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Abstract—The increasing penetration of wearable and
implantable devices necessitates energy-efficient and ro-
bust ways of connecting them to each other and to the
cloud. However, the wireless channel around the human
body poses unique challenges such as a high and variable
path-loss caused by frequent changes in the relative node
positions as well as the surrounding environment. An adap-
tive wireless body area network (WBAN) scheme is pre-
sented that reconfigures the network by learning from body
kinematics and biosignals. It has very low overhead since
these signals are already captured by the WBAN sensor
nodes to support their basic functionality. Periodic channel
fluctuations in activities like walking can be exploited by
reusing accelerometer data and scheduling packet trans-
missions at optimal times. Network states can be predicted
based on changes in observed biosignals to reconfigure
the network parameters in real time. A realistic body chan-
nel emulator that evaluates the path-loss for everyday hu-
man activities was developed to assess the efficacy of the
proposed techniques. Simulation results show up to 41%
improvement in packet delivery ratio (PDR) and up to 27%
reduction in power consumption by intelligent scheduling
at lower transmission power levels. Moreover, experimental
results on a custom test-bed demonstrate an average PDR
increase of 20% and 18% when using our adaptive EMG-
and heart-rate-based transmission power control methods,
respectively. The channel emulator and simulation code is
made publicly available at https://github.com/a-moin/wban-
pathloss.

Index Terms—Wireless body area networks (WBAN),
adaptive networks, body kinematics, biosignals, body
channel model, energy-efficient networks, robust networks.

I. INTRODUCTION

W EARABLE and implantable devices are becoming more
prevalent in people’s everyday lives with applications
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ranging from health monitoring and rehabilitation to human
augmentation and entertainment. These devices must commu-
nicate with each other and with the cloud as an integral part
of the Internet of Things (IoT), highlighting the need for a net-
work infrastructure around the human body, traditionally named
wireless body area network (WBAN) [1] and more recently the
Human Intranet [2].

A. Motivation

Energy efficiency and robustness are among the important
qualifications for a well-designed WBAN. Extended battery
lifetime directly affects network usability and user satisfaction,
but energy resources are scarce due to node size and wearability
constraints. Wireless link robustness is also crucial, especially in
safety-critical applications such as drug delivery [3] and control
of prosthetic limbs [4]. Achieving a reliable network while
maintaining low power consumption is generally a challenging
problem to address, particularly when dealing with the unique
characteristics of the human body.

The wireless channel around the human body is not an ideal
medium for radio frequency wave transmission [5]. Lower fre-
quencies require unacceptably large on-body antennas, whereas
at higher frequencies the propagation loss quickly becomes
large [6]. Additionally, the channel is highly dynamic due to
fading and shadowing effects, mainly caused by changes in
body posture and kinematics. In order to maintain the desired
reliability, the transmission power at the transmitter must be
high enough to reach the sensitivity level of the receiver at
all times, including when the channel temporarily experiences
high attenuation. However, a constant high transmission power
sacrifices overall energy efficiency and causes interference with
other nodes in the same and neighboring networks. Overall,
energy consumption caused by communication represents a
substantial fraction of the total energy budget of the sensor
node.

In order to solve this problem, transmission power control
(TPC) protocols have been introduced that evaluate the channel
state by monitoring the received signal strength indicator (RSSI)
at the receiver and adapt the transmission power level at the
transmitter accordingly [7], [8]. Although most transceivers have
the RSSI data readily available at the receiver side with no extra
overhead, additional control packets must be fed back from the
receiver to the transmitter to readjust the transmission power.
Therefore, these methods lead to extra traffic overhead, as well
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TABLE I
SUMMARY OF ADAPTIVE RECONFIGURATION METHODS IN WBANS

as latency in the response. This is even worse in the WBAN dy-
namic scenarios where the node locations are rapidly changing
and frequent link-state packets are needed to keep it up-to-date,
otherwise the acquired link-state information is outdated by the
time of the next transmission. Finally in the case of periodic
movements such as walking, scheduling packet transmissions
at times that the channel has lower loss is a far better solution
than blindly increasing Tx power and consequently worsening
the interference [9]–[11].

