PRIORITIZATION-BASED ADAPTIVE EMERGENCY TRAFFIC MEDIUM ACCESS CONTROL PROTOCOL FOR WIRELESS BODY AREA NETWORKS

FARHAN MASUD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> School of Computing Faculty of Engineering Universiti Teknologi Malaysia

> > APRIL 2019

DEDICATION

To my beloved father Mufti Khalid Masud, mother, wife and children.

ACKNOWLEDGEMENT

First and foremost, I am thankful to Almighty Allah SWT providing the knowledge, guidance and patience to achieve this goal.

I would like to show my sincere gratitude to my supervisor Prof. Dr. Abdul Hanan Abdullah for his support, guidance and personal kindness throughout this journey. His knowledge, experience, advice, supervision and logical way of thinking have been great value for me. He regularly helped me in every possible way which I needed to go through all difficulties during my study. I have been extremely fortune and lucky to have him as an advisor. It would be very difficult to complete this research successfully without his suggestions and thoughts.

Last but not least, I would like to express my sincerest and heartiest thanks to my beloved parents and family, for their encouraging attitude, unfailing patience and excellent cooperation throughout my research, which always lightened my way to success. I also thank my lovely wife for her support and encouragement during this research work. Also, my wife encouraging me whenever I was feeling down. Without her prayers and love, I would never be able to complete this thesis. I would like to thank to all my friends especially Dr. Gaddafi Abdul-Salaam for their motivation, support and valuable guidance. From the depth of my heart, I sincerely appreciate and thank you all.

ABSTRACT

Wireless Body Area Networks (WBANs) provide continuous monitoring of a patient by using heterogeneous Bio-Medical Sensor Nodes (BMSNs). WBANs pose unique constraints due to contention-based prioritized channel access, sporadic emergency traffic handling and emergency-based traffic adaptivity. In the existing medium access control protocols, the available contention-based prioritized channel access is incomplete due to the repetitions in backoff period ranges. The emergency traffic is considered based on traffic generation rate as well as sporadic emergency traffic that is not handled at multiple BMSNs during contention. In an emergency situation, non-emergency traffic is ignored, traffic is not adjusted dynamically with balanced throughput and energy consumption, and the energy of non-emergency traffic BMSNs is not preserved. In this research, prioritization-based adaptive emergency traffic Medium Access Control (MAC) protocol was designed to consider contention-based prioritized channel access for heterogenous BMSNs along with sporadic emergency traffic handling and dynamic adjustment of traffic in sporadic emergency situation. Firstly, a Traffic Class Prioritization based slotted-CSMA/CA (TCP-CSMA/CA) scheme was developed to provide contention-based prioritized channel access by removing repetitions in backoff period ranges. Secondly, an emergency Traffic Class Provisioning based slotted-CSMA/CA (ETCP-CSMA/CA) scheme was presented to deliver the sporadic emergency traffic instantaneously that occurs either at a single BMSN or multiple BMSNs, with minimum delay and packet loss without ignoring non-emergency traffic. Finally, an emergency-based Traffic Adaptive slotted-CSMA/CA (ETA-CSMA/CA) scheme provided dynamic adjustment of traffic to accommodate the variations in heterogeneous traffic rates along with energy preservation of non-emergency traffic BMSNs, creating a balance between throughput and energy in the sporadic emergency situation. Performance comparison was conducted by simulation using NS-2 and the results revealed that the proposed schemes were better than ATLAS, PLA-MAC, eMC-MAC and PG-MAC protocols. The least improved performances were in terms of packet delivery delay 10%, throughput 14%, packet delivery ratio 21%, packet loss ratio 28% and energy consumption 37%. In conclusion, the prioritization-based adaptive emergency traffic MAC protocol outperformed the existing protocols.

