1,215 research outputs found

    Long time series (1984–2020) of albedo variations on the Greenland ice sheet from harmonized Landsat and Sentinel 2 imagery

    Get PDF
    Albedo is a key factor in modulating the absorption of solar radiation on ice surfaces. Satellite measurements have shown a general reduction in albedo across the Greenland ice sheet over the past few decades, particularly along the western margin of the ice sheet, a region known as the Dark Zone (albedo < 0.45). Here we chose a combination of Landsat 4–8 and Sentinel 2 imagery to enable us to derive the longest record of albedo variations in the Dark Zone, running from 1984 to 2020. We developed a simple, pragmatic and efficient sensor transformation to provide a long time series of consistent, harmonized satellite imagery. Narrow to broadband conversion algorithms were developed from regression models of harmonized satellite data and in situ albedo from the Program for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather stations. The albedo derived from the harmonized Landsat and Sentinel 2 data shows that the maximum extent of the Dark Zone expanded rapidly between 2005 and 2007, increasing to ~280% of the average annual maximum extent of 2900 km2 to ~8000 km2 since. The Dark Zone is continuing to darken slowly, with the average annual minimum albedo decreasing at a rate of (p = 0.16, 2001–2020)

    The apparent effect of orbital drift on time series of MODIS MOD10A1 albedo on the Greenland ice sheet

    Get PDF
    The NASA MODIS MOD10A1 snow albedo product has enabled numerous glaciological applications. The temporal consistency of MODIS albedo is critical to obtaining reliable results from this 22-year time series. The orbit of Terra began to drift toward earlier acquisition times after the final inclination adjustment maneuver to maintain its nominal orbit by NASA on 27 February 2020, which may introduce biases that compromise the accuracy of quantitative time series analysis as the drift continues. Here, we evaluate the impact of Terra's orbital drift by comparing the differences between the Terra MODIS albedo and albedo products derived from Aqua MODIS, harmonized Landsat and Sentinel 2, Sentinel 3, and PROMICE (Programme for Monitoring of the Greenland Ice Sheet) ground measurements over the Greenland ice sheet. Our results suggest that the influence of orbital drift on albedo is small (+0.01 in 2020), but potentially biased for time series analysis. Our analysis also finds that the drift effect that causes earlier image acquisition time may lead to more apparently cloudy pixels and thus effectively reduce the Terra MODIS temporal resolution over Greenland

    A New Data Processing System for Generating Sea Ice Surface Roughness and Cloud Mask Data Products from the Multi-Angle Imaging SpectroRadiometer (MISR)

    Get PDF
    This study describes two novel data products derived from Multi-angle Imaging SpectroRadiometer (MISR) imagery: Arctic-wide maps of sea ice roughness and a binary cloud detection algorithm. The sea ice roughness maps were generated using a data processing system that matched MISR pixels with co-located and concurrent lidar-derived roughness measurements from Airborne Topographic Mapper (ATM), calibrated the multi- angle data to values of surface roughness using a K-Nearest Neighbor (KNN) algorithm, and then applied the algorithm to Arctic-wide MISR data for two 16-day periods in April and July 2016. The resulting maps show good agreement with independent ATM roughness data and enable characterization of the roughness of different ice types. The binary cloud detection algorithm was developed using a neural network approach and a training dataset constructed from Top-of-Atmosphere red band values from all MISR’s nine different viewing cameras for the same two months in various regions of the Arctic. The algorithm showed good performance in classifying pixels into cloudy and clear categories in MISR images, with better performance for clear pixels in April 2016 and better performance for cloudy pixels in July 2016. The algorithm also provides a significant advantage over existing MISR cloud mask products SDCM and ASCM in terms of accuracy and spatial resolution, with a resolution of 275 meters. The data products presented here can be used to gain insights into the seasonal and interannual changes in sea ice roughness and cloud cover over the Arctic and to develop and improve more accurate classification algorithms in the field of remote sensing

    Remote Sensing of Environment: Current status of Landsat program, science, and applications

    Get PDF
    Formal planning and development of what became the first Landsat satellite commenced over 50 years ago in 1967. Now, having collected earth observation data for well over four decades since the 1972 launch of Landsat- 1, the Landsat program is increasingly complex and vibrant. Critical programmatic elements are ensuring the continuity of high quality measurements for scientific and operational investigations, including ground systems, acquisition planning, data archiving and management, and provision of analysis ready data products. Free and open access to archival and new imagery has resulted in a myriad of innovative applications and novel scientific insights. The planning of future compatible satellites in the Landsat series, which maintain continuity while incorporating technological advancements, has resulted in an increased operational use of Landsat data. Governments and international agencies, among others, can now build an expectation of Landsat data into a given operational data stream. International programs and conventions (e.g., deforestation monitoring, climate change mitigation) are empowered by access to systematically collected and calibrated data with expected future continuity further contributing to the existing multi-decadal record. The increased breadth and depth of Landsat science and applications have accelerated following the launch of Landsat-8, with significant improvements in data quality. Herein, we describe the programmatic developments and institutional context for the Landsat program and the unique ability of Landsat to meet the needs of national and international programs. We then present the key trends in Landsat science that underpin many of the recent scientific and application developments and followup with more detailed thematically organized summaries. The historical context offered by archival imagery combined with new imagery allows for the development of time series algorithms that can produce information on trends and dynamics. Landsat-8 has figured prominently in these recent developments, as has the improved understanding and calibration of historical data. Following the communication of the state of Landsat science, an outlook for future launches and envisioned programmatic developments are presented. Increased linkages between satellite programs are also made possible through an expectation of future mission continuity, such as developing a virtual constellation with Sentinel-2. Successful science and applications developments create a positive feedback loop—justifying and encouraging current and future programmatic support for Landsat

