22 research outputs found

    A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Network

    Full text link
    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.Comment: 14 pages, 7 figures, 2 table

    Adaptive Body Area Networks Using Kinematics and Biosignals

    Get PDF
    The increasing penetration of wearable and implantable devices necessitates energy-efficient and robust ways of connecting them to each other and to the cloud. However, the wireless channel around the human body poses unique challenges such as a high and variable path-loss caused by frequent changes in the relative node positions as well as the surrounding environment. An adaptive wireless body area network (WBAN) scheme is presented that reconfigures the network by learning from body kinematics and biosignals. It has very low overhead since these signals are already captured by the WBAN sensor nodes to support their basic functionality. Periodic channel fluctuations in activities like walking can be exploited by reusing accelerometer data and scheduling packet transmissions at optimal times. Network states can be predicted based on changes in observed biosignals to reconfigure the network parameters in real time. A realistic body channel emulator that evaluates the path-loss for everyday human activities was developed to assess the efficacy of the proposed techniques. Simulation results show up to 41% improvement in packet delivery ratio (PDR) and up to 27% reduction in power consumption by intelligent scheduling at lower transmission power levels. Moreover, experimental results on a custom test-bed demonstrate an average PDR increase of 20% and 18% when using our adaptive EMG- and heart-rate-based transmission power control methods, respectively. The channel emulator and simulation code is made publicly available at https://github.com/a-moin/wban-pathloss.Comment: Accepted for publication in IEEE Journal of Biomedical and Health Informatic

    Analisis Dampak Variasi Data Transmisi pada Kinerja Protokol MAC Sistem Komunikasi Wireless Body Area Network

    Get PDF
    Protokol media access control (MAC) berperan menjamin keberhasilan transmisi data antar sensor nirkabel dan konsumsi daya pada Wireless Body Area Network (WBAN). Penelitian ini membandingkan unjuk kerja dua buah protocol MAC, yaitu T-MAC dan ZigbeeMAC pada sistem WBAN, pada laju kedatangan paket (λ) yang berbeda. Hasil simulasi menunjukan bahwa pada jaringan dengan λ rendah tingkat keberhasilan pengiriman paket antara protocol T-MAC dan ZigbeeMAC mencapai rata-rata 90% dari throughput maksimal walaupun pada kondisi tersebut kinerja ZigbeeMAC memiliki nilai lebih baik dibanding T-MAC. Pada laju kedatangan paket tinggi, throughput pada T-MAC memiliki perbedaan yang signifikan terhadap ZigbeeMAC. Pada keadaan terburuk troughput T-MAC adalah 88% dari throughput maksimal sedangkan Zigbee menurun hingga 43% dari throughput maksimal. Kosumsi daya pada ZigbeeMAC cenderung konstan untuk setiap laju kedatangan paket sedangkan pada T-MAC meningkat sejalan dengan pertambahan laju kedatangan paket. &nbsp

    The Wireless Body Area Sensor Networks and Routing Strategies: Nomenclature and Review of Literature

    Get PDF
    WBASN is an effective solution that has been proposed in terms of improving the solutions and there are varied benefits that have been achieved from the usage of WBASN solutions in communication, healthcare domain. From the review of stats on rising number of wireless devices and solutions that are coming up which is embraced by the people as wearable devices, implants for medical diagnostic solutions, etc. reflect upon the growing demand for effective models. However, the challenge is about effective performance of such solutions with optimal efficiency. Due to certain intrinsic factors like numerous standards that are available, and also due to the necessity for identifying the best solutions that are based on application requirements. Some of the key issues that have to be considered in the process of WBASN are about the impacts that are taking place from the wireless medium, the lifetime of batteries in the WBASN devices and the other significant condition like the coexistence of the systems among varied other wireless networks that are constituted in the proximity. In this study, scores of models that has been proposed pertaining to MAC protocols for WBASN solutions has been reviewed to understand the efficacy of the existing systems, and a scope for process improvement has been explored for conducting in detail research and developing a solution

    DTMP: Energy Consumption Reduction in Body Area Networks Using a Dynamic Traffic Management Protocol