ABSTRAK

Rangkaian Kawasan Badan Tanpa Wayar (WBAN) menyediakan pemantauan berterusan pesakit dengan menggunakan Nod Sensor Bio-Medical Nodes (BMSNs). WBAN menimbulkan kekangan yang unik disebabkan oleh akses saluran keutamaan berasaskan perbalahan, pengendalian lalu lintas kecemasan yang sporadis dan penyesuaian lalu lintas berasaskan kecemasan. Dalam protokol kawalan akses sederhana yang sedia ada, akses saluran keutamaan berasaskan perbalahan yang ada tidak lengkap kerana pengulangan dalam julat tempoh backoff. Lalu lintas kecemasan itu dipertimbangkan berdasarkan kadar penjanaan lalu lintas, dan lalu lintas kecemasan yang sporadis tidak dikendalikan oleh BMSN semasa pertikaian. Dalam situasi kecemasan, lalu lintas bukan kecemasan diabaikan, lalu lintas tidak diselaraskan secara dinamik dengan penggunaan seimbang dan penggunaan tenaga, dan tenaga BMSN trafik bukan kecemasan tidak dipelihara. Dalam kajian ini, protokol pengendalian Akses Kawalan Sejagat (MAC) yang berdasarkan prioriti berasaskan pengaturcaraan direka untuk mempertimbangkan akses saluran keutamaan berasaskan perbalahan bagi BMSN yang bersifat heterogenous bersamaan dengan pengendalian lalu lintas kecemasan yang sporadis dan penyelarasan dinamik lalu lintas dalam situasi kecemasan sporadis. Pertama, skim Slotted-CSMA / CA (TCP-CSMA / CA) yang berasaskan Kelas Trafik telah dibangunkan untuk menyediakan akses saluran keutamaan berasaskan perbalahan dengan mengeluarkan pengulangan dalam julat tempoh backoff. Kedua, skim Slotted-CSMA / CA (ETCP-CSMA / CA) berdasarkan Pelaksanaan Kelas Lalu Lintas Kecemasan telah dibentangkan untuk menyampaikan lalu lintas kecemasan yang sporadis dengan segera yang berlaku sama ada di BMSN tunggal atau BMSN berganda, dengan kelewatan minimum dan kehilangan paket tanpa mengabaikan trafik tidak kecemasan. Akhir sekali, skim slaid-CSMA / CA (ETA-CSMA / CA) berasaskan kecemasan yang diarahkan untuk kecemasan menyediakan pelarasan trafik dinamik untuk menampung variasi kadar trafik heterogen bersama dengan pemeliharaan tenaga BMSN lalu lintas bukan kecemasan, mewujudkan keseimbangan antara truput dan tenaga dalam keadaan kecemasan sporadis. Perbandingan prestasi dijalankan melalui simulasi menggunakan NS-2 dan hasilnya menunjukkan bahawa skim yang dicadangkan lebih baik daripada protokol ATLAS, PLA-MAC, eMC-MAC dan PG-MAC. Prestasi yang kurang baik adalah dari segi kelewatan penghantaran packet 10%, truput 14%, nisbah pengiriman paket 21%, nisbah packet loss 28% dan penggunaan energi 37%. Kesimpulannya, skim yang dicadangkan diperbaiki daripada protokol sedia ada.

TABLE OF CONTENTS

TITLE

D	DECLARATION						
D	DEDICATION						
Α	ACKNOWLEDGEMENT						
Α	ABSTRACT						
A	BSTI	RAK	vi				
T	ABL	E OF CONTENTS	vii				
L	IST (OF TABLES	xii				
L	IST (OF FIGURES	xiii				
L	IST (OF ABBREVIATIONS	XV				
L	IST (DF SYMBOLS	xix				
L	IST (OF APPENDICES	xxi				
CHAPTER 1		INTRODUCTION	1				
1.	1	Overview	1				
1.	2	Problem Background	4				
1.	3	Problem Statement	9				
1.	4	Research Goal	11				
1.	5	Research Questions	11				
1.	6	Research Objectives	11				
1.	7	Research Contributions	12				
1.	8	Research Scope	13				
1.	9	Organization of the Thesis	14				
CHAPTER 2	2	LITERATURE REVIEW	15				
2.	1	Overview	15				
2.	2	Wireless Body Area Networks	15				
2.	3	MAC Superframe Structure of IEEE 802.15.4 Standard	16				
			16				

		2.3.1		SMA/CA Scheme used in Contention Period of Beacon-enabled IEEE MAC	17
2	2.4	Issues Netwo		allenges in Wireless Body Area	21
2	2.5	MAC Netwo		d Challenges in Wireless Body Area	22
		2.5.1		on-Based Prioritized Channel Access terogenous Natured Vital-Signs on	23
		2.5.2	Contention Handling	on-Based Sporadic Emergency Traffic	24
		2.5.3		on-Based Dynamic Adjustment of Sporadic Emergency Situation	24
		2.5.4	Energy C	onsumption	25
2	2.6		fication of Networks	MAC Protocols for Wireless Body	25
		2.6.1	Traffic P	riority MAC Protocols	27
		2.6.2	Sporadic	Emergency Traffic MAC Protocols	34
		2.6.3	Emergen Protocols	cy-based Traffic Adaptive MAC	41
		2.6.4	Discussio	ns	47
2	2.7	Summ	ary		50
CHAPTER	3	RESE	ARCH M	ETHODOLOGY	53
3	8.1	Overvi	iew		53
3	3.2	Resear	ch Framev	work	54
		3.2.1	Problem	Investigation	54
			3.2.1.1	Contention-Based Prioritized Channel Access for Heterogenous Natured Vital-Signs Information	54
			3.2.1.2	Contention-Based Sporadic Emergency Traffic Handling	56
			3.2.1.3	Contention-Based Dynamic Adjustment of Traffic in Sporadic Emergency Situation	58
		3.2.2	Design a	nd Development	59

