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Abstract

This  experimental  study  examined  spatial  variation  of  ground
level ozone (O3) in the city of Catania, Italy using thirty passive
samplers  deployed  in  a  500-m grid  pattern.  Significant  spatial
variation in ground level O3 concentrations (ranging from 12.8 to

41.7  g/m3)  was  detected  across  Catania’s  urban  core  and
periphery. Biophysical measures derived from satellite  imagery
and built environment characteristics from GIS were evaluated as
correlates  of  O3 concentrations.  A land  use  regression  model
based on four variables (land surface temperature, building area,
residential street length, and distance to the coast) explained 74%

of the variance (adjusted R2) in measured O3. The results of the
study suggest that biophysical remote sensing variables are worth
further  investigation  as  predictors  of  ground  level  O3 (and
potentially other  air  pollutants)  because they provide objective
measurements  that  can be  tested  across  multiple  locations  and
over time.

Nomenclature

Variable Unit of Description
Measure

LST200sc Kᵒ Land surface temperature mean
in 200m semicircular buffer

LST150sc Kᵒ Land surface temperature mean
in 150m semicircular buffer

ALB200c Unitless Index Albedo mean in 200m circular
buffer

LST100sc Unitless Index Land surface temperature mean
in 100m semicircular buffer

ALB150c Unitless Index Albedo mean in 150m circular
buffer

ALB100c Unitless Index Albedo mean in 100m circular
buffer

ALB200sc Unitless Index Albedo mean in 200m
semicircular buffer

LST200c Kᵒ Land surface temperature mean
in 200m circular buffer

LST150c Kᵒ Land surface temperature mean
in 150m circular buffer

LST100c Kᵒ Land surface temperature mean
in 100m circular buffer

LST50sc Kᵒ Land surface temperature mean
in 50m semicircular buffer

ALB150sc Unitless Index Albedo mean in 150m
semicircular buffer

LST50c Kᵒ Land surface temperature mean
in 50m circular buffer

Coast [m] Distance to coast

Rlength50c [m] Residential road length in 50m
circular buffer

Buildings50c [m2] Buildings area in 50m circular
buffer

INTRODUCTION

Urban air pollution negatively affects human health, quality of
life, and ecosystem functions. Ground-level ozone (O3) is among
the pollutants of concern because of its toxicity to lung tissue,
exacerbation of bronchial inflammation and asthmatic symptoms,
in addition to  other health impacts (D’Amato et  al.,  2010; Al-
Heglan et al., 2011; Jerrett et al., 2017). Ground-level O3 can also
decrease  photosynthetic  activity,  thereby  reducing  ecosystem
services of vegetation (Calfapietra et al., 2016).

The current experimental study was conducted in the Italian
city of  Catania  where  changes  in  national  and EU policies
have led to a reduction in the number of continuous air quality
monitoring stations. Seventeen continuous monitoring sites
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were active from 1992-2009. The number was reduced to six
in 2010-11 and to only three in 2014 (Lanzafame et al., 2014
and  Famoso et  al.,  2015).  This  decline  in  monitoring  sites
reduces  the  potential  to  examine  spatial  and  temporal
variations of intra-urban air quality and localized exposures to
sensitive populations.

Spatial  variation  in  ground-level  O3 was  evaluated  in  the
current  study  using  a  network  of  thirty  passive  samplers
deployed  in  a  6x5  500m grid  pattern  covering  sections  of
Catania’s  urban  core  and  periphery.  Biophysical  measures
derived  from  satellite  imagery  and  built  environment
characteristics from GIS sources were evaluated as correlates
and used to develop a land use regression (LUR) model that

explained 74% of the variation (adjusted R2) in measured O3

concentration across the study area.

