35,997 research outputs found

    Distributed Local Linear Parameter Estimation using Gaussian SPAWN

    Full text link
    We consider the problem of estimating local sensor parameters, where the local parameters and sensor observations are related through linear stochastic models. Sensors exchange messages and cooperate with each other to estimate their own local parameters iteratively. We study the Gaussian Sum-Product Algorithm over a Wireless Network (gSPAWN) procedure, which is based on belief propagation, but uses fixed size broadcast messages at each sensor instead. Compared with the popular diffusion strategies for performing network parameter estimation, whose communication cost at each sensor increases with increasing network density, the gSPAWN algorithm allows sensors to broadcast a message whose size does not depend on the network size or density, making it more suitable for applications in wireless sensor networks. We show that the gSPAWN algorithm converges in mean and has mean-square stability under some technical sufficient conditions, and we describe an application of the gSPAWN algorithm to a network localization problem in non-line-of-sight environments. Numerical results suggest that gSPAWN converges much faster in general than the diffusion method, and has lower communication costs, with comparable root mean square errors

    Sink position analysis of energy efficiency in Wireless Sensor Network (WSN) using routing Stable Election Protocol (SEP)

    Get PDF
    Wireless Sensor Network (WSN) is a wireless network that involves sensors in the network. The sensor node on the WSN will collect data information from the environment around the sensor. However, each sensor node has storage capacity, processing power, communication range, and battery life limitations. The use of energy consumption from these factors is the main problem because each sensor node uses its power consumption from the battery. Stable Election Protocol (SEP) is a type of routing protocol on WSN that uses the clustering method. SEP has a function to extend the time interval before the first node dies. This research was carried out on the SEP protocol with alive node parameters, total initial energy, and stability. This study indicates that on a network that uses 100 nodes with sink positions (0, 100), two nodes are still alive and several nodes that are still alive in several sink positions that use 200 nodes. For networks where there is still a lot of energy remaining in the sink position (0, 100) with the network using 100 nodes and for networks using 200 nodes, the remaining energy is mainly in the sink position (100, 100). The highest stability period is in the sink position (50, 50) for networks using 100 nodes, and for networks using 200 nodes, the highest stability period is in the sink position (100, 50)

    Link Expiration Time and Minimum Distance Spanning Trees based Distributed Data Gathering Algorithms for Wireless Mobile Sensor Networks

    Get PDF
    The high-level contributions of this paper are the design and development of two distributed spanning tree-based data gathering algorithms for wireless mobile sensor networks and their exhaustive simulation study to investigate a complex stability vs. node-network lifetime tradeoff that has been hitherto not explored in the literature. The topology of the mobile sensor networks changes dynamically with time due to random movement of the sensor nodes. Our first data gathering algorithm is stability-oriented and it is based on the idea of finding a maximum spanning tree on a network graph whose edge weights are predicted link expiration times (LET). Referred to as the LET-DG tree, the data gathering tree has been observed to be more stable in the presence of node mobility. However, stability-based data gathering coupled with more leaf nodes has been observed to result in unfair use of certain nodes (the intermediate nodes spend more energy compared to leaf nodes), triggering pre-mature node failures eventually leading to network failure (disconnection of the network of live nodes). As an alternative, we propose an algorithm to determine a minimum-distance spanning tree (MST) based data gathering tree that is more energy-efficient and prolongs the node and network lifetimes, at the cost frequent tree reconfigurations

    Efficient organization of nodes in wireless sensor networks (clustering location-based LEACH)

    Get PDF
    The rapid development of connected devices and wireless communication has enabled several researchers to study wireless sensor networks and propose methods and algorithms to improve their performance. Wireless sensor networks (WSN) are composed of several sensor nodes deployed to collect and transfer data to base station (BS). Sensor node is considered as the main element in this field, characterized by minimal capacities of storage, energy, and computing. In consequence of the important impact of the energy on network lifetime, several researches are interested to propose different mechanisms to minimize energy consumption. In this work, we propose a new enhancement of low-energy adaptive clustering hierarchy (LEACH) protocol, named clustering location-based LEACH (CLOC-LEACH), which represents a continuity of our previous published work location-based LEACH (LOC-LEACH). The proposed protocol organizes sensor nodes into four regions, using clustering mechanism. In addition, an efficient concept is adopted to choose cluster head. CLOC-LEACH considers the energy as the principal metric to choose cluster heads and uses a gateway node to ensure the inter-cluster communication. The simulation with MATLAB shows that our contribution offers better performance than LEACH and LOC-LEACH, in terms of stability, energy consumption and network lifetime