In this paper, we propose an adaptive network methodology
that learns from body kinematics and biosignals, predicts the
wireless channel behavior based on them, and subsequently
reconfigures the network to achieve both energy efficiency and
robustness. We measure the energy efficiency based on the re-
duction in radio power consumption, and evaluate the robustness
in terms of the network packet delivery ratio (PDR) metric. Our
method reuses the sensor data that already exists in a WBAN
to adapt the network to different conditions with minimum
overhead. These sensors include:

� inertial measurement units (IMU), which indicate body
movements;

� electromyography (EMG) sensors measuring muscle ac-
tivity (as currently integrated in prosthetic arms);

� and heart rate (HR) monitoring sensors (extracted from
electrocardiography [ECG] signals), which reveal increase
in physical activity.

The proposed adaptive schemes are specifically beneficial
to WBANs as these generally suffer from the highly dynamic
channel conditions and are severely constrained in terms of the
energy and computation resources.

B. Previous Work and Challenges

A design space exploration method for WBAN was proposed
in [12] to choose the best network topology and parameters for
a given set of conditions before network deployment. In reality,
however, there is no single best answer to this design problem
due to the highly dynamic nature of the human body and its
surroundings. Therefore, the network should be reconfigured
adaptively based on its instantaneous state. Mechanisms such
as TPC [7], [8], [13], [14] and link adaptation (e.g. changing
modulation and data rate) [15] have been proven to be effective
in the literature, as summarized in Table 1.

Most TPC methods are based on monitoring RSSI at the re-
ceiver and sending feedback to the transmitter [7], [8], [13]. Kim
et al. in [14] argued that RSSI is not the most accurate indicator
when packet failure is mainly due to interference instead of
attenuation. In these cases, increasing the transmission power
would even be harmful since it worsens interference. Moreover,
all these methods suffer from the overhead of additional control
packets from receiver to transmitter that increase their added
energy consumption, traffic and latency that become then not
negligible [16].

The dynamic wireless channel around the human body has
some unique characteristics that can be leveraged. Roberts et al.
in [10] explore the periodicity of channel path-loss during certain
movements and propose a new channel model, enhancing the
widely used IEEE 802.15.6 model [5]. Prabh et al. in [11] use
this periodicity in RSSI to arrange packet transmissions at proper
times. However, this approach has the same overhead problem
since probing packets need to be broadcast to estimate RSSI
and control packets need to be sent back to the transmitter.
Zang et al. in [9] exploit periodic body movement patterns
to schedule transmissions. They run a computationally-heavy
template matching algorithm based on Dynamic Time Warping
(DTW) to detect the strides. The entire algorithm has to run on
the more powerful sink node and results on the next predicted
transmission times are sent back to the transmitter. Hence, this
method still faces the overhead problem of control packets.

In order to evaluate these methods, researchers use network
simulators with human body channel models. Most of them
are based on IEEE 802.15.6 standard [5] that does not cap-
ture realistic activity-dependent fluctuations in path-loss due
to body movements. Recently, Dautov and Tsouri proposed
an off-body Rician channel model in [17] for indoor WBANs
that addresses different types of body motions, but does not
support on-body channels. Alam et al. in [18] enhance the IEEE
802.15.6 on-body channel model by finding line-of-sight (LOS)
and none-line-of-sight (NLOS) distances between nodes during
real movements. They multiply the NLOS portion by a constant
factor to partially account for shadowing effect. Alternatively,
measurement campaigns using either vector network analyzers
such as in [19]–[21] or simple radio nodes in [9], [13] can be
used to estimate the channel loss in a WBAN. However, none
of the nodes used in those studies have a biosignal acquisition
front-end to enable the implementation of our proposed adaptive
schemes.
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Fig. 1. Generating a realistic human body path-loss model for use in WBAN simulators.

C. Our Contributions

Our contributions can be summarized as follows: 1) develop-
ment of a body channel emulator capturing its dynamics during
various movements. Use of this emulator in conjunction with
our Castalia-based WBAN simulator [12], [22] enables realistic
evaluation of the adaptive network framework; 2) utilization
of a custom-designed test-bed containing a 2.4 GHz radio
and biosignal front-ends to validate and evaluate the adaptive
network schemes; 3) measurement and analysis of on-body
channel variations and stability during the main daily activities
(standing, sitting, sleeping and walking); and 4) development
of computationally-light algorithms for adaptive network re-
configuration that includes: (i) a scheduling algorithm tracking
periodic human movements without the constant overhead of
control packets, (ii) an EMG-controlled TPC algorithm for reli-
able wireless links in prostheses, and (iii) an HR-controlled TPC
scheme for enhanced robustness during body movements. These
algorithms are simulated or implemented on the test-bed and
experimental results are presented. To the best of our knowledge,
this is the first time biosignals are reused for TPC in WBANs.

