
Edith Cowan University Edith Cowan University

Research Online Research Online

Australian Digital Forensics Conference Conferences, Symposia and Campus Events

2014

The zombies strike back: Towards client-side BeEFdetection The zombies strike back: Towards client-side BeEFdetection

Maxim Chernyshev
Edith Cowan University

Peter Hannay
Edith Cowan University

Follow this and additional works at: https://ro.ecu.edu.au/adf

 Part of the Computer Engineering Commons, and the Information Security Commons

DOI: 10.4225/75/57b3de3dfb87a

12th Australian Digital Forensics Conference. Held on the 1-3 December, 2014 at Edith Cowan University, Joondalup
Campus, Perth, Western Australia.
This Conference Proceeding is posted at Research Online.
https://ro.ecu.edu.au/adf/133

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/adf
https://ro.ecu.edu.au/conference
https://ro.ecu.edu.au/adf?utm_source=ro.ecu.edu.au%2Fadf%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=ro.ecu.edu.au%2Fadf%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=ro.ecu.edu.au%2Fadf%2F133&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4225/75/57b3de3dfb87a

THE ZOMBIES STRIKE BACK: TOWARDS CLIENT-SIDE BEEF

DETECTION

Maxim Chernyshev

1
, Peter Hannay

2

School of Computer and Security Science
1, 2

, Security Research Institute
2

Edith Cowan University
1, 2

, Perth, Australia

m.chernyshev@ecu.edu.au, p.hannay@ecu.edu.au

Abstract
A web browser is an application that comes bundled with every consumer operating system, including both

desktop and mobile platforms. A modern web browser is complex software that has access to system-level

features, includes various plugins and requires the availability of an Internet connection. Like any multifaceted

software products, web browsers are prone to numerous vulnerabilities. Exploitation of these vulnerabilities can

result in destructive consequences ranging from identity theft to network infrastructure damage. BeEF, the

Browser Exploitation Framework, allows taking advantage of these vulnerabilities to launch a diverse range of

readily available attacks from within the browser context. Existing defensive approaches aimed at hardening

network perimeters and detecting common threats based on traffic analysis have not been found successful in the

context of BeEF detection. This paper presents a proof-of-concept approach to BeEF detection in its own

operating environment – the web browser – based on global context monitoring, abstract syntax tree

fingerprinting and real-time network traffic analysis.

Keywords

Web browser, Google Chrome, JavaScript malware, BeEF, abstract syntax tree fingerprinting, network traffic

analysis

INTRODUCTION

JavaScript is an integral part of the modern web as it enables the delivery of highly interactive web applications

and is supported by all contemporary browsers. However, it can also be abused to attack client browsers. There

are a number of different JavaScript-based threats, such as heap-spraying code injection attacks, cross-site

scripting (XSS) and drive-by downloads (Marco Cova, Kruegel, & Vigna, 2010; Oriyano & Shimonski, 2012;

Ratanaworabhan, Livshits, & Zorn, 2009). These threats are made possible because browsers are commonly

configured to execute inherently untrusted code.

The Browser Exploitation Framework (BeEF) leverages untrusted code execution to provide the functionality to

exploit browsers with the aim of supporting penetration testing. The ability to detect the behaviour exhibited by

BeEF is important to identify client-based attacks as well as potentially hostile code. In this paper we will

investigate some of the behavioural traits of BeEF and present a proof-of-concept approach aimed at its

detection within the browser.

EXPLOITING THE BROWSER

Man-in-the-Browser Attacks

Man-in-the-Browser (MitB) attack operates at the Application Layer and targets the client browser (Alcorn,

Frichot, & Orru, 2014, p. 60). While Man-in-the-Middle (MitM) attacks usually require a compromised or

inserted hardware component to facilitate the interception, MitB attacks are software-driven (Dougan & Curran,

2012, p. 30). The general capabilities of MitB include the ability to steal data, modify client requests and server

responses in real time, selective targeting and two-way communication to a command and control (C&C) server

(Dougan & Curran, 2012, pp. 31-33).

Various kinds of specialised banking malware, such as Zeus, SpyEye and Bugat, leverage these capabilities.

