)chains for the nodes in the Skolem trees are in terms of the ancestor
relationship: given two nodes v, v′ ∈ V, we call v an ancestor of v′ iff there is
a path from v to v′ (i.e. every node is an ancestor of itself). A chain is a set
of nodes that occur together on a path (where adjacent nodes have immediate
ancestor relationship), and an antichain is a set of nodes where no node is an
ancestor of another. Maximal chains/antichains are chains/antichains that are
maximal w.r.t. the subset relation.

Labeling for PIg+Σ (Φ) As a means to summarize which positive prime impli-
cates use some term t, we simply label a node in some Skolem tree by the set
consisting of every atomic concept P s.t. P (t) is a prime implicate. The ancestor
relationship would then represent the existence of possible derivations from a
prime implicate while increasing the term depth.

Definition 4.4.2 (Positive Labeling). Given a Skolem tree S = (V, E , s), the
positive labeling for S is defined as the function l+ : V → 2ΩC s.t. for every v ∈ V,
l+(v) = {P | P (s(v)) ∈ PIg+Σ (Φ)}.

Lemma 4.4.3 (Positive Labeling and PIg+Σ (Φ)). Let v1, v2 ∈ V be such that
v1 is an ancestor of v2, and s(v1) be of the form sk(t) for some Skolem function
sk. Then,

(i) Psk(s(v1)) ∈ PIg+Σ (Φ) and

(ii) for every P ∈ l+(v2), there is a derivation of P (s(v2)) from Psk(s(v1)) and
clauses only of the form

• I3:¬P1(x) ∨ P2(x),

• I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x), and

• I7:¬P1(x) ∨ P2(sk(x))

in Φp.

Proof. We first show that, (i) for every P (sk(t)) ∈ PIg+Σ (Φ), also Psk(sk(t)) ∈
PIg+Σ (Φ), and that P (sk(t)) can be derived from Psk(sk(t)) and I3:¬P1(x) ∨
P2(x)- and I4:¬P1(x)∨¬P2(x)∨P3(x)-clauses of Φp. Afterward, we prove that,
(ii) if l+(v2) is not empty, then l+(v1) is also not empty for any ancestor v1 of
v2. The lemma then follows by induction.

(i) We have established in the proof of Th. 4.3.2 that P (sk(t)) can be derived
from Φp such that every resolvent of the derivation is ground. Moreover,
by Lemma 4.3.1, I5:¬R(x, y) ∨ ¬P1(y) ∨ P2(x)-clauses do not have to be
involved in the derivation. I6:¬P1(x) ∨ R(x, sk(x))-clauses can then also
be ignored because they introduce positive occurrences of binary literals
and only I5:¬R(x, y)∨¬P1(y)∨P2(x)-clauses can be used to resolve upon
them. We can also rule out the I2:¬U−2 (sk0)-clause ¬U−2 (sk0) because
it is a duplicate, that can only derive negative duplicate clauses in Φp if

3When the role R labeling an edge vRw is irrelevant, we fall back to representing this edge
as the pair of nodes (v, w).
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I5:¬R(x, y)∨¬P1(y)∨P2(x)- and I6:¬P1(x)∨R(x, sk(x))-clauses are not
used, because Φp is Horn. This leaves U1(sk0) and the I3:¬P1(x)∨P2(x)-,
I4:¬P1(x)∨¬P2(x)∨P3(x)- and I7:¬P1(x)∨P2(sk(x))-clauses as the ones
that are used to derive P (sk(t)) from Φp. Moreover, since Φp is Horn,
linear resolution can be used to derive P (sk(t)), thus inferences between
two resolvents are not necessary [AB70]. Inferences in such a derivation
can only preserve the Skolem term occurring in the ground premise when
resolving with an I3:¬P1(x) ∨ P2(x)- or an I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x)-
clause, and increase the depth of the term in the resolvent when resolving
with an I7:¬P1(x) ∨ P2(sk(x))-clause. Thus P (sk(t)) can only be derived
after Psk(sk(t)) has been introduced by the I7:¬P1(x) ∨ P2(sk(x))-clause
introducing sk, and from Psk(sk(t)) only I3:¬P1(x)∨P2(x)- or I4:¬P1(x)∨
¬P2(x) ∨ P3(x)-clauses can be used to derive P (sk(t)). Let us consider
the (linear) derivation of P (sk(t)) and remove from it all the inferences on
I3:¬P1(x) ∨ P2(x)- and I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x)-clauses upon literals
where sk(t) occurs. The only literals that remain in the derived clause
are copies of Psk(sk(t)) because it is the only literal with the term sk(t)
that can be derived, and because all other literals are resolved upon in
parts of the derivation that have not been removed. Thus, it is enough to
append a few factorization inferences at the end of this derivation, if at all
needed, to derive Psk(sk(t)). Hence Psk(sk(t)) ∈ PIg+Σ (Φ). The inferences
from the removed parts of the derivation of P (sk(t)), introducing only
I3:¬P1(x) ∨ P2(x)- and I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x)-clauses can be used
together with Psk(sk(t)) to construct a derivation of P (sk(t)).