II. BODY DYNAMICS EMULATOR AND TEST-BED

In order to leverage the advantages of both simulation-based
and empirical methods in our study, we developed (i) a realistic
body channel emulator used to evaluate the performance of
our proposed scheduling algorithm in realistic dynamic WBAN
conditions; and (ii) a 2.4 GHz wearable node with embedded

neural front-ends, used to demonstrate the efficacy of our TPC
methods in real scenarios.

A. Human Body Dynamic Channel Emulator

The wireless channel around the human body is highly dy-
namic. Most WBAN simulators either assume a static path-loss
between pairs of nodes or add a random variation factor to cap-
ture dynamic effects such as channel fading and shadowing [12],
[22]. While these statistical models mimic the physical layer
to some extent, they do not necessarily show the correlation
between activity-specific kinematics of the human body and
its path-loss. Hence, having a wireless channel emulator that
generates the path-loss based on actual body movements is
beneficial, especially when adaptive network protocols based
on those dynamics are being tested.

Fig. 1 shows the steps that are taken to generate realistic path-
loss values used as inputs to our network simulator. The first
step consists of capturing the physical extent and location of the
body while holding a posture or performing a specific activity,
e.g. walking. This is recorded from human subjects wearing
fixed markers on their body using a dedicated motion capture
system. In Step 2, these results are saved in Biovision Hierarchy
(BVH) file format [23] that includes the hierarchy of body joints
and their positions at each point in time. We use BVH files
from a dataset [24] recorded by a Vicon motion capture system
consisting of 12 infrared MX-40 cameras with 120 Hz sampling
rate and 41 markers worn on subjects.
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Steps 3 to 6 are performed in MATLAB to extract the path-loss
from BVH files. In Step 3, the skeleton hierarchy of the specific
subject is imported and the connections between their joints are
drawn. The model is then scaled to transform the skeleton to
any arbitrary height and to make the model more generic. This
is repeated for each time frame in the BVH files. Step 4 involves
forming cylinders to approximate the body’s volume. We used
the height and cylinder dimensions of average adults in the US
based on statistical data reported in [25].

Step 5 shows the transmitter (Tx), receiver (Rx), and torso
from the top view. In order to calculate the path-loss while
considering the shadowing effect of the torso, the Tx-Rx distance
is divided into two portions: dfs, the free space portion that
does not intersect with the torso, and dbs accounting for the
body surface portion. The latter is calculated as the shortest
curvilinear distance between the two intersecting points on the
cylinder surface (red helical path in Fig. 1). We use the Friis
path-loss formula as a function of dfs (normalized to 1 m) at
2.4 GHz for the free space portion:

PLfs[dB] = 20 log10(dfs) + 40.0542 (1)

For the body surface part, we use the IEEE 802.15.6 CM3A
model [5], where N is a normal distribution with zero mean and
σN = 3.8, and dbs is normalized to 1 m:

PLbs[dB] = 6.6 log10(dbs) + 36.1 +N (2)

Finally, the total path-lossPL at each time frame is computed
as:

PL[dB] = PLfs[dB] + PLbs[dB] (3)

Step 6 illustrates the full path-loss after repeating these calcu-
lations for every frame. It is then saved in a file to be used as input
to our full-stack network simulator [12] based on Castalia [22],
which includes the estimated path-loss over time for a set of
different on-body links observed in a WBAN.

B. 2.4 GHz Wearable Node Test-Bed

We utilized a custom-designed wearable node [26] with a
2.4 GHz radio chip (nRF51822, Nordic Semiconductor) to per-
form empirical measurements and test our proposed adaptive
methods implemented on its ARM Cortex-M0 processor. The
node also features a neural front-end [27] which enables the
acquisition of biosignals such as EMG and ECG.

