1,504 research outputs found

    High density QCD on a Lefschetz thimble?

    Get PDF
    It is sometimes speculated that the sign problem that afflicts many quantum field theories might be reduced or even eliminated by choosing an alternative domain of integration within a complexified extension of the path integral (in the spirit of the stationary phase integration method). In this paper we start to explore this possibility somewhat systematically. A first inspection reveals the presence of many difficulties but - quite surprisingly - most of them have an interesting solution. In particular, it is possible to regularize the lattice theory on a Lefschetz thimble, where the imaginary part of the action is constant and disappears from all observables. This regularization can be justified in terms of symmetries and perturbation theory. Moreover, it is possible to design a Monte Carlo algorithm that samples the configurations in the thimble. This is done by simulating, effectively, a five dimensional system. We describe the algorithm in detail and analyze its expected cost and stability. Unfortunately, the measure term also produces a phase which is not constant and it is currently very expensive to compute. This residual sign problem is expected to be much milder, as the dominant part of the integral is not affected, but we have still no convincing evidence of this. However, the main goal of this paper is to introduce a new approach to the sign problem, that seems to offer much room for improvements. An appealing feature of this approach is its generality. It is illustrated first in the simple case of a scalar field theory with chemical potential, and then extended to the more challenging case of QCD at finite baryonic density.Comment: Misleading footnote 1 corrected: locality deserves better investigations. Formula (31) corrected (we thank Giovanni Eruzzi for this observation). Note different title in journal versio

    Matrix product states and variational methods applied to critical quantum field theory

    Get PDF
    We study the second-order quantum phase-transition of massive real scalar field theory with a quartic interaction (Ď•4\phi^4 theory) in (1+1) dimensions on an infinite spatial lattice using matrix product states (MPS). We introduce and apply a naive variational conjugate gradient method, based on the time-dependent variational principle (TDVP) for imaginary time, to obtain approximate ground states, using a related ansatz for excitations to calculate the particle and soliton masses and to obtain the spectral density. We also estimate the central charge using finite-entanglement scaling. Our value for the critical parameter agrees well with recent Monte Carlo results, improving on an earlier study which used the related DMRG method, verifying that these techniques are well-suited to studying critical field systems. We also obtain critical exponents that agree, as expected, with those of the transverse Ising model. Additionally, we treat the special case of uniform product states (mean field theory) separately, showing that they may be used to investigate non-critical quantum field theories under certain conditions.Comment: 24 pages, 21 figures, with a minor improvement to the QFT sectio

    First-principles perturbative computation of dielectric and Born charge tensors in finite electric fields

    Full text link
    We present a perturbative treatment of the response properties of insulating crystals under a dc bias field, and use this to study the effects of such bias fields on the Born effective charge tensor and dielectric tensor of insulators. We start out by expanding a variational field-dependent total-energy functional with respect to the electric field within the framework of density-functional perturbation theory. The second-order term in the expansion of the total energy is then minimized with respect to the first-order wave functions, from which the Born effective charge tensor and dielectric tensor are easily computed. We demonstrate an implementation of the method and perform illustrative calculations for the III-V semiconductors AlAs and GaAs under finite bias field

    Perturbative corrections to the Gutzwiller mean-field solution of the Mott-Hubbard model

    Get PDF
    We study the Mott-insulator transition of bosonic atoms in optical lattices. Using perturbation theory, we analyze the deviations from the mean-field Gutzwiller ansatz, which become appreciable for intermediate values of the ratio between hopping amplitude and interaction energy. We discuss corrections to number fluctuations, order parameter, and compressibility. In particular, we improve the description of the short-range correlations in the one-particle density matrix. These corrections are important for experimentally observed expansion patterns, both for bulk lattices and in a confining trap potential.Comment: 10 pages, 10 figue

    Recent Developments in the Theory of Tunneling

    Get PDF
    Path-integral approach in imaginary and complex time has been proven successful in treating the tunneling phenomena in quantum mechanics and quantum field theories. Latest developments in this field, the proper valley method in imaginary time, its application to various quantum systems, complex time formalism, asympton theory for the large order analysis of the perturbation theory, are reviewed in a self-contained manner.Comment: 100 pages, LaTeX, PTPTeX.sty, 36 eps figures, To be published in Progress of Theoretical Physics Supplimen

    On the Inversion of High Energy Proton

    Full text link
    Inversion of the K-fold stochastic autoconvolution integral equation is an elementary nonlinear problem, yet there are no de facto methods to solve it with finite statistics. To fix this problem, we introduce a novel inverse algorithm based on a combination of minimization of relative entropy, the Fast Fourier Transform and a recursive version of Efron's bootstrap. This gives us power to obtain new perspectives on non-perturbative high energy QCD, such as probing the ab initio principles underlying the approximately negative binomial distributions of observed charged particle final state multiplicities, related to multiparton interactions, the fluctuating structure and profile of proton and diffraction. As a proof-of-concept, we apply the algorithm to ALICE proton-proton charged particle multiplicity measurements done at different center-of-mass energies and fiducial pseudorapidity intervals at the LHC, available on HEPData. A strong double peak structure emerges from the inversion, barely visible without it.Comment: 29 pages, 10 figures, v2: extended analysis (re-projection ratios, 2D
    • …
    corecore