		3.2.2.1	Prioritization-based Adaptive Emergency Traffic Medium Access Control Protocol	63
	3.2.3	Testing	and Performance Evaluation	66
		3.2.3.1	Simulation Setup	66
		3.2.3.2	Performance Metrics	69
		3.2.3.3	Performance Evaluation	70
3.3	Assun	nptions an	d Limitations	71
3.4	Summ	nary		71
CHAPTER 4		FFIC CLA	ASS PRIORITIZATION-BASED MA/CA	73
4.1	Overv	iew		73
4.2	Desig	n of TCP-	CSMA/CA Scheme	73
	4.2.1	Traffic (Class (TC) Prioritization	75
	4.2.2	First Ba	ckoff	76
	4.2.3	Second	Backoff	79
	4.2.4	Third Ba	ackoff	80
	4.2.5	Fourth E	Backoff	81
	4.2.6	Fifth Ba	ckoff	83
	4.2.7	The Pro Scheme	posed Algorithm for TCP-CSMA/CA	84
4.3	Perfor	mance Ev	valuation of TCP-CSMA/CA	87
	4.3.1	Compara	ative Results and Analysis	87
		4.3.1.1	Average Packet Delivery Delay	87
		4.3.1.2	Throughput	89
		4.3.1.3	Packet Delivery Ratio	91
		4.3.1.4	Packet Loss Ratio	93
		4.3.1.5	Energy Consumption	95
4.4	Summ	nary		96
CHAPTER 5			/ TRAFFIC CLASS NG-BASED SLOTTED-CSMA/CA	99
5.1	Overv	iew		99
5.2	Design	n of the E	TCP-CSMA/CA Scheme	99

	5.2.1	Emergence Prioritizat	cy-based tion	Traffic	Class	(TC)	102
	5.2.2	Emergenc	ey Beacon	Frame Form	nat		103
	5.2.3	Design of	EA Sub-S	cheme			104
	5.2.4	Design of	ETCP Sul	o-Scheme			106
	5.2.5	Design of	ETCP-SE	E-BMSN S	Sub-Schei	me	108
	5.2.6	Design of	ETCP-TE	E-BMSNs	Sub-Sche	eme	111
	5.2.7	Design of	ETCP-HE	E-BMSNs	Sub-Sch	eme	114
	5.2.8	Design of	ER Sub-S	cheme			116
	5.2.9	Design of	ETCT Su	o-Scheme			118
5.3	Perfor Schen	rmance Ev ne	aluation	of the E	ГСР-CSN	IA/CA	119
	5.3.1	Comparat	tive Result	s and Analy	ysis		120
		5.3.1.1	Average I	Packet Deli	very Dela	ıy	120
		5.3.1.2	Throughp	ut			122
		5.3.1.3	Packet De	livery Rati	0		125
		5.3.1.4	Packet Lo	ss Ratio			128
		5.3.1.5	Energy Co	onsumptior	1		131
5.4	Summ	nary					133
CHAPTER 6		RGENCY- TED-CSN		RAFFIC	ADAPTI	VE	135
6.1	Overv	view					135
6.2	Desig	n of ETA-C	CSMA/CA	Scheme			135
	6.2.1	The Prop Scheme	osed Algo	rithm for H	ETA-CSN	IA/CA	139
6.3	Perfor	mance Eva	luation of	ETA-CSM	A/CA Sc	heme	142
	6.3.1		-	ative Resu er of BMS		nalysis	142
		6.3.1.1	Average I	Packet Deli	very Dela	ıy	142
		6.3.1.2	Throughp	ut			144
		6.3.1.3	Energy Co	onsumptior	1		146
	6.3.2		vo: Compai erent Traff	ative Resu	lts and A	nalysis	148
		6.3.2.1	Average I	Packet Deli	very Dela	ıy	148

	6.3.2.2 Throughput	150
	6.3.2.3 Energy Consumption	152
6.4	Summary	154
CHAPTER 7	CONCLUSION AND FUTURE RESEARCH	155
7.1	Overview	155
7.2	Contributions of the Research	156
	7.2.1 Traffic Class Prioritization based slot CSMA/CA	ted- 156
	7.2.2 Emergency Traffic Class Provisioning-baselotted-CSMA/CA	nsed 156
	7.2.3 Emergency-based Traffic Adaptive slot CSMA/CA	ted- 157
7.3	Limitations	157
7.4	Directions for Future Work	158
REFERENCES		159
APPENDIX A		169 - 178
LIST OF PUBLIC	CATIONS	179

