1,936 research outputs found

    Design of Self-Balancing Tracing Bicycle for Smart Car Competition Case Under Engineering Education

    Get PDF
    Smart car is an academic competition held for cultivating college students\u27 engineering ability in China for 16 years. To improve the performance of smart cars, this study integrates engineering education topics by introducing a smart car system with regard to the selection of key components, design of hardware and circuit boards, processing of sensor signals, as well as assembly, algorithms, and control. After completing this engineering education, students could achieve better results in the academic competition. According to the K model rules of the 16th smart car competition, a self-balancing autonomous tracking bicycle based on steering gear control is designed and developed. A gyroscope is used to detect the posture of the bicycle. It inductively receives the centerline of the track and then combined with the PID control algorithm realizes the autonomous tracking. The whole process from mechanical structure optimization and electronic circuit design to algorithm design, debugging, and competition runs through the CDIO of engineering education, realizing the cultivation of compound engineering innovative abilities

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Design and Development of an Innovative E-Bike☆

    Get PDF
    Abstract A new model of power-assisted bicycle has been designed, set up and tested. The main innovative solutions for the pedelec prototype are described in the present paper: the electric motor position; the new mechanical transmission; the low cost measurement system of the driving torque; the special test rig. Differently from a common approach, in which the electric motor is located on one of the three hubs of the bicycle, the idea of the pedelec prototype consists of an electrical motor in the central position that, by means of a bevel gear, transmits the torque on the central hub. The other innovative solution is represented by the motion transmission from the motor to the pedal shaft, achieved by two different gearboxes: the first one is a planetary gearbox and the second one is a simple bevel gear. The pedelec prototype contains also a new low cost measurement system of the driving torque based on a strain gauge load cell located on one side of the rear wheel, between the hub and the frame. Moreover, a commercial cycling simulator has been suitably modified in order to properly install the different sensors for the measurement of the performance of the pedelec. The test rig is able to reproduce an aforethought route or paths acquired during road tests, to measure the performance of the e-bike in terms of instantaneous power and speed. The experimental test rig can simulate the resistant torque of a predetermined track and it aims to test and to optimize the control strategy available on the electronic control unit. The authors have also conducted an environmental analysis of the developed pedelec, in particular comparing the e-bike with a thermal moped, in terms of environmental impact

    Advancing the Age of Cycling

    Get PDF
    In the Netherlands, the number of older cyclists is increasing. This is desirable because cycling supports healthy ageing and personal independence. Older cyclists, however, run relatively large risks on (single) bicycle crashes. The goal of this thesis is to explore which parts of the infrastructure and (on-road) interactions lead to problems for older cyclists and, thereafter, to test the effectiveness of infrastructural and on-bicycle interventions to increase safety. ‘Everyday cycling’ observations of older cyclists revealed that obstacles, irregular surfaces, sharp corners, slopes, and narrow paths may cause difficulties. Some cyclists were also observed to (unintentionally) ride into the verge. Predicting the behaviour of other cyclists was also found to be difficult. At different locations, the effects of virtual 3D-objects, edge lines, slanted kerbstones, shoulder strips, and edge strips on cycling behaviour of older cyclists were measured. With small GPS action-cameras mounted on older participant’s bicycles, on-site experiments revealed that shoulder strips and edge strips were the most beneficial interventions for safety: at cycle paths with these modifications, participants rode further away from the soft verge compared to other (control) paths. They also cycled slower on the cycle paths with shoulder strips. Lastly, effects of using bicycle lights to communicate speed, braking, and turning intentions to other road users were investigated. The results showed that the tested speed signal was not effective. The turning indicator and brake light, however, seem useful for older cyclists

    Hito no dosa o koryoshita hoko ido hojoki no gainen sekkei to seigyo

    Get PDF

    Integrating Vehicle Slip and Yaw in Overarching Multi-Tiered Automated Vehicle Steering Control to Balance Path Following Accuracy, Gracefulness, and Safety

    Full text link
    Balancing path following accuracy and error convergence with graceful motion in steering control is challenging due to the competing nature of these requirements, especially across a range of operating speeds and conditions. This paper demonstrates that an integrated multi-tiered steering controller considering the impact of slip on kinematic control, dynamic control, and steering actuator rate commands achieves accurate and graceful path following. This work is founded on multi-tiered sideslip and yaw-based models, which allow derivation of controllers considering error due to sideslip and the mapping between steering commands and graceful lateral motion. Observer based sideslip estimates are combined with heading error in the kinematic controller to provide feedforward slip compensation. Path following error is compensated by a continuous Variable Structure Controller (VSC) using speed-based path manifolds to balance graceful motion and error convergence. Resulting yaw rate commands are used by a backstepping dynamic controller to generate steering rate commands. A High Gain Observer (HGO) estimates sideslip and yaw rate for output feedback control. Stability analysis of the output feedback controller is provided, and peaking is resolved. The work focuses on lateral control alone so that the steering controller can be combined with other speed controllers. Field results provide comparisons to related approaches demonstrating gracefulness and accuracy in different complex scenarios with varied weather conditions and perturbations

    Autonomous Vehicles: Autodriver Algorithm and Vehicle Dynamics

    Get PDF
    A given road can be expressed mathematically in a global (or world) coordinate frame. Following the road can be substituted by following the loci of its curvature center and turning at the right circle of curvature. Considering that a vehicle in motion is always in turn about an instantaneous rotation center relative to the ground, an autonomous vehicle capable of following a given path by coinciding the rotation center of vehicle at every moment on the curvature center of the road could be designed. The dynamic reactions of the vehicle influence its path of motion and make its rotation center to depart from the desired path of the curvature center of the road. In this study, the Autodriver algorithm control strategy to front-wheel-steering vehicles has been developed and a control loop is introduced to compensate the present errors generated by the differences of the desired locating on the road and the real position of the vehicle

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 184

    Get PDF
    This bibliography lists 139 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1978

    Understanding and stimulating the development of perceptual-motor skills in child bicyclists

    Get PDF

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf
    corecore