III. ADAPTIVITY FOR BODY DYNAMIC CHANNEL

In this section, we present the core idea of reusing sensor
data that already exists in the WBAN to learn about the network
state and adaptively reconfigure its parameters. The ultimate
goal is to make the network more energy-efficient and robust
with minimum added overhead. In the first part, we show that
although the highly variable and often significant instantaneous
path-loss around the human body makes communication chal-
lenging, the channel remains stable for hundreds of milliseconds
during four typical daily activities. We take advantage of this
property by learning the channel’s behavior resulting from its
kinematics and scheduling packet transmissions at appropriate

moments. In the second part, we present an adaptive TPC method
based on biosignals such as EMG and HR that are recorded in
specific WBAN applications. These biosignals often correlate
with body movements and postures, so the network can be
adaptively reconfigured by monitoring them. Finally at the end
of the section, we propose a state machine that integrates these
two adaptive schemes for an energy-efficient and robust WBAN.
Note that these are only two options we are currently considering
with the goal of demonstrating the feasibility and efficacy of the
adaptive approach; others may be added in the future.

A. Human Body Kinematics

1) Channel Stability Analysis: Humans typically spend the
majority of their daily lives in one of these states: standing,
sitting, sleeping, or walking. Fig. 2 shows the path-loss vari-
ations and their moving average over 100 ms windows during
these activities. We used our test-bed described in Section II-B to
perform these measurements with the transmitting node worn on
the left wrist and the receiving node placed in the opposite side
pants pocket. At a first glance, a relatively large fading (variation
on signal strength) is observed for all activities, even for fairly
passive ones such as sitting. However, this does not necessarily
imply that the channel is unstable or unpredictable. For further
analysis of channel stability, we computed two metrics for each
activity: temporal autocorrelation and channel variation.

Temporal autocorrelation [21] of wireless channels is often
used to quantify stability in terms of channel coherence time,
i.e. the period over which this correlation remains higher than
0.7 [21]. As Fig. 3(a) shows, the autocorrelation for the data
gathered in Fig. 2 remains relatively high (>0.7) over several
100 ms for standing and sitting (static channels with similar
environments). The channel coherence times are shorter for
sleeping (different environment due to the bed) and walking
(dynamic channel). The corresponding channel coherence times
are 404 ms, 294 ms, 18 ms, and 9 ms for standing, sitting,
sleeping, and walking, respectively.

Alternatively, it is possible to quantify stability using a chan-
nel variation factor (CVF), defined in [28] as:

CV F =

√
var(h)

1
MΣM−1

m=0h
2
m

(4)

where h = {h0, h1, . . ., hM−1} is the channel impulse response
in that period. In this case, the period over which a channel
remains stable is defined as the period during which this quan-
tity remains low (< 0.15 for 90% of measured samples [28]).
We computed the CVF for periods of 100 ms and plotted
its cumulative distribution function in Fig. 3(b) for all four
activities. This metric shows that even in the case of walk-
ing in which channel variation is periodic, the CVF remains
relatively low. The CVF remains below 0.08 in 80% of our
observations and below 0.14 in 100% of our observations, which
according to [28], indicates a stable on-body channel. This
relative stability of on-body channels enables accurate channel
prediction across multiple communication frames, which can
help to configure the transmit power, time and duration. The
measurements shown in Figs. 2, 3 cover brief periods of time.
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Fig. 2. Received signal strength (RSS) measurements of the wireless channel between the left wrist and the right pants pocket while transmitting
at 0 dBm during four common daily activities. Yellow lines show the actual measured signal strength values with sample interval of 1 ms and blue
traces show running average over 100 ms windows.

Fig. 3. Analysis of wireless channel stability during the four activities shown in Fig. 2. (a) Temporal autocorrelation as a function of delay time.
(b) Cumulative distribution function for the channel variation factor calculated over periods of 100 ms.

Over a larger time-scale, the channel predictability is potentially
higher due to recurrence of certain activities such as sleep-
ing and transportation, and environments such as home and
office.

2) Periodic Movements: Among the activities analyzed
above, walking/running is the most challenging one with the
fastest and most frequent changes in channel state. However, we
can take advantage of its periodicity by predicting the peaks in

received signal strength (RSS) and transmitting the packets only
during those periods.