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2.1	Backoff Period Range Against Varying Values of BE	20
Table 2.2	Summary of Traffic Priority MAC Protocols for WBANs	33
Table 2.3	Summary of Sporadic Emergency Traffic MAC Protocols for WBANs	40
Table 2.4	Summary of Emergency-based Traffic Adaptive MAC protocols for WBANs	46
Table 3.1	Design and development of the Proposed Research	60
Table 3.2	Simulation Parameters	68
Table 4.1	Traffic Class Prioritization	75
Table 4.2	TC-wise computed Backoff Period Ranges used by BMSNs for the selection of Random Backoff Number in First Backoff	78
Table 4.3	TC-wise computed Backoff Period Ranges used by BMSNs for the selection of Random Backoff Number in Second Backoff	80
Table 4.4	TC-wise computed Backoff Period Ranges used by BMSNs for the selection of Random Backoff Number in Third Backoff	81
Table 4.5	TC-wise computed Backoff Period Ranges used by BMSNs for the selection of Random Backoff Number in Fourth Backoff	82
Table 4.6	TC-wise computed Backoff Period Ranges used by BMSNs for the selection of Random Backoff Number in Fifth Backoff	83
Table 5.1	Emergency-based Traffic Class Prioritization	102

LIST OF FIGURES

FIGURE NO	TITLE					
Figure 1.1	Communication architecture of wireless body area networks	2				
Figure 2.1	Types of BMSNs are (a) Wearable (b) Implanted and (c) Deep Brain Stimulator					
Figure 2.2	A MAC Superframe Structure of IEEE 802.15.4 beacon- enabled mode	17				
Figure 2.3	Slotted-CSMA/CA scheme used in Contention Access Period of beacon-enabled mode of IEEE 802.15.4 MAC					
Figure 2.4	Classification of MAC protocols for WBANs	26				
Figure 2.5	Traffic Priority MAC protocols for WBANs	27				
Figure 2.6	Sporadic Emergency Traffic MAC protocols for WBANs	35				
Figure 2.7	Emergency-based Traffic Adaptive MAC protocols for WBANs	41				
Figure 3.1	Flowchart of research framework	55				
Figure 3.2	Classification of Sensory Data	62				
Figure 3.3	Research Methodology Framework of Prioritization-based Adaptive Emergency Traffic MAC Protocol for WBANs, the dotted blocks show the contributions					
Figure 4.1	Flowchart of TCP-CSMA/CA scheme, (a) Traffic Class Prioritization and (b) First, Second, Third, Fourth, and Fifth Backoffs. The dotted blocks show the contributions made to assign a distinct, minimized and prioritized backoff period range to BMSNs.	77				
Figure 4.2	Average Packet Delivery Delay versus Number of BMSNs	88				
Figure 4.3	Throughput versus Number of BMSNs	90				
Figure 4.4	Packet Delivery Ratio versus Number of BMSNs	92				
Figure 4.5	Packet Loss Ratio versus Number of BMSNs	94				
Figure 4.6	BMSNs Energy Consumption versus Number of BMSNs	96				
Figure 5.1	Framework of ETCP-CSMA/CA Scheme	101				
Figure 5.2	Frame Format for (a) Emergency Beacon, and (b) Frame Control	103				
Figure 5.3	Flowchart of EA Sub-Scheme	105				
Figure 5.4	Flowchart of ETCP Sub-Scheme	107				
Figure 5.5	Flowchart of ETCP-SEE-BMSN Sub-Scheme	109				
Figure 5.6	Flowchart of ETCP-TEE-BMSNs Sub-Scheme	112				

Figure 5.7	Flowchart of ETCP-HEE-BMSNs Sub-Scheme							
Figure 5.8	Flowchart of ER Sub-Scheme							
Figure 5.9	Flowchart of ETCT Sub-Scheme							
Figure 5.10	Average Packet Delivery Delay in the presence of EDPs							
Figure 5.11	Throughput in the presence of EDPs							
Figure 5.12	Packet Delivery Ratio in the presence of EDPs							
Figure 5.13	Packet Loss Ratio in the presence of EDPs							
Figure 5.14	BMSNs Energy Consumption in the presence of EDPs							
Figure 6.1	Flowchart of ETA-CSMA/CA Scheme							
Figure 6.2	Average Packet Delivery Delay versus Number of BMSNs							
Figure 6.3	Throughput versus Number of BMSNs							
Figure 6.4	Energy Consumption versus Number of BMSNs							
Figure 6.5	Average Packet Delivery Delay versus varying Number of Packets/Second							
Figure 6.6	Throughput versus varying Number of Packets/Second	151						
Figure 6.7	Energy Consumption versus varying Number of Packets/Second	153						