BACKGROUND

Study area

Catania  is  the  second  largest  city  in  Sicily,  Italy  with
approximately 315,000 inhabitants in the city proper and of over
1 million in the metropolitan area. The city’s population density

is about 1,745 people/km2 with the highest density occurring near
the  historic  center  (ISTAT  population  census  2011).
Geographically, Catania is situated at the base of Mt. Etna on the
Ionian Sea, a setting that creates marine breezes and ventilation
regimes that contribute to air pollutant dispersion for most days
of the year (Lanzafame et al., 2014; Famoso et al., 2015). This
compensates  partially  for  the  negative  effects  of  the  intense
private  vehicular  traffic  and  old  vehicle  fleet.  About  65,000
vehicles per day travel in the center of the city, creating chaotic
traffic conditions that  are exacerbated by a dense road pattern.
Public  transportation  systems  do  not  serve  all  parts  of  the
metropolitan  area  therefore  transportation  demand  is  satisfied
primarily  by  private  vehicles.  The  result  is  frequent  traffic
congestion,  peaking  during  morning  and  evening  commutes.
While  Catania’s  pollutions  levels  measured  at  the  official
monitoring  do  not  usually  exceed  the  limits  set  by  European
directive  2008/50  CE,  deterioration  of  air  quality  during  peak
traffic is a constant problem in the city (Lanzafame et al., 2014;
Lanzafame et al., 2015).

Previous research

Land  use  regression  (LUR)  models  are  commonly  used  to
estimate  spatial  patterns  of  air  pollutants  based  on  measured
values at sampling locations and a set of independent variables
(Jerrett  et  al.,  2005;  Hoek  et  al.,  2008;  Adam-Poupart  et  al.,
2014). Recent review articles reveal a range of methodological
variations  and  predictor  variables  (Ryan and  LeMasters,  2007;
Hoek, 2008; Gulliver 2012; Gulia et al., 2015). Variables related
to  motor  vehicle  traffic  are  common  because  it  is  a  principal
source  of  pollution  in  urban  areas,  though  fixed-point  sources
(e.g., factories, refineries and powerplants) may

contribute  significantly  in  some  contexts.  Transportation
variables including road class, length and density, traffic volume,
and vehicle counts are common. Other variables commonly used
include  population  density,  land  use  and  land  cover,  physical
geography  (e.g.,  altitude,  latitude/longitude,  distance  to  major
water bodies), and meteorological or climatic variables. However,
variables and their specific definitions can vary across studies as
a result of differences in data availability, study objectives, and
unique local characteristics.

Direct measurement of air pollutants from satellites is an active
area  of  research,  but  atmospheric  optical  properties  and  the
spatial resolution of sensors designed specifically for air quality
monitoring  present  challenges  to  spatially  detailed  intra-urban
applications (Loughner et al., 2007; Martin, 2008; Knibbs et al.,
2014; Brauer et al., 2015; Van Doneklaar et al., 2015). Despite
the common use of land use and land cover data derived from
remote  sensing  technology in  air  pollution  LUR models  (e.g.,
Novotny et al., 2011; Beelen et al., 2013), objective biophysical
measurements from moderate and high-resolution satellites, such
as land surface temperature (LST), albedo, and spectral indexes
have not been widely investigated as predictor variables, though a
few studies are present in the literature. For example, Thiering
(2016) concluded that the normalized difference vegetation index
(NDVI)  (an  indicator  of  photosynthetic  biomass)  measured
within  0.5  and  1km  buffers  around  subjects’  residences  was
inversely associated with NO2 and PM10 exposure. Mozumder et
al. (2013) observed significant inverse relationships between air
pollution  index  values  when  compared  to  near  infrared
reflectance and NDVI measured from satellite imagery. Dadvand
et  al.  (2012)  reported  that  NDVI  had  a  significant  inverse
correlation  with  PM2.5 levels  when  measured  in  100,  200  and
250m  buffers  around  study  participants’  home  and  work
locations,  but  NDVI  was  not  significantly  associated  with
measured NOx exposure.

Additional  complexities  in  urban  morphology  that  impact
temperature and airflow including planimetric and 3D surface
area  of  buildings,  urban  canyons,  surface  roughness,  and
predominant wind direction also affect pollutant concentration
and  dispersion  (Oke,  1978;  Souch  and  Grimmond,  2006;
Krüger et al., 2011). For example, Su et al. (2008) reported
that  including  building  morphometric  characteristics
(height/width ratio of urban canyons) significantly improved
LUR models, increasing the variance explained from 56% to
67% for NO2, and from 72% to 85% for NO.

