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ABSTRACT  

This thesis presents the design, development, and experimental characterization of wireless 

subcutaneous implantable integrated circuits and systems for long-term ambulatory EEG 

monitoring. Application-, system- and circuit-level requirements for such a device are discussed 

and a critical review of the state-of-the-art academic and currently available commercial solutions 

are provided. Two prototypes are presented: 

The first prototype presented in Chapter 2 is an 8-channel wireless implantable device with 

a 2.5×1.5 mm2 custom-designed integrated circuit implemented using CMOS 180nm technology 

at its core. The microchip is fabricated and the measurement results showing its efficacy in EEG 

signal recording in terms of input-referred noise, voltage gain, signal-to-noise ratio, and power 

consumption are presented. The chip is implemented together with a BLE 5.0 module on the same 

platform. Our vision and discussions on biocompatible encapsulation of this system, as well as its 

integration with a microelectrode array as also provided. 

The second prototype, also implemented in CMOS 180nm technology and presented in 

Chapter 3, employs a novel EEG recording channel architecture that enables long-term 

implantation of EEG monitoring devices through significant improvement of their energy 

efficiency. The channel leverages the inherent sparsity of the EEG signals and conducts recording 

in an activity-dependent adaptive manner. Thanks to the proposed fully dynamic spectral-

compressing architecture, the recording channels power consumption is drastically reduced. More 

importantly, the proposed architecture reduces the required wireless transmission throughput by 

more than an order of magnitude. Our test results on 10 different patients’ pre-recorded human 

EEG data shows an average of 12.6× improvement in the device’s energy efficiency. 
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CHAPTER 1:  

Introduction and Motivation  

1.1 Motivation and Objective 

The ever-increasing demand for understanding human brain functions and dysfunctions 

requires methods and tools for monitoring brain activity, analyzing the acquired data, and in some 

cases, providing the proper feedback to stop/prevent an undesired neurological event. Unlike 

signal processing and neuro-modulation that are only required in diagnostic/treatment 

applications, brain neuro-monitoring is the essential first step toward any research on the brain. 

Depending on the required spatial and temporal resolution as well as the level of tolerated 

invasiveness, various brain imaging/monitoring technologies are available. Table 1 1, summarizes 

and compares different brain imaging/monitoring methods in terms of their spatial and temporal 

resolution, spatial coverage and invasiveness.  
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Table 1 1: Various brain neural activity monitoring methods compared in terms of their spatio-

temporal resolution and spatial coverage. 

Electroencephalography (EEG) is a standard test to acquire information about the 

metabolic and electric status of the brain. It is widely used for both the diagnostics and the 

monitoring of the state of human cognitive system, and provides brain activity recordings with 

high temporal and moderate-to-high spatial resolution. It is typically done in a hospital 

environment where the patient is tethered to a benchtop recording system and their neuro-electrical 

activity is sensed using several scalp electrodes (Figure 1 1), all placed based on a standard 

convention [1]. The test requires a trained technician to prepare the patient and the recording 

system, conduct the test, and perform post-test data collection and translation. As such, it is only 

practical for short periods (e.g., <1-2 hours).   

 

Figure 1 1 : A typical EEG recording session in a medical facility 

However, many applications demand long-term continuous monitoring of the brain activity 

to obtain a deeper insight into the root cause of particular neurological disorders. For example, 

prior to a brain resection surgery in epileptic patients, a long-term monitoring needs to be done in 

order to precisely localize the source of very-infrequently-occurring seizures. Long-term EEG 
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monitoring is also used for monitoring vigilance level [2], sleep stages [3], and indices of 

impending severe hypoglycaemia [4] [5]. This became the motivation for development of a 

wireless medical device solution that can perform all the required tests while the patients go about 

their normal routines and daily activities and to eliminate the need for long term hospitalizations.  

For most cases, intra-cranial EEG implants (i.e., deeply implanted in the brain), are too 

invasive to be acceptable. Therefore, over the past decade, several surface EEG recording systems 

in the forms of headsets, headbands, etc. have been introduced, and some of them are 

commercialized. The most important common issues with all of these solutions are (1) none of 

them are subtle enough to be used by the patient constantly during their daily routine without being 

obtrusive, and especially not comfortable enough to be worn during sleep at night; (2) all of them 

suffer from constant instability of recording electrode due to many reasons (e.g., talking, chewing, 

frowning, blinking, etc.), which cause recording artifacts that are orders of magnitude larger that 

the EEG signals. Therefore, the recording quality in terms of signal-to-noise ratio is typically not 

sufficient to be a reliable source for clinical applications.  

Motivated by this, in this project, we studied the feasibility and challenges of the design 

and implementation of a minimally-invasive subcutaneous wireless implantable device, which (a) 

is not as invasive as deep-brain implants, (b) provides an unobtrusive continuous long-term EEG 

monitoring, and (c) its recording quality is not affected by motion-induced artifacts. 

Figure 1 2 depict the high-level block diagram and envisaged implantation of the proposed 

solution. As shown, the device is comprised of an electronic backend connected to a flexible 

electrode array. The backend module will host a microchip that is responsible for multi-channel 

low-noise signal amplification and analog-to-digital conversion. Additionally, discrete 

components will be used to enable wireless data communication and embedded signal processing. 
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An inductive coil will be wound at the outer edges of the backend module for wireless power 

reception. 

Two prototypes will be reported; first one presenting the design, development, and 

experimental characterization of an 8-channel custom-designed implementation of a neural 

recording microchip as well as a miniaturized platform for wireless communication and 

programmable neural signal processing. Next we will present a novel architecture for loss-less 

compressive activity-dependent neural data acquisition designed to improve the energy efficiency 

of the EEG recording device by more than an order of magnitude.  

 

Figure 1 2 : Top-level block diagram and envisage implantation of the proposed subdermal 

implant. 
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1.2 Design consideration 

1.2.1 Application-level 

From the application-level point of view, the most important criterion is to minimize the 

solution’s invasiveness. This involves both minimizing the device’s weight and form factor, as 

well as its biocompatibility. Ideally, the device implantation surgery should be carried out by 

making a small incision on the scalp skin. The weight and size of the implant should be kept at a 

level that it is unobtrusive or minimally-obtrusive for the patient. Electrode array’s material must 

be selected to be bio-compatible to prevent any damage to the neighboring tissue, and the 

electronic backend must be encapsulated using a bio-compatible material such as parylene-c or 

similar. Additionally, the device, particularly the electrode array, must be made using flexible 

material to accommodate various patients scalp size and curvature. Since this subcutaneous-EEG 

micro-system is considered as an outpatient care solution, the device must be designed to operate 

automatically with no need for patient’s involvement. For the same reason, it is ideal for the device 

to be remotely controllable/configurable by the physician/technician. 

1.2.2 System-level 

From the system-level point of view, a sufficient number of recording channels must be 

integrated onto the device to capture the brain neural activity with a reasonable spatial resolution. 

Multi-channel recording is also required for multi-variate algorithms that use signals from different 

locations on the brain to perform seizure detection. In addition, to add diagnostic capability to the 

solution, the device should be equipped with a signal-processing unit that could be programmed 

with cross-patient or patient-specific diagnostic algorithms, depending on the application. Wireless 

communication is also an unavoidable feature that needs to be included in the system. Wireless 
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link specifications such as the link throughput and being uni- or bi-directional are decided based 

on (a) the application and the size of data that needs to be transmitted/received in real time, and 

(b) whether or not certain aspects of the system needs to be reconfigured wirelessly.  

Perhaps, the most important system-level aspect of such an implantable device is the 

energy delivery. Envisaged to be fully unobtrusive, there can’t be any external module to be 

mounted outside of the scalp. Therefore, continuous wireless powering of the device, which 

requires an external energy transmitter is not an option, and a battery is unavoidable. However, a 

battery that can last for several months is orders of magnitude larger (in terms of volume) to be 

implanted under the skin. Therefore, a hybrid approach where a small rechargeable battery that 

lasts ~1 day along with overnight wireless charging is ideal. 

As it is discussed in details in [6], embedding signal processing on the device results in a 

significant reduction in decision-making latency and removes the need for a power-hungry high-

throughput data transmitter that otherwise would be required to communicate raw EEG signals. 

However, it has the disadvantage of limited available computational power, which could lead to 

sacrificing the computation accuracy. Generally, a significant portion of signal processing (e.g., 

data compression, feature extraction and seizure detection) is conducted on an embedded 

processor, and only the signal processing results are communicated wirelessly. All of the system-

level modules (i.e., recording channels, signal processing, and wireless transceiver) must be 

connected to each other using the least number of wires possible to realize a minimal form factor 

for the device. From a system-level point of view, this means using serializers/deserializers at the 

interface point of these modules to time-multiplex multi-bit data that is being communicated. 

Furthermore, to ensure that the solution is fully self-contained, all the necessary DC bias voltages 

and clock waveforms required for the operation of the integrated analog and digital circuits must 
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be generated using on-device components such as digital-to-analog converters (DACs), voltage 

regulators, and crystal oscillators. 

1.2.3 Circuit-level 

From the circuit-level perspective, each recording channel should be able to amplify and 

digitize surface EEG signals with a typical amplitude range of 10µV to a few mV and frequency 

content of up to 500Hz. The sensing front-end circuit must have (a) a differential architecture, (b) 

an input-referred noise that does not add substantially (i.e., more than 10%) to the noise that 

already exists at the recording electrodes (10µVrms) [7], (c) input impedance that is orders of 

magnitude larger than the electrode-tissue interface impedance, (d) a reasonably high voltage gain, 

and (e) a mechanism for rejecting large (up to 100s of mVs) DC offset between the recording and 

reference electrodes. The input signal dynamic range demands a minimum ADC resolution of 8 

bits. 

In addition to the above design specifications that are roughly the same for implantable 

EEG recording front ends, a subcutaneous EEG-recording device has an important requirement 

that is mainly attributed to their large size where signals could travel a few centimeters between 

different modules. This makes the signals prone to various types of noise and interference from 

the environment and from neighbor components on the device. As such, the recording circuit 

should be able to strongly attenuate any noise or interference that is common between the recording 

and reference electrodes.  

1.3 State-of-the-art 

To date, there hasn’t been any report of a subdermal implant for long-term EEG 

monitoring. However, since many of the application, system, and circuit-level design 
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considerations are similar to wearable wireless ambulatory EEG devices, reviewing these works 

could provide useful intuition in design of the proposed subdermal implant. Table 1.2 summarizes 

some of the recently reported academic and commercial wireless monitoring headsets that aim to 

provide medical-grade EEG signals. Looking at these devices, it seems that the designs are either 

performance-oriented at the cost of sacrificing some of the application-level concerns (e.g., ease 

of use, comfort, lightweight, quick setup time, etc.), or user-oriented at the cost of reducing the 

system-level capabilities (Figure 1 3).  