Specifically, these types of malware support transparent injection of malicious content into the original HTTP

responses with the aim to trick the user into supplying their banking credentials (Dougan & Curran, 2012, p. 35;

IOActive, 2012; Silva, Silva, Pinto, & Salles, 2013, p. 397; Sood, Enbody, & Bansal, 2013, p. 445). For

instance, the Web Injects module of SpyEye as well as the httpinjects section of the Bugat bot configuration file

26

allow defining targeted injection and replacement rules based on the URL, request method and provided HTML

elements (StopMalvertising.com, 2014).

Browser Exploitation Framework (BeEF)

While certain types of malware infect the underlying software components and libraries to gain access to the

relevant system calls, MitB capabilities can be realised purely in the context of the client browser. This

approach is adopted by BeEF – an open-source project that provides a convenient mechanism to perform

browser-focused penetration tests (Alcorn, 2014). The inception of BeEF dates back to 2005, when its first

public release was inspired by research into advanced XSS and persistent bidirectional victim-to-attacker

communication (Orru, 2011; Rager, 2005). BeEF also builds upon research into inter-protocol communication

and exploitation (Alcorn, 2007).

The primary purpose of the framework is to “assess the actual security posture of a target environment by using

client-side attack vectors” (Alcorn, 2014). This notion assumes a traditional approach to network security that

focuses on perimeter defence and makes use of firewalls to filter packets on numerous ports but those

commonly used by HTTP (Alcorn et al., 2014, p. 17). The authors of BeEF suggest that web browser attack

surface is “large and ever-increasing”, due to its continuously expanding feature set (Alcorn et al., 2014, pp. 18-

20). BeEF can be used to target this surface in order to bypass traditional external perimeter defence and gain

access to internal targets that would otherwise be inaccessible.

In practice, the usage of BeEF follows a prescribed browser hacking methodology, which consists of three high-

level phases - initiating, retaining and attacking (Alcorn et al., 2014, p. 23). During the initiation phase, the

browser encounters and executes the hook script, which contains a set of instructions required to initiate the

communication channel between the browser and the C&C server. The browser can be tricked into executing

this script using social engineering, XSS attacks, compromised web applications, advertising networks and

MitM attacks (Alcorn et al., 2014, pp. 32-72). The retaining phase is concerned with establishing an active and

persistent communication channel to enable the attacking phase. BeEF relies on HTTP to facilitate the

communication via XMLHttpRequest (XHR) polling or HTML5 WebSockets. The latter offers better

performance through bidirectional communication as well as reduced detection as firewalls are generally

unfamiliar with this protocol (Erkkilä, 2012). Channel persistence is achieved via means of full-window frame

overlays, browser events, pop-under windows and various MitB techniques. The attacking phase involves the

delivery of JavaScript payloads to the browser, which executes them and communicates the result back to the

C&C server. BeEF incorporates a collection of commands that can target different entities ranging from user

credentials to internal network resources. The framework provides a diverse range of features including but not

limited to:

 Browser fingerprinting

 Network enumeration and inter-protocol exploitation

 Key logging to extract sensitive data, such as credentials and personal information

 Ability to use the victim browser as the proxy

 Numerous social engineering modules, such as spoofed LastPass and Evernote login dialogs

 Chrome extension exploitation

 Integration with the Metasploit penetration-testing framework

 Client-side detection evasion via minification and obfuscation

Figure 1. BeEF and Metasploit Attack Scenario

27

Figure 1 depicts a high-level overview of a client attack using BeEF. The browser that has executed the hook

script is referred to as a zombie that has been hooked. The ability of BeEF to integrate with the Metasploit

penetration-testing framework deserves a separate mention, as it significantly expands its capabilities.

Leveraging this integration, one could take advantage of the Metasploit browser autopwn module to attempt

automated browser exploitation to obtain a reverse shell on the target machine. Other tools that leverage similar

concepts exist - such as Waldo by Shekyan (2012) and XSSChef by Kotowicz (2012), which focuses on

Chrome browser extension exploitation.