(ii) To prove that the ancestors of v2 have a non-empty positive label if v2 has
a non-empty positive label, let us consider the case when v1 is the direct
parent of v2 (the case when v1 = v2 is trivial). Let us consider once again
the part of the linear derivation of P (sk(t)) from which we created the
derivation of Psk(sk(t)). If we remove from it the inference(s) introduc-
ing sk, the clause that is derived must contain only P ′(t) literals, where
¬P ′(t)∨Psk(sk(t)) is the I7:¬P1(x)∨P2(sk(x)) clause that introduced sk.
These P ′(t) literals can be factorized following this derivation to obtain a
derivation of P ′(t) from Φp. Thus v1 has a non-empty positive label and
this result also holds for any ancestor of v2 by induction.

Finally, we have proven that for v1 s.t. s(v1) = sk′(t′), there is a derivation
of any P ′(sk′(t′)) ∈ l+(v1) from Psk′(sk

′(t′)) and the I3:¬P1(x) ∨ P2(x)-
and I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x)-clauses in Φp. Moreover, in the previous
paragraph, assuming v1 is the parent of v2, we have seen that there is
at least some P ′(sk′(t′)) ∈ l+(v1) from which Psk(sk(sk′(t′))) can be
inferred by using the I7:¬P1(x) ∨ P2(sk(x))-clause introducing sk where
sk(sk′(t′)) = s(v2). Thus P (s(v2)) can be derived from Psk′(s(v1)) and the
I3:¬P1(x)∨P2(x)-, I4:¬P1(x)∨¬P2(x)∨P3(x)- and I7:¬P1(x)∨P2(sk(x))-
clauses in Φp, and this result can be extended to any ancestor of v2 (except
the root v0, for which U1(sk0) could be used instead of Psk′(s(v0)), that
does not exist).

Apparently, if two nodes lie on the same path where both have the same
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topmost Skolem function for their Skolem labeling, they will also have similar
positive labelings.

Lemma 4.4.4 (Vertices having similar labels). For any two nodes v1, v2 ∈ V
s.t. s(v1) = sk(t1) and s(v2) = sk(t2) for the same Skolem function sk and some
terms t1 and t2, if l+(v1) and l+(v2) are not empty, then l+(v1) = l+(v2).

Proof. By Lemma 4.4.3, if l+(v1) and l+(v2) are not empty, then Psk(s(v1)) ∈
l+(v1) and Psk(s(v2)) ∈ l+(v2). Moreover, for every P ∈ l+(v1), P (s(v1)) can be
derived using only Psk(s(v1)) and I3:¬P1(x)∨P2(x)- and I4:¬P1(x)∨¬P2(x)∨
P3(x)-clauses in Φp. The I7:¬P1(x)∨P2(sk(x))-clauses do not intervene because
they can only increase the depth of terms.

Any such derivation can be mirrored from Psk(s(v2)) and the I3:¬P1(x) ∨
P2(x)- and I4:¬P1(x) ∨ ¬P2(x) ∨ P3(x)-clauses in Φp to derive P (s(v2)), thus
l+(v1) ⊆ l+(v2). The reverse inclusion l+(v2) ⊆ l+(v1) is proved similarly.

Lemma 4.4.5. If R(t, sk(t)) ∈ PIg+Σ (Φ) and sk(t) has a subterm of the form

sk(t′), then R(t′, sk(t′)) ∈ PIg+Σ (Φ).

Proof. If R(t, sk(t)) ∈ PIg+Σ (Φ), then R occurs in the I6:¬P1(x) ∨R(x, sk(x))-
clause introducing sk, thus any (linear) derivation of R(t, sk(t)) can be trans-
formed into a derivation of Psk(sk(t)) by replacing this I6:¬P1(x)∨R(x, sk(x))-
clause with the I7:¬P1(x)∨P2(sk(x))-clause introducing sk when resolving upon
P1(t) (remember it is possible to ensure that the other premise is ground). Thus
Psk(sk(t)) ∈ PIg+Σ (Φ).

In a Skolem tree with a node v2 s.t. s(v2) = sk(t) for the t and sk from the
previous paragraph, there must be an ancestor v1 of v2 s.t. s(v1) = sk(t′) since it
is a subterm of sk(t). Thus by Lemma 4.4.4, Psk(sk(t′)) ∈ PIg+Σ (Φ). Moreover,
a (linear) derivation of Psk(sk(t′)) from Φp can be turned into a derivation of
R(t′, sk(t′)) by applying the reverse transformation as in the previous paragraph,
thus R(t′, sk(t′)) ∈ PIg+Σ (Φ).

Labeling for PIg−Σ (Φ) For the negative prime implicates, we also introduce
negative labeling. The idea is almost similar to the positive one except that
we need an antichain to represent a prime implicate instead of a single node
representing multiple prime implicates.