 

Figure 1 3 : Commercial examples of wearable EEG recording devices. 

For example, the device presented in [8] meets the channel count, noise, bandwidth, and 

wireless connectivity requirements. The device is also designed to be adjustable to different scalp 

shapes and sizes. However, the weight and bulkiness of the device limits its usage to in-lab tests 

and inappropriate for ambulatory EEG recording. Also the device does not feature a mechanism 

for removing artifacts due to the physical motions of the patient, which could significantly degrade 

the recording quality. An example of the other end of spectrum is the Muse headband [9]. While 

this solution features a small form factor and lightweight, it only has 4 recording channels and uses 

passive electrodes for recording and integrates all the active circuitry on one side of the device, 

causing significant susceptibility to different types of noise and interference sources. Overall, none 
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of these devices is ideal to be used as a quickly-mountable medically-relevant ambulatory EEG 

monitoring and analysis headset for the applications described in the previous section. 

Specification [14] [18] [17] [17] [15] 

# of channels 8 5 6 30 4 

Signal Processing Yes Yes Yes Yes No 

BW (Hz) 0.5-100 0.5-100 <262 <262 N/R 

Wireless Tech BT 2.1 BT 2.1 BT 4.0 BT 4.0 BT 2.1 

Motion Artifact removal Digital Digital No No No 

Weight (grams) 200 N/R 110 610 61 

Table 1 2: Recently-reported wireless monitoring headsets for medical-grade EEG recording. 

A number of commercially-available closed-loop implantable neural interface 

microsystems have been reported to enable some of the aforementioned functions. They are mostly 

designed for a very specific application and their primary use is for deep brain stimulation and 

recording, hence, lack the spatial coverage that is required for many applications [10]. 

1.4 Thesis organization 

Chapter 2 presents the design, implementation, and experimental validation of an 8-channel 

custom-designed EEG microchip implemented in TSMC 180nm CMOS technology. It also reports 

a details analysis on the system-level design challenges of the subdermal implantable device, with 

a particular focus on its energy breakdown and bottlenecks. The chapter also presents design, and 

experimental validation of a miniaturized prototype that hosts a bidirectional wireless data 

communication module as well as a programmable computing module for neural signal processing.  

Chapter 3 presents the design and simulation results of a novel channel architecture that 

targets significant improvement of system-level energy efficiency of the implantable device. The 

proposed design benefits from a fully-dynamic architecture and performs loss-less compression of 

the recorded EEG signals as it is performing the amplification and digitization. The compression 

of the signal is done in a fashion that EEG signal epochs with higher level of activity are recorded 
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with higher quantization resolution, and the idle periods (which are >90% of the time during an 

EEG recording) are recording with a low resolution. We have shown that this method leads to 

orders of magnitude energy efficiency improvement, particularly for cases that EEG recording is 

performed for a specific application, such as a neurological event (e.g. an epilepsy seizure) 

detection. 

Chapter 4 concludes the thesis and discusses possible future directions for this research 

work. 
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CHAPTER 2:  

A Wireless Subcutaneous Implantable 

Microsystem for Ambulatory EEG Monitoring  

As discussed in the introduction, a subdermal implantable device seems to be an optimal 

solution for long-term ambulatory EEG monitoring. On one hand, it is not as invasive as a cortical 

or sub-cortical implanted device, and on the other hand is not prone to motion artifacts and 

interference like surface EEG devices.  

 

Figure 2 1 : Placement of the proposed EEG recording system. 
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Figure 2 1 shows the envisaged implantation of the subdermal device. As shown, eight 

recording electrodes are implemented on an organic substrate in the form of a narrow strip, which 

is connected at the tail to a mini-PCB that hosts the active electronics. The organic electrode array 

is custom-designed and supplied by our industry partner in this project, Panaxium Inc. As will be 

described in this chapter, the mini-PCB is envisioned to host blocks for neuro-physiological 

recording, wireless data transmission, and wireless energy reception, management, and storage.  

The implanted device will operate fully automatic and records, digitizes, and wirelessly 

transmits the EEG activities to an external computer (hand-held or desktop) in real time, with no 

need for external manual control. Since this solution is planned to be used for long-term 

applications, it is desired for the patient's comfort and psychological health that there will be no 

external modules attached to the body. Meanwhile, a battery that can last several months will be 

too large to be implanted. Therefore, we decided to use a rechargeable battery that lasts ~24-48 

hours, giving the patient the option to only need to recharge at night. The direct correlation between 

the battery size (which is by far the largest component in this device) and its storage capacity 

further emphasizes on the importance of energy-efficient design for the recording and wireless 

communication blocks.  

In the remaining of this chapter, we will describe the first prototype designed and 

developed in this project. First, the system-level design, considerations, and analysis are presented. 

Next the design of a custom-made 8-channel neuro-recording device is presented, followed by the 

characterization measurement results for the chip. The chapter ends with the measurement results 

for the wireless communication module, validating its performance.  
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2.1 System level design and consideration  

During the course of this research, we worked closely with industry experts and our partner 

Panaxium to properly define system level criteria and metrics to capture the EEG signal 

successfully from the organic electrode array. Additionally, the required voltage amplification 

gain, input referred noise, input impedance, CMRR, PSRR, and the effective resolution of the 

digitized data have been defined to meet the requirements for effective high-quality neural 

recording. This has to be accomplished while the power consumption and physical size of the 

device are minimized. 

A typical implanted neural recorder consists of an array of analog recording frontend 

channels that are responsible for low noise amplification and preconditioning (e.g., filtering) of 

biomedical signals, data converters to digitize the acquired data, and wireless data telemetry unit. 

Depending on the application, a digital signal processing block might also be included in the 

system. This block allows for pre-processing of the raw-recorded data before transmission. This 

way, only the processing results, which could be the detection of a certain neurological event will 

need to be transmitted instead of the raw recordings. The signal processing module could also relax 

the transmission throughput requirement by applying data compression algorithms on the raw 

recorded signals. 

Figure 2 2, shows the top-level block diagram of the presented device. As shown, the 

microsystem includes 8 recording channels, each equipped with a low-power low-noise amplifier, 

a 10-bit analog to digital converter, and a parallel-to-serial converter that facilitates the data 

transition to the wireless transceiver. All channels are integrated into a single recording microchip 

and will be mounted on the front side of a miniaturized PCB board. BLE transceiver and the FPGA 

controller along with the battery will also be placed on the PCB board, while the electrode array 
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is connected to the PCB from one side. For biocompatibility, all electronics will be encapsulated 

with approved materials. Figure 2 3 shows the envisaged final prototype.  

 

 

Figure 2 2 : Top-level block diagram of the presented device. 

 

 

Figure 2 3 : Illustration of the envisioned final prototype. 

 

Parameter Target 

Voltage gain > 200 V/V   

Bandwidth 1 Hz to 5 kHz 

DC offset removal ±100𝑚𝑉 

Integ. Input referred noise <10 μVrms 

CMRR > 60dB 

Power < 10 𝜇𝐴  ×  VDD 

 

Table 2 1 : Early design specifications 



15 | P a g e  

 

2.1.1 Wireless Data Transmitter 

As shown in Figure 2 1, the transmission of the data is enabled by a standalone and off-

the-shelf Bluetooth Low Energy (BLE) chip which is controlled by the onboard FPGA controller. 

In addition to competitively high transmission data-rate, BLE offers highly standardized 

communication protocol that widens the application of this microsystem and can be paired with 

widely available electronics such as cell phones or any other sophisticated biomedical monitoring 

systems. [11] 

Perhaps, the most important reason for adopting the Bluetooth technology in this project is 

their energy efficiency. The importance of energy efficiency of all active electronic blocks in the 

solution's overall size and feasibility was described earlier. However, it must be emphasized that 

the wireless communication module is by far the most important block in terms of power 

consumption. To help putting this in perspective, it should be noted that a typical commercially 

available neural recorder has a power consumption in the order of 100µW [12], a typical wireless 

data transmitter that is specifically designed for low-power biomedical applications has an average 

of 10 mW of power dissipation in continues transmission mode. It can be deduced that overall 

battery life of an implantable EEG recorder is overwhelmingly limited to the efficiency of the data 

telemetry. 

Motivated by this, an extensive research was conducted to identify the most suitable 

transceiver solution for this application (please see table 2 1). Based on our survey summarized 

below, we decided to use the Nordic Semi microchip, mainly due to its optimal performance in 

terms of power consumption and maximum data-rate.  
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Manufacturer 

Model No. 

data 

throughput 

Nominal power 

for 0dB output 

power 

Package size Additional 

consideration 

Nordic semi 

nRF8002 series 

2 Mbps 9.7 mA @ 1.8V 5.00 x 5.00 mm 

32 pins 

Built in MCU 

BLE enabled 

TI  

CC2640R2F 

2 Mbps 6.1 mA @ 3V 7.00 x 7.00 mm 

48 pins 

Built in MCU 

BLE enabled 

TI 

CC1101 

500 kbps 16.8 mA @ 1.8V 4.15 x 4.15 mm 

20 pins 

SPI interface 

2FSK 

Microsemi 

ZL70103 

256 kbps 5.3 mA @ 2 V 7.00 x 7.00mm 

48 pins 

SPI interface 

2FSK 
Table 2 2 : List of competitive contenders for wireless data telemetry 

Figure 2 4 depicts a simplified block diagram of the prototype board that has been designed 

to validate the system-level performance of the presented solution, with a particular interest in the 

wireless transmission module and the way it is interfaced with the wireless receiving stationary 

module. As shown, the digitized EEG signals are first fed to the signal processing module for 

initial decoding and processing. The output of this block could be used to further optimize the data 

acquisitions (e.g., channel omission, sampling rate variation, etc.) as well as serialized and fed to 

the on-board wireless transceiver microcontroller unit using a serial peripheral interface (SPI) 

protocol. The microcontroller receives and organizes the raw data from the FPGA and prepares it 

for transmission. 

 

Figure 2 4 : Block diagram of the prototype board 
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In this work, we have used the Rigado BMD-350 module that uses the Nordic microchip 

introduced above (Table 2 1). The module integrates both the transmitter Bluetooth chip and its 

planar antenna. Table 2 2 compares this transceiver module with the most popular wireless module 

for medical applications used in the literature. On the receiver side, a development board from 

Rigado is used to receive and decoded the data and send it to the USB port of a bench-top computer 

using a universal asynchronous receiver-transmitter interface.  

