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Abstract: The high-level contributions of this paper are the design 
and development of two distributed spanning tree-based data 
gathering algorithms for wireless mobile sensor networks and their 
exhaustive simulation study to investigate a complex stability vs. 
node-network lifetime tradeoff that has been hitherto not explored 
in the literature. The topology of the mobile sensor networks 
changes dynamically with time due to random movement of the 
sensor nodes. Our first data gathering algorithm is stability-oriented 
and it is based on the idea of finding a maximum spanning tree on a 
network graph whose edge weights are predicted link expiration 
times (LET). Referred to as the LET-DG tree, the data gathering 
tree has been observed to be more stable in the presence of node 
mobility. However, stability-based data gathering coupled with 
more leaf nodes has been observed to result in unfair use of certain 
nodes (the intermediate nodes spend more energy compared to leaf 
nodes), triggering pre-mature node failures eventually leading to 
network failure (disconnection of the network of live nodes). As an 
alternative, we propose an algorithm to determine a minimum-
distance spanning tree (MST) based data gathering tree that is more 
energy-efficient and prolongs the node and network lifetimes, at the 
cost frequent tree reconfigurations. 
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1. Introduction 

A wireless sensor network comprises of several smart sensor 
nodes that can gather data about the surrounding environment 
as well as process them before propagating to a control 
center called the sink, from which the end user typically 
operates to administer the network and access the nodes. 
Wireless sensor networks have been considered to give 
unprecedented levels of access to real-time information about 
the physical world, and the benefits of deploying such 
networks are widely seen these days. However, in almost all 
cases, the sensor networks are statically deployed and 
evaluated, wherein the mobility of the sensor nodes, the users 
and the monitored phenomenon are all totally ignored. 
Wireless mobile sensor networks (WMSNs) are the next 
logical evolutionary step for sensor networks in which 
mobility needs to be handled in all its forms. A motivating 
example could be a network of environmental monitoring 
sensors, mounted on vehicles, used to monitor pollution 
levels in a city. In this example, all the entities involved (i.e. 
the sensors, the users, and the sensed phenomenon as well) 
are moving. Likewise, one can conceptualize many such real-
time scenarios to deploy sensor networks in which one or 
more of the participating entities move.    

Like their static counterparts, the mobile sensor nodes are 
likely to be constrained with limited battery charge, memory 
and processing capability as well as operate under a limited 
transmission range. Two sensor nodes that are outside the 
transmission range of each other cannot communicate 
directly. The bandwidth of a WMSN is also expected to be as 
constrained as that of a static sensor network. Due to all of 
the above resource and operating constraints, it will not be a 
viable solution to require every sensor node to directly 
transmit their data to the sink over a longer distance. Also, if 
several signals are transmitted at the same time over a longer 
distance, it could lead to lot of interference and collisions. 
Thus, there is a need for employing energy-efficient data 
gathering algorithms that can effectively combine the data 
collected at these sensor nodes and send only the aggregated 
data (that is a representative of the entire network) to the 
sink. 

Tree-based data gathering is considered to be the most 
energy-efficient [23] in terms of the number of link 
transmissions; however, almost all of the tree-based data 
gathering algorithms have been proposed for static sensor 
networks without taking the mobility of the sensor nodes into 
consideration. In the presence of node mobility, the network 
topology changes dynamically with time – leading to 
frequent tree reconfigurations. Thus, mobility brings in an 
extra dimension of constraint to a WMSN and we need 
algorithms that can determine stable long-living data 
gathering trees that do not require frequent reconfigurations. 
To the best of our knowledge, we have not come across any 
work on stable data gathering trees for mobile sensor 
networks. The only tree-based data gathering algorithm we 
have come across for WMSNs is a shortest path-based 
spanning tree algorithm [9] wherein each sensor node is 
constrained to have at most a certain number of child nodes. 
Based on the results from the literature of mobile ad hoc 
networks (e.g., [10][11]), minimum hop shortest paths and 
trees in mobile network topologies are quite unstable and 
need to be frequently reconfigured. We could not find any 
other related work on tree-based data gathering for WMSNs.  

Most of the work on data gathering algorithms for 
WMSNs is focused around the use of clusters wherein 
researchers have tried to extend the classical LEACH (Low 
Energy Adaptive Clustering Hierarchy) [3] algorithm for 
dynamically changing network topologies. Variants of 
LEACH for WMSNs that have been proposed in the 
literature include those that take into consideration the 
available energy level [12] and the mobility-level [2] of the 
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nodes to decide on the choice of cluster heads; stability of the 
links between a regular node and its cluster head [4]; as well 
as set up a panel of cluster heads to facilitate cluster 
reconfiguration in the presence of node mobility [1]. Another 
category of research in WMSNs is to employ a mobile data 
collecting agent (e.g., [5][6][8]) that goes around the network 
in the shortest possible path towards the location from which 
the desired data is perceived to originate.  