RELATED WORK

As this study is concerned with client-side detection, we examined some of the existing techniques used to

detect and protect against JavaScript malware. The taxonomy of mitigation approaches was previously proposed

by Yin (2013, p. 17) and is presented in Figure 2. Based on this taxonomy, we classify the detection approaches

into three types of analysis – static, dynamic and hybrid. Whereas static analysis examines the source code of a

computer program statically without execution, dynamic analysis is concerned with studying the behaviour of a

running program (Chess & McGraw, 2004, p. 32). A hybrid approach uses a combination of the two techniques

to compensate for the shortcomings of each.

Figure 2. Taxonomy of Mitigation Approaches Against JavaScript-based Threats

(adapted from Yin (2013, p. 17))

Static analysis can be used to detect specific function invocations that are present in the obfuscated code – an

evasion technique often adopted by the creators of malicious scripts (Xu, Zhang, & Zhu, 2013). Another static

technique involves the construction of an Abstract Syntax Tree (AST) that uses nodes to represent language

constructs. This is a popular technique that can be used to identify syntax and structural elements commonly

present in JavaScript malware and subsequently detect other scripts that incorporate these elements (Blanc,

Miyamoto, Akiyama, & Kadobayashi, 2012; Curtsinger, Livshits, Zorn, & Seifert, 2011). In addition to

malware detection, static analysis techniques can be used for code cloning and plagiarism detection (Beth, 2014;

Nilsson, 2012; Roy, Cordy, & Koschke, 2009).

Dynamic analysis is usually performed in an emulated environment, such as a client honeypot or a honeyclinet,

script execution sandbox or an instrumented browser (Yin, 2013, pp. 19-20). This technique has been used to

create a custom sandbox that offers complete JavaScript API support where script calls are examined before

being allowed access to the original global context (Terrace, Beard, & Katta, 2012). Dynamic analysis can also

be implemented using an emulated web-browsing environment such as HtmlUnit that mimics multiple platform

configurations, as JavaScript malware commonly relies on client fingerprinting to accomplish platform-specific

exploitation (Marco Cova et al., 2010). Furthermore, browser emulation can be utilised to perform large-scale

automated collection of malware to record infection trails for subsequent replay and in-depth analysis (Chen,

Gu, Zhuge, Nazario, & Han, 2011). Client honeypots providing varying degree of interactivity can also be used

to emulate common vulnerabilities to provide insight into practical client-side attack techniques (Nazario, 2009;

Seifert & Steenson, 2006).

Hybrid analysis requires access to both the source code as well as the runtime execution context. For example,

a runtime component can be used to intercept specific function invocations to perform the subsequent argument

analysis statically (Curtsinger et al., 2011). In addition, monitoring the runtime behaviour of selected HTML

tags and their attributes can be adopted to identify known malicious behaviours and inform the end-user in real

time (Kishore, Mallesh, Jyostna, Eswari, & Sarma, 2014).

28

However, the client-side hook component of BeEF does not necessarily exhibit malicious traits. We analysed

both the plain text and obfuscated versions of the client hook script using Wepawet and Jsunpack, both of which

recognised the script as being benign (M Cova, 2013; Hartstein, 2009). Furthermore, we determined that

detection and protection mechanisms utilised by the JSGuard Firefox add-on by Kishore et al. (2014) were

ineffective against BeEF. These findings lead us to believe that a different approach would be required to

facilitate its detection.

BEEF DETECTION

To identify detectable characteristics, we examined the architecture and behavioural patterns of BeEF. For the

purposes of this paper, we assume that the initiation phase is complete and that the client browser has executed

the hook script. Based on our analysis, we identified a common behavioural pattern that consists of the initial

fingerprinting activity, followed by one or more commands aimed at ensuring persistence, which, in turn, are

followed by context-specific attack payloads. Immediately upon the execution, the script accesses a number of

specific properties to fingerprint the browser and the underlying operating platform. This information is sent

back to the C&C server, which registers the browser as an active zombie.

Figure 3. Representative BeEF Behavioural Pattern

From this point on, the hook script maintains the channel by issuing heartbeat requests at predefined intervals.

However, none of the necessarily malicious behaviour has been exhibited so far. For instance, XHR polling can

be used as a legitimate technique to achieve near real-time communication for a rich Internet application (RIA).