LIST OF ABBREVIATIONS

AB	-	Advertisement Beacon
AC	-	Alarm Control
Ada-MAC	-	An Adaptive Medium Access Control
AO	-	Acknowledgement of Opportunity
ATLAS	-	A Traffic Load Aware Sensor Medium Access Control
BC	-	Body Coordinator
BMSN	-	Bio-Medical Sensor Node
BMSN-BP	-	BMSN for Blood Pressure Monitor
BMSN-HR	-	BMSN for Heartbeat Rate Monitor
BMSN-RR	-	BMSN for Respiratory Rate Monitor
BMSN-TM	-	BMSN for Temperature Monitor
BP	-	Beacon Period / Blood Pressure
BPR	-	Backoff Period Range
CA-MAC	-	Context-Aware Medium Access Control
CAC-MAC	-	Context-Aware and Channel based Medium Access Control
CAP	-	Contention Access Period
CCA	-	Clear Channel Assessment
CCAP	-	Configurable-CAP
CD	-	Command Data
CDP	-	Critical Data Packet
CE	-	Consumer Electronic
CFP	-	Contention Free Period
CoR-MAC	-	Contention over Reservation Medium Access Control
CPs	-	Critical Packets
CSMA/CA	-	Carrier Sense Multiple Access/Collision Avoidance
CTC	-	Critical Traffic Class
СТРА	-	Contention-based Traffic Priority-Aware Medium Access Control
DDP	-	Delay-constrained Data Packet
DPs	-	Delay Packets
DTC	-	Delay Traffic Class

DTP	-	Data Transmission Period
DTS	-	Data Transmit Slots / Data Transmission Slot
EA	-	Emergency Alert
EAP	-	Exclusive Access Phase
EC	-	Energy Consumption
ECG	-	Electrocardiography
ECP	-	Emergency Contention Period
ED	-	Emergency Data
EDAV-HTR	-	Emergency-based Dynamic Adjustment of Variations in Heterogeneous Traffic Rates
EDP	-	Emergency Data Packet
EE-BMSN	-	Expected Emergency Bio-Medical Sensor Node
EEG	-	Electroencephalography
EEVS	-	Expected Emergency Vital-Signs
EMG	-	Electromyography
eMC-MAC	-	Energy-efficient Multi-constrained Medium Access Control
ER	-	Emergency Resolved
ES	-	Emergency Slot
ETA-CSMA/CA	-	Emergency-based Traffic Adaptive slotted- CSMA/CA
ETC	-	Emergency Traffic Class
ETCP	-	Emergency Traffic Class Provisioning
ETCP-CSMA/CA	-	Emergency Traffic Class Provisioning-based slotted- CSMA/CA
ETCP-HEE-BMSNs	-	Emergency Traffic Class Provisioning for three Expected Emergency BMSNs
ETCP-SEE-BMSN	-	Emergency Traffic Class Provisioning for Single Expected Emergency BMSN
ETCP-TEE-BMSNs	-	Emergency Traffic Class Provisioning for Two Expected Emergency BMSNs
ETCT	-	Emergency Traffic Class Termination
ETDMA	-	Emergency TDMA
ETS	-	Emergency Data Transmit Slot
FCS	-	Frame Check Sequence
FDMA	-	Frequency Division Multiple Access
FFD	-	Fully Function Device
GTS	-	Guaranteed Time Slot
HR	-	Heartbeat Rate

ICU	-	Intensive Care Unit
IEEE	-	The Institute of Electrical and Electronics Engineers
LB	-	Lower Bound
LIFS	-	Long Inter-Frame Space
LR-WPANs	-	Low Rate-Wireless Personal Area Network
MAC	-	Medium Access Control
MCAP	-	Medical CAP
McMAC	-	Multi-Constrained QoS Provisioning Medium Access
MDTA-MAC	-	Control Multi-Dimensional Traffic Adaptive Energy-efficient Medium Access Control
MFR	-	MAC Footer
MHR	-	MAC Header
MIFS	-	Medium Inter-Frame Space
MPDU	-	MAC Protocol Data Unit
MS	-	Monitoring Station
NC	-	Network Coordinator
ND	-	Normal Data
NDP	-	Normal Data Packet
NE-MAC	-	New Medium Access Control
NTC	-	Normal Traffic Class
NTDMA	-	Normal TDMA
OCDP	-	Opportunistic Contention Decision Period
OCFP	-	Opportunistic Contention Free Period
OCM	-	Opportunity Contention Message
OCM ACK	-	OCM Acknowledgement
OPs	-	Ordinary Packets
OTCL	-	Object-Oriented Scripting Language
PA-MAC	-	Priority-based Adaptive Medium Access Control
PD	-	Periodic Data
PDD	-	Packet Delivery Delay
PDR	-	Packet Delivery Ratio
PG-MAC	-	Priority Guaranteed Medium Access Control
РНҮ	-	Physical Layer
PLA-MAC	-	Traffic Priority and Load Adaptive Medium Access Control
PLR	-	Packet Loss Ratio