In this research, we propose two distributed spanning tree-
based data gathering algorithms for WMSNs. One of these 
data gathering algorithms is based on the notion of link 
expiration time (LET) that is predicted according to a model 
used for the highly successful Flow-Oriented Routing 
Protocol (FORP) [13], a stable unicast routing protocol for 
mobile ad hoc networks. The LET-DG tree is a rooted 
directed spanning tree determined in a distributed fashion on 
a network graph comprising of links whose weights are the 
predicted expiration time. The LET-DG tree has been 
observed to yield long-living stable trees that exist for a 
longer time. As observed in the simulation studies of this 
paper, the drawback of using stable trees is that they tend to 
overuse certain nodes (especially the intermediate nodes of 
the data gathering tree) and lead to their premature failure. 
As sensor networks are often deployed with higher density, 
one or more node failures do not immediately bring the 
network to a halt. The live sensor nodes (the nodes that still 
have a positive available energy) maintain the coverage and 
connectivity of the underlying network for a longer time. 
Nevertheless, the unfairness of node usage persists with 
stable data gathering trees. As an alternative, we propose a 
second data gathering algorithm that is based on a distributed 
implementation of the minimum-distance spanning tree 
(MST) algorithm run on a network graph comprising of links 
whose weights are the Euclidean distance between the 
constituent end nodes. The MST-DG trees have been 
observed to yield a much longer node and network lifetimes, 
at the cost of frequent tree reconfigurations.  

The rest of the paper is organized as follows: Section 2 
presents the system model, including the models for the link 
expiration time and energy consumption, as well as states the 
assumptions. Section 3 describes the proposed algorithm to 
determine the LET-DG trees in a distributed fashion. Section 
4 presents a variation of the LET-DG algorithm to determine 
minimum-distance based MST-DG trees. Section 5 presents 
an exhaustive simulation-based comparison of the LET-DG 
and MST-DG trees with respect to performance metrics such 
as the tree lifetime and the node and network lifetimes (due 
to disconnection) along with a distribution of the probability 
of node failures. Section 6 concludes the paper. Note that 
most of the performance comparison studies in the sensor 
network literature stop their simulations with the first node 
failure. In this paper, we continue beyond the first node 
failure and keep track of the time and distribution of the 
subsequent node failures. Throughout the paper, the terms 
‘data aggregation’ and ‘data gathering’, ‘edge’ and ‘link’ are 
used interchangeably. They mean the same. 

2. System Model, Energy Consumption Model 
and Assumptions 

The system model adopted for the data gathering algorithms 
presented in this paper can be summarized as follows: 

(i) The underlying network graph considered in the 
construction of the communication topology used for 
data gathering is a unit disk graph [20] constructed 
assuming each sensor node has a fixed transmission 
range, R. There exists a link between any two nodes in a 
unit disk graph if and only if the physical distance 
between the two end nodes of the link is ≤ the 
transmission range, R.  

(ii)  The data gathering algorithms operate in several rounds, 
and during each round, data from the sensor nodes are 
collected, aggregated and forwarded to the sink through 
the data gathering tree (LET-DG or MST-DG tree) 
rooted at a leader node.  

(iii)  The leader node of a data gathering tree remains the 
same as long as the tree exists and is randomly chosen by 
the sink every time a new tree needs to be determined. 

(iv) LET-DG Tree: The predicted link expiration time (LET) 
of a link i – j between two nodes i and j, currently at (Xi, 
Yi) and (Xj, Yj), and moving with velocities vi and vj in 
directions θi and θj (with respect to the positive X-axis) 
is computed using the formula proposed in [3]: 
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where a = vi*cosθi – vj*cosθj; b = Xi – Xj; c = vi*sinθi – 
vj*sinθj; d = Yi – Yj 

(v) MST-DG Tree: The Euclidean distance for a link i – j 
between two nodes i and j, currently at (Xi, Yi) and (Xj, 

Yj) is given by: 22 )()( jiji YYXX −+− ………….. (2) 

 
The energy consumption model used is a first order radio 

model [15] that has been also used in several of the well-
known previous work (e.g., [3][16]) in the literature. 
According to this model, the energy expended by a radio to 
run the transmitter or receiver circuitry is Eelec = 50 nJ/bit and 

∈amp= 100 pJ/bit/m2 for the transmitter amplifier. The 

radios are turned off when a node wants to avoid receiving 
unintended transmissions.  
(i) The energy lost in transmitting a k-bit message over a 

distance d is: ETX (k, d) = Eelec* k +∈amp*k* d2.  

(ii)  The energy lost in receiving a k-bit message is given by: 
ERX (k) = Eelec* k. 

(iii)  During a network-wide flooding of a control message 
(for example, the tree establishment messages as 
described in Sections 3 and 4), each node is assumed to 
lose energy corresponding to transmission over the entire 
transmission range of the node and to receive the 
message from each of its neighbors. In networks of high 
density, the sum of the energy lost at a node due to 
reception of the broadcast message from all of its 
neighbors is often more than the energy lost due to 
transmitting the message.   

 
The key assumptions behind the two data gathering 

algorithms are as follows: 
(i) A sensor node is able to obtain its current location, 

velocity and direction of motion (with respect to the 
positive X-axis) at any point of time and also includes 
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the same as a Location Update Vector (LUV) in the 
TREE-CONSTRUCT message broadcast to its 
neighborhood at the time of constructing the data 
gathering trees (refer Sections 3 and 4). With the 
inclusion of a LUV in the TREE-CONSTRUCT 
message, we avoid the need to periodically exchange 
beacons in the neighborhood. 

(ii)  For the LET-DG trees, a sensor node maintains a LET-
table comprising of the estimates of the LET values to 
each of its neighbor nodes based on the latest TREE-
CONSTRUCT messages received from them. For the 
MST-DG trees, a sensor node maintains a Distance-table 
comprising of estimates of the Euclidean distance with 
the neighbor nodes that sent it the TREE-CONSTRUCT 
message. 

(iii)  Sensor nodes are assumed to be both TDMA (Time 
Division Multiple Access) and CDMA (Code Division 
Multiple Access)-enabled [14]. Every upstream node 
broadcasts a time schedule (for data gathering) to its 
immediate downstream nodes; a downstream node 
transmits its data to the upstream node according to this 
schedule. Such a TDMA-based communication between 
every upstream node and its immediate downstream 
child nodes can occur in parallel, with each upstream 
node using a unique CDMA code. 