    Get PDF
    Advances in medical sciences with other fields of science and technology is closely casual profound mutations in different branches of science and methods for providing medical services affect the lives of its descriptor. Wireless Body Area Network (WBAN) represents such a leap. Those networks excite new branches in the world of telemedicine. Small wireless sensors, to be quite precise and calculated, are installed in or on the body and create a WBAN that various vital statistics or environmental parameters sampling, processing and radio. These nodes allow independent monitoring of a person's location, in typical environments and for long periods and provide for the user and the medical, offer real-time feedback from the patient's health status. In this article, the introduction of WBAN and review issues and applications of medical sensor networks, to offer a protocol has been established that the threshold for data transmission reduces power consumption on sensor nodes, increasing the lifetime of the network and motion phase to increase the dynamics of the network. The proposed protocol in the network been compared with the SIMPLE and ATTEMPT protocols. Results indicate a significant reduction in energy consumption of sensors to reduce energy consumption the entire network

    A survey of potential security issues in existing wireless sensor network protocols

    Get PDF
    The increasing pervasiveness of wireless sensor networks (WSNs) in diverse application domains including critical infrastructure systems, sets an extremely high security bar in the design of WSN systems to exploit their full benefits, increasing trust while avoiding loss. Nevertheless, a combination of resource restrictions and the physical exposure of sensor devices inevitably cause such networks to be vulnerable to security threats, both external and internal. While several researchers have provided a set of open problems and challenges in WSN security and privacy, there is a gap in the systematic study of the security implications arising from the nature of existing communication protocols in WSNs. Therefore, we have carried out a deep-dive into the main security mechanisms and their effects on the most popular protocols and standards used in WSN deployments, i.e., IEEE 802.15.4, Berkeley media access control for low-power sensor networks, IPv6 over low-power wireless personal area networks, outing protocol for routing protocol for low-power and lossy networks (RPL), backpressure collection protocol, collection tree protocol, and constrained application protocol, where potential security threats and existing countermeasures are discussed at each layer of WSN stack. This paper culminates in a deeper analysis of network layer attacks deployed against the RPL routing protocol. We quantify the impact of individual attacks on the performance of a network using the Cooja network simulator. Finally, we discuss new research opportunities in network layer security and how to use Cooja as a benchmark for developing new defenses for WSN systems

    Prioritization-based adaptive emergency traffic medium access control protocol for wireless body area networks

    Get PDF
    Wireless Body Area Networks (WBANs) provide continuous monitoring of a patient by using heterogeneous Bio-Medical Sensor Nodes (BMSNs). WBANs pose unique constraints due to contention-based prioritized channel access, sporadic emergency traffic handling and emergency-based traffic adaptivity. In the existing medium access control protocols, the available contention-based prioritized channel access is incomplete due to the repetitions in backoff period ranges. The emergency traffic is considered based on traffic generation rate as well as sporadic emergency traffic that is not handled at multiple BMSNs during contention. In an emergency situation, non-emergency traffic is ignored, traffic is not adjusted dynamically with balanced throughput and energy consumption, and the energy of non-emergency traffic BMSNs is not preserved. In this research, prioritization-based adaptive emergency traffic Medium Access Control (MAC) protocol was designed to consider contention-based prioritized channel access for heterogenous BMSNs along with sporadic emergency traffic handling and dynamic adjustment of traffic in sporadic emergency situation. Firstly, a Traffic Class Prioritization based slotted-CSMA/CA (TCP-CSMA/CA) scheme was developed to provide contention-based prioritized channel access by removing repetitions in backoff period ranges. Secondly, an emergency Traffic Class Provisioning based slotted-CSMA/CA (ETCP-CSMA/CA) scheme was presented to deliver the sporadic emergency traffic instantaneously that occurs either at a single BMSN or multiple BMSNs, with minimum delay and packet loss without ignoring non-emergency traffic. Finally, an emergency-based Traffic Adaptive slotted-CSMA/CA (ETA-CSMA/CA) scheme provided dynamic adjustment of traffic to accommodate the variations in heterogeneous traffic rates along with energy preservation of non-emergency traffic BMSNs, creating a balance between throughput and energy in the sporadic emergency situation. Performance comparison was conducted by simulation using NS-2 and the results revealed that the proposed schemes were better than ATLAS, PLA-MAC, eMC-MAC and PG-MAC protocols. The least improved performances were in terms of packet delivery delay 10%, throughput 14%, packet delivery ratio 21%, packet loss ratio 28% and energy consumption 37%. In conclusion, the prioritization-based adaptive emergency traffic MAC protocol outperformed the existing protocols
    corecore