PNP-MAC	-	Preemptive slot allocation and Non-Preemptive transmission Medium Access Control
QoS-MAC	-	Quality of Service Medium Access Control
RAP	-	Random Access Phase
RDP	-	Reliability-constrained Data Packet
RFD	-	Reduced Function Device
RFID	-	Radio Frequency Identification
RMAC	-	RFID-enabled Medium Access Control
RO	-	Request of Opportunity
RPs	-	Reliability Packets
RR	-	Respiratory Rate
RT	-	Routine Traffic
RTC	-	Reliability Traffic Class
SBTE	-	Scheme to Balance Throughput and Energy
SC-EE-BMSNs	-	Selection Criteria for Expected Emergency-BMSNs
SCEP	-	Self Contention Free Period
SHEM-BMSNs	-	Scheme to Handle Emergency at Multiple BMSNs
SIFS	-	Short Inter-Frame Space
SPE-BMSNs-NET	-	Scheme to Preserve Energy of BMSNs with Non- Emergency Traffic
SS-NET-I	-	Save Non-Emergency Traffic from Ignorance
TC	-	Traffic Class
ТСР	-	Transmission Control Protocol
TCP-CSMA/CA	-	Traffic Class Prioritization-based slotted-CSMA/CA
TM	-	Traffic Model
TDMA	-	Time Division Multiple Access
UB	-	Upper Bound
UDP	-	User Datagram Protocol
UPs	-	Urgent Packets
UK	-	United Kingdom
USA	-	United States of America
WBAN	-	Wireless Body Area Network
WLAN	-	Wireless Local Area Network

LIST OF SYMBOLS

A	-	A constant
aNumSuperframeSlots	-	Number of Superframe Slots
aMaxBE	-	Maximum Number of Backoff Exponent
BC_ID	-	Unique ID of Body Coordinator
BE	-	Backoff Exponent
BLE	-	Battery Life Extension
BMSN_i	-	ith BMSN
BMSN_i_ID	-	BMSN ith ID
BMSN_BP_ID	-	Unique ID of BMSN_BP
BMSN_HR_ID	-	Unique ID of BMSN_HR
BMSN_RR_ID	-	Unique ID of BMSN_RR
BMSN_TM_ID	-	Unique ID of BMSN_TM
CAP_channel	-	Store the Status of Channel
CW	-	Contention Window
D_{type}	-	Traffic Class Value
eFlagBP	-	Emergency Flag for Blood Pressure
eFlagHR	-	Emergency Flag for Heartbeat Rate
eFlagRR	-	Emergency Flag for Respiratory Rate
eFlagTM	-	Emergency Flag for Temperature
hdr_lrwpan	-	Protocol Specific Packet Header
HDR_LRWPAN	-	Returns the Starting Address of the Packet's Protocol-specific Header
Mac	-	A Pointer at MAC Layer
mac->index_	-	Returns the Current ID of BMSN at MAC Layer
mac->txtime(packet)	-	Returns Transmission Time
macAckWaitDuration	-	Acknowledgement Wait Duration Time
macMinBE	-	Minimum Number of Backoff Exponent
macMaxCSMABackoffs	-	Maximum Number of CSMA Backoffs
MHR_timeStamp	-	Stores Data Packet's Generation Time based on the Virtual Simulation Time
NB	-	Number of Backoff
NumEMR	-	Number of Emergency Data Packets Received

NumETS	-	Number of Emergency Transfer Slot
Pkt_CLT	-	Packet Current Lifetime
Pkt_ELT	-	Packet Emergency Lifetime
Pkt_NLT	-	Packet Normal Lifetime
S_i	-	ith Slot
S_j	-	jth Slot
T _{class-value}	-	Traffic Class Value
T_i	-	ith Traffic Class
u_i	-	ith Urgent Packet
u_j	-	jth Urgent Packet
UnitBackoffPeriod	-	Basic Unit of Time Period Used by CSMA/CA
Wph	-	A Pointer at MAC Layer used to Access the Protocol Specific Packet Header

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

Appendix A Simulation-based Comparison

169

CHAPTER 1

INTRODUCTION

1.1 Overview

In past, growth of the elderly population in developed countries was higher than developing countries, but now this trend is changing (Chiu *et al.*, 2017). In the near future, the elderly population of the world will suffer from chronic diseases and hence will require continuous monitoring (Movassaghi *et al.*, 2013). Moreover, the hospitalized patients also need various levels of monitoring ranging from multiple times a day to continuous monitoring. The random and continuous health monitoring require additional healthcare cost (Alemdar and Ersoy, 2010). Wireless Body Area Networks (WBANs) provide unsupervised, inconspicuous and real-time continuous health monitoring and hence reduce the healthcare cost (Chen *et al.*, 2013). WBANs are used in various applications, such as sports and fitness, entertainments and rehabilitation systems, medical, personal healthcare, emergency services, consumer electronics, and military systems.