(iv) We assume the size of the aggregated data packet to be 
the same as the size of the individual data packets sent 
by the sensor nodes. In other words, aggregation at any 
node does not result in increase in the size of the data 
packets transmitted from the sensor nodes towards the 
sink.  

3. Link Expiration Time-based Data 
Gathering (LET-DG) Algorithm 

The LET-DG algorithm is a distributed implementation of 
the maximum spanning tree algorithm [21] on a weighted 
network graph with the edge weights modeled as the 
predicted link expiration time (LET) of the constituent end 
nodes. The objective of a maximum spanning tree algorithm 
is to determine a spanning tree such that the sum of the edge 
weights is the maximum. Our aim is to determine a 
maximum-LET spanning tree for mobile sensor networks 
such that the sum of the LETs of the constituent links of the 
spanning tree is the maximum. The LET-DG tree is a rooted 
maximum-LET spanning tree with the root being the leader 
node chosen by the sink (as explained in Section 3.2). 

3.1 Initializations of State Information on Data 
Gathering Tree-Configuration 

 

Each sensor node locally maintains its best known state 
information regarding the data gathering tree-configuration, 
containing the following fields: estimated node weight, 
upstream node id, tree level, LEADER node id, and sequence 
number. The LEADER node id corresponds to the id of the 
root node of the data gathering tree. The sequence number 
field is the latest known sequence number for a data 
gathering tree involving the sensor node. The sequence 
number of a data gathering tree is set during the tree 
construction process (as explained in Section 3.2). The 
upstream node id is the id of the immediate parent node for 
the sensor node in the tree. If a sensor node is the LEADER 

node (i.e., the root), then its upstream node id is set to 
NULL. The estimated node weight is the best known weight 
corresponding to the position of the sensor node in the tree. 
The tree level field is a measure of the distance of the sensor 
node from the root node of the tree. When a new data 
gathering tree needs to be configured (either initially at 
network startup or when the last known tree is broken), the 
values to the fields of the tree-configuration state information 
are set as follows, indicated in parenthesis next to the field 
name: 
� At the LEADER node: estimated node weight (+∞), 

upstream node id (NULL), tree level (0), LEADER node 
id (self) and sequence number (the latest sequence 
number informed by the sink node through the TREE-
INITIATE message for the new tree to be configured).  

� At a regular sensor node (i.e., a non-LEADER node): 
estimated node weight (-∞), upstream node id (NULL), 
tree level (+∞), LEADER node id (NULL) and sequence 
number (the sequence number of the last known tree if 
one existed; otherwise, set to -1).  

In the simulations, the Positive Infinity (+∞) and Negative 
Infinity (-∞) will be represented respectively as very large 
positive and very small negative values that fall outside the 
range of the possible values for the link weight. 

3.2 Sink – Selection of the Leader Node 
 

Whenever a sink node fails to receive aggregated data from 
the leader node of the LET-DG tree, the sink randomly 
chooses a new leader node from the list of available nodes 
currently perceived to exist with a positive residual energy, 
and sends it a TREE-INITIATE message to start constructing 
a tree rooted at the chosen leader node (LEADER). The sink 
includes a sequence number (a monotonically increasing 
value maintained at the sink, starting from 0) for the tree 
construction process in the TREE-INITIATE message, and 
the leader node includes it in its tree construction message 
(see Section 3.3) to avoid replay errors involving outdated 
links. If the leader node is alive (i.e., it has positive available 
energy), then it responds back with a TREE-INITIATE-ACK 
message acknowledging that it will start the flooding-based 
tree discovery. If the TREE-INITIATE-ACK message is not 
received within a certain time, the sink considers the chosen 
sensor node to be not alive, removes it from the list of 
available nodes, and sends the TREE-INITIATE message 
(with a higher sequence number, to avoid any parallel tree 
construction occurring in the network) to another randomly 
chosen sensor node from the list of available nodes. The 
above procedure is repeated until the sink successfully finds 
a leader node that accepts to initiate the tree construction 
process. 

3.3 Initiation of the TREE-CONSTRUCT Message 

The leader node broadcasts a TREE-CONSTRUCT message 
containing a 6-element Tree-Configuration tuple <sequence 
number, LEADER node id, sender node id, tree level, 
sender’s estimated weight, upstream node id> as well as a 
location update vector (LUV) comprising of the 4-element 
tuple <X-coordinate, Y-coordinate, Velocity, Direction of 
motion - Angle with respect to the positive X-axis> to its 
neighbor nodes. The sequence number is the value sent by 
the sink to the leader node for the specific tree construction 
process. If the sender node is the LEADER, it sets the 
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upstream node id to its own id; while the other nodes set the 
upstream node id to be the id of the node that they perceive 
to be their best choice for the upstream node that can connect 
them to the tree. In the TREE-CONSTRUCT message, the 
leader node sets the sender’s estimated weight value to +∞ 
and the value of the tree level field to 0. 

3.4 Propagation of the TREE-CONSTRUCT 
Message and Tree Establishment 

When a node receives the TREE-CONSTRUCT message 
with a higher sequence number for the first time, it treats it as 
a sign of tree reconfiguration and resets, if it has not already 
done so, the different fields of the local tree-configuration 
state information to their initial values as listed in Section 
3.2. The receiving node then calculates the weight of the link 
to the neighbor node from which the message was received. 
A TREE-CONSTRUCT message is accepted at a node for a 
weight/tree configuration update and rebroadcast (in the 
neighborhood of the node) if the following conditions are 
met:  
(i) The upstream node id is not equal to the id of the node 

itself.  
(ii)  The value of the tree level field in the message is lower 

than or equal to the current tree level field value at the 
node.  