Inertial measurement units (IMUs) can be found in almost
every WBAN [29], measuring a combination of linear accelera-
tion and rotational rate. Therefore, the kinematics of the human
body including the periodicity of walking would be reflected in
the IMU reading. This signal has the same period as RSS and
its peak times are correlated with RSS peaks.
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Fig. 4. Left wrist position (top), IMU readouts (middle), and generated path-loss (bottom) for the wireless link between left wrist and opposite side
pants pocket in walking scenario. The shaded portion indicates the initial calibration phase. The red arrows in the middle plot show detected peaks
of IMU and in the bottom plot indicate the calculated packet transmission times.

Fig. 4 illustrates a sample walking scenario generated by our
channel emulator described in Section II-A. The top plot shows
the left wrist position in the camera coordinate system along the
axis in which the person is walking (read from the BVH file). We
then take its second derivative to generate what the IMU readout
would look like (middle plot). Finally, the path-loss from the left
wrist to the opposite side pants pocket calculated by our emulator
is plotted at the bottom.

The process starts with a calibration phase (shaded area in
Fig. 4) during which we quantify the time difference between
consecutive peaks in the IMU and find the α coefficient in (5)
to link that to RSS peaks:

tIMU,2 + α(tIMU,2 − tIMU,1) = tpathloss,p (5)

where tIMU,1 and tIMU,2 are the first two peaks in the IMU
readout and tpathloss,p is the first peak in RSS values that occurs
after tIMU,2. Note that RSS measurements are needed during the
calibration phase that induces some overhead temporarily, but
RSS values are no longer needed after the calibration is finished
at tpathloss,p. The next transmissions for i > 2will be scheduled
at:

tTx,i−2 = tIMU,i + α(tIMU,i − tIMU,i−1) (6)

This algorithm (see Algorithm 1) is computationally light for
implementation on wearable nodes, unlike more complex opera-
tions such as dynamic time warping on sliding window of length
M and template of length N with complexity O(MN) as used

Algorithm 1: Scheduling Algorithm for Periodic Move-
ments.

Input:
IMU_data � IMU readout
pathloss � needed only during calibration

Output:
{tTx,i} � scheduled transmission times

1: i← 1
2: while receiving IMU readouts do
3: tIMU,i ← PEAKDETECTION(IMU_data)
4: if i == 2 then � calibration phase
5: tpathloss,p ← PEAKDETECTION(pathloss)
6: α← RUNCALIB(tIMU,1, tIMU,2, tpathloss,p)
7: else if i > 2 then � scheduled transmissions
8: tTx,i−2 ← tIMU,i + α(tIMU,i − tIMU,i−1)
9: end if

10: i← i+ 1
11: end while

in [9]. It is also inherently robust against gradual drifts in the peak
periods since each transmission depends only on the previous
two IMU peaks. However, a re-calibration is required in the rare
cases of a significant change in walking pace or pattern, leading
to a new α coefficient. These situations can be detected from the
IMU readouts or multiple consecutive packet drops, triggering a
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Fig. 5. EMG-controlled TPC experimental results. The raw EMG signal (top), transmission power level (middle), and received signal strength
(bottom) are plotted for: (a) a fixed transmission power scenario, and (b) an adaptive TPC based on EMG activity. Shaded areas correspond to
holding the metal bucket.

re-calibration. Moreover, no additional control packet needs be
communicated between receiver and transmitter after the cali-
bration phase, since the packet transmission schedule depends
only on IMU readouts. This significantly reduces the control
overhead of most adaptive algorithms.

B. Electrical Biosignals

One of the applications of a WBAN is health monitoring
by hosting either generic biosensors such as body temperature
and HR, or more specialized systems such as smart prostheses.
The acquired biosignals provide indirect information on the
network state. We propose here methods to reconfigure network
parameters based on these biosignals.

1) EMG: Smart prostheses consist of a sensing system
placed on the residual limb, a controller node responsible to
make decisions based on the sensed signals, and an actuator
node to perform the mechanical movements. Having a robust
wireless link between these components is crucial since a failure
in connectivity may lead to negative outcomes in the actuation,
e.g. during a grasp task such as handling a cup of coffee. The
same challenges of wireless channel around the human body
exist here. Specifically, the interaction of the prosthesis with
surrounding objects would most likely change the channel due
to fading. We propose a learning-based adaptive algorithm that
reconfigures the network when the prosthesis is in action.

Recording EMG using surface or implanted electrodes is
one of the main input modalities to current prosthetic con-
trollers [30], [31]. It enables the detection of patient’s muscle
contractions and interpretation of voluntary movement inten-
tions. An increase in EMG activity implies subsequent move-
ments of the prosthetic limb and consequently, changes in the
wireless channel status are expected.