 

Table 2 3 : Comparison of the popular off-the-shelf wireless modules 

Figure 2 5, shows the top and bottom view of a 13mm×17mm PCB implementation of the 

presented backend module. The board is populated with the low-power Microsemi FPGA as the 

main processor, making the device capable of hosting small-to-medium-size (in terms of 

computational expense) neural signal processing algorithms, a Bluetooth low energy (BLE) 5.0 

transceiver module with a built-in antenna for wireless communication (Rigado BMD350 built 

based on the nRF52832 SoC from Nordic Semiconductor). 
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Figure 2 5 : The PCB prototype board 

Figure 2 5, also shows other components on the backend PCB including voltage regulators, 

connectors, crystal oscillators and peripheral passive components to ensure that the board can 

operate as a self-contained module and only requires a 3.7V supply voltage. The full list of 

components used in this implementation is provided in Table 2 3. 

 

Table 2 4 : List of components used 
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2.1.2 Power Management 

Similar to the wireless module, we carried out research to identify optimal battery that can 

power this system. Ideal batteries should be compact and capable of max discharge rate of greater 

than 11 mA (~10mA for BLE chip in addition to the estimated 1mA for the EEG recoding chip). 

More importantly, we needed to ensure that the battery has the sufficient capacity to last at least 

12 hours before recharging. Based on the above, DTP301120 polymer Li-ion rechargeable battery, 

which can support nearly 4 hours of continuous data transmission at max data rate is the most 

attractive choice for this application. We decided to sacrifice the battery lifetime to avoid 

increasing the solution size beyond the budget set for us by our collaborators. Later in Chapter 3, 

we will show that how we leveraged the sparsity of EEG signals to achieve an order of magnitude 

longer battery cycles with the same battery.  

 

 

Model # Capacity Max Discharge 

rate 

size 

DTP301120 40 mAh     (3.7V) 40mA 11.5 x 22 x 3.2  mm 

031015 16 mAh    (3.7V) 48 mA 10 x 15 x 3 mm 

Bottoncell:MS920SE 11 mAh    (3 V) 0.8 mA 9.5 mm x 2.1 mm 

Bottoncell:MS621FE 5.5 mAh  (3 V) 0.25 mA 6.8 mm x 2.1 mm 

Eagle Picher - D-00020 50 mAh  (3.65 V) 25 mA 18x12x4.5 mm 

Wyon - W102 18 mAh    (3.7 V) 36 mA 10x6.5x4 mm 
Table 2 5 : Comparison of various batteries for capacity, discharge rate and size 

2.2 Analog front-end and signal preconditioning 

Accuracy of EEG monitoring system heavily relies on the performance of its Analog front-

end and mainly low noise amplifier. While the number of recording channels are specified by the 

spatial resolution required by the application, the electrical performance requirement for each 
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channel is relatively similar for all neuro-physiological recording circuits. The circuit should have 

sufficient frequency bandwidth, that is 500Hz if designed for local field potential (LFP) recording, 

and 5 kHz if designed for recording action potentials (APs). The voltage gain must be large enough 

to amplify the smallest neural activity (~10uV) sufficiently so that a low-power ADC is able to 

digitize it with the required resolution. On the other hand, the gain should not be so large that a 

strong neural signal (e.g., 1mV amplitude) saturate the amplifier.  

The recording circuit architecture must be differential to enable the use of a reference 

electrode for removing common-mode signals and interference. To ensure maximum common-

mode rejection and minimal loss of signal at the electrode interface, the front-end circuit must have 

the highest possible input impedance. Additionally, the input-referred noise must be minimized to 

obtain the highest possible signal to noise ratio. This includes both thermal and flicker noise that 

are generated by the circuit and referred to the input. Another challenge in the design of neural 

amplifiers is removing a DC offset voltage at the input that is generated due to chemical reactions 

between brain cells and microelectrodes, and can saturate the amplifier. As it has been mentioned 

before, all of the above must be done while maintaining the area and power consumption within 

the budget specified by the application or the desired battery life-cycle.  

To make the chip capable of both LFP and AP recording (the AP recording is for future 

applications), we decided to design the amplifier capable of capturing EEG signal within the 

frequency spectrum of 1 – 5 KHz and amplitude ranging from 10μV to 5mV while eliminating 

any possible DC offset that may be caused by electrochemical activities at the recording site. [13] 

To maximize CMRR, fully differential folded cascaded OTA, shown in Figure 2 6, 

topology was chosen for the first amplification stage with large PMOS devices at the input to 

minimize the flicker noise. [14] It’s worth mentioning that choosing large PMOS devices also 
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facilitates lowering the overdrive voltage for these devices when biasing them in subthreshold 

region of operation. It’s well known that transconductance “gm” of MOS transistors is inversely 

proportional to their overdrive voltage and putting input devices in subthreshold region for the 

same drain current (i.e., same power consumption) will help maximizing their transconductance.  

𝑔𝑚 =  
2𝐼𝐷

𝑉𝑜𝑣
 

To remove the DC offset, input transistors are AC coupled to the organic electrodes using 

two on - chip metal-insulator-metal (MIM) capacitors. The voltage gain of this stage is set by the 

ratio of C1/C2. C2 was set to 300 fF, which is the minimum possible MIM cap that could be 

implemented in this technology. Accordingly, to C1 was set to 15pF to realize a voltage gain of 

50 V/V. C2 also influences the amplifier's bandwidth. The low-frequency high-pass pole of the 

amplifier is set by 1/(R2C2). Given the small value of C2, to achieve a high-pass pole of 1Hz, R2 

needs to be greater than 1GΩ. Implementing such a large resistance on the chip as a passive 

component is not feasible due to its area that will be orders of magnitude larger than the entire 

active circuit. Instead, we decided to use pseudo-resistors that are implemented using diode-

connected long thick-oxide NMOS transistors, as shown in Figure 2 6. A common-mode feedback 

(CMFB) circuit, depicted in Figure 2 7, is used to set the DC output of the amplifier and ensures a 

DC level of VCM=0.9V at all times.  
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Figure 2 6 : Circuit view of the analog front-end including fully differential folded cascaded OTA 

 

 

Device Width (µm) Length (µm) Multiplier 

First stage : M1 , M2 2 1.5 25 

First stage : M3 , M4 2 15 1 

First stage : M5 , M6 4 10 1 

First stage : M7 , M8 1 2 1 

First stage : M9 , M10 1 1 1 

2nd stage : M1 , M2 2 5 1 

2nd stage : M3 , M4 1 10 1 

2nd stage : M5 1.6 3 1 

2nd stage : M6 1 10 1 

2nd stage : M7 2 3.5 1 

2nd stage : M8 0.9 3.5 1 

Table 2 6 : Summary of transistor sizing for AFE 
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As shown in Figure 2 6, a second stage of amplification is added to the recording channel 

to increase the overall voltage gain. Similar to the first stage, a capacitively-coupled negative 

feedback amplifier topology is used. Since the input referred noise of the second stage is 

significantly attenuated by the first-stage gain, its noise performance requirement is much more 

relaxed. As depicted, for this stage, we used a two-stage OPAMP.  

  

Figure 2 7 : Circuit view of the common mode feedback 

Figures 2 8 and 2 9, show the gain-bandwidth simulation results for the first and second 

stage amplifiers. The first stage, which uses a fully differential folded cascade OTA, has a closed-

loop gain of 33.5dB, for the 1Hz to 24 kHz bandwidth. The circuit's stability is also verified and it 

shows a phase margin of 60 degrees. 
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Figure 2 8 : Gain and phase plot for first stage folded cascaded OTA 

The second gain stage, employing a low power and wide swing OpAmp , has a closed loop 

gain of 15.5 dB , and was also stable with a phase margin of 50 degrees as shown in figure 2 9, 

The 3dB bandwidth for this stage was 0.4 Hz to 45 KHz.  

 

 

Figure 2 9 : Gain and phase plot for second stage OpAmp 

Overall, both amplification stages have a combined gain of 49 dB with overall bandwidth 

of 1 Hz to 20 KHz. Figure 2 10, shows the simulation results for the voltage gain and bandwidth 

of the two-stage amplifier, which both meet/exceed our initial targets. 
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Figure 2 10 : Gain bandwidth plot for overall gain stages 

The input - referred noise of the analog front end is simulated and plotted in figure 2 11. 

The high frequency noise floor is at 46nV/sqrt(Hz) and the integrated input referred noise from 

1Hz to 5 KHz was calculated at approximately 6 μV RMS. It’s worth noting that as shown in figure 

below flicker noise 1/f becomes the dominant source of noise for frequencies below 100Hz as 

expected. 

 

Figure 2 11 : Input referred noise for the analog front end 

We should also mention that the input impedance is maximized as the amplifier’s inputs 

are connected to the gates of PMOS devices with fA leakage current, leading to a super-GΩ input 

impedance. Such a high Zin along with the fully differential architecture of the amplifier guarantees 
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a high CMRR. Simulation results were conclusive that the designed analog front-end met the 

system level requirements and criteria and are ready to be passed on to the data converter. 

 

2.3 Data conversion using SAR ADC 

As mentioned earlier, the EEG data needs to be digitized and serialized before wireless 

transmission. Considering the EEG's low-frequency signal content and to minimize the power 

consumption, the successive approximation register (SAR) topology was selected for the ADC.  

The ADC should be designed with a dynamic range that covers the entire magnitude range of the 

EEG signals, when amplified by the two-stage amplifier. Given the voltage gain of 240 V/V, and 

the desired ranged of 10uV - 5mV at the amplifier's input, the ADC's input dynamic range should 

be equal to 2.4mV - 1.2V. Accordingly, the required ADC resolution is calculated as: 

𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙𝑠 =
1.2𝑉

2.4𝑚𝑉
= 600 

𝑟𝑒𝑞𝑢𝑖𝑒𝑑 𝐴𝐷𝐶 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑙𝑜𝑔2
600 = 9.23 

Considering minimum required resolution of 9.23 bits and accounting for non-idealities in 

practical ADCs such as quantization errors and mismatches caused by parasitic, a resolution of 10 

bits was chosen for this design.  

SAR ADCs convert sampled values from a continuous analog waveform into digital 

quantized values through a binary search process where each sampled value is compared against 

a sequentially-approximated voltage level. The digital output bits, from MSB to LSB, are set based 

on the result of the consecutive comparisons. The reference voltage level for the next comparison 

is also set based on the result of the previous comparison. After n repetitions are done, where n is 

the ADC's number of bits, the conversion is completed. Number of bits don’t affect the data 
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conversion flow however higher number of bits will lengthen the binary search, hence, make the 

ADC slower. 