(iii)  The estimated weight at the node is lower than the 
sender’s estimated weight. 

(iv) The estimated weight at the node is lower than the 
predicted expiration time of the link (LET, calculated 
according to equation 1) on which the TREE-
CONSTRUCT message was received. 

If all the above conditions are true, then a node receiving 
the TREE-CONSTRUCT message accepts the message to 
update its position in the tree. Note that conditions (i) and (ii) 
are included to ensure there is no looping. The receiver node 
selects the sender node as its upstream node for 
joining/connecting to the tree, sets its estimated weight in the 
tree as the minimum of the sender node’s estimated weight 
for the tree and LET of the link through which the TREE-
CONSTRUCT message was received, and also sets the value 
of its tree level local state information to one more than the 
value of the tree level field in the TREE-CONSTRUCT 
message. If its weight is updated, the receiver node sends a 
TREE-JOIN-CHILD message to the upstream sender node 
indicating the decision to connect to the tree by becoming its 
child node. The receiver node also decides to further 
broadcast the TREE-CONSTRUCT message to its neighbors 
by replacing the LUV of the sender node with its own LUV, 
the sender node id with its own id, the sender’s estimated 
weight with its recently updated weight in the tree, the 
upstream node id set to the id of the node through which it 
has decided to join/connect to the tree, and the tree level 
value in the message incremented by one (matching to the 
updated value of the tree level local state information at the 
node). The LEADER node id and the sequence number fields 
are retained as it is in the TREE-CONSTRUCT message. 

A node follows the same procedure as explained above 
when it receives a TREE-CONSTRUCT message with the 
highest known sequence number from any other neighbor 
node. In other words, a TREE-CONSTRUCT message 
corresponding to the latest broadcast process (decided using 
the sequence number) is accepted for an update and re-

broadcast only if it can increase the estimated weight of the 
node to connect to the tree without introducing any looping. 
The algorithm executes as the TREE-CONSTRUCT message 
propagates around the sensor network reaching every sensor 
node. As part of this flooding process, each sensor node is 
guaranteed to accept the TREE-CONSTRUCT message for a 
weight/tree-configuration update at least once and broadcast 
the message in its neighborhood. This is because, the initial 
estimated weight of a sensor node to join the tree is –∞, and 
the leader node starts with a positive ∞ value and the LET 
values for the links are always positive. The objective of the 
LET-DG algorithm is to connect each node with the largest 
possible weight value in the tree – a measure of the estimated 
lifetime of the tree. 

3.5 Propagation of the TREE-LINK-FAILURE 
Message 

When an upstream sensor node finds out that a link to one of 
its downstream child nodes is broken due to failure to receive 
aggregated data packets, the upstream node initiates a TREE-
LINK-FAILURE message and includes in it the sequence 
number that was used in the TREE-CONSTRUCT message 
corresponding to the most recently used flooding process. 
The TREE-LINK-FAILURE message is essentially reverse 
broadcast along the edges of the sub tree proceeding towards 
the leader node, starting from the upstream node of the 
broken link. Similarly, the downstream node detects the link 
failure when it fails to receive a TDMA-schedule from its 
upstream node for the next round of data aggregation and 
initiates a TREE-LINK-FAILURE message to inform about 
the tree failure to the nodes in the sub tree rooted at it. If an 
intermediate node and/or leaf node does not receive the 
TREE-LINK-FAILURE message, it continues to wait for the 
aggregated data packets from its perceived downstream 
nodes or the TDMA-schedule from its upstream node until it 
learns about the tree failure through the broadcast of a new 
TREE-CONSTRUCT message with a sequence number 
greater than that of the most recently used tree. 

4. Minimum-distance Spanning Tree-based 
Data Gathering (MST-DG) Algorithm 

The MST-DG algorithm is a distributed implementation of 
the minimum spanning tree algorithm [21] on a weighted 
network graph with the edge weights modeled as the 
Euclidean distance between the constituent end nodes. Our 
aim is to determine a minimum-distance spanning tree for 
wireless mobile sensor networks, such that the sum of the 
distances of the constituent links of the spanning tree is the 
minimum. Since a sensor node loses more energy to transmit 
over a larger distance, we reduce the transmission energy loss 
across the whole spanning tree by setting the edge weight to 
be the Euclidean distance between the constituent end nodes. 
The MST-DG tree is a rooted minimum-distance spanning 
tree with the root being the leader node chosen by the sink 
(as explained in Section 3.2). The overall procedure to 
construct the MST-DG tree is the same as that of the LET-
DG tree, except the differences in the criteria used for 
selecting the links that form part of the tree. In this section, 
we only highlight these differences in detail and provide a 
brief outline of the entire algorithm for the sake of 
completeness. 
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The constituent fields of the MST data gathering tree-

configuration state information are the same as those 
mentioned in Section 3.1. The initial values for the upstream 
node id, sequence number, LEADER node id and the tree 
level fields at the LEADER node and the regular sensor 
nodes are the same as those listed for these nodes in Section 
3.1. To begin the process of constructing the MST-DG tree, 
the sink node randomly chooses a leader node (as is done in 
the case of LET-DG tree, see Section 3.2) and sends it a 
unique sequence number, greater than the value used for the 
previous tree. The initial estimates of the weight at a node to 
connect to the tree are rather different though for the MST-
DG tree. The weight estimate at the LEADER node is 0 and 
the estimate at every other node is +∞. The LEADER node 
broadcasts a TREE-CONSTRUCT message in its 
neighborhood; the message contains the same 6-element 
Tree-Configuration tuple and a 4-element LUV as indicated 
in Section 3.3. A node only processes TREE-CONSTRUCT 
messages that are received with the largest known sequence 
number so far or higher. The criteria used at a receiving node 
to accept the message for a weight/ tree configuration update 
is as detailed below: 
(iv) The upstream node id is not equal to the id of the node 

itself (same as in Section 3.4) 
(v) The value of the tree level field in the message is lower 

than or equal to the current tree level field value at the 
node (same as in Section 3.4).  

