5,851 research outputs found

    OnionBots: Subverting Privacy Infrastructure for Cyber Attacks

    Full text link
    Over the last decade botnets survived by adopting a sequence of increasingly sophisticated strategies to evade detection and take overs, and to monetize their infrastructure. At the same time, the success of privacy infrastructures such as Tor opened the door to illegal activities, including botnets, ransomware, and a marketplace for drugs and contraband. We contend that the next waves of botnets will extensively subvert privacy infrastructure and cryptographic mechanisms. In this work we propose to preemptively investigate the design and mitigation of such botnets. We first, introduce OnionBots, what we believe will be the next generation of resilient, stealthy botnets. OnionBots use privacy infrastructures for cyber attacks by completely decoupling their operation from the infected host IP address and by carrying traffic that does not leak information about its source, destination, and nature. Such bots live symbiotically within the privacy infrastructures to evade detection, measurement, scale estimation, observation, and in general all IP-based current mitigation techniques. Furthermore, we show that with an adequate self-healing network maintenance scheme, that is simple to implement, OnionBots achieve a low diameter and a low degree and are robust to partitioning under node deletions. We developed a mitigation technique, called SOAP, that neutralizes the nodes of the basic OnionBots. We also outline and discuss a set of techniques that can enable subsequent waves of Super OnionBots. In light of the potential of such botnets, we believe that the research community should proactively develop detection and mitigation methods to thwart OnionBots, potentially making adjustments to privacy infrastructure.Comment: 12 pages, 8 figure

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Malware detection issues, challenges, and future directions: A survey

    Get PDF
    The evolution of recent malicious software with the rising use of digital services has increased the probability of corrupting data, stealing information, or other cybercrimes by malware attacks. Therefore, malicious software must be detected before it impacts a large number of computers. Recently, many malware detection solutions have been proposed by researchers. However, many challenges limit these solutions to effectively detecting several types of malware, especially zero-day attacks due to obfuscation and evasion techniques, as well as the diversity of malicious behavior caused by the rapid rate of new malware and malware variants being produced every day. Several review papers have explored the issues and challenges of malware detection from various viewpoints. However, there is a lack of a deep review article that associates each analysis and detection approach with the data type. Such an association is imperative for the research community as it helps to determine the suitable mitigation approach. In addition, the current survey articles stopped at a generic detection approach taxonomy. Moreover, some review papers presented the feature extraction methods as static, dynamic, and hybrid based on the utilized analysis approach and neglected the feature representation methods taxonomy, which is considered essential in developing the malware detection model. This survey bridges the gap by providing a comprehensive state-of-the-art review of malware detection model research. This survey introduces a feature representation taxonomy in addition to the deeper taxonomy of malware analysis and detection approaches and links each approach with the most commonly used data types. The feature extraction method is introduced according to the techniques used instead of the analysis approach. The survey ends with a discussion of the challenges and future research directions

    The zombies strike back: Towards client-side beef detection

    Get PDF
    A web browser is an application that comes bundled with every consumer operating system, including both desktop and mobile platforms. A modern web browser is complex software that has access to system-level features, includes various plugins and requires the availability of an Internet connection. Like any multifaceted software products, web browsers are prone to numerous vulnerabilities. Exploitation of these vulnerabilities can result in destructive consequences ranging from identity theft to network infrastructure damage. BeEF, the Browser Exploitation Framework, allows taking advantage of these vulnerabilities to launch a diverse range of readily available attacks from within the browser context. Existing defensive approaches aimed at hardening network perimeters and detecting common threats based on traffic analysis have not been found successful in the context of BeEF detection. This paper presents a proof-of-concept approach to BeEF detection in its own operating environment – the web browser – based on global context monitoring, abstract syntax tree fingerprinting and real-time network traffic analysis

    Towards Adversarial Malware Detection: Lessons Learned from PDF-based Attacks

    Full text link
    Malware still constitutes a major threat in the cybersecurity landscape, also due to the widespread use of infection vectors such as documents. These infection vectors hide embedded malicious code to the victim users, facilitating the use of social engineering techniques to infect their machines. Research showed that machine-learning algorithms provide effective detection mechanisms against such threats, but the existence of an arms race in adversarial settings has recently challenged such systems. In this work, we focus on malware embedded in PDF files as a representative case of such an arms race. We start by providing a comprehensive taxonomy of the different approaches used to generate PDF malware, and of the corresponding learning-based detection systems. We then categorize threats specifically targeted against learning-based PDF malware detectors, using a well-established framework in the field of adversarial machine learning. This framework allows us to categorize known vulnerabilities of learning-based PDF malware detectors and to identify novel attacks that may threaten such systems, along with the potential defense mechanisms that can mitigate the impact of such threats. We conclude the paper by discussing how such findings highlight promising research directions towards tackling the more general challenge of designing robust malware detectors in adversarial settings

    Adversarial behaviours knowledge area

    Full text link
    The technological advancements witnessed by our society in recent decades have brought improvements in our quality of life, but they have also created a number of opportunities for attackers to cause harm. Before the Internet revolution, most crime and malicious activity generally required a victim and a perpetrator to come into physical contact, and this limited the reach that malicious parties had. Technology has removed the need for physical contact to perform many types of crime, and now attackers can reach victims anywhere in the world, as long as they are connected to the Internet. This has revolutionised the characteristics of crime and warfare, allowing operations that would not have been possible before. In this document, we provide an overview of the malicious operations that are happening on the Internet today. We first provide a taxonomy of malicious activities based on the attacker’s motivations and capabilities, and then move on to the technological and human elements that adversaries require to run a successful operation. We then discuss a number of frameworks that have been proposed to model malicious operations. Since adversarial behaviours are not a purely technical topic, we draw from research in a number of fields (computer science, criminology, war studies). While doing this, we discuss how these frameworks can be used by researchers and practitioners to develop effective mitigations against malicious online operations.Published versio
    • …
    corecore