The first stage, that is, the track and hold (see Figure 2 12), was implemented using a 

transmission gate with analog signal at input and a capacitor as the storage that will be charged to 

the sample level and will retain this voltage as SAR comparison commences. Schematic view of 

the sample and hold circuit is displayed below. (For simplicity, connection to other terminals of 

the comparator are not marked.) 

 

Figure 2 12 : Sample and hold circuit 

Sampled level needs to be compared to all possible quantization levels which will be 

generated by a capacitive DAC. A 10-bit binary-weighted capacitive DAC is employed in this 

design to generate the required 1024 voltage levels. All capacitors have a common terminal 

connected to the comparator which is also the output of the DAC and their other terminal is 

individually controlled (charged / discharged) by SAR logic, and thus any possible voltage level 

within the target resolution can be synthesized. A simplified view of the implemented capacitive 

DAC is illustrated below. 
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Figure 2 13 : Capacitive DAC with binary weighted capacitors 

The successive approximation starts with setting the most significant bit (MSB) to 1. Then 

this value is sent to the DAC which generates the corresponding analog value. If comparator 

determines that sampled value is greater than DAC output, the bit is left as 1 and we move on to 

the next bit.  

The comparator used in this project was designed based on the “strong arm” architecture. 

The circuit, shown in Figure 2 14, has a fully-dynamic power consumption, benefits from a pre-

amplifier stage to minimize the kick-back noise, and uses all-node-reset method to achieve a 

minimal hysteresis. Once the “clk” has fallen to 0, the output node of the comparator is charged to 

1. In this mode, all the other nodes in the circuit are also reset to VDD/GND to ensure no residual 

charge is left in the parasitic capacitors before the comparison starts. This will ensure minimal 

offset and hysteresis for the comparator. Once the “clk” is raised to 1, the input differential pair, 

as well as the cross-coupled positive feedback loop are enabled and the two outputs slew away 

from each other to VDD and GND, indicating the comparison result as a 1 or a 0. [15] 
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Figure 2 14 : Strong Arm Comparator 

 

Device Width (nm) Length (nm) Multiplier 

MR1, MR2, MR3, NR4 420 250 4 

M1, M2 420 250 1 

M3, M4, M5, M6 420 250 1 

Tail NMOS CLK 420 250 2 

Table 2 7 : Summary of transistor sizing for ADC’s comparator 

In this design, the comparator output could be fed to a shift register to generate a parallel 

output after 10 clock cycles, or could be directly used as the serial output. If used as a serial output, 

it should be noted that the data is valid for certain clock cycles, and invalid for the others. 

Therefore, timing information of the SAR ADC must be sent along its serial output bits to the 

block that will use them (e.g. a signal processing block, or a wireless transmitter). We should 

mention that since the BLE transceiver requires single-ended data, the other terminal of the 

comparator was connected to a dummy load so not to introduce mismatches in the design.   
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Figure 2 15 : Transient analysis of the SAR ADC 

Figure 2 15 shows an example transient simulation results of the SAR ADC’s output in 

response to a sinusoidal input.  The blue trace represents the sampled and hold value of the 500-Hz 

sinusoidal wave and the red trace is the output of the SAR DAC which tracks the sampled value 

successfully. Based on the post layout simulation results, the effective number of bits (ENOB) was 

calculated as,  

𝐸𝑁𝑂𝐵 =  
𝑆𝑁𝑅 −1.76

6.02
= 7.85 Bit 

Effective number of bits is directly related to the parasitic mismatch in the SAR ADC’s 

capacitive DAC, choosing larger capacitors will significantly improve ENOB at the cost of higher 

power consumption and larger area.  

2.4 Integration and fabrication 

Once front-end and Data converter blocks were successfully verified to meet the system 

level criteria, they were integrated to form a single recording channel depicted in Figure 2 2. Eight 

recoding channels were implemented and their serial outputs were fed to a multiplexer that 

interfaces with the BLE chip for wireless data telemetry. 
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The parallel to serial converter was comprised of an 8-to-1 multiplexer which is controlled 

by a “clk” with 8 times the frequency of the generated data. Once transmitted, the bit stream will 

be deserialized inside a microcontroller unit to reconstruct each channel’s data.  

 

Figure 2 16 - 8:1 Mux used for data serialization 

Figure 2 17, shows the layout of the described recording channel with major blocks 

annotated. As shown, each channel includes a 10 bit SAR ADC, a fully differential OTA and an 

OpAMP for additional gain which all together take an area of less than 0.14 mm2. 

 

Figure 2 17 : Layout of the EEG recording channel (0.36 x 0.38 mm) 
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Figure 2 18, shows the full layout of the chip with all 8 recording channels, the parallel-to-

serial data converter, as well as additional blocks for testability, signal buffering, and ESD 

protection. 

 

 

Figure 2 18 : Full chip layout of 8 channel EEG recorder 

 

2.5 Experimental Measurement Results 

The microchip was fabricated in TSMC 0.18 µm technology through CMC microsystems 

services. Following fabrication, the chip was packaged (PGA-68) and was tested using a 

development test-bench PCB, which was custom-designed and fabricated for this project as shown 

in figure 2 19. 
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Figure 2 19 : Magnified view of the fabricated chip along with test-bench PCB 

To measure the gain and bandwidth of the analog front end, sinusoidal function generator 

with capability of generating differential source was connected to the input of subthreshold OTA 

(using BNC connector for robustness) with differential peak to peak amplitude of 2mV, then 

frequency of the input wave was swept from 0.1 Hz to 40 KHz and the output amplitude after the 

single ended OpAmp was probed and measured. Result of this measurement is plotted in Figure 2 

20, Gain of 48.8 dB was recorded which was very close to the post layout simulation results of 

49dB. However, 3dB bandwidth deviated from the expectation by 5 KHz and was recorded at 

approximately 15 KHz. It was observed during the design stage that bandwidth is sensitive to the 

variation of reference current and also post fabrication parasitic and PVT variations could also 

contribute to the mismatch between bandwidth expectation and measurements. Nevertheless, our 

system level requirement bandwidth of 5 KHz is clearly achieved and the chip performance won’t 

be affected by the aforesaid variation. 
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Figure 2 20 : Measured gain – bandwidth graph post fabrication 

Input referred noise was measured by shorting inputs of the input amplifier to the ground 

and measuring the noise magnitude at the output, the measured noise is then divided by the overall 

front end’s gain to evaluate the input refereed noise. The results of this measurement are plotted 

in figure 2 20. At lower frequencies, the measured noise was higher than the simulation results i.e. 

at 8Hz, measurement: 1µV/√𝐻𝑧 vs. simulation: 0.5 µV/√Hz, however the gap between measured 

and simulated results reduces at higher frequencies i.e. at 110Hz, measurement: 128 nV/√Hz vs. 

simulation: 136 nV/√Hz. Noise measurement can be significantly affected by environmental 

elements such as Electromagnetic interference (EMI), and also process corner variation will 

contribute to any mismatches between simulated and measurement results.  

35.00

37.00

39.00

41.00

43.00

45.00

47.00

49.00

0
.1

0
.4

0
.7 1 4 7

10 40 7
0

1
0

0

4
0

0

7
0

0

1
0

0
0

4
0

0
0

7
0

0
0

1
0

0
0

0

2
5

0
0

0

4
0

0
0

0

G
ai

n
 in

 d
B

Freq in Hz



35 | P a g e  

 

 

Figure 2 21 : Measured input referred noise 

Table 2.7 summarizes the overall specification of fabricated chip at both channel-level and 

the chip-level. Measurement results confirm that the chip meets the expectations for high-quality 

neural recording. Nonetheless as discussed in section 2.3, this was an engineering design decision 

to priorities lower power consumption and smaller chip area over higher ENOB for SAR ADC. 

 

Overall specification summary 

ASIC area 3.75 𝑚𝑚2 

Technology TSMC 0.18 µm 

Analog front end power consumption (per channel) 3.7𝜇𝐴 RMS 

ADC power consumption (per channel) 14.4𝜇𝐴 RMS 

Gain 48.8 dB 

Bandwidth 15 KHz 

Int. input referred noise  6 μV RMS (1 Hz – 5 KHz) 

ADC resolution 10 bit 

ADC ENOB 7.85 bit 

# of channels 8 Channels 

Table 2 8 : Overall specification summary 
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CHAPTER 3:  

An Activity-Adaptive Loss-Less-Compressive 

EEG Recording Channel Architecture 

3.1 Introduction and motivation  

As discussed in the previous chapter, wireless data transmission is responsible for the 

majority (i.e., >80%) of the implantable device overall power consumption. Despite adopting one 

of the most energy efficient wireless technologies (i.e., BLE 5.0), our calculations show that the 

implantable device presented in chapter 2 can only last ~4-5 hours of continuous operation without 

the need for a battery recharge. It was also discussed that for practical reasons, a minimum of 12 

hours of operation (ideally, >24 hours) is required for ambulatory long-term EEG recording 

devices. It should also be considered that the system presented in the previous chapter has only 8 

recording channels. Similar to surface EEG, carrying out a clinical-grade recording with sufficient 

spatial resolution and coverage, more electrodes needs to be added to the system, hence, more 

number of recording channels. This means more EEG data is acquired at any moment, which 

demands higher communication data-rate, further reducing the battery life. 
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The above further emphasizes on the vital role of data transmission energy efficiency in 

overall success of the brain-implantable device. Reviewing the literature, we noticed that due to 

the wide availability of far-field radio transmitters and a myriad of different infrastructures (e.g., 

Bluetooth Low Energy, Wi-Fi, etc.), these transmitters can be employed conveniently, and are 

expected to exhibit robust operation [16]. However, even the best low-power radios consume >1 

nJ/b [17] [18], which is an order of magnitude larger than what we require for a sub-dermal EEG.  

As an alternative to far-field radios, impulse radio ultra-wideband (IR-UWB) transmission 

has been proposed and employed in a few recent reported devices. UWB radios do not require to 

generate a carrier signal and generally use a very wide band of frequencies (3.1-10.6GHz) and 

yield high data-rates with a few tens of pJ/b energy efficiency [19] [20]. However their high peak 

transmission power requires a large high-capacity battery for operation. They also need the 

receiver to be at a cm-scale distance (e.g., on skin), making them less practical for our application 

of interest. The same issue is valid about the near-field backscattering transmitters that are highly 

energy efficient, but require the external module (i.e., the interrogator) to be placed on the skin 

[21] [22] [23]. 