(vi) The estimated weight at the node is greater than the 
sender’s estimated weight. 

(vii)  The estimated weight at the node is greater than the 
predicted Euclidean distance of the link (calculated 
according to equation 2) on which the TREE-
CONSTRUCT message was received. 

 
If all the above four conditions are met, then a receiving 

node decides to join or update its connection to the tree by 
becoming a child node of the node that sent the TREE-
CONSTRUCT message, and sends to it the TREE-JOIN-
CHILD message. It sets its estimated weight in the tree to be 
the maximum of the sender’s estimated weight and the 
Euclidean distance of the link on which the TREE-
CONSTRCT message was received and sets its tree level 
value to one more than the value in the TREE-CONSTRUCT 
message. The receiving node also rebroadcasts the TREE-
CONSTRUCT message in its neighborhood by replacing the 
LUV of the sender node with its own LUV, the tree-level 
value to one more than the current value in the message, the 
sender node id with its own id, the estimated sender’s weight 
with its own recently updated weight in the tree, and the 
upstream node id with the id of the node to which it sent the 
TREE-JOIN-CHILD message. Any subsequently received 
TREE-CONSTRUCT message is accepted at a node for an 
update and rebroadcast only if it can decrease the estimated 
weight of the node in the tree. The rest of the procedure in 
the propagation of the TREE-CONSTRUCT message is the 
same as that explained in Section 3.4.  

Note that every sensor node is expected to update its 
estimated weight in the tree at least once because the initial 
estimated weight at a sensor node is +∞, and the values for 
the sender’s weight in the TREE-CONSTRUCT message 
broadcast by the LEADER node is 0, and the Euclidean 
distance values are always greater than 0. The objective of 

the MST-DG algorithm is to connect each node with the 
lowest possible weight value in the tree – a measure of the 
energy consumption and fairness of node usage. The 
procedure to detect a link failure and propagate the TREE-
LINK-FAILURE messages initiated by the upstream and 
downstream nodes of the broken link is the same as 
explained in Section 3.5.  

5. Simulations 

In this section, we present the results from simulation studies 
evaluating the performance of the LET-DG and MST-DG 
data gathering trees under diverse conditions of network 
density and mobility. The simulations were conducted in ns-2 
(version 2.31) [18]. The Medium Access Control (MAC) 
layer model is the IEEE 802.11 [19] model. The network 
dimension is 100m x 100m. The number of nodes in the 
network is 100 and the nodes are uniform-randomly 
distributed throughout the network. The sink is located at 
(50, 50), the center of the network field. The transmission 
range per sensor node is varied from 20m to 50m, in 
increments of 5m. For brevity, we present only results 
obtained for transmission ranges of 25m, 30m (representative 
of moderate density, with connectivity of 96% and above) 
and 40 m (high density, with 100% connectivity).  

Simulations are conducted for two kinds of energy 
scenarios: One scenario wherein each node is supplied with 
abundant supply of energy (50 J per node) and there are no 
node failures due to exhaustion of battery charge; the 
simulations in these sufficient energy scenarios are 
conducted for 1000 seconds. The second scenario is an 
energy-constrained scenario in which each node is supplied 
with a limited initial energy (2 J per node) and the 
simulations are conducted until the network of live sensor 
nodes gets disconnected due to the failures of one or more 
nodes. We conduct constant-bit rate data gathering at the rate 
of 4 rounds per second (one round for every 0.25 seconds). 
The size of the data packet is 2000 bits; the size of the 
control messages used in the tree formation phase is assumed 
to be 400 bits, which is sufficiently large enough to 
accommodate the 6-element Tree-Configuration tuple and the 
4-element Location Update Vector (LUV) tuple of the 
TREE-CONSTRUCT message, allocated as follows:  

• Tree-Configuration tuple: sequence number (int, 2 
bytes); LEADER node id (int, 2 bytes); sender node 
id (int, 2 bytes); tree level (int, 2 bytes); sender’s 
estimated weight (double, 8 bytes); upstream node 
id (int, 2 bytes) 

• LUV tuple: X-coordinate (double, 8 bytes); Y-
coordinate (double, 8 bytes); Velocity (double, 8 
bytes); Direction of motion – Angle with respect to 
the positive X-axis (double, 8 bytes)  

The node mobility model used is the well-known Random 
Waypoint mobility model [17] with the maximum node 
velocity being 3 m/s (for low mobility scenarios) and 10 m/s 
(for high mobility scenarios). According to this model, each 
node chooses a random target location to move with a 
velocity uniform-randomly chosen from [0,…, vmax], and 
after moving to the chosen destination location, the node 
continues to move by randomly choosing another new 
location and a new velocity. Each node continues to move 
like this, independent of the other nodes and also 
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independent of its mobility history, until the end of the 
simulation. For a given value of vmax, we also vary the 
dynamicity of the network by conducting the simulations 
with a variable number of static nodes (out of the 100 nodes) 
in the network. The values for the number of static nodes 
used are: 0 (all nodes are mobile), 20, 50 and 80.  