An example of heartbeat traffic is presented in Figure 4.

Figure 4. A Sample Of C&C Heartbeat Traffic Sent Via WebSocket

To exploit the client, an attacker can choose from a plethora of commands logically categorised into modules,

such as browser, network, persistence and social engineering. Command invocation involves the delivery and

execution of JavaScript payloads that often have configurable parameters to tailor the attack to the particular

29

environment. Once executed, the payload is queued and delivered to the client. Moreover, multiple payloads can

be delivered as part of the same C&C response if multiple commands have been queued within the configured

polling interval.

Figure 5. Payload Delivery as Obfuscated JavaScript Via XHR Polling

An example of a multi-command payload is presented in Figure 5. As an evasion technique, the payloads can be

obfuscated and an additional evasion technique is used to conceal the execution call. Upon the execution, the

results are sent back to the C&C server. When using an XHR-based communication channel, results can be

delivered in multiple base64-encoded chunks of pre-defined size as an additional evasion mechanism. An

example of command execution result parameter set is presented in Figure 6.

Figure 6. Payload Execution Results Delivery Via XHR Polling

To speed up the exploitation process, command execution can be automated. Using the BeEF Injection

Framework by SpiderLabs (2014) an attacker could specify a set of commands and corresponding parameters to

be executed automatically upon the browser becoming hooked.

Browser Fingerprinting Activity

The exhibited fingerprinting activity appears to rely on more than 2,000 property access invocations. In contrast,

the original project by the Electronic Frontier Foundation (EFF) achieves this goal using less than 600 property

access calls (Eckersley, 2011). Another library called fingerprintjs performs this task using less than 10 calls

(Vasilyev, 2014). While high-volume fingerprinting activity is not an explicit indication of malware, it could be

used to suggest potential BeEF presence, especially when coupled with other indicators.

Global Namespace Object

Our inspection of the client-side hook script revealed that it registered a custom object in the global window

namespace. The evasion techniques employed by BeEF can be used to randomise its name as well as the names

of any other variables referenced within, which can be used to bypass static filters. However, previous work

indicates that a combination of analysis techniques including AST-based fingerprinting can be adapted to aid

with detection under these circumstances.

Figure 7. Sample Function Source (left) and Corresponding Concatenated String AST Representation (right) for

Hash Value “e7f892feca616bf59b59949afe8e3264a721f272”

30

While runtime function decompilation in JavaScript is non-standard and implementation-dependent, WebKit-

based browsers such as Google Chrome provide the ability to access the source code of user-defined functions

(Zaytsev, 2014). Subsequently, we used a scriptable environment based on PhantomJS and CasperJS by

Hidayat (2014); Perriault (2013) to construct and compute the hashes of the ASTs of all methods available in the

global BeEF object version 0.4.3.1 to 0.4.5.0. A sample function source and its corresponding AST string are

presented in Figure 7. The version range represents more than two years of development and includes most of

the Ruby-based versions publically available at the time of writing. As shown on Table 1, we determined that 95

method hashes were present in all of the analysed versions and 80% of versions had unique version-specific

methods.