Definition 4.4.6 (Negative Labeling). Given a Skolem tree S = (V, E , s), a
function l− : V → {P− | P ∈ ΩC} is called negative labeling for S iff:

– (root) l−(v0) = U2 if v0 is the root of S, and

– (non-leaf ) for all non leaf v ∈ V with children v1, . . . , vn, there is a deriva-
tion4 of ¬Q−1 (s(v1)) ∨ . . . ∨ ¬Q−n (s(vn)) for Qi = l−(vi) using

• ¬Q−(s(v)) for Q = l−(v),

• {R(t, sk(t)) ∈ PIg+Σ (Φ)}, and

• the non-ground clauses in Φp.

4Factoring inference is not captured in the derivability of ¬Q−
1 (s(v1)) ∨ . . . ∨ ¬Q−

n (s(vn))
in (non-leaf ). This means, the same literal in it may come from more than one leaf.
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The clause ¬Q−1 (sk(v1)) ∨ . . . ∨ ¬Q−n (sk(vn)) is denoted as ϕS,l− , if the set
{v1, . . . , vn} consists of all leaves of S.

Note that any such clause ¬Q−1 (t1)∨ . . .∨¬Q−m(tm) is an implicate, but not
necessarily a prime implicate.

Lemma 4.4.7. Given a Skolem tree S = (V, E , s), if S has a negative labeling
l−, and the set {v1, . . . , vm} ⊆ V is a maximal antichain, then

¬Q−1 (t1) ∨ . . . ∨ ¬Q−m(tm)

is derivable from Φp.

Proof. (sketch) This follows directly by induction using (root) as the base case
and the derivability in the case (non-leaf ) as the induction step

What we are eventually interested in from Lemma 4.4.7 is that this holds in
particular for ϕS,l− . Conversely, for any negative ground implicate of Φp of the
form ¬Q−1 (t1) ∨ . . . ∨ ¬Q−n (tn), we can construct a Skolem tree and a negative
labeling s.t. ϕS,l− is the negative ground implicate, up to the repetition of
literals. This Skolem tree can be constructed together with the negative labeling
l− by following the derivation from ¬U−2 (sk0) to ¬Q−1 (t1)∨ . . .∨¬Q−n (tn) in Φp.
Specifically, we note that:

– Such a derivation must exist, because Φp is Horn and ¬U−2 (sk0) is the
only negative clause and thus every derivation of a negative ground clause
must use this clause.

– Moreover, starting from Φp ∪ PIg+Σ (Φ) all resolvents in a derivation of a
negative ground clause can be negative clauses and only {R(t, sk(t)) ∈
PIg+Σ (Φ) | sk ∈ ΠS, t ∈ Tsk0(ΠS)} is needed because the other positive
prime implicates contain original literals that are not needed to derive a
clause with only duplicate literals. Such derivations can be linear.

– Following the argument used in the proof for Th. 4.3.2, we can rearrange
any linear derivation of a ground negative clause so that variables and
binary literals are eliminated as soon as they are introduced. This step is
done by resolving first a ground clause ϕ and an I5:¬R(x, y) ∨ ¬P1(y) ∨
P2(x)-clause ¬R(x, y)∨¬P1(y)∨P2(x), and then resolving an I6:¬P1(x)∨
R(x, sk(x))-clause ¬P ′1(x′)∨R(x′, sk(x′)) and the resolvent of the previous
step. These two steps amount to replacing the literal ¬P2(t) in ϕ by
¬P ′1(t) ∨ ¬P1(sk(t)).

We then get the following lemma dealing with derivability of the negative prime
implicates.

Lemma 4.4.8 (Negative Labeling andPIg−Σ (Φ)). For any B s.t.
∨
Q(t)∈B ¬Q−(t) ∈

PIg−Σ (Φ), we can construct a Skolem tree S that has a negative labeling l− s.t.
for every Q(t) ∈ B, s(v) = t and l−(v) = Q for a leaf v of S, and for all leaves v
in S, l−(v)(s(v)) ∈ B.

By decorating the Skolem tree with the positive and negative labels, we can
now define the solution tree. By taking the labels on the leaves of a solution
tree, we obtain a connection-minimal hypothesis after Th. 4.2.11. In the CI’s of
the solution, the positive label provides the left-hand sides while the negative
label gives the right-hand sides.
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Definition 4.4.9 (Solution Tree). A solution tree is a tuple (S, l+, l−) where

– S = (V, E , s) is a Skolem tree for the terms from which some constructible
hypothesis H is defined,

– l+ is a positive labeling for S such that all nodes in S have a non-empty
positive label, and

– l− is a negative labeling for S s.t. ϕS,l− ∈ PIg−Σ (Φ) modulo the repetition
of literals.

The solution of the tree is a TBox equivalent to H, which is the set {
d

l+(v) v
l−(v) | v is a leaf of S}.