Considering the above discussion, it seems that while the more energy-efficient 

technologies such as UWB and near-field backscattering might be an attractive solution for 

implantable devices with in-lab or short-term applications, far-field radios are the only practical 

option for a long-term ambulatory applications, where the patient's comfort and normal day-to-day 

life is of greater priority. This motivates for devising strategies that allow for using the far-field 

transmitters, without sacrificing the battery life.  
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In the rest of this chapter, we will first introduce our proposed idea for lossless EEG data 

compression, and later, describe the circuit implementation, characterization, and integration.  

3.2 LFP signals Sparsity 

In defining the characteristics of EEG signal for long term monitoring applications, it’s 

essential to review and distinguish between two different classes of bio potentials. “Action 

potential” is the result of individual cell’s depolarization which in turn ripples through adjacent 

cells (Figure 3 1). Action potentials are the fundamental means to cell-to-cell communication. [24] 

By nature, action potentials are very unique to individual cells and recording them requires 

invasive direct access to the cell with use of fine, needle-shaped probes that are inserted into the 

brain. 

 

Figure 3 1 : Diagram showing phases of an action potential over time [25] 

On the other hand, local field potentials (LFPs) are extracellular signals that could be 

defined as the spatially-averaged sum of action potentials of a cluster of cells in a region of interest. 
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LFPs are monitored by placing electrodes in the vicinity of a group of neurons and as the name 

implies, the field created by the cells in that spatial radius will be visible to the neurological 

recorder. Since direct access to individual cells are not required, this method is significantly less 

invasive in compare to recording action potentials, making it more appropriate for long-term 

ambulatory EEG recording [26]. 

 

Figure 3 2 : LFP EEG recording from CHB-MIT scalp EEG database [27] 

As illustrated in Figure 3 2, LFP EEG activities of the brain are represented with large 

transient spikes in amplitude of the local potential field which are sparse in time domain. [28] As 

mentioned earlier sampling sparse signals at a continuously high frequency are not efficient and 

will lead into significant overhead for the transmitter. By properly defining the sampling windows 

and adjusting the sampling rate accordingly it’s possible to drastically reduce the data generation 

and extend the implantable device’s battery life. It’s also worth noting that since Nyquist condition 

is met for each sampling window, this technique is theoretically loss less and the sampled data can 

be completely reconstructed once transmitted.  
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3.3 EEG Recording with Activity-Adaptive Quantization Resolution 

 Generally, recording of sensory signals, including biomedical signals, starts with low-

noise signal amplification, followed by signal conditioning stages such as spectral filtering and 

noise reduction, and ends with the digitization of the data before being ready for processing on- or 

off-chip [29].  Considering the unpredictable and non-periodic nature of the LFP EEG signals ,the 

recording process is required to be done continuously to ensure high temporal resolution. However, 

depending on the level of signal's activity (i.e., transient dynamic range) the required sampling rate 

to fully capture the signal's dynamics might vary. Of course, adopting a variable sampling rate 

should be done without violating the Nyquist rate. A crucial principle in sampling any continuous-

time signal is the Shannon-Nyquist sampling theorem which states, “A band-limited signal with 

bandwidth X can be perfectly reconstructed if it’s sampled with a frequency 2X” [30].  

One way to deal with this is to leverage the fact that the Nyquist rate varies for different 

intervals in an EEG recording. Therefore, it'd be possible to acquire signals with a variable 

sampling rate (i.e. non-uniform sampling), which results in an adaptive temporal resolution that it 

is correlated with the signal "level of activity". Adopting a non-uniform sampling approach means 

that the maximum sampling rate (hence, data rate) is only used for a fraction of time, which for 

the typically-sparse EEG signals would be a very small fraction. Consequently, it results in a 

significant reduction in the required data transmission throughput.  

While the advantages of this idea are clear, it has a fundamental issue that constrains its 

efficacy in practice. Due to the unpredictability of the EEG signals, the sampling rate variations 

must be done based on the signal's average level of activity for the past x number of samples. 

Therefore, the quantized data must be fed to an activity monitoring block that decided to 

increase/decrease the sampling rate. The problem happens when a sudden activity such as a seizure 
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starts right after a low-activity period. In this situation, due to the recent past low activity, the 

circuit is sampling at a low rate. Since the activity monitoring block is using an averaged metric, 

it is very likely for the circuit to take a long time to understand that it must increase the sampling 

rate. Hence, a time-sensitive sudden short neurological event might be completely missed or the 

detected very late. 

This motivates for a recording technique that adjusts the quantization resolution rather than 

the sampling frequency. Using this method, the signal is always sampled at the Nyquist rate, but 

the resolution of the digital output is adaptive to the signals level of activity. While the idea is 

simple and elegant, it's effective and efficient implementation could be quite challenging with two 

fundamental problems.  

The first problem is that generally, nyquist-rate ADCs are designed for a certain resolution 

that is set by the application. For example, for a SAR ADC, the capacitor bank sizing, the sampling 

stage precision, the comparator dynamic settling error, and many more parameters are set based 

on the required quantization resolution. This means that a SAR ADC with a variable resolution 

will still have to meet the area and power requirements that are determined by the maximum 

resolution. This means that the benefits of an adaptive resolution ADC will only be limited to the 

wireless transmission data-rate and the recording channels power consumption will still be more 

or less the same. The second issue is related to the fact that the sequential operation of these ADCs 

are generally designed for a set resolution, and a variable resolution could cause serious complexity 

in terms of post-ADC data handling. Such irregular data handling requires complex digital timing 

controllers with substantial dynamic power consumption, which is against the initial goal of energy 

efficiency. 
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Driven by the above discussion, in this work, we propose to use an oversampling spectral-

shaping amplifying ADC that (a) has a variable adaptive resolution that can be adjusted with a 

simple clock frequency variation, and does not require post-ADC data re-synchronization, (b) 

integrated a dynamic amplification stage inside itself, making the amplifier's power consumption 

adaptive as well, (c) leverages single-bit activity monitoring computation, which significantly 

reduces the dynamic power consumption of this module.  

3.4 System-Level Design  

It is expected that by employing the described activity-adaptive variable data rate recording 

strategy, the wireless transmission throughput, hence, the power consumption reduces 

significantly. This will bring the power consumption of this block to the same level as the array of 

recording channels. Therefore, it is crucial to ensure that the recording channels' power 

consumption is also scaling down proportional to the activity slow down. This demands for a 

recording channel architecture with a power consumption that is dominantly dynamic. Therefore, 

an increase/decrease in the clock frequency, not only changes the oversampling ratio of the 

quantizer (hence, its resolution), but also directly varies the power consumption of the recording 

front-end. 

Conventionally, the EEG recording front-ends are designed based on an amplifier+ADC 

architecture, such as the circuit described in Chapter 2. However, in recent year, a new generation 

of fully-dynamic neural ADCs have been reported where amplification and digitization are both 

done in a single stage [31] [32]. Adopting this type of front-ends makes the recording channel's 

power consumption proportionate to the required sampling rate, hence, adaptive to the signal's 

activity. The top-level block level diagram of the proposed system is shown in Figure 3 3. 



43 | P a g e  

 

.  

Figure 3 3 : Block level diagram 

As shown, the EEG signals are fed to an array of differential fully-dynamic neural ADCs, 

which are responsible for low-noise amplification and quantization. The digital output of the 

recording channels are fed to an activity monitoring block where the required quantization 

resolution is calculated and fed back to the front-end neural ADC to make its performance adaptive 

to the EEG level of activity. The output of the recording channels together with the resolution 

information are fed to the wireless transmission block.  

Since determining the level of EEG signal's activity is a major factor in the performance 

and efficacy of the proposed system, the activity-level evaluation criteria must be clearly defined. 

Based on the various EEG-based neurological event detection systems reported in the literature 

(e.g., [33] [34] [35]), it is commonly accepted that sudden bursts in LFP signals beyond the noise 

floor can be counted as events (in this text LFP “event” and LFP “activity” are used 

interchangeably). Accordingly, any period with no event is defined as idle period.  
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Figure 3 4 : LFP EEG recording with an event (A) and idle period (B) marked 

Therefore, activity-level evaluation requires continuous comparison of the digitized 

signal's magnitude with different threshold levels. These threshold levels that are placed at 

different offsets above and below the signal's DC level are calculated based on a down-sampled 

window-averaged version of the signal itself, hence, are continuously updated. Crossing these 

thresholds raises the flag for the activity monitor that there might be an upcoming event. Of course, 

it is also considered that a single artifact-like spike might also trigger these thresholds and we have 

devised strategies to avoid such false positives as much as possible. Nevertheless, since the main 

task of this block is lossless compression of the signal, not event detection, mistaking an artifact 

for a neurological event has a near-zero importance for our purpose as the detection is done at a 

later stage. Therefore, for this stage we try to maximize the sensitivity of the event detection and 

allocate less priority to maximizing specificity. 

3.5 Design and Implementation of the Recording Front-End 

As mentioned earlier, the compressive sensing strategy requires a recording front-end that 

its quantization resolution varies with the signal's level of activity. In other words, the signals o 

high activity (e.g., neurological events) should be recorded with the maximum resolution, and the 

idle periods should be recorded with the lowest possible resolution. We also discussed that non-
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uniform sampling, such as the work reported in [36] are not a good candidate for this application 

as they could result in late detection or completely missing an event.  

Adopting an adaptive resolution strategy is expected to reduce the wireless transmitter's 

throughput requirement by at least an order of magnitude (more details in the next section). Such 

a drastic reduction makes the transmitter's power consumption in the same order of magnitude as 

the array of recording channels. Therefore, making the power consumption of each recording 

channel similarly adaptive to the signal's activity level could significantly reduce the system's 

overall power consumption. 

In this work, we present a fully dynamic neural front-end oversampling Delta-modulated 

ADC that will be used to both amplify the input LFP signals and quantize them with an activity-

dependent variable resolution. The signal to noise ratio (SNR) of the oversampling ADCs are 

calculated as  

𝑆𝑁𝑅 = 6.02𝑁 + 1.76 𝑑𝐵 + 10 log(𝑂𝑆𝑅) 

Where N is the number of bits of the quantizer (e.g., N=1 for a simple comparator), and 

the oversampling ratio (OSR) is defined as fs/(2.BW), where fs is the sampling frequency and BW 

is the input signal bandwidth. It is clear from the above equation that the SNR, and accordingly, 

the ADC's resolution, has a direct relationship with the OSR. For a fixed signal bandwidth (e.g., 

500Hz for LFP signals), changing the sampling frequency, fs, will result in changing the 

quantization resolution. Therefore, by simply changing the fs, and keeping the decimation period 

intact, the ADC provides a digital output with different resolutions that are proportional to the fs.  