Table 1. Method AST Hash Statistics for Analysed BeEF Versions

Version Common Non-common Total Unique 2 3 4 5 6 7 8 9 10

0.4.3.1 95 41 136 5 10 1 5 3 0 2 1 2 1

0.4.3.2 95 41 136 2 10 3 5 3 0 2 1 2 2

0.4.3.3 95 43 138 4 1 3 5 3 2 6 1 2 2

0.4.3.4 95 45 140 2 1 3 5 3 2 7 2 2 2

0.4.3.5 95 47 142 4 0 1 2 3 3 7 2 2 2

0.4.3.6 95 51 146 2 1 2 3 2 3 8 2 3 2

0.4.3.7 95 53 148 3 1 1 3 2 3 8 2 3 2

0.4.3.8 95 54 149 2 1 1 3 2 3 7 2 3 2

0.4.3.9 95 56 151 3 2 0 1 2 1 7 1 3 3

0.4.4.1 95 59 154 3 3 0 0 2 1 3 1 1 3

0.4.4.2.1 95 67 162 4 2 0 0 0 0 5 1 1 2

0.4.4.3 95 70 165 3 0 2 0 0 0 5 0 1 6

0.4.4.4 95 75 170 0 2 2 1 1 1 4 1 9 6

0.4.4.4.1 95 75 170 0 2 2 1 1 1 4 1 9 6

0.4.4.5 95 74 169 2 0 0 2 1 1 5 1 8 6

0.4.4.6 95 77 172 2 0 1 2 1 3 5 1 8 6

0.4.4.6.1 95 78 173 0 3 1 1 2 3 5 1 8 6

0.4.4.7 95 78 173 0 3 1 6 1 3 2 1 8 6

0.4.4.8 95 79 174 4 1 3 5 1 2 2 1 8 5

0.4.4.9 95 80 175 4 8 3 5 1 2 2 1 8 5

0.4.5.0 95 85 180 11 7 3 5 1 2 2 0 8 5

Subsequently, having access to the global namespace, we could analyse non-native global objects to identify

matches against the derived collection of AST hash-based fingerprints.

Heartbeat Traffic

According to GitHub (2012), network communication obfuscation through endpoint URL randomisation is

listed on the current roadmap, but it has not been implemented yet. This means that the same C&C server

endpoint is utilised for heartbeat traffic. XHR-based heartbeat messages follow the same format with the only

difference being the value of the “_” parameter that is updated to reflect the current timestamp. In the case of

WebSockets, the socket is used to deliver the heartbeat messages as well as commands and execution results.

WebSocket-based heartbeat messages are identical. The frequency of these messages is determined by the

configured polling interval, which does not change while the C&C server is running. Assuming BeEF heartbeat

traffic is characterised by messages of identical length being delivered at regular intervals to the same endpoint,

we could utilise timing and length-based analysis to detect this behaviour (Wright, Monrose, & Masson, 2006).

31

Command Payloads

Regardless of whether the built-in evasion mechanisms are used or not, the delivered payloads are represented

as syntactically valid JavaScript, as execution involves running it verbatim. Until a more evasive technique is

introduced, XHR response and socket message payload analysis could be used to identify JavaScript payloads

as one of the detectable characteristics.

Practical Detection Approach

Our detection approach is based on observing the previously described characteristics in the context of the client

browser. To achieve this goal, we implemented a custom Google Chrome extension. The latest extension

development framework addresses the previous limitations described by Heiderich, Frosch, and Holz (2011, p.

12). The architecture of the BeEF detector extension is presented in Figure 8. The content script is injected into

the limited-access context before any other scripts. Subsequently, the content script is able to inject a custom

window script into the global context to complete the necessary environment preparation in time. Specifically, it

ensures that fingerprinting activity as well as XHR and WebSocket-based traffic can be intercepted and that the

source of user-defined functions is accessible in its original form.

Figure 8. BeEF Detector Chrome Extension Architecture

The window script uses custom events to communicate with the content script, which uses native extension

messaging to communicate with the background script that runs in the background persistently. This means that

any resource-intensive processing such as AST hash computations can be offloaded to the background page to

minimise the impact on the browsing experience. The background page uses a worker pool to parallelise the

analysis tasks.

Figure 9. Real-Time Detection Status Feedback Using a Popup Page

32

The background page also uses native extension messaging to communicate with a separate popup page that is

used to provide real-time feedback on detectable characteristics for all browser tabs, as shown in Figure 9.

Furthermore, the Chrome notifications API is used to issue user warnings on significant events such as high

probability BeEF object match or JavaScript payload detection.

DISCUSSION

The proof-of-concept extension was implemented and tested against the analysed versions of BeEF. The

extension was able to distinguish excessive fingerprinting behaviour, identify the BeEF object in the global

window namespace, as well as detect heartbeat traffic and JavaScript payloads within seconds of the hook script

being executed. To achieve a wider practical utilisation, the finalised extension could potentially be bundled as

part of the enterprise Managed Operating Environment (MOE) or offered via the Chrome Web Store.