Another  methodological  issue  associated  with  LUR models  is
defining  the  area  of  influence  around  sampling  locations.  A
common approach is to use circular buffers at varying radii. For
example, Madsen et al. (2007) used circular buffers ranging from
50 to 1000m to examine NOx at 80 passive sampling locations in
Oslo, Norway. Hoek et al. (2008) suggested that buffers should
account  for  measured  declines  in  the  effects  of  traffic  on  air
quality at distances ranging from 100m for major roads to 500m
for highways. Li et al. (2015) reported that LUR models using
semicircular buffers oriented towards the



predominate wind direction resulted in significantly higher R2

values when compared to models based on circular buffers.

DATA AND METHODS

Passive samplers and O3 measurement

For this experimental study, passive samplers were deployed
at  30  sites  for  two,  2-week  periods  in  December  2014  to
estimate spatial variation in concentrations of ground-level O3.
The samplers measure pollutant concentrations without forced
air  intake  and  were  deployed  in  containers  that  permit
exposure  to  ambient  air,  but  provide  protection  from
environmental factors such as rain, excessive irradiation, and
wind (Plaisance et al., 2004). The devices were located 2 to 3
m above the  ground in  sites  free  from obstacles.  Samplers
used in the current study were obtained from Passam Ag of
Zurich,  Switzerland  who  also  conducted  the  laboratory
analysis to determine O3 concentrations. Technical aspects of
the samplers are summarized in Table 1.

Table 1: Technical characteristics of passive O3 samplers

Technical Specifications
Characteristics

Range [µg/m3] 1- 200

Maximum 10 days
exposure

Limit reliability 0.6

[µg/m3]

External
influences

Wind < 10% up to 4-5 m/s

Temperature No influence 5-40 °C

Humidity No influence 20-80%

Uncertainty* 25% in 20-40 µg/m3

* according GUM (ISO Guide to the expression of 
uncertainty in measurement)

The  samplers  contained  polypropylene  or  fiberglass  phials
treated with compounds that react with O3. Once the phial is
opened a reaction between the compound and the air begins,
creating a concentration differential between the interior and

exterior.  The  physical  principle  is  based  on  the  passive
diffusion  of  a  gas  toward an absorbent  in  accordance with
Frick’s law (1):

F D

d
C (1)
dL

Where F is the molar flow rate, D is the diffusion coefficient,
C  is  the concentration and L  is  the diffusion path [1].  The
diffusion  conditions  are  influenced  by  the  length  of  the

diffusion path, L [cm], and the transversal area, A [cm2]. The
mean concentration of the gas is given by the equation (2):

=
  ∙  

(2)
  ∙  ∙  

Where t [min] is the exposition time, Q [µg] is the total 
quantity of the absorbed gas by the phial (calculated 
with spectrophotometric analysis).

Passive samplers  are recognized by European legislation as
exploratory  devices  despite  the  fact  they  provide  precise
measures  (Krupa  et  al.,  2000).  Recent  experiments  have
demonstrated  significant  correlation  between  air  pollutant
concentrations  measures  with  passive  samplers  and  those
collected  from  official  continuous  monitoring  stations  in
Catania  (Lanzafame et  al.,  2016).  The  advantages  of  using
passive  samplers  include  ease  of  use,  the  opportunity  to
conduct  surveys  over  a  wide  area,  small  size  compared  to
active samplers,  no need of  electrical  supply, and relatively
low  costs.  While  passive  samplers  do  not  substitute  the
authorized pollutant monitoring systems, they do present an
ideal solution to measure pollutant distributions in a specific
geographical area (Pfeffer et al., 2010).

Remote sensing and GIS variables

Circular buffers at 50, 100, 150 and 200m radii were generated
around GPS coordinates for each of the 30 sampling locations.
Semicircular buffers were created at the same radii in 2D and 3D
following the methods of Li et al. (2015) in which the orientation
of the buffer is based on the predominant wind direction. Data on
wind direction during the monitoring period were acquired from
31  weather  stations  distributed  throughout  the  Catania
metropolitan area. The average bearing was calculated across all
weather  stations  for  the  monitoring  period  at  207.58  degrees.
Semicircular 3D buffers oriented to this bearing were generated
at height of 70m in order to encompass the tallest buildings in the
study area (Figure 1).



Figure 1: Example of 2d circular buffers (50, 100, 150 & 200m) and a 3D semicircular buffer (200m) based on predominate wind
direction (black arrow) with 3D building model.