To simplify the later proof, w.l.o.g. any CI in the solution of the tree has
only atomic concepts on its right-hand side, while the equivalent H may use a
conjunction. This is because a CI with a conjunction on the right-hand side can
be split anyway. In addition, tautologies from this solution can be removed to
get a packed connection-minimal hypothesis.

4.4.2 Bounding the Skolem Term Depth

We are now ready to see how to obtain the termination result. I will show that
if two vertices in a solution tree have the same labelings while having ancestor
relationship, then the subtree rooted at the ancestor can be replaced by the
subtree rooted at the other vertex with an additional adaptation of the Skolem
labeling. This would produce a smaller solution tree (in terms of the number
of nodes). Note that we actually have a weaker condition here: if a solution
tree is minimal, then one cannot perform such replacement anymore. As we
shall see later, the reverse is not true. Nevertheless, this is already sufficient to
acquire termination at least for connection-minimal hypotheses that are also
subset-minimal.

Lemma 4.4.10 (Subtree Replacement). Let (S, l+, l−) be a solution tree, where
S = (V, E , s) and v1, v2 ∈ V be such that v1 is an ancestor of v2, s(v1) = sk(t) and
s(v2) = sk(t′) for some sk, t and t′, and l−(v1) = l−(v2). Let S′ = (V ′, E ′, s′) the
result of replacing in S the subtree under v1 by the subtree under v2, adapting
the Skolem labeling s to s′ appropriately, and let l+

′
and l−

′
be l+ and l−

restricted to V ′. Then, (S′, l+
′
, l−
′
) is also a solution tree.

Proof. We have to show that all primed labelings are valid labelings, that the
positive one is not empty for any node in S’ and that ϕS′,l−′ ∈ PI

g−
Σ (Φ) modulo

the repetition of literals.
The adaptation of s to create s′ consists of replacing the subterm sk(t′), in

every term s(v) for v descending from v2 in S by sk(t) in S’. That way, s′ is also
a Skolem labeling. By Def. 4.4.2 and Lemma 4.4.4, l+

′
is a positive labeling for

S’ and none of its labels are empty because none of the labels of l+ are empty.
By Def. 4.4.6, all properties needed to ensure l−

′
is a negative labeling for S’

are trivially verified for the nodes outside of the descendants of v1 because they
are the same as in S.

Let w1, . . . , wn be the children of v1 in S’. We show that ϕ = ¬Q−1 (s(w1))∨
. . . ∨ ¬Q−n (s(wn)) where Qi = l−(wi) for i ∈ {1, . . . , n} can be derived from
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the non-ground clauses in Φp, the set {R(t′, sk(t′)) ∈ PIg+Σ (Φ) | sk ∈ ΠS, t
′ ∈

Tsk0
(ΠS)} and ¬Q−(s(v1)), where Q = l−(v1). In S, the wi nodes are the chil-

dren of v2, thus ϕ′ = ¬Q−1 (s(v2)) ∨ . . . ∨ ¬Q−n (s(v2)) can be derived from the
non-ground clauses in Φp, the set {R(t′, sk(t′)) ∈ PIg+Σ (Φ) | sk ∈ ΠS, t

′ ∈
Tsk0(ΠS)} and ¬Q−(s(v2)). We can write s(v2) as g(s(v1)), where g is a com-
position of Skolem functions, and every s(wi) can be written as ski(g(s(v1)))
for some ski ∈ ΠS. The derivation of ϕ′ can thus be transformed into a deriva-
tion of ϕ by replacing Q(t′) by Q(t) everywhere it is used, and replacing any
R(s(v2), ski(s(v2))) ∈ PIg+Σ (Φ) used by R(s(v1), ski(s(v1))) because the latter

also belongs to PIg+Σ (Φ) by Lemma 4.4.5. The same argument applies to any
other descendant v′ of v1 in S’ so that the second point of Def. 4.4.6 holds for
l−
′
. Thus l−

′
is a negative labeling for S’.

If l−
′

is such that ϕS′,l−′ is not in PIg−Σ (Φ) modulo the repetition of literals,
then there exists a solution tree S” for a strict subclause of ϕS′,l−′ modulo the
repetition of literals, i.e., where one literal of ϕS′,l−′ does not appear at all, that
is an implicate of Φp and it is possible to apply the transformation from S to S’
backward from S”. This would produce a solution forest for a strict subclause
of ϕS,l− modulo the repetition of literals derivable from Φp by Lemma 4.4.7,

which is impossible since ϕS,l− ∈ PIg−Σ (Φ) modulo the repetition of literals.

Thus ϕS′,l−′ ∈ PI
g−
Σ (Φ) modulo the repetition of literals.

Definition 4.4.11 (Minimal Solution Tree). A solution tree S for a hypothesis
H is minimal if there exists no solution tree S′ for a hypothesis H′ ⊆ H s.t. S′

uses strictly less nodes.