Fig. 5(a) shows a scenario in which a prosthetic device at-
tached to the right arm is used to hold a metal bucket. EMG
from the forearm is recorded using the test-bed introduced in
Section II-B. The wireless link between the prosthetic node
(containing both sensor and actuator) worn on the right forearm
and the controller node placed in the opposite pants pocket is dis-
rupted due to actuation movements and object shadowing effect.
Our adaptive solution (see Algorithm 2) uses a binary classifier
to detect muscle activity and compensates for the degradation in
wireless channel quality by readjusting the transmission power
level. Note that the EMG signal is constantly measured for
the control of the prosthetic arm anyways. Hence using that
information for the management of the wireless network comes
with zero overhead.

The radio transmission power is set to a low value of PTx,l

by default to keep the interference and power consumption low.
The maximum (VEMG,max) and minimum (VEMG,min) values
of EMG activity are calculated in windows of 100 ms. The node
increases its transmission power to PTx,h to guarantee wireless
link quality under the following condition that occurs during the
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Algorithm 2: EMG-Controlled TPC Algorithm.
Input:

VEMG � EMG amplitude
VEMG,thr � set based on training data

Output:
PTx � radio transmission power

1: VEMG,max ← 0mV
2: VEMG,min ← 100mV
3: i← 1 � samples counter every 1 ms
4: PTx ← PTx,l

5: while receiving EMG samples do
6: if VEMG > VEMG,max then
7: VEMG,max ← VEMG

8: else if VEMG < VEMG,min then
9: VEMG,min ← VEMG

10: end if
11: if i == 100 then � reached end of 100 ms period
12: if VEMG,max − VEMG,min > VEMG,thr then
13: PTx ← PTx,h

14: else
15: PTx ← PTx,l

16: end if
17: VEMG,max ← 0mV
18: VEMG,min ← 100mV
19: i← 0
20: end if
21: i← i+ 1
22: end while

engagement of the prosthetic arm:

VEMG,max − VEMG,min > VEMG,thr, (7)

where VEMG,thr is preset by training data as a threshold on
EMG voltage. As experimental results show later in Section IV,
such a low overhead algorithm can considerably improve the
link robustness. It should be noted that this is a very basic clas-
sification of recorded EMG signals with potential for significant
improvements by using more complex algorithms [26].

2) Heart Rate: Heart rate (HR) monitoring is one of the
most common applications of WBAN. It is achieved by optical
or electrical measurements using nodes worn typically on a
wrist or the chest. This signal varies according to the human
activity level. At the same time, an increase in physical activity
often leads to degradation in wireless channel quality. This
degradation can be compensated by adaptively reconfiguring the
network as explained in Algorithm 3. Observe that an increase
in physical activity may be more accurately detected by an IMU,
given that an increase in HR may also be caused by static stress
conditions a subject is experiencing. However, the HR-based
TPC method matches well the simple HR monitoring patches
that are not necessarily equipped with an IMU.

Fig. 6(a) shows ECG signal recorded from chest using our
test-bed explained in Section II-B. A simple algorithm, denoted
as CALCHR in Algorithm 3, was developed to extract the HR
from ECG recordings (Fig. 6, second row), and implemented on

Algorithm 3: HR-Controlled TPC Algorithm.
Input:

VECG � ECG amplitude
HRthr � set based on training data

Output:
PTx � radio transmission power

1: i← 1 � samples counter every 1 ms
2: PTx ← PTx,l

3: while receiving ECG samples do
4: HR← CALCHR(VECG) � calculate HR
5: if i == 3000 then � update PTx every 3 s
6: if HR > HRthr then
7: PTx ← PTx,h

8: else
9: PTx ← PTx,l

10: end if
11: i← 0
12: end if
13: i← i+ 1
14: end while

the transceiver processor. The function keeps track of the ECG
maximum (VECG,max) and minimum (VECG,min), triggers a
counter whenever VECG passes VECG,thr:

VECG,thr = VECG,min + 0.25 ∗ (VECG,max − VECG,min),
(8)

and reads the counter value which corresponds to the interval be-
tween two consecutive ECG peaks, i.e. the HR period. Perform-
ing only addition/subtraction, bit-shifting (multiply by 0.25)
and comparisons makes it computationally light with negligible
effect on the energy consumption. Note that the occasional
spikes in HR are due to undetected heart beats in our simple
algorithm (which do not impact the efficacy of the overall control
scheme). The radio transmission power is kept at a low level of
PTx,l during body static state by default. When the HR goes
above a threshold value (HRthr) due to physical activity, the
radio automatically increases the transmission power to PTx,h

to compensate for channel fading and variations. This improves
the link quality as experimental results show later in Section IV.