    Design and Test of a High-Performance Wireless Sensor Network for Irradiance Monitoring

    Get PDF
    Cloud-induced photovoltaic variability can affect grid stability and power quality, especially in electricity systems with high penetration levels. The availability of irradiance field forecasts in the scale of seconds and meters is fundamental for an adequate control of photovoltaic systems in order to minimize their impact on distribution networks. Irradiance sensor networks have proved to be efficient tools for supporting these forecasts, but the costs of monitoring systems with the required specifications are economically justified only for large plants and research purposes. This study deals with the design and test of a wireless irradiance sensor network as an adaptable operational solution for photovoltaic systems capable of meeting the measurement specifications necessary for capturing the clouds passage. The network was based on WiFi, comprised 16 pyranometers, and proved to be stable at sampling periods up to 25 ms, providing detailed spatial representations of the irradiance field and its evolution. As a result, the developed network was capable of achieving comparable specifications to research wired irradiance monitoring network with the advantages in costs and flexibility of the wireless technology, thus constituting a valuable tool for supporting nowcasting systems for photovoltaic management and control

    Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision

    Full text link
    [EN] Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.This work has also been partially supported by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Qureshi, KN.; Bashir, MU.; Lloret, J.; León Fernández, A. (2020). Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision. Journal of Sensors. 2020:1-19. https://doi.org/10.1155/2020/9040395S1192020Sneha, K., Kamath, R., Balachandra, M., & Prabhu, S. (2019). New Gossiping Protocol for Routing Data in Sensor Networks for Precision Agriculture. Soft Computing and Signal Processing, 139-152. doi:10.1007/978-981-13-3393-4_15Qureshi, K. N., Abdullah, A. H., Bashir, F., Iqbal, S., & Awan, K. M. (2018). Cluster-based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks. International Journal of Communication Systems, 31(8), e3533. doi:10.1002/dac.3533Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104-122. doi:10.1016/j.comnet.2014.03.027Feng, X., Zhang, J., Ren, C., & Guan, T. (2018). An Unequal Clustering Algorithm Concerned With Time-Delay for Internet of Things. IEEE Access, 6, 33895-33909. doi:10.1109/access.2018.2847036Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019). Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. doi:10.1109/access.2019.2902371Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382-392. doi:10.1016/j.comcom.2019.10.030Kumar, S. A., & Ilango, P. (2017). The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wireless Personal Communications, 98(1), 685-698. doi:10.1007/s11277-017-4890-zAnisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2014). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216-238. doi:10.1007/s11119-014-9371-8Long, D. S., & McCallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492-504. doi:10.1007/s11119-015-9391-zFu, X., Fortino, G., Li, W., Pace, P., & Yang, Y. (2019). WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Future Generation Computer Systems, 91, 223-237. doi:10.1016/j.future.2018.08.031Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.2720Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 15(2), 551-591. doi:10.1109/surv.2012.062612.00084De Farias, C. M., Pirmez, L., Fortino, G., & Guerrieri, A. (2019). A multi-sensor data fusion technique using data correlations among multiple applications. Future Generation Computer Systems, 92, 109-118. doi:10.1016/j.future.2018.09.034Rao, P. C. S., Jana, P. K., & Banka, H. (2016). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005-2020. doi:10.1007/s11276-016-1270-7Fu, X., Fortino, G., Pace, P., Aloi, G., & Li, W. (2020). Environment-fusion multipath routing protocol for wireless sensor networks. Information Fusion, 53, 4-19. doi:10.1016/j.inffus.2019.06.001Liu, X. (2015). Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review. IEEE Sensors Journal, 15(10), 5372-5383. doi:10.1109/jsen.2015.2445796Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., & Niaz, I. A. (2017). A Balanced Energy-Consuming and Hole-Alleviating Algorithm for Wireless Sensor Networks. IEEE Access, 5, 6134-6150. doi:10.1109/access.2017.2676004Gupta, G. P., Misra, M., & Garg, K. (2014). Energy and trust aware mobile agent migration protocol for data aggregation in wireless sensor networks. Journal of Network and Computer Applications, 41, 300-311. doi:10.1016/j.jnca.2014.01.003Safa, H., Karam, M., & Moussa, B. (2014). PHAODV: Power aware heterogeneous routing protocol for MANETs. Journal of Network and Computer Applications, 46, 60-71. doi:10.1016/j.jnca.2014.07.035Liu, X. (2015). An Optimal-Distance-Based Transmission Strategy for Lifetime Maximization of Wireless Sensor Networks. IEEE Sensors Journal, 15(6), 3484-3491. doi:10.1109/jsen.2014.2372340Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy Efficient Direction-Based PDORP Routing Protocol for WSN. IEEE Access, 4, 3182-3194. doi:10.1109/access.2016.2576475Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile Sink-Based Adaptive Immune Energy-Efficient Clustering Protocol for Improving the Lifetime and Stability Period of Wireless Sensor Networks. IEEE Sensors Journal, 15(8), 4576-4586. doi:10.1109/jsen.2015.2424296Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580-588. doi:10.1109/jcn.2016.000081Shen, J., Wang, A., Wang, C., Hung, P. C. K., & Lai, C.-F. (2017). An Efficient Centroid-Based Routing Protocol for Energy Management in WSN-Assisted IoT. IEEE Access, 5, 18469-18479. doi:10.1109/access.2017.2749606Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing, 2019, 1-20. doi:10.1155/2019/6470359Sajwan, M., Gosain, D., & Sharma, A. K. (2018). CAMP: cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks, 25(5), 2603-2620. doi:10.1007/s11276-018-1689-0Varga, A. (2010). OMNeT++. Modeling and Tools for Network Simulation, 35-59. doi:10.1007/978-3-642-12331-3_3Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A Matlab Toolbox for Music Information Retrieval. Studies in Classification, Data Analysis, and Knowledge Organization, 261-268. doi:10.1007/978-3-540-78246-9_31Mathur, P., Nielsen, R. H., Prasad, N. R., & Prasad, R. (2016). Data collection using miniature aerial vehicles in wireless sensor networks. IET Wireless Sensor Systems, 6(1), 17-25. doi:10.1049/iet-wss.2014.0120Zou, T., Lin, S., Feng, Q., & Chen, Y. (2016). Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks. Sensors, 16(1), 53. doi:10.3390/s16010053Song, Y., Ma, J., Zhang, X., & Feng, Y. (2012). Design of Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System. Journal of Networks, 7(5). doi:10.4304/jnw.7.5.838-844Nikolidakis, S., Kandris, D., Vergados, D., & Douligeris, C. (2013). Energy Efficient Routing in Wireless Sensor Networks Through Balanced Clustering. Algorithms, 6(1), 29-42. doi:10.3390/a6010029Ndzi, D. L., Harun, A., Ramli, F. M., Kamarudin, M. L., Zakaria, A., Shakaff, A. Y. M., … Farook, R. S. (2014). Wireless sensor network coverage measurement and planning in mixed crop farming. Computers and Electronics in Agriculture, 105, 83-94. doi:10.1016/j.compag.2014.04.01