    Cross-comparison of albedo products for glacier surfaces derived from airborne and satellite (sentinel-2 and landsat 8) optical data

    Get PDF
    Surface albedo partitions the amount of energy received by glacier surfaces from shortwave fluxes and modulates the energy available for melt processes. The ice- albedo feedback, influenced by the contamination of bare-ice surfaces with light- absorbing impurities, plays a major role in the melting of mountain glaciers in a warming climate. However, little is known about the spatial and temporal distribution and variability of bare-ice glacier surface albedo under changing conditions. In this study, we focus on two mountain glaciers located in the western Swiss Alps and perform a cross-comparison of different albedo products. We take advantage of high spectral and spatial resolution (284 bands, 2 m) imaging spectrometer data from the Airborne Prism Experiment (APEX) and investigate the applicability and potential of Sentinel-2 and Landsat 8 data to derive broadband albedo products. The performance of shortwave broadband albedo retrievals is tested and we assess the reliability of published narrow-to-broadband conversion algorithms. The resulting albedo products from the three sensors and different algorithms are further cross-compared. Moreover, the impact of the anisotropy correction is analysed depending on different surface types. While degradation of the spectral resolution impacted glacier-wide mean albedo by about 5%, reducing the spatial resolution resulted in changes of less than 1%. However, in any case, coarser spatial resolution was no longer able to represent small-scale variability of albedo on glacier surfaces. We discuss the implications when using Sentinel-2 and Landsat 8 to map dynamic glaciological processes and to monitor glacier surface albedo on larger spatial and more frequent temporal scales

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph

    Measurement and Modeling of Ground-Level Ozone Concentration in Catania, Italy using Biophysical Remote Sensing and GIS

    Get PDF
    This experimental study examined spatial variation of ground level ozone (O3) in the city of Catania, Italy using thirty passive samplers deployed in a 500-m grid pattern. Significant spatial variation in ground level O3 concentrations (ranging from 12.8 to 41.7 g/m3) was detected across Catania’s urban core and periphery. Biophysical measures derived from satellite imagery and built environment characteristics from GIS were evaluated as correlates of O3 concentrations. A land use regression model based on four variables (land surface temperature, building area, residential street length, and distance to the coast) explained 74% of the variance (adjusted R2) in measured O3. The results of the study suggest that biophysical remote sensing variables are worth further investigation as predictors of ground level O3 (and potentially other air pollutants) because they provide objective measurements that can be tested across multiple locations and over time

    Chapter Earth Observation for Urban Climate Monitoring: Surface Cover and Land Surface Temperature

    Get PDF
    The rate at which global climate change is happening is arguably the most pressing environmental challenge of the century, and it affects our cities. Climate change exerts added stress on urban areas through increased numbers of heat waves threatening people’s well-being and, in many cases, human lives. Earth observation (EO) systems and the advances in remote sensing technology increase the opportunities for monitoring the thermal behavior of cities. The Sentinels constitute the first series of operational satellites for Copernicus, a program launched to provide data, information, services, and knowledge in support of Europe’s goals regarding sustainable development and global governance of the environment. This chapter examines the exploitation of EO data for monitoring the urban climate, with particular focus on the urban surface cover and temperature. Two example applications are analyzed: the mapping of the urban surface and its characteristics, using EO data and the estimation of urban temperatures. Approaches, like the ones described in this chapter, can become operational once adapted to Sentinels, since their long-term operation plan guarantees the future supply of satellite observations. Thus, the described methods may support planning activities related to climate change mitigation and adaptation in cities, as well as routine urban planning activities

    Comparison of layer-stacking and Dempster-Shafer theory-based methods using Sentinel-1 and Sentinel-2 data fusion in urban land cover mapping

    Get PDF
    Data fusion has shown potential to improve the accuracy of land cover mapping, and selection of the optimal fusion technique remains a challenge. This study investigated the performance of fusing Sentinel-1 (S-1) and Sentinel-2 (S-2) data, using layer-stacking method at the pixel level and Dempster-Shafer (D-S) theory-based approach at the decision level, for mapping six land cover classes in Thu Dau Mot City, Vietnam. At the pixel level, S-1 and S-2 bands and their extracted textures and indices were stacked into the different single-sensor and multi-sensor datasets (i.e. fused datasets). The datasets were categorized into two groups. One group included the datasets containing only spectral and backscattering bands, and the other group included the datasets consisting of these bands and their extracted features. The random forest (RF) classifier was then applied to the datasets within each group. At the decision level, the RF classification outputs of the single-sensor datasets within each group were fused together based on D-S theory. Finally, the accuracy of the mapping results at both levels within each group was compared. The results showed that fusion at the decision level provided the best mapping accuracy compared to the results from other products within each group. The highest overall accuracy (OA) and Kappa coefficient of the map using D-S theory were 92.67% and 0.91, respectively. The decision-level fusion helped increase the OA of the map by 0.75% to 2.07% compared to that of corresponding S-2 products in the groups. Meanwhile, the data fusion at the pixel level delivered the mapping results, which yielded an OA of 4.88% to 6.58% lower than that of corresponding S-2 products in the groups
    • …
    corecore