5.1 Performance Metrics 
 

We generated 200 mobility profiles of the network for a total 
duration of 6000 seconds, for every combination of the 
maximum node velocity and the number of static nodes. 
Every data point in the results presented in Figures 1 through 
6 is averaged over these 200 mobility profiles. While the tree 
lifetime is measured for both the sufficient energy and 
energy-constrained (appropriately prefixed as ‘EC’ next to 
the algorithm names) scenarios, the node and network 
lifetimes are measured only for the energy-constrained 
scenarios.  

The performance metrics measured in the simulations are:  
(i) Tree Lifetime – the duration for which a data gathering 

tree existed, averaged over the entire simulation time 
period. 

(ii)  Node Lifetime – measured as the time of first node 
failure due to exhaustion of battery charge. 

(iii)  Network Lifetime – measured as the time of 
disconnection of the network of live sensor nodes (i.e., 
the sensor nodes that have positive available battery 
charge).  

To obtain the distribution of node failure times, we 
counted the frequency of the number of node failures, 
ranging from 1 to 100, in each of the 200 mobility 
profile files for every combination of transmission range, 
maximum node velocity and number of static nodes. The 
probability for ‘x’ number of node failures (x from 
ranging from 1 to 100 as we have a total of 100 nodes in 
our network for all the simulations) for a given 
combination of the operating conditions is measured as 
the number of mobility profile files that reported x 
number of node failures divided by 200, which is the 
total number of mobility profiles used for every 
combination of maximum node velocity and number of 
static nodes. Similarly, we keep track of the time at 
which ‘x’ (x ranging from 1 to 100) number of node 
failures occurred in each of the 200 mobility profiles for 
a given combination of operating conditions and the 
values for the time of node failures reported in Figures 5 
and 6 is an average of these data collected over all the 
mobility profile files. We discuss the results for 
distribution of the time and probability of node failures 
along with the node and network failure times in Section 
5.3.  

5.2 Tree Lifetime 
 

We measure the tree lifetime for both the sufficient energy 
scenarios (to capture the impact of network dynamicity – i.e., 
variations in node velocity and the number of static nodes) 
and the energy-constrained scenarios (to capture the impact 
of tree reconfigurations induced by node failures, in addition 
to network dynamicity). We say a tree exists topologically if 
the physical Euclidean distance between the end nodes of the 
links constituting the tree is within the transmission range of 

the nodes. In the energy-constrained scenarios, even though a 
data gathering tree may topologically exist, the tree would 
require reconfiguration (i.e., a new discovery through 
network-wide flooding of the TREE-CONSTRUCT 
messages) if one or more nodes in the tree fail due to 
exhaustion of battery charge. This has an impact on the 
lifetime of the data gathering trees observed in the 
simulations, and this is what we capture by measuring the 
tree lifetime under energy-constrained scenarios. Since a tree 
also needs to be reconfigured due to node mobility, the 
lifetime of the data gathering trees observed for energy-
constrained scenarios is always less than or equal to that 
observed for sufficient energy scenarios. This statement 
holds true for both the LET-DG and MST-DG trees.  

As the LET-DG trees are inherently more topologically 
stable than the MST-DG trees, we observe the difference in 
the absolute magnitudes of the tree lifetimes for the sufficient 
energy and energy-constrained scenarios to be relatively 
larger in the case of the LET-DG trees, especially for 
moderate transmission range per node. However, at larger 
transmission ranges per node, the LET-DG trees sustain 
premature node failures due to continued use of certain 
intermediate nodes for stable data gathering; as a result, the 
MST-DG trees – with their tendency to more fairly use the 
nodes – show a relatively larger difference in the tree lifetime 
at sufficient energy scenarios compared to energy-
constrained scenarios. 

 

 

Figure 1(a). Transmission Range = 25 m 
 

 

Figure 1(b). Transmission Range = 30 m 
 

 

Figure 1(c). Transmission Range = 40 m 

Figure 1. Average Tree Lifetime                                     
(Low Node Mobility, vmax = 3 m/s) 
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For fixed node mobility, the magnitude difference in the 

tree lifetime between the sufficient energy and energy-
constrained scenarios for both the data gathering trees 
increases with increase in the transmission range per node. 
This can be attributed to the increased energy expenditure 
incurred at the nodes at larger transmission ranges, leading to 
certain premature node failures, as well as to a relatively 
longer link lifetime (i.e., the trees tend to topologically exist 
for a longer time at larger transmission ranges). At larger 
transmission ranges, the constituent end nodes of a link have 
more degrees of freedom to move around and still be within 
the transmission range of each other for a longer time. On the 
other hand, for fixed transmission range per node, the 
difference in the tree lifetime between the sufficient and 
energy-constrained scenarios decreases with increase in vmax. 
This is as expected because the trees have a relatively lower 
topological lifetime at high node velocities. For a given vmax 
and transmission range per node, the difference in the 
magnitude for the lifetime of the data gathering trees for the 
sufficient energy and energy-constrained scenarios increases 
with increase in the number of static nodes. This can be 
attributed to increase in the topological lifetime of the trees 
as the number of static nodes increases. 