WBAN is a collection of miniature, low processing power, lightweight, and low battery power Bio-Medical Sensor Nodes (BMSNs) that are either placed on the body, or on cloths (wearable) or inside patient's body (implant) (Cao *et al.*, 2009). The heterogeneous BMSNs such as blood pressure, body temperature, respiratory rate monitors, motion sensing, Electrocardiography (ECG), Electroencephalography (EEG), Electromyography (EMG), pH-level monitors, heart rate and others are deployed to monitor the vital-signs information of the patient's body. WBANs use three-tier architecture for communication purpose (Chen *et al.*, 2011; Rashidi and Mihailidis, 2013; Movassaghi *et al.*, 2014) and communicate the vital-signs information of the patient's body to the monitoring station for storage and/or observation purposes, as shown in Figure 1.1.

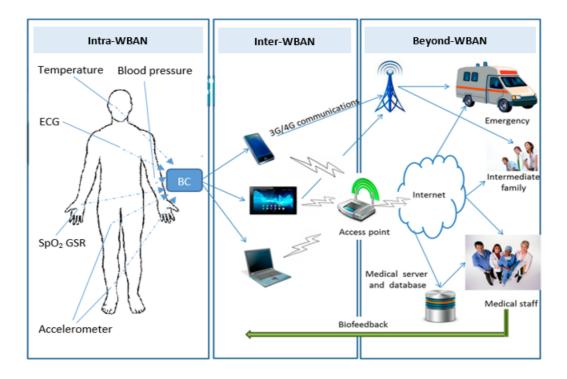


Figure 1.1 Communication architecture of wireless body area networks

The multi-tiers networks result in high reliability, low cost and enhanced coverage as compared to a single-tier network (Nie *et al.*, 2010). The WBAN's communication architecture is discussed as follows.

- Tier 1 Intra-WBAN: It is the local body area network which consists of heterogeneous natured BMSNs that communicate with the local base station known as Body Coordinator (BC) in a range of 2 meters.
- Tier 2 Inter-WBAN: The BC processes the data that is received from different BMSNs, aggregate the data and then forward the received vital-signs information towards Monitoring Station (MS).
- **Tier 3 Beyond-WBAN:** It is the long-range network where the MS sends the received data to the remote medical centre or another place of interest via the internet, for storage and observational purposes.

A range of BMSNs is used to observe the vital-signs information of the patient's body. Heterogeneous natured BMSNs generate various kinds of data packets containing the vital-signs information. Therefore, the traffic prioritization is necessary during channel access due to the heterogeneous nature of vital-signs information (Yoon *et al.*, 2010; Anjum *et al.*, 2013; Pandit *et al.*, 2015; Rasheed *et al.*, 2017). Some data packets can tolerate the losses but need to be delivered within the specific time-frame whereas some data packets cannot tolerate much losses and need to be delivered within the specific time-frame. There may be some data packets that should be delivered with no or minimal losses but without the limitation of specific time-frame whereas some of the data packets can tolerate the losses and also do not require delivery within the specific time-frame. Hence, traffic prioritization is necessary during channel access due to the heterogeneous nature BMSNs used to monitor vital-signs information.

In WBANs, when the generated data values of heterogeneous natured BMSNs cross the normal readings, then an emergency occurs. An emergency event is a sporadic event by nature that can happen at any time. Emergency traffic has sporadic nature and should be delivered instantaneously (Hug et al., 2012; Monowar et al., 2012). If an emergency event is not handled on a priority basis in medical applications, then it is dangerous for the patient's life. The medical teams have found various cases in which the health of a patient drops instantaneously in an emergency room due to waiting. Therefore, time is very crucial in an emergency situation, and patient's lives cannot be risked due to the delay in emergency rooms (Gao et al., 2007). The emergency traffic identification is among the significant constraints in WBAN (Elhadj et al., 2013; Rajput et al., 2013). Furthermore, the emergency traffic requires the highest priority (Ullah, 2013; Bhandari and Moh, 2016) and sometimes emergency occurs at multiple BMSNs simultaneously (Ullah, 2013). Moreover, in an emergency situation, it is necessary to save non-emergency traffic from ignorance (Muthulakshmi and Shyamala, 2017). Therefore, it is a challenging job to fulfil the aforementioned constraints of the emergency situation.