Additionally, we replaced the conventional ac-coupled two-stage OTA & OpAmp 

architecture with a single stage rail-to-rail differential difference pre-amplifier (DDA). The 
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differential difference architecture makes the design needless of the large AC-coupling capacitors 

(discussed in chapter two) and removes the DC offset by the assistance of the digital output of the 

delta modulator. The co-dependence of the pre-amplifier and the oversampling quantizer makes 

them a single differential-difference oversampling neural ADC stage. 

3.5.1 System-level Idea 

As shown in Figure 3 5, the neural activity throughout the Electrocorticography (ECoG) 

and local field potentials (LFPs) spectra range (< 500 Hz) has a non-flat spectral density, in which 

the signal magnitude increases with a factor of 1/f as the frequency approaches zero Hertz [37] 

[38]. Therefore, the required dynamic range (DR) for a neural-ADC easily exceeds 50-dB 

disregarding stimulation artifacts, which could easily increase the required dynamic range up to 

70-dB. Such a high dynamic range will significantly increase the ADC power consumption. To 

address this challenge, we propose a neural ADC architecture, which Δ- equalizes the input neural 

signals spectra to an almost flat spectrum, reducing the dynamic range required for neural signal. 

 

Figure 3 5: Spectra comparison of Δ-modulated and Σ-demodulated neural signal. 
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Delta modulation is based on quantizing the change in the signal from sample to sample 

rather than the absolute value of the signal at each sample. Since the output of the integrator in the 

feedback loop of Figure 3 6, tries to predict the input x(t), the integrator works as a predictor. The 

prediction error term, x(t) – �̅�(t), in the current prediction is quantized and used to make the next 

prediction. 

 

Figure 3 6 : Delta modulation principle [39]. 

Figure 3 7, shows the block diagram of the proposed differential-difference Δ-modulated 

ADC. From the system-level point of view, the same prediction as in a normal delta modulator is 

performed here, with the main difference that the feedback loop tries to predict the difference 

between the two differential inputs. Therefore, one input of the comparator is an amplified version 

of the difference between Vin+ and Vin-, and the other input is the predicted version of the same 

signal based on the previous sample. Given the steady nature of DC offset, it is expected that the 

offset is perfectly predicted. Therefore, the difference between the two inputs of the comparator is 

basically the small change in the differential signal from one sample to the next. Therefore, an 

output “1” of the comparator means that the differential signal is increased, and an output “0” 
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means a decrease in the differential signal. Consequently, the output bitstream, DMOD[n], 

represents the variation of the signal (i.e., its derivative), rather than its magnitude, hence, the name 

Δ modulator. We will describe in the next section that a simple integration can reconstruct the 

signal magnitude from this bitstream.  

 

Figure 3 7 : Block diagram of the proposed differential-difference Δ-modulated ADC 

Since the LFP signals frequency bandwidth are limited to 500Hz, utilizing a high OSR 

would significantly help reducing quantization noise. Therefore, a binary comparator as the 

quantizer would be sufficient to achieve the required SQNR. To realize spectrum equalization, 

input signal is Δ-modulated before quantization, and then demodulated in the digital domain. The 

Δ-modulation is implemented using a feedback loop as shown in Figure 3 7. This approach 

reconstructs the delayed replica of the input signal by the integrator loop filter and subtracts it from 

the input signal by a binary comparator.  
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Figure 3 8 : Feedback architecture of the proposed design 

From a discrete-time signal analysis point of view, the feedback architecture of the 

proposed design is shown in Figure 3 8.  DMOD [n] is the modulator’s output binary sequence. It is 

fed back to loop filter to generate a delayed replica of input signal, i.e. 𝑉𝐷𝐴𝐶(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . As shown, in the 

feedback path, the binary output of the 1-bit quantizer is fed to a 1-bit digital-to-analog converter 

(DAC), and then is integrated. Prior to the 1-bit DAC, a duty-cycling stage is placed that can 

determine the integration period. As shown in Figure 3 7, the 1-bit DAC is implemented using a 

push-pull charge pump, and the integrator is implemented using a capacitor that is connected 

between the output of the charge pump and ground.  

The above denotes that: 1) gain of the DAC, 2) integrator capacitor charging time by either 

a negative or positive polarity, 3) size of the integrator capacitor, and 4) sampling frequency are 
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the design knobs in the proposed neural-ADC. Therefore, assuming constant loop filter gain at low 

frequency, the size of the integrator capacitor can be reduced significantly at a high OSR as its 

value is inversely proportional to sampling frequencies. This would enable replacing the large (tens 

of µF) feedback capacitor of the conventional differential-difference neural amplifier (DDNA) by 

a compact capacitor in the pF range. 

3.5.2 Circuit Implementation 

Figure 3 9, presents the circuit diagram of the proposed OpAmp-less neural recording 

channel. It includes a DDNC, which consists of a preamplifier and a single-bit comparator 

(depicted in Figure 2 14) and a low-power feedback integrator charge pump as the modulator’s 

DAC. The role of the clocked-preamplifier is to provide: 1) a low-noise bandlimited neural signal 

amplification gain before quantization, 2) a high input impedance isolation between the electrodes 

and ADC, and 3) a differential stage, which scales well with technology and voltage supply and 

operates rail-to-rail removal of common-mode interferers. The preamplifier’s transconductance 

gain is programmable by changing the DC currents flowing through each branch (IN and IP). 

Symmetric design and layout are other important aspects of the differential-difference preamplifier 

to achieve high common-mode rejection ratios (CMRR). Therefore, multi-fingered common-

centroid layout techniques were considered to make the layout compact and minimize gate 

resistance and local gradients.  
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Figure 3 9 : Circuit diagram of differential difference amplifier 

Given the fact that the preamplifier is integrated into the body of ADC, it does not amplify the 

large transients caused by stimulation or motion artifacts before the ADC, and hence is more 

tolerant of artifacts. The preamplifier, however, needs to provide a moderate low-noise 

amplification to relax the single-bit quantizer sensitivity and not adding much to the input referred 

noise to achieve a decent overall noise efficiency factor (NEF) including the noise sources 

associated with the ADC. Thus, the overall input referred noise (IRN) of ADC is comprised of 
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quantization noise, electronic noise of preamplifier, and feedback integrator. Low IRN is 

achievable by selecting a large (> 1 pF) feedback capacitor voltage integrator (CINT) and input 

transistor devices while the gate-leakage current does not exceed the safety threshold 

corresponding to super-GΩ DC input impedance. Moreover, since the electrodes are directly 

connected to the gate of the transistors, DC offset voltage of input devices gets removed by Δ-

modulation. Consequently, mixed-signal feedback makes the neural interface DC-coupled without 

large AC-coupling capacitors making it friendly with chopper stabilization (as the input impedance 

is proportional to 𝐶𝑆
−1). The preamplifier also completely isolates the electrodes from following 

stages noise such as kick-back, and more importantly, from the feedback loop eliminating the risk 

of charge injection or any short-circuit DC current flowing into the electrodes. Both PMOS and 

NMOS devices are utilized to enable rail-to-rail transconductance amplification as well as DC 

offset removal. More importantly, since the quantizer makes a binary decision, the linearity of 

preamplifier does not affect the overall linearity of the neural-ADC, and the preamplifier can 

operate without any common-mode feedback (CMFB) circuits as well.  

The differential difference amplifier has open loop gain of 18.8dB. Based on the simulation 

results, strong-arm comparator is capable of reliably detecting voltage differences as small as 

50𝜇𝑉. Considering that the smallest EEG feature of 10𝜇𝑉 as defined earlier in the specifications, 

the pre-amplifier's gain is large enough to make, the signal’s amplitude sufficiently large for the 

comparator to yield the correct result. Frequency response analysis for this amplifier indicated 3db 

bandwidth of 27 KHz, which exceeds system level requirements.  
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Figure 3 10 : Frequency response of the differential difference amplifier 

Input referred noise performance of this block was verified using spectre noise analysis. 

High frequency noise floor was recorded to be 169 𝑛𝑉/√ℎ𝑧 and the integrated noise from 1Hz to 

5 KHz is 20.6 𝜇𝑉. As shown in Figure 3 11, the input-referred noise is dominated by the flicker 

noise, which means that the addition of a chopper stabilization stage to the pre-amplifiers could 

reduce the noise level significantly. The proposed architecture has the advantage of not having the 

ac-couple input capacitors, therefore, adding chopper switches won't result in fold-back noise 

issues, as it does with the conventional architectures. 

 

Figure 3 11 : Input referred noise of differential difference amplifier 
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3.6 Activity Monitoring Design and Implementation  

As described in the previous section, the front-end neural ADC's output bit stream 

represents an oversampled derivative of the input signal. Therefore, in addition to decimation, 

which is required for any oversampling ADC, the bit stream must be integrated as well to obtain 

the signal's magnitude itself.  

Figure 3 12, shows the top-level block diagram of the digital activity monitoring block. As 

shown, following the integration, a 10-bit nyquist-rate version of the signal magnitude is obtained 

and fed to a thresholding block that continuously monitors the relative change of the signal's 

magnitude with respect to a dynamically-calculated DC level. The DC level itself is also computed 

using the signal magnitude as well, as it will be described later.  

The thresholding block generates a 4-bit number that represents the deviation of the signal 

magnitude from the DC level. Based on this 4-bit number, the activity level of the signal is 

evaluated and proper commands to adjust the quantization resolution are transmitted back to the 

recording front-end.   

 

Figure 3 12: Digital back-end block diagram 
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As the first step, the proposed algorithm was implemented in MATLAB and was verified 

against real EEG database. This database was provided through the courtesy of [27], which was 

recorded in the Children’s Hospital Boston. All signals were sampled at 256 samples per second 

and 16-bit resolution. Complete MATLAB code is included in the Appendix. 

Using resampling function in MATLAB the data was up-sampled by a factor of 100, this 

will up-sample the recorded data from 256 samples/sec; to 25 kSample/sec. Resampling function 

simulates the effect of sampling clock adjustment. Initially, two threshold levels were defined and 

used to control the sampling rate. We should mention that the number of threshold levels, i.e., the 

number of different quantization resolutions is an arbitrary number and can be more than two, if 

desired. If the current LFP level is below threshold level one, sampling rate is reduced to 256 

samples/sec; crossing the first threshold will result in increasing the sample rate to 2.5 

kSample/sec; and ultimately, once the second threshold is passed, sampling rate is maximized at 

25 kSample/sec.  