 

 

Figure 2(a). Transmission Range = 25 m 
 

 

Figure 2(b). Transmission Range = 30 m 
 

 

Figure 2(c). Transmission Range = 40 m 

Figure 2. Average Tree Lifetime                                           
(Moderate-High Node Mobility,  vmax = 10 m/s) 

 
 

While comparing the magnitude difference between the 
lifetime of the LET-DG and MST-DG trees, we observe that 
the difference in magnitude decreases with increase in the 
transmission range per node as well as with increase in 
network dynamicity (i.e. as more nodes are mobile). For a 
given maximum node velocity, the LET-DG trees incur a 
much longer lifetime compared to the MST-DG trees when 
operated at moderate transmission ranges per node and a 
larger proportion of static nodes. In the sufficient energy 
scenarios, when operated under moderate transmission ranges 
per node, the difference in the tree lifetime can be as large as 
25% when all the 100 nodes are mobile and as large as 55-
60% when operated with 80 static and 20 mobile nodes. 
Under energy-constrained scenarios, especially at larger node 
mobility, as we increase the transmission range per node, the 
lifetime of the LET-DG trees converge to that of the MST-
DG trees. This can be attributed to the premature node 
failures in the LET-DG trees. For a given maximum node 
velocity and transmission range per node, as we increase the 
number of static nodes from 0 to 80 (out of a total of 100 
nodes) the LET-DG trees incur about 60-90% larger lifetime 
and the MST-DG trees incur about 50-60% larger lifetime.    

For both the sufficient energy and energy-constrained 
scenarios, for each data gathering tree, for a fixed 
transmission range per node, as we increase the maximum 
node velocity by more than 3 times (i.e., from 3 m/s to 10 
m/s), we observe a more or less proportional decrease in the 
tree lifetime (i.e., the lifetime of the trees decreases by about 
1/3rd). For a fixed maximum node velocity, as we increase the 
transmission range per node from 25m to 40m, we observe 
more than a proportional increase in the lifetime for both data 
gathering trees. This can be attributed to the significantly 
high network connectivity (more than a linear increase) 
obtained at larger transmission ranges per node. 

5.3 Node Lifetime and Network Lifetime 
 

We observe a stability-node/network lifetime tradeoff 
between the LET-DG and MST-DG trees. While the LET-
DG trees have been credited for higher stability, they are 
unfair with respect to node usage. An intermediate node that 
lies on a stable tree tends to get used for a longer time and 
ends up spending more energy to receive data from all of its 
child nodes, aggregate them and transmit to an upstream 
node; whereas, the leaf node of a data gathering tree only 
spends energy to transmit its data to the upstream node.  
 

 

Figure 3(a). Transmission Range = 25 m 
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Figure 3(b). Transmission Range = 30 m 
 

 

Figure 3(c). Transmission Range = 40 m 

Figure 3. Average Node Lifetime and Network Lifetime              
(Low Node Mobility, vmax = 3 m/s) 

With a shallow structure and more leaf nodes, the LET-
DG trees are vulnerable for premature node failures, as 
observed in Figures 3 – 6. However, the LET-DG trees have 
been observed to significantly offset the early node failures 
with a much better network lifetime, attributed to the lower 
energy spent to reconfigure the trees and the possibility of the 
energy-rich leaf nodes (that were lightly used before and 
during the first few node failures) becoming intermediate 
nodes in the subsequently reconfigured trees after the initial 
set of node failures. The impact of the latter factor could be 
especially observed in Figures 5 and 6 wherein we show the 
distribution of the node failure times and the probability of 
node failures.  
 

 

Figure 4(a). Transmission Range = 25 m 
 

 

Figure 4(b). Transmission Range = 30 m 
 

 

Figure 4(c). Transmission Range = 40 m 

Figure 4. Average Node Lifetime and Network Lifetime              
(Moderate-High Node Mobility, vmax = 10 m/s) 

 

After the initial set of node failures, attributed to the 
excessive use of certain nodes as part of the stable trees, we 
observe the LET-DG trees to have a much lower probability 
of node failure for much of the network’s lifetime compared 
to the MST-DG trees. This could be attributed to the 
relatively equal expenditure of energy across all the nodes of 
a MST-DG tree. With fewer leaf nodes and relatively more 
frequent tree reconfigurations, we expect almost all of the 
nodes in a MST-DG tree to lose about the same amount of 
energy during the network lifetime. This could be confirmed 
by observing a much flatter curve for the probability of node 
failure (closer to 1) for a sufficiently larger number of node 
failures. From figures 3 and 4, we observe the network 
lifetime incurred for the MST-DG trees to be mostly about 
15-30% more than that of the node lifetime (and at best, 70% 
larger when operated with 80 static nodes at vmax of 10 m/s 
and transmission range per node of 40m); whereas, the 
network lifetime for the LET-DG trees to be mostly 50-125% 
more than that of the node lifetime (and at best, can be as 
large as 200% more when operated with 80 static nodes at 
vmax of 10 m/s and transmission range per node of 40m). 
 

 

Figure 5(a). Transmission Range = 30 m, 0 Static Nodes 
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Figure 5(b). Transmission Range = 30 m, 80 Static Nodes 
 

 

Figure 5(c). Transmission Range = 40 m, 0 Static Nodes 
 

 

Figure 5(d). Transmission Range = 40 m, 80 Static Nodes 

Figure 5. Distribution of Node Failure Times and Probability 
of Node Failures [vmax = 3 m/s] 

 

Figure 6(a). Transmission Range = 30 m, 0 Static Nodes 
 

 

Figure 6(b). Transmission Range = 30 m, 80 Static Nodes 
 

 

Figure 6(c). Transmission Range = 40 m, 0 Static Nodes 
 

 

Figure 6(d). Transmission Range = 40 m, 80 Static Nodes 

Figure 6. Distribution of Node Failure Times and Probability 
of Node Failures [vmax = 10 m/s] 

 
The impact of the difference in the node usage policies of 

the two data gathering trees can be observed in the difference 
in the magnitudes for the node lifetimes (the time of first 
node failure) and the network lifetimes (the time by which 
the network of live nodes, nodes with positive available 
energy, getting disconnected due to failure of peer nodes) for 
the two data gathering trees. We observe the MST-DG trees 
to incur about 85-150% larger node lifetime than the LET-
DG trees for different combinations of node mobility, # static 
nodes and transmission ranges per node. On the other hand, 
the network lifetime sustained for the MST-DG trees is 
hardly 10-15% more than that of the LET-DG trees and is 
only at most 25% larger.  