    Distance Aware Relaying Energy-efficient: DARE to Monitor Patients in Multi-hop Body Area Sensor Networks

    Full text link
    In recent years, interests in the applications of Wireless Body Area Sensor Network (WBASN) is noticeably developed. WBASN is playing a significant role to get the real time and precise data with reduced level of energy consumption. It comprises of tiny, lightweight and energy restricted sensors, placed in/on the human body, to monitor any ambiguity in body organs and measure various biomedical parameters. In this study, a protocol named Distance Aware Relaying Energy-efficient (DARE) to monitor patients in multi-hop Body Area Sensor Networks (BASNs) is proposed. The protocol operates by investigating the ward of a hospital comprising of eight patients, under different topologies by positioning the sink at different locations or making it static or mobile. Seven sensors are attached to each patient, measuring different parameters of Electrocardiogram (ECG), pulse rate, heart rate, temperature level, glucose level, toxins level and motion. To reduce the energy consumption, these sensors communicate with the sink via an on-body relay, affixed on the chest of each patient. The body relay possesses higher energy resources as compared to the body sensors as, they perform aggregation and relaying of data to the sink node. A comparison is also conducted conducted with another protocol of BAN named, Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficient Multi-hop ProTocol (M-ATTEMPT). The simulation results show that, the proposed protocol achieves increased network lifetime and efficiently reduces the energy consumption, in relative to M-ATTEMPT protocol.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    SIMPLE: Stable Increased-throughput Multi-hop Protocol for Link Efficiency in Wireless Body Area Networks

    Full text link
    In this work, we propose a reliable, power efficient and high throughput routing protocol for Wireless Body Area Networks (WBANs). We use multi-hop topology to achieve minimum energy consumption and longer network lifetime. We propose a cost function to select parent node or forwarder. Proposed cost function selects a parent node which has high residual energy and minimum distance to sink. Residual energy parameter balances the energy consumption among the sensor nodes while distance parameter ensures successful packet delivery to sink. Simulation results show that our proposed protocol maximize the network stability period and nodes stay alive for longer period. Longer stability period contributes high packet delivery to sink which is major interest for continuous patient monitoring.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad
    • …
    corecore