DC offset is calculated and is used to update both threshold levels. The calculation is 

carried out by a weighted averaging process where a new sample of the magnitude is taken every 

40 clock cycles, and the average of the current DC value and a new sample are calculated with 

weights of 7 and 1, respectively. The weighting and the down-sampling ratio are set to maximize 

the correlation between the normal and compressed signals, and both are adjustable. The results 

are plotted in figure 3 13, showing the original EEG signal at the top (blue) and the output of the 

algorithm at the bottom (red). Region “A” denotes a significant EEG event and therefore is 

sampled at 25 kSample/sec, region “B” represents a minor EEG event and is sampled at 2.5 

kSample/sec however, region C is the idle region were sampling rate is further reduced to 256 

samples/sec. Each region defines a time window with uniform sampling rate.  
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Figure 3 13 : Plot of sampling rate adjustment algorithm 

As evident from the above example, the maximum sampling rate is only used for a short 

period of time. Since the quantization resolution is proportional to the sampling rate, this means 

that the recording data rate for the majority of the time is reduced by two orders of magnitude. 

Given that the wireless data transmission power dissipation is directly proportional to its 

throughput, such a dramatic reduction in the recording data-rate translates into an orders of 

magnitude improvement in their energy efficiency. Moreover, given the fully dynamic architecture 

of the recording front-end, the power consumption of the recording array is proportionally reduced 

with the sampling rate reduction.  

The algorithm was verified by testing its efficacy on the data from multiple patients in the 

EEG databased and comparing the correlation between the normal and compressed signals for 

each case. Upon successful verification of the algorithm, the digital VLSI implementation was 

performed in TSMC 0.18um CMOS technology. Amplitude reconstruction block uses two 11-bit 
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binary up-counters, one that counts the number of 1s and the other counts the number of 0s received 

form the comparator. Number of 0s is subtracted from the number of ones to calculate the 

amplitude. It’s worth noting that the sign of reconstructed EEG data is assigned according to 

“Two’s complement” operation.  

 

Figure 3 14 : Circuit diagram of amplitude reconstruction block 

 

Results of transient analysis for the amplitude reconstruction block is shown in Figure 3 

15. Only the first 4 bits of the output are plotted for better visualization. The reset for this block is 

active low and once reset is lifted, it continuously detects 1s and 0s and updates the amplitude 

accordingly. 
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Figure 3 15 : Transient analysis for amplitude reconstruction block 

As briefly mentioned earlier, to extract DC level form EEG signal’s amplitude, a 

combination of down sampling and low-pass filtering was utilized to attenuate and remove any 

temporary fluctuations of the signal. An effective method to implement a low pass filter in digital 

domain is the use of averaging [40]. In its simplest form, a sampled data 𝐷𝑛 is summed with the 

previously sampled value 𝐷(𝑛−1) and also the subsequent sample 𝐷(𝑛+1), dividing the sum by 3 

provides a level representing the LPF of 3 sampled values.  

𝐷𝐿𝑃𝐹 =
𝐷(𝑛−1)+𝐷𝑛+𝐷(𝑛+1)

3
 [40] 

In this simple form, the results are sensitive to large short-term variations in each sampled 

data. In other words a large deviation from the mean can shift the average value. This is equivalent 

of a high cut-off frequency in low-pass filtering. Increasing the number of samples will improve 

the results at the cost of higher power consumption and memory. Therefore, we decided to use a 

two-pronged strategy where both down-sampling and weighted averaging are used. In doing so, 
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𝐷𝑛was added to 7 × 𝐷(𝐿𝑃𝐹−1) and divided by 8 and new 𝐷𝑛 is sampled every 40 clock cycles. It 

should be noted that initial value for 𝐷(𝐿𝑃𝐹)is programmable and can be set for different 

applications.  

𝐷𝐿𝑃𝐹 =
𝐷𝑛 + (𝐷(𝐿𝑃𝐹−1) + 2𝐷(𝐿𝑃𝐹−1)  + 4𝐷(𝐿𝑃𝐹−1))

8
 

 To simplify circuit implementation of binary multiplication, 7 × 𝐷(𝐿𝑃𝐹−1) was synthesized 

in the form of  𝐷(𝐿𝑃𝐹−1) + 2𝐷(𝐿𝑃𝐹−1)  + 4𝐷(𝐿𝑃𝐹−1). Therefore, the expensive 10-bit multiplication 

is replaced with two inexpensive bit-shifting operations, hence, improving both areas and power 

efficiency of implementation. Circuit level diagram for DC level extraction is shown in figure 3 

16. 

 

Figure 3 16 : Simplified circuit diagram of DC extraction block 
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Figure 3 17, shows an example of transient simulation results for this block. Input and 

output of DC extraction block are 11 bit binary buses and the values of these terminals are shown 

in decimal system using analog to digital conversion of Virtuoso’s ADE. As shown below at 𝑡 =

7𝜇𝑠𝑒𝑐, value of the current sampled signal (i.e., Dn) is (10000000100 bin = 1028 dec) and the 

value of the output (i.e., the stored DC level before updating) is (01110010000 bin = 912 dec). The 

circuit updates the DC value and makes it available for the next 40 clock cycles to (01110011110 

bin = 926) as expected: 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑 𝐷𝐶 𝑙𝑒𝑣𝑒𝑙 =
𝑆𝑎𝑚𝑝𝑙𝑒𝑑 𝐷𝑎𝑡𝑎 + (7 × 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐷𝐶 𝑙𝑒𝑣𝑒𝑙)

8
=  

1028 + (7 × 912)

8
= 926.5 

 

Figure 3 17 : Transient analysis of DC extraction block 

Threshold values are defined with respect to EEG signal’s DC level, and the sampling rate 

should be adjusted irrespective of the polarity at which threshold was crossed. Two separate 

threshold values are both added (to providing positive threshold) and then subtracted from 

(providing negative threshold) the signal's DC level that was extracted earlier. Subsequently, to 

compare the signal with these threshold values, the LFP’s amplitude is subtracted from the positive 

threshold, and the negative threshold is subtracted from the amplitude for every clock cycle. Using 

subtractor as a comparator allows for the time-sharing of the subtractor that we have already 

implemented, hence saves silicon area. Based on the sign bit of the subtraction result, it can be 

determined if the threshold was crossed. A simplified diagram showing circuit view of threshold 

detection circuit is depicted in Figure 3 18. 
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Figure 3 18: Threshold level detection circuit 

Sampling clocks were generated form a reference clock with help of a D-flip-flop “DFF” 

based frequency divider. The divider consists of 7 DFFs in counter configuration and a 3 input 

mux is used to switch between undivided reference clock (for maximum sampling rate of 256 ×

27~ 32.7 𝐾𝐻𝑧), output of 3rd DFF (for minor event rate of 256 × 24~ 4 𝐾𝐻𝑧) and output of the 

7th DFF (for idle region with sampling rate of 256 Hz). The mux is controlled by the output of 

“threshold detect” block.   

 

Figure 3 19: Circuit diagram of sample clock generator 
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Functionality of the sample clock generator block was verified using transient simulation. 

Here the results for Divide by 8 mode are plotted. It’s worth noting that divided output is available 

both with 0 degrees and 90 degrees phase shift. The 0 degree clock is used by comparator to slice 

the data and the 90 degrees clock is used to sample the data. 

 

Figure 3 20 : Transient analysis for clock generator 

 

3.7 Integration and Performance summary 

The final step in the design of enhanced EEG ambulatory recorder with activity dependent 

sampling rate adjustment was the integration of all components together. All previously verified 

blocks were assembled together as illustrated in Figure 3 21.  
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Figure 3 21: Integrated blocks diagram 

 The mixed-signal recording front-end consumes 2.7 𝜇𝐴 RMS in max operation mode and 

as low as 400nA RMS in idle mode. The comparator and charge pump have a combined current 

consumption of 730nA RMS when fully operational. The remaining digital logic for activity 

monitoring and sampling rate adjustment draw 83 𝜇𝐴 RMS current. 

 To evaluate the power savings resulted from the presented technique, we first characterized 

sets of offline pre-recorded EEG recordings for 10 pediatric subjects which were collected at 
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Boston children hospital [27]. Using this data and the threshold values from section 3.6, we first 

calculated the number of samples in each activity region (as defined in figure 3 13) for every 

patient and then converted the number of samples into duration of time.  To make the results a 

better statistical representation of bigger population, the activity periods were averaged between 

all patients. according to the MATLAB results, on average over 56 minutes out of 1 hour of EEG 

recording was in idle region, and duration of all activities sum to just slightly less than 4 minutes. 

Based on these findings for nearly 93% of the time, sampling rate will be reduced to just 256 

sample per second (a reduction factor of 100x). Since power dissipation of transmitter is directly 

proportional to sampling clock’s frequency, this means that the power consumption is reduced to 

7%+0.01*93%=7.93% of the conventional architecture (a reduction factor of 12.6x). It should be 

noted that this power reduction is valid for both the data transmission block (due to the same 

throughput reduction factor) and for the array of recording channels (due to its dully dynamic 

design). 

 

Figure 3 22 : Synthetization of V ref (–) in response to input sin wave at V in (+) 
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 Once all sub blocks were individually verified for functionality, it’s essential to validate 

the performance of newly integrated recording channel. Transient analysis was performed on the 

loop as illustrated in figure 3 22. In this test, a 200Hz sine wave was applied at the 𝑉𝑖𝑛+ terminal 

of mixed-signal front-end. The 𝑉𝑖𝑛− & 𝑉𝑟𝑒𝑓+ terminals were set to the mid rail (0.9V) common 

mode potential.  In this configuration, the expectation is for 𝑉𝑟𝑒𝑓− to inversely follow the 𝑉𝑖𝑛+. As 

shown in figure 3 22, the charge pump charges and discharges the 𝐶𝐼𝑁𝑇𝐸𝐺 (see figure 3 21) to 

synthesize the 𝑉𝑟𝑒𝑓− (which is plotted in blue) as close as possible to the inverse of the input signal. 

Additionally, looking at the digital output bitstream in figure 3 22 (Green curve), we observe 

increased rate of 0s as slope of 𝑉𝑖𝑛+ increases and increased rate of 1s as slope of 𝑉𝑖𝑛− increases. 

This confirms our expected behaviour from the delta channel to have an output bitstream that 

reflects the derivative (i.e., the slope) of the input signal. As discussed earlier (Figure 3 14), these 

bits are later used to reconstruct the signal in the digital domain. 