C. Integrated State Machine

The adaptive schemes introduced in this section can all be inte-
grated into a WBAN stack as shown in the state diagram of Fig. 7.
The network stays in static state by default that corresponds to
activities such as sitting and sleeping. When the IMU detects
a periodic movement such as walking, IMU-based calibration
is triggered and the periodic pattern of movement is learned
as described in Section III-A2. The network transmits packets
based on IMU readouts as long as the state remains unchanged.
A re-calibration might be necessary if multiple packet drops
happen due to significant changes in the walking pattern or pace.
If EMG activity in the forearm is detected at any point in time,
the network transitions to EMG-based TPC (Section III-B1).
Similarly, if the HR goes above its threshold, HR-based TPC
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Fig. 6. HR-controlled TPC experimental results. The raw ECG signal (first row), extracted HR (second row), transmission power level (third row),
and received signal strength (last row) are plotted for: (a) a fixed transmission power scenario, and (b) an adaptive TPC based on HR. Shaded and
unshaded areas correspond to increased physical activity level during walking and low activity during sitting down, respectively.

Fig. 7. The state transition diagram of our adaptive WBAN.

(Section III-B2) will be engaged. Note that IMU-based activity
recognition for classifying static states (e.g. sitting vs. sleeping)
can be done [32] to further optimize the network configurations
such as routing tables and MAC layer parameters.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

In this section, we present experimental results of the net-
work energy efficiency and robustness after implementing our
proposed adaptive scheme.

Fig. 8. Packet delivery ratio for different transmission power levels
during two minutes of walking with and without IMU-based adaptation.

A. Periodic Movements

We imported the emulated path-loss from Section III-A2
into our network simulator [12]. The application layer was
programmed to transmit packets in 100 ms intervals from the
left wrist to the right pants pocket, mimicking a smart watch
to smart phone communication scenario. The physical layer
parameters are based on a Bluetooth chipset (nRF51822, Nordic
Semiconductor) with −85 dBm receiver sensitivity in 2Mbps
data rate mode. The blue bars in Fig. 8 show packet delivery ratio
(PDR) for different radio transmission power levels during two
minutes of walking. While PDR can reach 100% by operating
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in a high-power mode of 0 dBm transmission power and still
remains reliable in −4 dBm mode, it will go below 50% after
decreasing the transmission power level to −8 dBm.

We then repeated the same simulations using our proposed
adaptive algorithm based on kinematics (Section III-A2). The
application layer generated packets at the same rate, but packets
were buffered to be transmitted at RSS predicted peaks (red
arrows in Fig. 4, bottom plot). The red bars in Fig. 8 show
that using our adaptive scheduling, PDR remains at 100% after
reducing transmission power level to −4 dBm, and shows sig-
nificant improvement after going down to −8 dBm compared
to the case without IMU (87% versus 46%). The reduced trans-
mission power has the advantage of lower power consumption
in wearable resource-limited nodes as well as less interference
with other WBAN nodes.

B. EMG- and HR-Controlled TPC

Fig. 5 illustrates the experimental results of a sample trial
in the prosthetic arm scenario explained in Section III-B1. An
increase in EMG amplitude can be observed in the top plot of
Fig. 5(a) between 4 s and 12 s when the subject transfers from
rest state to holding the metal bucket. The bottom plot shows
RSS when transmitting packets with fixed transmission power
of PTx,l = −4 dBm. The RSS is degraded during the hold task
(shaded area of plots) which led to a total PDR of 50%.

Fig. 5(b) shows the results for the same experiment after
implementing our adaptive algorithm on the radio processor
with VEMG,thr = 610 μV. The transmission power level is
automatically boosted to PTx,h = +4 dBm upon detection of
EMG activity to assure higher link reliability. Consequently, the
mean RSS is increased more than 10 dBm during the prosthetic
arm engagement and total PDR is increased to 67%. Note that
around t = 9 s in Fig. 5(a), a brief period of packet drops is
observed due to the channel fading. This is avoided by running
the EMG-based TPC algorithm at the sensing node in Fig. 5(b).