As part of testing, we also discovered a weakness in the handling of the incoming data by the C&C endpoint

when using WebSockets. The protocol suggests that the connection should be closed when invalid data is

received (Erkkilä, 2012). However, sending an arbitrary message renders the C&C server unresponsive

requiring a subsequent restart. Consideration should be given to the incorporation of additional evasion

techniques and defensive mechanisms to decrease the likelihood of BeEF becoming a target of such

counterattack. For instance, caching commonly accessed properties could reduce the visible fingerprinting

activity and anonymous functions could be utilised to conceal the BeEF object (Heiderich et al., 2011, p. 12).

While our initial tests found the described approach to be effective, it is not without limitations. Firstly, the

extension is only compatible with the Chrome browser and additional research is required to determine the

feasibility of porting it to other browsers. Secondly, the detection requires the window script to be injected and

executed before any other scripts and, therefore, timing issues could impair the detection ability. Thirdly, the

approach relies on a signature database that will need to be kept up-to-date to account for new releases. Finally,

the approach has not been verified against the attacks in the wild and it may be possible that there are heavily

modified versions that do not exhibit the analysed characteristics.

CONCLUSION

Client-side attacks based on JavaScript abuse continue to be of concern, reinforcing the need for improved

browser security and specialised protection mechanisms. In the case of BeEF, while the client-side component is

not necessarily inherently malicious, it does facilitate means of launching specialised attacks in a controlled and

possibly automated way. In this paper we focused on the identification of detectable behavioural characteristics

of BeEF and described a proof-of-concept detection approach that was verified against a number of recent

publically available versions. The initial findings suggest its potential suitability, but also highlight a number of

important limitations. This study is the first step towards client-side BeEF detection and future research should

aim at conducting a wider evaluation and further refinement and optimisation of the described proof-of-concept.

REFERENCES

Alcorn, W. (2007). InterProtocol Exploitation.

Alcorn, W. (2014). BeEF - The Browser Exploitation Framework Project. Retrieved June 24, 2014, from

http://beefproject.com/

Alcorn, W., Frichot, C., & Orru, M. (2014). The Browser Hacker's Handbook Retrieved from

http://ECU.eblib.com.au/patron/FullRecord.aspx?p=1641459

Beth, B. (2014). A Comparison of Similarity Techniques for Detecting Source Code Plagiarism.

Blanc, G., Miyamoto, D., Akiyama, M., & Kadobayashi, Y. (2012). Characterizing Obfuscated JavaScript

Using Abstract Syntax Trees: Experimenting with Malicious Scripts. Paper presented at the Advanced

Information Networking and Applications Workshops (WAINA), 2012 26th International Conference

Chen, K. Z., Gu, G., Zhuge, J., Nazario, J., & Han, X. (2011). WebPatrol: Automated collection and replay of

web-based malware scenarios. Paper presented at the Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security.

Chess, B., & McGraw, G. (2004). Static analysis for security. IEEE Security & Privacy, 2(6), 76-79.

Cova, M. (2013). Wepawet. from http://wepawet.cs.ucsb.edu/

33

Cova, M., Kruegel, C., & Vigna, G. (2010). Detection and analysis of drive-by-download attacks and malicious

JavaScript code. Paper presented at the Proceedings of the 19th international conference on World

wide web.

Curtsinger, C., Livshits, B., Zorn, B. G., & Seifert, C. (2011). ZOZZLE: Fast and Precise In-Browser

JavaScript Malware Detection. Paper presented at the USENIX Security Symposium.

Dougan, T., & Curran, K. (2012). Man in the browser attacks. International Journal of Ambient Computing and

Intelligence (IJACI), 4(1), 29-39.

Eckersley, P. (2011). Panopticlick. Retrieved October 6, 2014, from

https://panopticlick.eff.org/index.php?action=log&js=yes

Erkkilä, J.-P. (2012). WebSocket Security Analysis. Aalto University School of Science, 2-3.

GitHub. (2012). BeEF Milestones. from https://github.com/beefproject/beef/wiki/Milestones

Hartstein, B. (2009). Jsunpack: An automatic javascript unpacker. Paper presented at the ShmooCon

convention.