The  US  Geological  Survey’s  EarthExplorer  website
(https://earthexplorer.usgs.gov/) was searched to identify could-
free  Landsat  imagery  of  the  study  area  acquired  as  close  as
possible in time to the air quality monitoring period. A cloud-free
image captured by the Landsat 8 Operational Land Imager (OLI)
and Thermal Infrared Sensor (TIRS) on 17 January 2015 (19 days
after  the  monitoring  period)  was  used  to  derive  the  remote
sensing variables evaluated as potential predictors of
ground-level O3 (scene identifier:
LC08_L1TP_188034_20150117_20170414_01_T1).

Satellite  image  data  were  retrieved  in  the  Landsat  8  surface
reflectance product format,  which is preprocessed so that pixel
values represent  surface reflectance for  the 30-meter  reflective
bands (1-7 & 9) and top of atmosphere brightness temperature for
the thermal bands (10 & 11) (USGS, 2017). The thermal bands
are resampled from 100 to 30m to match the spatial resolution of
the multispectral  bands.  An operational advantage to using the
surface reflectance product format is that calibration procedures
to correct for atmospheric scattering and

absorption have already been applied based on data obtained
from the MODIS sensor (Vermote et al., 2016).

Several  validated  spectral  indexes  can  be  generated  when
retrieving Landsat 8 surface reflectance products. In the current
study, an NDVI image was used to estimate spatial variation in
vegetation density within the study area. Landsat 8 data cannot be
used  independently  to  derive  precise  measurements  surface
albedo  because  of  the  narrow  field  of  view  and  the  need  to
incorporate viewing geometries from different angles (Roy et al.,
2014; Vermote  et  al.,  2016).  However, estimates  of broadband
albedo can be derived using methods developed by Liang (2000)
for the Landsat 7 ETM+ sensor that were later adapted for the
Landsat 8 OLI instrument (Makido et al., 2016; Naegeli et al.,
2017).  Band 10 data from the TIRS sensor  was used estimate
land surface temperature (LST) following the methods described
by Estoque et al. (2017). Band 10 was selected because it records
measurements in a lower atmospheric absorption region and is
less  affected  by  stray  light  artifacts  compared  to  band  11
(Jiménez-Muñoz et al., 2014).



Figure 2: Biophysical remote sensing variables evaluated in LUR model. a) NDVI (normalized difference vegetation index),
b) albedo, c) land surface temperature (LST).

GIS data from OpenStreetMap (OSM) were used to estimate road
length in three classes (primary, secondary, and residential). From
the same source (OSM) other variables were examined including
counts of schools, garbage collection locations, rail stations, and
bus stops in buffers surrounding monitoring locations. Building
footprint data for the study area
were  acquired  from  Italy’s  National  Geoportal
(  http://www.pcn.minambiente.it/  ). These data include a height
attribute that  was used in  the current  study to estimate 3D
volume  of  buildings  proximal  to  O3 monitoring  locations.
Estimates  of  population  density  within  each  building  were
obtained  from  the  Urbanism  and  Territorial  Management
Department of Catania.

Mean values of NDVI, albedo and LST were extracted within
the circular and semicircular buffers around each monitoring
location  using  zonal  functions  in  a  GIS.  Similarly,  GIS
variables were summarized within the same buffers by count,
total length, or area. Distance to the coast was defined as a
continuous variable for each monitoring site.

F “1” was used. The modelling process consisted of the 
following steps:

1. Exclude cases listwise. Only cases with valid values 
for all variables were included in the analyses.

2. Test for normality using ANOVA.

3. Test  for  collinearity  between  the  independent
variables. Eigenvalues of the scaled and uncentered
cross-products  matrix,  condition  indices,  and
variance-decomposition  proportions were  displayed
along  with  variance  inflation  factors  (VIF)  and
tolerances (T) for individual variables. T > 0.2 and
VIF < 10 were used as thresholds.

4. Apply Durbin-Watson test to detect autocorrelation 
of model residuals.

The final model was selected by considering a combination of
three parameters: Radjusted, SE and the number of independent
variables.