We repeated these experiments for N = 10 trials using both
our adaptive method and pre-configured transmission powers
at PTx,l = −4 dBm and PTx,h = +4 dBm. As the boxplots
in Fig. 9(a) show, our EMG-controlled TPC method has 20%
higher PDR than the fixed PTx,l case, and only 4% lower than
the constant transmission at PTx,h.

Fig. 6 presents the experimental results of a sample trial in
the HR-controlled TPC scenario explained in Section III-B2.
The subject is wearing the test-bed node on the left wrist and the
receiver node is placed in the right pants pocket. The experiment
starts with rest in sitting state followed by an increase in activity
(walking with high pace) and back to rest. The bottom plot
in Fig. 6(a) shows RSS when transmitting packets with fixed
transmission power of PTx,l = −8 dBm. The RSS is degraded
during walking (shaded area of plots) which led to a total PDR
of 61%.

The neural front-end of our test-bed is connected to an
Ag/Ag-Cl electrode placed on the subject’s chest to measure
their ECG. The implemented algorithm on the radio processor
extracts the HR by measuring the distance between ECG peaks
and adaptively toggles the transmission power level to PTx,h =

Fig. 9. Packet delivery ratio results for fixed and adaptive transmission
power levels: (a) EMG-controlled TPC for PTx,l =−4 dBm and PTx,h =
+4 dBm (N = 10 trials). (b) HR-controlled TPC for PTx,l =−8 dBm and
PTx,h = +4 dBm (N = 5 trials).

TABLE II
PARAMETERS USED IN SAMPLE SCENARIOS

+4 dBm when the HR goes higher than HRthr = 92 bps
threshold. Fig. 6(b) shows that our proposed adaptive scheme
increases the mean RSS during body movements by 9.6 dBm,
causing the total PDR to reach 80% in this trial. After repeating
these experiments for N = 5 times (Fig. 9(b)), we observed an
average PDR increase of 18% using the adaptive HR-based TPC
compared to the fixed PTx,l case, and only 2% decrease from
the constant transmission case at PTx,h.

C. Power Savings in Sample Scenarios

In order to show the energy efficiency of our adaptive method,
we performed a comparison between scenarios with and without
engaging our proposed algorithm. The parameters used for this
comparison are listed in Table 2. We assumed failed packets
would be successfully delivered after one re-transmission at-
tempt.

In the case of walking, a 27% reduction in power consumption
was achieved by using the IMU-based scheduling. For the pros-
thetic arm scenario, constantly transmitting at PTx,h to have
a reliable link, caused a 31% increase in power consumption
compared to the fixed PTx,l case. Incorporating the adaptive
EMG-controlled TPC, however, led to only a 16% increase in
power consumption while the link reliability was preserved.
From a power saving perspective, our adaptive EMG-controlled
TPC decreased the power consumption by 12% compared to
the fixed PTx,h case, while preserving the PDR (only 4% loss).
Note that the overhead power of running our adaptive scheme
is negligible since the IMU data and biosignals are already
available in the network and the algorithms are computationally
light.
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V. CONCLUSION

In this paper, we demonstrated the efficacy of an adaptive
WBAN approach that reconfigures the network based on body
kinematics and biosignals. By careful scheduling packet trans-
missions derived from the IMU data, we gained a 41% increase
in the PDR while keeping the transmission power low to reduce
interference and power consumption. Additionally, the exper-
imental results showed up to 20% boost in the average PDR
when engaging our proposed EMG- and HR-controlled TPC
methods. The presented body dynamic channel emulator is of
value in other studies that require a realistic channel model,
especially since it builds on the extensive BVH datasets repre-
senting a broad range of more complex physical activities such as
jumping and dancing. Future opportunities include adding more
biosignals and sensors to the proposed adaptive scheme, possibly
increasing the network energy-efficiency and robustness under
various scenarios. The ultimate goal is to have these schemes
added as a vertical control plane to existing protocols such as
the IEEE 802.15.6 standard, enabling them to learn, identify and
switch between network states as shown in Fig. 7.
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