The following lemma characterizes equal labelings by the equality of the
topmost Skolem functions. This would then one of the parameter used for the
bound.

Lemma 4.4.12. Let (S, l+, l−) be a minimal solution tree where S = (V, E , s).
Let v, v′ ∈ V be nodes such that v′ is an ancestor of v. Then, either s(v) and
s(v′) are not headed by the same Skolem term or l−(v) 6= l−(v′).

Proof. Let (S, l+, l−) be a minimal solution tree for the hypothesis H where
S = (V, E , s) such that v′ is an ancestor of v, l−(v) = l−(v′) and s(v) = sk(t)
and s(v′) = sk(t′) for some sk, t and t′. By applying Lemma 4.4.10, we obtain
a solution tree S′ with less nodes than S and for a solution H′ s.t. H′ ⊆ H.
Consequently, S cannot be minimal.

Example 4.4.13 (Solution tree). Consider the TBox T from Ex. 4.1.11

T = {(1) : Bat v ∃canBite.Bat,

(2) : Bat v ∃canBite.Human,

(3) : Bat v ∃canHost.Rabies,

(4) : DiseaseVector v Organism,

(5) : Human v Organism}
(6) : ∃canBite.Organism u ∃canHost.Virus v DiseaseVector},

where we have an observation Bat v DiseaseVector with T 6|= Bat v DiseaseVector.
We consider the following hypotheses to illustrate the termination bound pre-
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sented before.

H4 ={Rabies v Virus}
H5 ={Human v DiseaseVector,Rabies v Virus}

Suppose that sk1,sk2, and sk3 comes out of the Skolemization of (1), (2),
and (3) respectively in its first order translation Φ = FO(T ,Bat v DiseaseVector).
Fig. 4.4 shows one possible solution tree (S, l+, l−) where, in the picture, each
node vi is described by vi : l+(vi), s(vi), l

−(vi)
5 with s labeling S with the

necessary Skolem terms.

v0 : {B}, sk0,D

v1 : {B}, sk1(sk0),D

v3 : {B}, sk1(sk1(sk0)),D

v5 : {H,O}, sk2(sk1(sk1(sk0))),D

canBite

v6 : {R}, sk3(sk1(sk1(sk0))),V

canHost

canBite

v4 : {R}, sk3(sk1(sk0)),V

canHost

canBite

v2 : {R}, sk3(sk0),V

canHost

Figure 4.4: Solution tree (S, l+, l−) for H5

Due to Lemma 4.4.12, the solution tree from Fig. 4.4 is not minimal:

– s(v1) and s(v3) share the same topmost skolem function sk1, and

– l−(v1) = l−(v3) = DiseaseVector.

The arrow shows a subtree replacement described by Lemma 4.4.10. The sub-
tree rooted at v3 replaces the subtree rooted at v1 but the labeling of the
Skolem term is also adapted according to the lemma (more specifically in-
side the proof). In this case, in every node of the subtree rooted at v3, all
occurences of sk1(sk1(sk0)) (taken from s(v3)) are replaced by sk1(sk0) (taken
from s(v1)). This will result in the solution tree (S′, l+

′
, l−
′
) in Fig. 4.5. From

both trees, taking their solutions (see Def. 4.4.9) would give us the same hypoth-
esis H5 = {Human v DiseaseVector,Rabies v Virus}6.

Note that, according Def. 4.4.11, (S′, l+
′
, l−
′
) is not minimal because of the

solution tree in Fig. 4.6:

– H4 ( H5, and

– H4 is the solution of (S′′, l+
′′
, l−
′′
) with less nodes.

5For readability, the concept names are shown using only the respective first letters.
6The solution of the tree gives us a constructible hypothesis but I consider only the concept

Human from l+(v5) = {Human,Organism} for illustration.
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v0 : {B}, sk0,D

v′3 : {B}, sk1(sk0),D

v′5 : {H,O}, sk2(sk1(sk0)),D

canBite

v′6 : {R}, sk3(sk1(sk0)),V

canHost

canBite

v2 : {R}, sk3(sk0),V

canHost

Figure 4.5: Solution tree (S′, l+
′
, l−
′
) for H5 with less nodes

Moreover, Lemma 4.4.12 cannot be used to distinguish them.

w0 : {B}, sk0,D

w1 : {H,O}, sk1(sk0),O

canBite

w2 : {R}, sk3(sk0),V

canHost

Figure 4.6: Solution tree (S′′, l+
′′
, l−
′′
) for H4

However, Lemma 4.4.12 is already sufficient to derive a termination condition.
The following corollary then relates solution trees that are minimal with their
depths.

Corollary 4.4.14. Let = (S, l+, l−) be a minimal solution tree. Then, the
depth of S is bounded by n ×m, where n is the number of Skolem functions
in Φ introduced for the transformation of T , and m is the number of atomic
concepts in Φ.