Analysis methods

In  total,  195  independent  variables  were  generated  when
summarized in all buffer shapes and sizes. Similar to the methods
applied by Briggs et al. (2000), Ross et. al (2007) and Meng et al.
(2015),  procedures  in  SPSS software  were  used  to  reduce the
number of independent variables and find the best  linear LUR
model.  First,  a  correlation  matrix  of  the  independent  variables
and  the  dependent  variable  was  created.  Variables  with  a
correlation index < 0.20 were excluded. Preliminary collinearity
tests were then applied to the remaining predictors by considering
correlation indices > 0.50. The LUR model was developed using
a stepwise approach. At each step, the independent variable not in
the  equation  that  had  the  smallest  F  statistic  was  entered.
Variables already in the regression equation were removed if their
F statistic became sufficiently large. As an entry F, “2” was used
and as an as exit

RESULTS

Measurements O3 concentrations are shown in figure 3. The

average was 26.55 µg/m3 with a SD of 6.9 µg/m3 (25.98%)
demonstrating  that  the  variation  of  was  statistically
significant. The overall pattern suggests higher concentrations
in the peripheral areas of the city characterized by more open
spaces and  vegetation cover (see  upper left  inset),  possibly
due to increased solar insolation in these areas. None of the
measured concentrations exceeded the official limit imposed
by European Directive 2008/50/EC (Maximum daily 8-hour

mean < 120 µg/m3). Despite being below the official limits,
some of the measured concentrations were relatively high for
winter and were comparable to observations from other urban
areas characterized by high air pollution, such as Delhi where

winter values average around 40 µg/m3 (Sharma et. al., 2016).

http://www.pcn.minambiente.it/


Figure 3: Passive sampling locations with measured O3 concentrations (g/m3).

Table  2  lists  the  independent  variables  that  had  Pearson
correlation  coefficients  >  0.50  with  measured  O3

concentrations. All of the highly correlated variables, except
for distance from the coast, were derived from remote sensing
imagery.  In  particular,  land  surface  temperature  (LST)  in
almost  all  buffer  variations  was  highly  correlated  with  O3

concentrations. This may be due to the causal links between
temperature  and  ozone  production.  Albedo  was  also
significantly correlated with O3,  possibly due to the relation
between  ultraviolet  solar  radiation  and  ozone  formation.
Several of the variables highly correlated with measured O3

concentrations were derived within semicircular buffers rather
than circular buffers, demonstrating the potential importance
of considering predominant wind direction as suggested by Li
et al. (2015).

Table 2: Independent variables with correlation coefficients >
0.50.

Ozone (O3) Pearson's r

LST200sc 0.734

LST150sc 0.706

ALB200c 0.686

LST100sc 0.651

ALB150c 0.632

ALB100c 0.630

ALB200sc 0.627

LST200c 0.614

LST150c 0.604

LST100c 0.564

LST50sc 0.558

ALB150sc 0.517

LST50c 0.513

Coast 0.506



Based on the regression methods described previously, the
best  linear  model  was derived using four  variables  and
one constant:

O3 concentration = -112.327 + 0.003 Coast + 0.021Rlength50c

– 0.001 Buildings50c + 9.473LST200sc

As shown by table 3, the dependent variables selected in the
final LUR model did not exhibit significant collinearity. The
correlation of them with Ozone is high in almost all cases, in
particular  the  most  correlated  is  LSTsc200 with  a  positive
correlation  very  close  to  1  (0.734).  The  positive  and  high
value  demonstrates  that  the  land  surface  temperature  has  a
high impact in the formation of ozone.

The Euclidean distance of sampling locations to  the coast  was
another important predictor. The positive value (0.506) may be a
function of more congested traffic areas that are located further
from the coast. Moreover, the microclimatic changes that occur
between the more humid zones close to the coast and the drier
zones far from the coast may be another explanation.

Given that ozone precursors are predominantly emitted during
the combustion of fossil fuels, increased vehicular traffic is

positively correlated with ozone. This is possibly reflected in
the  positive  correlation  (0.319)  between  total  lengths  of
residential  streets  in  50m  buffers  around  the  sampling
locations.  Residential  streets  in  the  city  are  typically
characterized by more congested traffic in urban canyons. The

last predictor in the model is the total area of buildings (m2)
calculated  in  the  buffer  of  50  m.  The  negative  Pearson
coefficient observed may imply that ozone formation is more
facilitated  in  higher  insolation  and  less  shadow  effects  of
surrounding buildings.