 A high-level comparison between the projects that were discussed in chapter 2 & 3 are 

presented in table 3 1, the results are indicative of significant power savings in the latter design for 

AFE and ADC. As mentioned earlier, digital signal processing “DSP” in the dynamic sampling 

design adds 83 𝜇𝐴 RMS current however this additional current is negligible in compared to 

potential savings of upto 9 mA (based on 10x power reduction) in the transmitter current. 

Additionally, it must be mentioned that since this was a proof-of-concept prototype, the DSP block 

was designed in a very performance-conservative fashion. We believe that the power consumption 

of this block (i.e., 83uA x VDD) could be significantly reduced in the next iterations of this design. 
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 Conventional Recording Activity-Adaptive 

Resolution Recording 

ASIC area per channel 0.14 𝑚𝑚2 0.19 𝑚𝑚2 

Technology TSMC 0.18 µm TSMC 0.18 µm 

Analog front end power consumption 3.7𝜇𝐴 RMS  2.7 𝜇𝐴 RMS  

ADC power consumption 14.4𝜇𝐴 RMS 730 n𝐴 RMS  

DSP power consumptions N/A 83uA 
Data Tx estimated current consumption 10 mA (Max) <1 mA (Average) 

AFE Gain 48.8 dB 18.8 dB 

Bandwidth 15 KHz 28 KHz 

Int. input referred noise  6 μV RMS (1 Hz – 5 KHz) 20.6 μV RMS(1 Hz-5KHz) 

ADC resolution 10 bit 5.67 bit Max 

ADC type SAR Delta 

Table 3 1: System-level performance comparison between the designs presented in Chapters 2 and 3. 

 

Figure 3 23 : Layout view of Activity-Adaptive EEG Recording channel 
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CHAPTER 4:  

CONCLUSIONS AND FUTURE 

DIRECTIONS 

4.1 Conclusion 

This dissertation presented the design, implementation, and characterization of two 

implantable microsystems for long-term ambulatory EEG monitoring. The first design introduced 

an innovative 8 channel recording system with a Bluetooth LE module for wireless data telemetry 

and organic electrodes. The latter design was built on the learnings of the earlier work and was 

focused on extending the battery life by increasing the energy efficiency of the device with a 

particular focus on the wireless data link.   

The work covered in chapter 2 discussed the system and circuit level design of a fully 

implantable EEG monitoring system for ambulatory application with 8 differential recording 

channels. This microsystem was fabricated in TSMC 180nm CMOS technology. Post fabrication, 

it was tested in laboratory with the help of custom made PCB board that was specifically designed 

for this application. The ASIC footprint occupied an area of 3.75 𝑚𝑚2 and consumes 3.7𝜇𝐴 RMS 

current for the analog front-end and 14.4𝜇𝐴 RMS for data converter and other applicable digital 

logic. It was also shown that the BLE wireless module is by far the most power-hungry block in 
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this design, drawing up to 10 mA of current during transmission. This leads to sub-optimal battery 

charging cycles, hence, making the device less practical as an ambulatory solution. 

Motivated by this, a holistic approach was taken to design and implement an energy-

efficient implantable device, with a particular focus on the power consumption required for 

wireless data transmission. The innovative technique which was introduced in this chapter was 

focused on activity-dependent adaptive sampling and quantization. It was demonstrated that EEG 

signal’s LFP activity footprints are very sparse in time domain. An algorithm was developed and 

tested in MATLAB that showed EEG data can be divided into different regions based on level of 

activity. It was also proven that by dynamically reducing the sampling rate in idle regions, the 

power consumption of the wireless transmitter can be reduced by more than an order of magnitude. 

To maximize the efficacy of the proposed idea, the recording front-end circuit was also 

redesigned from scratch to have a fully-dynamic power consumption, hence, experience a similar 

power reduction benefit due to the adaptive sampling rate. The new mixed-signal front end, digital 

signal processing blocks and reference clock generation were implemented and validated both at 

the circuit and system levels. Subsequently, the new activity dependent recording channel with 

dynamic sampling rate adjustment was integrated and successfully validated against all design 

requirements.  

4.2 Future work 

Although both projects were executed as expected and measurement results and simulation 

data do validate these SoCs functionality and system level requirements, there are certain areas 

where improvements can be made for the next iteration of the prototype.  



69 | P a g e  

 

4.2.1 Integral transceiver  

Design of the radio transceiver was beyond the scope of this project due to time constraints 

and extensive span of the design, therefore a standalone Bluetooth low energy module was used 

for data telemetry.  

For next generation of this design, an integrated RF transceiver can be incorporated into 

the microchip for further miniaturization as well as potential power reduction. A custom made 

wireless data telemetry block can be optimized to take full advantage of activity based sampling 

rate adjustment that generates data with variable bandwidth. Current Bluetooth LE module 

operates with a constant clock for data transmission which is not optimal for this application.  

4.2.2 Improvements to reference voltage generation 

As discussed in section 3.5, reference voltage used for differential difference amplifier is 

generated with the help of a CMOS charge pump. Although every effort was made to ensure 

accurate matching between P & N current sources, due to PVT (process) variations it’s not possible 

to realize this in practice. This over time may introduce systematic bit errors into the system. Even 

though, these systematic errors can be eliminated with further signal processing on chip or in the 

receiver, this issue may be resolved with improving the charge pump accuracy.  

4.2.3 More optimized digital logic 

In activity dependent sampling rate adjustment design, all digital signal processing blocks 

including “amplitude reconstruction”, “DC extraction” and “threshold detection” were custom 

made and simulated in spectre environment. An alternative approach would be to synthesize the 

circuit using RTL “register transfer level” flow, in this method, logic is described in the form of 

Verilog code and is directly synthesized to layout. Although both solutions are identical in terms 
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of functionality, RTL generated layouts are more optimized in terms of size and power 

consumption.  

4.2.4 Further in vitro and in vivo experiments 

Due to time constraints and unexpected events such as Covid 19 pandemic, activity 

dependent sampling rate adjustment design was not sent for fabrication and the results presented 

in chapter 3 are based on simulation data. Further in vitro test results may be used to render this 

design more robust and reliable. Any biomedical implanted device can benefit from in vivo 

validation. The effectiveness of these neural microsystem can be practically proven with 

cooperation of medical professionals. In vivo experiment which involves freely moving animal 

will also be beneficial for ambulatory validation.  

4.2.5 Encapsulation 

For bio compatibility reasons, prior to any in vivo tests, proper encapsulation and packing 

of circuitry is essential. The barrier layer should withstand erosion from naturally occurring bio 

chemicals and also to protect the body from toxins and electrical current.  

It’s worth reemphasizing that the electrode array used in this design is completely organic 

and biocompatible and the remainder circuitry consist of standard materials which are used in 

existing clinical products, and therefore compatible with existing encapsulation techniques such 

as titanium casing and Parylene-C encapsulation.  
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Appendix 

5.1 MATLAB code for activity dependent sampling rate adjustment 

design: 

clc 

format long 

% EEG comparator  

 

over_sampling_factor = 100; 

 

 

 

v_in = val(1:10000); 

% v_in = val(1,:); 

v_in_fft = fft (v_in); 

v_in = v_in.' ; 

 

 

 

% resampling the data 

v_in = resampler (v_in , over_sampling_factor); 

 

 

 

%[P,Q] = rat(over_sampling_factor); 

%v_in = resample(v_in,P,Q); 

 

 

v_ref = zeros (size(v_in)); 

 

comp_accu = zeros (size(v_in)); 

 

 

% Vector to store activity location 

activity_detect = zeros (size(v_in)); 

 

activity_threshold_1 = 210 ; 

activity_threshold_2 = 400 ; 

 
 

% Cap size = 20 PicoF 
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cap_size = 1e-12 ; 

%cap_size = 20e-12 ; 

 

% Clock freq 

clk_freq = 256 * over_sampling_factor ; 

pulse_width = 1 / clk_freq ; 

 

% charge pump's current 

cap_current = 50e-9; 

%cap_current = 1e-6; 

 

size_of_data_vec = size(v_in); 

size_of_data = size_of_data_vec (1,1); 

 

%comparator's output 

comp_out = 0; 

 

sample_counter = 0 ; 

DC_offset = 0 ; 

 

index = 1 ; 

 

over_sampling_status = over_sampling_factor ;  

  

step_size = 100 ; 

 

while index < size_of_data 

       

         

    if (index > (step_size)) 

        v_ref (index) = v_ref (index-step_size) + find_cap_v (cap_size ,( cap_current*comp_out) , pulse_width) ;  

         

    end 

     

     

    if (v_in (index) > v_ref (index)) 

        comp_out = 1 ; 

    else 

        comp_out = -1 ;  

    end 

    if index > 1 

        comp_accu (index) = comp_accu (index-1) + comp_out ; 

    end 

    

    % DC level estimation 

     

    if (sample_counter >= (40 * over_sampling_factor)) 

        DC_offset = (DC_offset + v_ref (index))/2; 

        sample_counter = 0 ; 

    end 

    sample_counter = sample_counter + 1;  
     

    % activity detection 
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    for i = 1:1:step_size 

         v_ref (index+i) =  v_ref (index) ; 

    end 

     

    % Clock freq 

    clk_freq = 256 * over_sampling_factor / step_size ; 

    pulse_width = 1 / clk_freq ; 

     

     

    if ((abs(v_ref (index)) >= activity_threshold_1 )&&((abs(v_ref (index)) < activity_threshold_2)&&( 

step_size ~= 10))) 

        step_size = 10 ; 

    end 

     

    if ( (abs(v_ref (index)) >= activity_threshold_2 )&&( step_size ~= 1)) 

        step_size = 1 ; 

    end 

     

 

     

    if ((abs(v_ref (index)) < activity_threshold_1 )&&( step_size ~= 100)) 

        step_size = 100 ; 

    end 

     

     

    index = index + step_size ; 

 

     

end 

 

v_ref = v_ref (1:size_of_data); 

 

 

disp ('DC offset is : ') 

disp (DC_offset) 

 

figure(1) 

plot (v_in,'b') 

 

figure(2) 

plot (v_ref,'r') 

 

 

figure(4) 

plot (comp_accu,'r') 

 

function v_temp = resampler ( vin , over_sampling_factor   ) 

 

    % resampling the data 
    [P,Q] = rat(over_sampling_factor); 

    v_temp =  resample(vin,P,Q); 
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end 

 

function V_cap = find_cap_v (cap_size , cap_current , pulse_width) 

    total_charge = cap_current * pulse_width ; 

    %total_charge = integral(cap_current,0,pulse_width); 

    V_cap = total_charge / cap_size; 

End 

 