Proof. Let S be a minimal solution tree. By Lemma 4.4.12, on every path in
S, there are no two nodes v, v′ such that l−(v) = l−(v′), s(v) = sk(t) and
s(v′) = sk(t′) for some sk, t and t′. Thus in a path, for every Skolem function
sk, there can be at most m nodes on a path, each with a different negative label.
However, the Skolem functions introduced during the translation of T − are never
needed since they do not occur in PIg+Σ (Φ). The range of l− is bounded by the
number of atomic concepts in Φ, that we denote m. We additionally denote by
n the number of Skolem functions in Φ introduced by the translation of T , and
thus, every path in S can have a length of at most n×m.

The following theorem is a direct consequence of Corollary 4.4.14, because for
a subset-minimal constructible hypothesisH, there is no constructible hypothesis
H′ s.t. H′ ( H.

Theorem 4.4.15 (Term Depth Bound). Given an abduction problem and its
translation Φ, every subset-minimal constructible hypothesis can be built from
prime implicates having a nesting depth of at most n×m, where n is the number

102



of atomic concepts in Φ, and m is the number of occurrences of existential role
restrictions in T .

4.5 Implementation and Experiments

For evaluation, we developed an implementation using SPASS as a key reasoning
engine. Both of the previous sections regarding efficiency and termination are
implemented accordingly. We then perform experiments to collect some basic
information regarding the number of problems, successful generations, etc.

4.5.1 Implementation

We developed a prototype that computes all subset-minimal constructible hy-
potheses, following the technique described in the previous section. To compute
the prime implicates, we used SPASS [WSH+07], a first-order theorem prover
that includes resolution among other calculi. Everything before and after the
prime implicate are taken care of in java. These include parsing of the ontolo-
gies, preprocessing (detailed below), clausification of the abduction problems,
translation to SPASS input, and parsing and processing of the SPASS output
where constructible hypotheses are reconstructed and filtered-out from the non-
subset-minimal ones. The Java part uses the OWL API for all of the general
DL-related needs [HB11] while using the EL reasoner Elk specifically for the
presaturation [KKS14].

Preprocessing. In this first stage, the removal of axioms not relevant to the
abduction problems and presaturation are performed. First, we can remove some
unrelated axioms supported by Lemma 4.3.5 and 4.3.6. Here, every connection-
minimal hypothesis for (T ,Σ, U1 v U2) is also a connection-minimal hypothesis
for (M⊥U1

∪M>U2
,Σ, U1 v U2). Presaturation is useful for termination as described

in Sect. 4.4: Elk helps compute all concept inclusions of the form P v Q s.t.
M⊥U1

∪M>U2
|= P v Q.

Prime implicates generation. The generation uses a slightly modified ver-
sion of SPASS v3.9. More specifically, for R1, R2 and Th. 4.4.15, there are
corresponding SPASS flags (or set of flags).

Recombination. The construction of hypotheses starts with a straightforward
process of matching negative prime implicates with a set of positive ones based
on their Skolem terms. It is followed by subset minimality tests to discard non-
subset-minimal hypotheses based on Th. 4.4.15. This is because, the quadratic
bound entails no guarantee that these hypotheses are non-subset minimal yet
connection-minimal. In contrast, if SPASS terminates due to the timeout instead
of the bound, then it is possible that some subset-minimal yet also connection-
minimal constructible hypotheses are not found.

4.5.2 Experiments

I present three different ways of producing abduction problem T , where in each
case, we used the signature of the entire ontology for Σ. The first one ORIGIN
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simply picks a random unentailed axiom. The second one JUSTIF picks an
entailed axiom and makes it not entailed via single-axiom removal in a specific
justification. The last one REPAIR picks an entailed axiom but makes it not
entailed via repair. The following shows this in more detail.

Definition 4.5.1 (Experimental TBox Abduction). Given a TBox T , we gen-
erate the following abduction with a randomly chosen observation U v V .

– (ORIGIN) 〈T ,Σ, U v V 〉 with T 6|= U v V .

– (JUSTIF) 〈J \{α},Σ, U v V 〉 with U v V 6∈ T , a justification J |= U v V
in T and α ∈ J .

– (REPAIR) 〈R,Σ, U v V 〉 with T |= U v V and a repair R of U v V in T .

where J , R, and α are also chosen at random.

ORIGIN is simply the basic one and here U v V is most likely an undesired
concept inclusion such as Cat v Dog instead of a missing one like Cat v Mammal.
In JUSTIF, the TBox is smaller and its computation uses the OWL API and
Elk. In REPAIR, R’s are computed using a justification-based algorithm [SC03]
with justifications computed as for JUSTIF. This usually resulted in much larger
TBoxes, where more axioms would be needed to establish the entailment.