Heiderich, M., Frosch, T., & Holz, T. (2011). IceShield: detection and mitigation of malicious websites with a

frozen DOM. Paper presented at the Recent Advances in Intrusion Detection.

Hidayat , A. (2014). PhantomJS. from http://phantomjs.org/

IOActive. (2012). Reversal and Analysis of the Zeus and SpyEye Banking Trojans.

Kishore, K. R., Mallesh, M., Jyostna, G., Eswari, P., & Sarma, S. S. (2014). Browser JS Guard: Detects and

defends against Malicious JavaScript injection based drive by download attacks. Paper presented at the

Applications of Digital Information and Web Technologies (ICADIWT), 2014 Fifth International

Conference on the.

Kotowicz, K. (2012). XSS ChEF - Chrome extension exploitation framework. from

http://blog.kotowicz.net/2012/07/xss-chef-chrome-extension-exploitation.html

Nazario, J. (2009, 2009). PhoneyC: a virtual client honeypot.

Nilsson, E. (2012). Abstract Syntax Tree Analysis for Plagiarism Detection.

Oriyano, S.-P., & Shimonski, R. (2012). Client-Side Attacks and Defense. Boston: Syngress.

Orru, M. (2011). Ground BeEF: Cutting, devouring and digesting the legs off a browser. Paper presented at the

SecurityByte.

Perriault, N. (2013). CasperJS.

Rager, A. (2005). Advanced Cross-Site-Scripting with Real-time Remote Attacker Control. Avaya Labs.

Ratanaworabhan, P., Livshits, V. B., & Zorn, B. G. (2009). NOZZLE: A Defense Against Heap-spraying Code

Injection Attacks. Paper presented at the USENIX Security Symposium.

Roy, C. K., Cordy, J. R., & Koschke, R. (2009). Comparison and evaluation of code clone detection techniques

and tools: A qualitative approach. Science of Computer Programming, 74(7), 470-495.

Seifert, C., & Steenson, R. (2006). Capture-honeypot client (capture-hpc). pp. Available at https://projects.

honeynet. org/capture–hpc.

Shekyan, S. (2012). The Tiny Mighty Waldo. Retrieved May 26, 2014, from

https://community.qualys.com/blogs/securitylabs/2012/08/03/the-tiny-mighty-waldo

Silva, S. S., Silva, R. M., Pinto, R. C., & Salles, R. M. (2013). Botnets: A survey. Computer Networks, 57(2),

378-403.

Sood, A. K., Enbody, R. J., & Bansal, R. (2013). Dissecting SpyEye – Understanding the design of third

generation botnets. Computer Networks, 57(2), 436-450. doi:

http://dx.doi.org/10.1016/j.comnet.2012.06.021

SpiderLabs. (2014). BeEF Injection Framework from https://github.com/SpiderLabs/beef_injection_framework

StopMalvertising.com. (2014). Analysis of Cridex / Feodo / Bugat. from

http://stopmalvertising.com/malware-reports/analysis-of-cridex-feodo-bugat.html

Terrace, J., Beard, S. R., & Katta, N. P. K. (2012). JavaScript in JavaScript (js. js): Sandboxing third-party

scripts. USENIX WebApps.

Vasilyev, V. (2014). fingerprintJS. Retrieved October 6, 2014, from http://valve.github.io/fingerprintjs/

Wright, C. V., Monrose, F., & Masson, G. M. (2006). On inferring application protocol behaviors in encrypted

network traffic. The Journal of Machine Learning Research, 7, 2745-2769.

Xu, W., Zhang, F., & Zhu, S. (2013). JStill: mostly static detection of obfuscated malicious JavaScript code.

Paper presented at the Proceedings of the third ACM conference on Data and application security and

privacy.

Yin, Z. (2013). Evolution of client side web attacks and defences against malicious JavaScript code: a

retrospective, systematization study.

Zaytsev, J. (2014). State of function decompilation in Javascript. from http://perfectionkills.com/state-of-

function-decompilation-in-javascript/

34

	The zombies strike back: Towards client-side BeEFdetection
	THE ZOMBIES STRIKE BACK: TOWARDS CLIENT-SIDE BEEF DETECTION