Table  4  summarizes  characteristics  of  the  LUR model.  All
variables presented low variance inflation factors (VIFs) and
tolerance statistics, which further demonstrate low collinearity
among  predictor  variables.  The  standardized  coefficients
suggest the most important variable was LST200sc with a β of
0.657,  almost  three  times  higher  than  the  other  variables.
Overall,  the  model  was  able  to  explain  almost  80%  the

variation in measured O3 concentrations (R2=0.775, adjusted

R2=0.739). The Durbin-Watson index of 2.188 indicated there
is neither positive nor negative spatial autocorrelation between
residuals and they follow a normal distribution (Figure 4).

Table 3: Pearson correlation coefficients between significant variables in the final LUR model.

Variables Ozone Coast Res buildings_c50 LST_sc200
(O3) distance length_c50

Ozone (O3) 1 0.506 0.319 -0.272 0.734
Coast 1 0.178 -0.271 0.158
distance
Res 1 0.245 0.141
length_c50
buildings_c50 1 0.008
LST_sc200 1

Table 4: Summary of final land use model indices.

Standardized
Unstandardized Coefficients Coefficients Collinearity Statistics

Model predictors β Std. Error β Tolerance VIF

Intercept -112.327 19.797

Coast_Distance 0.003 0.001 0.290 0.847 1.180

Res length_c50 0.021 0.009 0.238 0.866 1.155

buildings_c50 -0.001 0.001 -0.257 0.837 1.194

LST_sc200 9.473 1.397 0.657 0.962 1.040

R R2 Adjusted R2
Std. Error of Durbin-

Model summary Estimate Watson
0.88 0.775 0.739 3.531 2.188

Std. mean Error Mean Mahal. Mean Cook’s
Residuals statistics of predicted value Distance Distance

1.389 0.044 3.867



Figure 4: Frequency distribution of residuals.

Figure 5: Observed vs. predicted ozone concentrations (ug/m3).



Figure 6: Passive sampling locations with measured O3 and estimated O3 from land use regression model.

CONCLUSIONS

The  results  of  this  study suggest  that  testing  the  utility  of
biophysical  remote  sensing  measurements  as  correlates  of
urban air pollutants is a potentially important methodological
research direction. Standardized products like the Landsat 8
surface reflectance imagery used in this study provide relevant
data on biophysical  parameters  on a near  global  basis.  The
preprocessing  also  provides  standardization  that  facilitates
testing the transferability of models derived from these data to
other spatial and temporal contexts. Importantly, image data to
facilitate  this  research  is  freely  accessible  for  most  of  the
Earth’s surface through sources such as the Landsat and other
image archives.

Fewer studies have focused on measurement and modeling of
intra-urban  variations  O3 as  compared  to  particulate  matter
(PM)  and  nitrous  oxides  (NOx)  (Malmqvist  et  al.,  2014;
Kerckhoffs et al., 2015).

The results of this exploratory study suggest several  directions
for future research on intra-urban variations in ground-level O3.
First,  the monitoring results  demonstrate that  low-cost,  passive
samplers  distributed  in  an  objective  grid  pattern  were  able  to
detect significant spatial variation of O3 concentrations in an

urban environment. Second, results of the land use regression
model indicated that  objective measurements of  biophysical
variables  from  satellite  imagery  contribute  significantly  to
explaining spatial variations in intra-urban O3 concentrations.
Additionally,  independent  variables  summarized  within
semicircular buffers oriented to the prevailing wind direction
tended to be more highly correlated with O3 concentrations as
compared to the measures summarized within circular buffers.
This is consistent with the findings reported Li et al. (2015).

Limitations  of  this  exploratory  study  included  the  short
sampling  period,  the  relatively  small  number  of  sampling
locations,  and lack of validation monitoring sites.  However,
the initial results suggest further examination of biophysical
remote sensing variables as inputs to LUR models examining
intra-urban patterns of ground-level O3 and potentially other
pollutants  are  worthy  of  further  investigation.  Longer  term
sampling (i.e., repeated measures over the course of a year)
integrating temporally coincident remote sensing data could
strengthen  the  case  for  the  results  reported  in  the  current
study. The extendibility of these results also needs to tested in
other locations and over time.
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