Data. There is no dataset suitable immediately to be a benchmark for this
experiment, so a modification of some realistic ontologies becomes necessary.
For this, the chosen one would be ontologies from the 2017 snapshot of Biopor-
tal [MP17]. Here, most of them are expressed in a DL more expressive than EL.
First, unsupported axioms are eliminated, via the replacement of domain axioms
and n-ary equivalence axioms as in [BHLS17]. Then, non-empty TBoxes with
at most 50,000 axioms are selected. In the end, we have a set of 387 EL TBoxes
with a size between 2 and 46,429 axioms, an average of 3,039 and a median of
569.

Problem generation. For each of the 387 TBoxes, we attempted to construct
and translate five problem instances in each category. The generation is not
always successful. In summary, there were

– 25, 28, and 25 failures in finding entailment respectively for ORIGIN, JUSTIF,
and REPAIR

– two errors during justification generation for JUSTIF

– no errors during repair generation via justification for REPAIR, and

– five timeouts during the translation for every category.

Experimental setup In general, the experiment follows Fig. 4.2 where all
experiments were run on Debian Linux (Intel Core i5-4590, 3.30 GHz, 23 GB
Java heap size). A (hard) time limit of 90 seconds is imposed for each steps in
Fig. 4.2. A (soft) time limit of 30 seconds is imposed for SPASS to return the
so-far generated implicates. The implementation is available online .7

7https://lat.inf.tu-dresden.de/∼koopmann/IJCAR-2022-Experiments.tar.gz
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#H |H| |α| time (s.)
ORIGIN 1/8.51/1850 1/1.00/2 6/7.48/91 0.2/12.4/43.8
JUSTIF 1/1.50/5 1/1/1 2/4.21/32 0.2/1.1/34.1
REPAIR 43/228.05/6317 1/1.00/2 5/5.09/49 0.6/13.6/59.9

Table 4.1: Experiment summary (median/avg/max)

Results (SPASS). The success/failure rate for the prime implicate generation
using SPASS is summarized in Table 4.2 .

#Problem Success Completed
ORIGIN 1,925 94.7% 61.3%
JUSTIF 1,803 100.0% 97.2%
REPAIR 1,805 92.9% 57.0%

Table 4.2: Success/Completion rates for the prime implicate generation

Table 4.2 shows the percentage of problems for which SPASS does generate
a prime implicate (Success) and the percentage of problems for which SPASS
is forced to terminate via the soft time limit, where all hypotheses are then
computed (Completed). The big size of the TBox (unsurprisingly) correlates
with the number of cases where SPASS reached the soft time limit. Moreover,
in many of these cases, the bound on the term depth may reach the billion
rendering it impractical to compute (but actually most of them are not useful
as the later reconstruction results indicate). However, the “Completed” column
shows that the bound is reached before the soft time limit in most cases. The
reconstruction never reached the hard time limit.

Results (Reconstruction). In addition to SPASS run-time (time, in sec-
onds), Table 4.1, shows the median, average and maximal number of hypotheses
found (#H), size of hypotheses in number of CIs (|H|), size of CIs from hypothe-
ses in the number of atomic concepts (|α|).

We can summarize the findings as follows.

– Except for the simple JUSTIF problems, the number of hypotheses may
become very large while solutions always contain very few (never more
than 3) and possibly large axioms. The small number of hypotheses in
JUSTIF is to be expected, since jusification generation itself drastically
reduces the problem size.

– Prime implicates with deeply nested terms are not useful for hypotheses:
8/1/15 hypotheses with the largest depths 3/1/2 for ORIGIN/JUSTIF/REPAIR.
This motivates the need for a redundancy criteria for a much earlier ter-
mination.
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Chapter 5

Conclusion

Entailment Explanation via Relevance

When we have an entailment N |= C, any way of explaining it would arguably be
most affected by which clauses are chosen to begin with. For this, I proposed a
new notion of relevance based on refutations Def. 3.1.4. A clause is syntactically
relevant if it occurs in all refutations, it is syntactically semi-relevant if it occurs in
some refutation, and syntactically irrelevant otherwise. This notion reflects how
we can choose clauses in N with respect to whether they are necessary, optional,
or not needed at all in refutations. A natural follow-up issue is what it really
means for them semantically. This is furthermore affected by the existence of
redundant clauses in an unexpected manner. As a response to this, I additionally
proposed (i) a semantic notion of relevance, Def. 3.1.11, based on the existence
of conflict literals, Def. 3.1.5 and a first-order refinement of (ir)redundancy called
(in)dependence Def. 3.1.10, (ii) its relationship to syntactic relevance, namely
their coincidence on independent clause sets, Th. 3.3.5, and (iii) the relationship
of semantic relevance to minimal unsatisfiable sets, MUSes, both for propositional,
Lemma 3.1.14, and first-order logic, Lemma 3.1.15. Its interesting characteristics
have also been illustrated, e.g., in Ex. 3.1.16 (even in the introduction chapter
already). In practical settings, there are applications where clause sets are always
independent. For example, first-order toolbox formalizations such as the toolbox
for car/truck/tractor building [SKK03,FWW16] usually require that every tool
is formalized by a unique predicate. Still a goal (refutation) can be proven in
many ways by differently picking the tools.

