11 research outputs found

    A Sub-ÎŒVRms Chopper Front-End for ECoG Recording

    Get PDF
    This paper presents a low-noise, low-power fully differential chopper-modulated front-end circuit intended for ECoG signal recording. Among other features, it uses a subthreshold source-follower biquad in the forward path to reduce noise and avoid the implementation of a ripple rejection loop. The prototype was designed in 0.18ÎŒm CMOS technology with a 1V supply. Post-layout simulations were carried out showing a power consumption below 2ÎŒW and an integrated input-referred noise of 0.75ÎŒV rms , with a noise floor below 50 nV√Hz, over a bandwidth from 1 to 200Hz, for a noise efficiency factor of 2.7.Ministerio de EconomĂ­a y Empresa TEC2016-80923-

    Low-Noise Micro-Power Amplifiers for Biosignal Acquisition

    Get PDF
    There are many different types of biopotential signals, such as action potentials (APs), local field potentials (LFPs), electromyography (EMG), electrocardiogram (ECG), electroencephalogram (EEG), etc. Nerve action potentials play an important role for the analysis of human cognition, such as perception, memory, language, emotions, and motor control. EMGs provide vital information about the patients which allow clinicians to diagnose and treat many neuromuscular diseases, which could result in muscle paralysis, motor problems, etc. EEGs is critical in diagnosing epilepsy, sleep disorders, as well as brain tumors. Biopotential signals are very weak, which requires the biopotential amplifier to exhibit low input-referred noise. For example, EEGs have amplitudes from 1 ÎŒV [microvolt] to 100 ÎŒV [microvolt] with much of the energy in the sub-Hz [hertz] to 100 Hz [hertz] band. APs have amplitudes up to 500 ÎŒV [microvolt] with much of the energy in the 100 Hz [hertz] to 7 kHz [hertz] band. In wearable/implantable systems, the low-power operation of the biopotential amplifier is critical to avoid thermal damage to surrounding tissues, preserve long battery life, and enable wirelessly-delivered or harvested energy supply. For an ideal thermal-noise-limited amplifier, the amplifier power is inversely proportional to the input-referred noise of the amplifier. Therefore, there is a noise-power trade-off which must be well-balanced by the designers. In this work I propose novel amplifier topologies, which are able to significantly improve the noise-power efficiency by increasing the effective transconductance at a given current. In order to reject the DC offsets generated at the tissue-electrode interface, energy-efficient techniques are employed to create a low-frequency high-pass cutoff. The noise contribution of the high-pass cutoff circuitry is minimized by using power-efficient configurations, and optimizing the biasing and dimension of the devices. Sufficient common-mode rejection ratio (CMRR) and power supply rejection ratio (PSRR) are achieved to suppress common-mode interferences and power supply noises. Our design are fabricated in standard CMOS processes. The amplifiers’ performance are measured on the bench, and also demonstrated with biopotential recordings

    A 32-Channel Time-Multiplexed Artifact-Aware Neural Recording System

    Get PDF
    This paper presents a low-power, low-noise microsystem for the recording of neural local field potentials or intracranial electroencephalographic signals. It features 32 time-multiplexed channels at the electrode interface and offers the possibility to spatially delta encode data to take advantage of the large correlation of signals captured from nearby channels. The circuit also implements a mixed-signal voltage-triggered auto-ranging algorithm which allows to attenuate large interferers in digital domain while preserving neural information. This effectively increases the system dynamic range and avoids the onset of saturation. A prototype, fabricated in a standard 180 nm CMOS process, has been experimentally verified in-vitro with cellular cultures of primary cortical neurons from mice. The system shows an integrated input-referred noise in the 0.5–200 Hz band of 1.4 ”Vrms for a spot noise of about 85 nV / √Hz. The system draws 1.5 ”W per channel from 1.2 V supply and obtains 71 dB + 26 dB dynamic range when the artifact-aware auto-ranging mechanism is enabled, without penalising other critical specifications such as crosstalk between channels or common-mode and power supply rejection ratios

    A 32 Input Multiplexed Channel Analog Front-End with Spatial Delta Encoding Technique and Differential Artifacts Compression

    Get PDF
    This paper describes a low-noise, low-power and high dynamic range analog front-end intended for sensing neural signals. In order to reduce interface area, a 32-channel multiplexer is implemented on circuit input. Furthermore, a spatial delta encoding is proposed to compress the signal range. A differential artifact compression algorithm is implemented to avoid saturation in the signal path, thus enabling reconstruct or suppressing artifacts in digital domain. The proposed design has been implemented using 0.18 ÎŒm TSMC technology. Experimental results shows a power consumption per channel of 1.0 ÎŒW, an input referred noise of 1.1 ÎŒVrms regarding the bandwidth of interest and a dynamic range of 91 dB.Ministerio de EconomĂ­a y Competitividad TEC2016-80923-POffice of Naval Research ONR N00014- 19-1-215

    Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure Detection

    Get PDF
    About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively. This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals. The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-ÎŒVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-ÎŒVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 ÎŒW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 ÎŒW from 2.8 V (or 0.35 ÎŒW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 ÎŒVrms while consuming 4.5 ÎŒW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 ÎŒW/pole. The chip is implemented in a standard 0.6-ÎŒm CMOS process with a die area of 0.45 mm^2. The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-ÎŒW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-ÎŒm CMOS process. The die size is 11.25 mm^2. The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Wireless Implantable ICs for Energy-Efficient Long-Term Ambulatory EEG Monitoring

    Get PDF
    This thesis presents the design, development, and experimental characterization of wireless subcutaneous implantable integrated circuits and systems for long-term ambulatory EEG monitoring. Application-, system- and circuit-level requirements for such a device are discussed and a critical review of the state-of-the-art academic and currently available commercial solutions are provided. Two prototypes are presented: The first prototype presented in Chapter 2 is an 8-channel wireless implantable device with a 2.5×1.5 mm2 custom-designed integrated circuit implemented using CMOS 180nm technology at its core. The microchip is fabricated and the measurement results showing its efficacy in EEG signal recording in terms of input-referred noise, voltage gain, signal-to-noise ratio, and power consumption are presented. The chip is implemented together with a BLE 5.0 module on the same platform. Our vision and discussions on biocompatible encapsulation of this system, as well as its integration with a microelectrode array as also provided. The second prototype, also implemented in CMOS 180nm technology and presented in Chapter 3, employs a novel EEG recording channel architecture that enables long-term implantation of EEG monitoring devices through significant improvement of their energy efficiency. The channel leverages the inherent sparsity of the EEG signals and conducts recording in an activity-dependent adaptive manner. Thanks to the proposed fully dynamic spectral-compressing architecture, the recording channels power consumption is drastically reduced. More importantly, the proposed architecture reduces the required wireless transmission throughput by more than an order of magnitude. Our test results on 10 different patients’ pre-recorded human EEG data shows an average of 12.6× improvement in the device’s energy efficiency

    A high performance ASIC for electrical and neurochemical traumatic brain injury monitoring

    Get PDF
    Traumatic Brain Injury (TBI) can be defined as a non-degenerative, non-congenital brain trauma due to an external mechanical force. TBI is a major cause of death and disability in all age groups and the leading cause of death and disability in working people and among young adults. This Thesis presents the first application specific integrated chip (ASIC) for monitoring patients suffering from TBI. The microelectronic chip was designed to meet the demands of processing physiological signals for an alternative method of TBI monitoring. It has been studied that by monitoring electrical (ECoG) and chemical (glucose, lactate and potassium) signals, the report of spreading depolarisation (SD) waves could be a good indicator for an upcoming secondary brain injury. The ultimate aim of this Thesis has been to support the idea of a “behind-the-ear” micro-platform, which could enable the monitoring of mobile (or mobilized) patients suffering a TBI who, currently, are not monitored. Switched-capacitor (SC) circuits have been adopted for the implementation of both current and voltage analogue front-ends (AFEs). Advanced techniques to minimise noise and improve the noise performance of the circuit were employed. Moreover, a digitally enabled automatic transimpedance gain control circuit, suitable for current analogue front-ends, was developed and tested in order to provide an automated way to adjust the gain and to counterbalance for the drop in sensitivity of the biosensors due to drift. Measured results confirming the operation of the TBI ASIC and its sub-circuits are reported. Finally, a novel circuit that mimics the Butler-Volmer dynamics is presented. The basic building blocks arise from the combination of Translinear (TL) Circuits and the Non- linear Bernoulli Cell Formalism (NBCF). The developed electrical equivalent circuit has been compared to an ideal model, which was developed in MATLAB. The robustness of the microelectronic system was evaluated by means of Monte Carlo simulations.Open Acces

    Energy-Efficient Circuit Designs for Miniaturized Internet of Things and Wireless Neural Recording

    Full text link
    Internet of Things (IoT) have become omnipresent over various territories including healthcare, smart building, agriculture, and environmental and industrial monitoring. Today, IoT are getting miniaturized, but at the same time, they are becoming more intelligent along with the explosive growth of machine learning. Not only do IoT sense and collect data and communicate, but they also edge-compute and extract useful information within the small form factor. A main challenge of such miniaturized and intelligent IoT is to operate continuously for long lifetime within its low battery capacity. Energy efficiency of circuits and systems is key to addressing this challenge. This dissertation presents two different energy-efficient circuit designs: a 224pW 260ppm/°C gate-leakage-based timer for wireless sensor nodes (WSNs) for the IoT and an energy-efficient all analog machine learning accelerator with 1.2 ”J/inference of energy consumption for the CIFAR-10 and SVHN datasets. Wireless neural interface is another area that demands miniaturized and energy-efficient circuits and systems for safe long-term monitoring of brain activity. Historically, implantable systems have used wires for data communication and power, increasing risks of tissue damage. Therefore, it has been a long-standing goal to distribute sub-mm-scale true floating and wireless implants throughout the brain and to record single-neuron-level activities. This dissertation presents a 0.19×0.17mm2 0.74”W wireless neural recording IC with near-infrared (NIR) power and data telemetry and a 0.19×0.28mm2 0.57”W light tolerant wireless neural recording IC.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169712/1/jongyup_1.pd
    corecore