In the case of LET-DG trees, one can observe from 
Figures 3 and 4 that for a given level of network dynamicity 
(vmax and the number of static nodes), the node lifetime 
substantially decreases (as large as by 25%) with increase in 
the transmission range per node, whereas the network 
lifetime decreases only marginally (by at most 10%) with 
increase in the transmission range per node. The decrease in 
the node lifetime with increase in transmission range can be 
attributed to the increase in the transmission energy loss and 
receipt of data from several downstream nodes when 
operated at higher transmission range. However, when 
operated at a higher transmission range, LET-DG trees 
discover more stable routes as well as balance the 
distribution of the role of the intermediate nodes and leaf 
nodes more evenly, resulting in a significant increase in the 
time of node failures, beyond the first node failure. In the 
case of MST-DG trees, we observe a very slight decrease in 
node lifetime (at most 5%) with increase in transmission 
range per node. For the network lifetime, we observe a 
decrease of at most 15% at vmax = 3 m/s and an increase of at 
most 15% at vmax = 10 m/s. We attribute the better 
performance of MST-DG trees with respect to network 
lifetime at higher node velocities and transmission range per 
node to the increase in the fairness of node usage, and the 



205 
International Journal of Communication Networks and Information Security (IJCNIS)                                    Vol. 4, No. 3, December 2012 

 
possibility of the role of “intermediate node” to be rotated 
among the nodes with regular reconfiguration of the data 
gathering tree at high node mobility. The energy-efficiency 
associated with lower Euclidean distance of the links also 
helps to contain the transmission energy loss and aid in 
increasing the network lifetime. 

Both the LET-DG and MST-DG trees are observed to 
demonstrate larger node and network lifetimes when operated 
in networks that have a mix of both static and mobile nodes 
vis-à-vis a network comprising of only mobile nodes. For a 
given value of vmax and transmission range per node, both the 
data gathering trees have been observed to sustain about 20-
25% larger node lifetime when operated in a network that is a 
mix of 80 static and 20 mobile nodes compared to operating 
in a network of 100 mobile nodes. Under similar conditions, 
the network lifetimes incurred with both the data gathering 
trees have been observed to be about 50-70% larger. The 
MST-DG trees, with their vulnerability to break quickly with 
time in a network replete with mobile nodes, are observed to 
be the most benefitted with respect to node and network 
lifetimes when operated in networks that are a mix of static 
and mobile nodes.  

6. Conclusions 

We have proposed two distributed algorithms to construct (i) 
stable predicted link expiration time-based data gathering 
(LET-DG) trees and (ii) energy-efficient minimum-distance 
spanning tree based data gathering (MST-DG) trees that 
incur larger node and network lifetimes. The two algorithms 
do not require any periodic beacon exchange in the 
neighborhood of the sensor nodes. Performance comparison 
studies of the two data gathering trees under diverse 
simulation conditions of network dynamicity (variable node 
velocity and number of static nodes) and density (variable 
transmission range per node) illustrate a complex stability vs. 
node-network lifetime tradeoff that has not been explored so 
far in the context of data gathering in wireless mobile sensor 
networks. The LET-DG trees sustain for a longer time; 
however due to repeated use of certain nodes as part of stable 
data gathering, the LET-DG trees suffer from pre-mature 
node failures. Still, the network lifetime observed with the 
LET-DG trees is only at most 25% less than that observed 
with the MST-DG trees. The MST-DG trees incur a 
significantly longer node lifetime (time of first node failure) 
than that of the LET-DG trees by as large as 85-150%; 
however, due to frequent tree reconfigurations and larger 
depth of the tree, almost all the nodes in a MST-DG tree lose 
about the same amount of energy. As a result, even though 
the first node failure occurs after a prolonged time, the 
subsequent node failures occur more quickly, within a short 
span of time, contributing to only about 15-30% additional 
network lifetime beyond the time of first node failure.  

With respect to the impact of the operating conditions on 
the different performance metrics, we observe the lifetime of 
the LET-DG trees to be significantly larger than that of the 
MST-DG trees at low node mobility and moderate 
transmission ranges per node and converge to that of the 
MST-DG trees at higher node mobility and large 
transmission ranges per node. As we increase the number of 
static nodes, we observe the lifetime of LET-DG trees to 
increase at a relatively faster rate. The lifetime of both the 

LET-DG and MST-DG trees are observed to be lower at 
energy-constrained scenarios compared to those incurred at 
the sufficient energy scenarios. For each data gathering tree, 
the difference in the magnitude of lifetime (in energy-
constrained vs. sufficient energy scenarios) increases with 
increase in transmission range per node (for fixed node 
mobility) and decreases with increase in node mobility (for a 
fixed transmission range per node). For a fixed maximum 
node velocity and transmission range, the node and network 
lifetimes incurred with both the MST-DG and LET-DG trees 
substantially increase with increase in the number of static 
nodes.  
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