The key challenge in establishing a procedure is the test for semi-relevancy.
This led to the extension of the original completeness result for SOS resolu-
tion [WRC65], Th. 3.2.7. This guarantees that a clause C is syntactically semi-
relevant in N iff there is an SOS resolution refutation from (N \ {C}, {C})
Lemma 3.3.2. The key in acquiring this is the refutation transformation described
in Sect. 3.2.1. It requires many assumptions (e.g. a priori tree-structuredness,
variable disjointness, and the existence of overall grounding substitutions) that
are not principal restrictions in nature and only serve to ease the transformation.
In addition, this transformation may exponentially increase or exponentially
decrease the length of the deduction (as is known when changing inference or-
derings). In general, this gives us a semi-decision procedure for semi-relevancy
test. However, this can further be an effective one when resolution constitutes a
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decision procedure for the considered fragment. For example, we can effectively
test semi-relevancy in all fragments enjoying the bounded model property, such
as the Bernays-Schönfinkel fragment [BS28].

An open problem is how one can acquire a more efficient procedure such
as by incorporating a restricted resolution calculus like ordered resolution. The
challenge here is that the SOS strategy may not necessarily be complete when
used in conjunction with ordered resolution. So, we may start off with the fact
that it is complete when the clause set is first saturated by ordered resolution.
Still, this nevertheless presents us with an obstacle because a saturated clause
set may already contain the empty clause, yet for the semi-relevancy test, the
generalized completeness permits the set N \ {C} to be unsatisfiable.

In the context of description logic, the notion of relevance adds an alternative
perspective in understanding an ontology in relation to the notion of justifica-
tions and repairs. In particular, semi-relevant clauses appear to be particularly
connected to laconic justifications and the computation of relevant axioms offers
an alternative to existing repair methods. Nevertheless, we have only considered
the syntactic notion so far. That is, we have not further explored the unique
feature of our notions by considering its semantic characterization. In description
logic, a similar notion of relevance is often delivered with the help of justifications.
Analogous to the difference between propositional logic and first-order logic with
regards to MUS, one can also inquire for which fragments are justification-based
notion of relevance sufficient and which are not. In addition to the already ex-
isting research regarding laconic and precise justifications, considering how our
semantic relevance works in DL context (or to a larger extent any other FOL
fragments) is an interesting future work given that there are many DL fragments
which are in fact also FOL fragments via translation.

Explaining Non-Entailment via Connection-Minimal Abduction for
EL

Existing works related to non-entailment explanation are dominated by abduc-
tion. Hypotheses for an abduction problem are often taken/excluded via various
minimality notions. I introduced the connection-minimality notion for EL TBox
abduction where the use of axioms in an arbitrary manner is forbidden Def 4.1.9.
I presented a formal relation between the connection-minimal hypotheses in
EL and the prime implicates of some first-order of the problem (Lemma 4.2.6,
Lemma 4.2.9, and Th. 4.2.11). In addition, we developed a prototype to gen-
erate subset-minimal constructible hypotheses, a subset of connection-minimal
hypotheses that are in some way representative of the hypotheses. This takes
advantages SPASS to generate the prime implicates. I showed that the subset
minimal ones use only first-order ground terms that are quadratically bouned
Th. 4.4.14. Some set of realistic medical ontologies serves as evaluation data and
the results show that its cost can be high but not prohibitive.

There are several ways to further improve efficiency. First, the current ter-
mination bound is still too generous and could be advantageously replaced by
a redundancy criterion to stop earlier when we know that no useful solutions
can be generated anymore. Second, it should also be possible to have stronger
inference restrictions by generating only ground clauses and performing it incre-
mentally where terms are always generated in a non-decreasing manner. Third,
one can of course investigate methods that rely solely on description logic calculi.
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The theoretical worst-case complexity of connection-minimal abduction is
another open question. Th. 4.3.2 permits exponentially-sized clauses leading to
doubly exponential number of clauses in the worst case. This would give us an
2ExpTime upper bound. However, structure-sharing and guessing may likely
lower this bound or at least give us a higher efficiency.

Another class of future works are the extensional ones. First, it may be
interesting to generalize this to ontology abduction where ABox is involved.
This may possibly be supported by the fact that prime implicates are basically
ground truths. Second, abduction with conjunctive queries also looks intriguing.
One motivation of this is to understand why a particular query returns nothing
(but should not) and possibly offer a fix via the hypotheses. Third, it may in some
way be reasonable to allow role restrictions in the hypotheses. Last, one would
obviously want to see how connection-minimality looks like for more expressive
DLs such as ALC.
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Volker Haarslev and Ralf Möller, editors, Proceedings of the 2004
International Workshop on Description Logics (DL2004), Whistler,
British Columbia, Canada, June 6-8, 2004, volume 104 of CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

[Cos96] Yann Coscoy. A natural language explanation for formal proofs.
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