2,295 research outputs found

    Maximum Entropy/Optimal Projection (MEOP) control design synthesis: Optimal quantification of the major design tradeoffs

    Get PDF
    The underlying philosophy and motivation of the optimal projection/maximum entropy (OP/ME) stochastic modeling and reduced control design methodology for high order systems with parameter uncertainties are discussed. The OP/ME design equations for reduced-order dynamic compensation including the effect of parameter uncertainties are reviewed. The application of the methodology to several Large Space Structures (LSS) problems of representative complexity is illustrated

    High speed, precision motion strategies for lightweight structures

    Get PDF
    Research on space telerobotics is summarized. Adaptive control experiments on the Robotic Arm, Large and Flexible (RALF) were preformed and are documented, along with a joint controller design for the Small Articulated Manipulator (SAM), which is mounted on the RALF. A control algorithm is described as a robust decentralized adaptive control based on a bounded uncertainty approach. Dynamic interactions between SAM and RALF are examined. Unstability of the manipulator is studied from the perspective that the inertial forces generated could actually be used to more rapidly damp out the flexible manipulator's vibration. Currently being studied is the modeling of the constrained dynamics of flexible arms

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    Control optimization, stabilization and computer algorithms for aircraft applications

    Get PDF
    Description based on: 22nd, Mar./Sept.1977 Edited by: Michael Athans, Alan S. Willsky, 1979/80-NASA Grant NGL 22-009-124. M.I.T. Project OSP 76265. Issued by: M.I.T. Electronic Systems Laboratory, -1978; M.I.T. Laboratory for Information and Decision Systems, 197

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd

    Perspectives in modern control theory

    Get PDF
    Bibliography: leaves 33-36.Prepared under ONR Contract N00014-76-C-0346.by Michael Athans

    Stochastic and adaptive systems : interim report

    Get PDF
    Includes bibliographical references.Research supported by Air Force Office of Scientific Research (AFSC), Research Grant AFOSR 77-3281. Covers time period, March 1, 1977 to February 28, 1978.by Michael Athans and Sanjoy K. Mitter

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design
    • …
    corecore