In WBAN, the patient's body is observed by heterogeneous BMSNs, therefore, the applications consist of heterogeneous traffic rates which become variable in an emergency situation. For example, the BMSNs that are used to observe heartbeat, temperature, and blood pressure have low-rate traffic in the non-emergency situation but generate high rate traffic in case of emergency situation. Therefore, the WBAN applications naturally generate variable traffic-rates. The applications with low-rate traffic require less energy consumption whereas the applications with high-rate emergency traffic demand high throughput. Moreover, the dynamic adjustment of traffic is necessary to create a balance between throughput and energy (Rahman *et al.*, 2011). Thus, the dynamic adjustment of traffic to accommodate the variations in heterogeneous traffic rates, the energy preservation of BMSNs with non-emergency traffic and a balance between throughput and energy is required in the sporadic emergency situations.

1.2 Problem Background

The Medium Access Control (MAC) layer provides the coordination to the BMSNs to access the shared medium. At MAC layer the critical task is to avoid concurrent transmissions and collisions with the increased throughput and packet delivery ratio and the decreased delay, packet loss ratio and energy consumption. The MAC plays a key role in improving the overall performance of the network (Gopalan and Park, 2010). The MAC is the most appropriate layer to deal with packet delivery delay, packet delivery ratio and energy (Barroso *et al.*, 2005; Chiras *et al.*, 2005; Miller and Vaidya, 2005; Zheng *et al.*, 2005; Fang and Dutkiewicz, 2009; Thapa and Shin, 2012; Bradai *et al.*, 2014; Khan *et al.*, 2014; Ramachandran *et al.*, 2014; Ullah and Li, 2015).

WBANs pose unique constraints (such as traffic prioritization, sporadic emergency traffic handling, emergency-based traffic adaptivity, and energy consumption) due to the behaviour of human body, which makes the design of medium access mechanism, a challenging job. It has gained the attention of the research community, and during the last few years, a lot of WBAN MAC protocols have been suggested. The existing MAC protocols for WBANs can be categorized into traffic priority, sporadic emergency traffic, emergency-based traffic adaptive, cross-layered and cluster-based MAC protocols (Rahman *et al.*, 2011; Anjum *et al.*, 2013; Pandit *et al.*, 2015; Rasheed *et al.*, 2017).

The heterogeneous natured BMSNs are used to sense a variety of vital-signs information and generate various types of data packets which require traffic prioritization. Yoon *et al.* (2010) present Preemptive and Non-Preemptive MAC

(PNP-MAC) protocol to provide traffic prioritization for diverse traffic types with preemptive channel allocation and non-preemptive data transmission in the allocated channels. The authors consider five traffic types and distribute these types into three backoff classes that are 0, 1, and 2. All BMSNs use prioritized random backoff and Clear Channel Assessment (CCA) to access the channel in the CAP. They customize standard slotted-Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) scheme of IEEE 802.15.4 by introducing [0 To 2^{BE} (Class+1)-1] as the backoff period range, where Class is the traffic class value. Every BMSN select the random backoff number from the proposed backoff period range.

However, in PNP-MAC, every backoff period range starts from zero which can result in the prior channel access to the low priority BMSN than the high priority BMSN. Moreover, the backoff period range of high priority class is repetitively used as a subpart in the backoff period range of low priority traffic class in each backoff which also can cause non-prioritized channel access. Furthermore, in third, fourth and fifth backoff, [0 - 31] is assigned to traffic class 0, [0 - 63] is assigned to traffic class 1, and [0 -95] is assigned to traffic class 2. Because the assigned backoff period range remains unchanged in their third, fourth and fifth backoff which increases packet collision and a retransmission rate. And in result packet delivery delay is increased. Also, in third, fourth, and fifth backoff, very high backoff period ranges are assigned to traffic class 1 and 2 that are [0 - 63] and [0 - 95] respectively. Therefore, the traffic of BMSNs that belong to traffic class 1 or 2 is highly delayed in third, fourth, and fifth backoff.

Anjum *et al.* (2013) introduce traffic Priority and Load-Aware MAC (PLA-MAC) protocol for WBANs to provide contention-based traffic prioritization with high throughput, low packet delivery delay and less energy consumption. In PLA-MAC, the traffic is categorized into four traffic classes with 0, 1, 2, and 3 as a traffic class value, where 0 represents the highest priority and 3 is the lowest priority. In PLA-MAC, the standard slotted-CSMA/CA scheme of IEEE 802.15.4 is customized by presenting a new backoff period range. All BMSNs perform prioritized random backoff by choosing the random backoff value from the proposed backoff period range [0 *To* $2^{T_i+2} - 1$], where *T_i* represents traffic class value.

However, PLA-MAC uses variable T_i (1, 2, 3, 4) instead of BE (3, 4, 5) in the backoff period range. Therefore, the specific backoff period range assigned to the BMSNs of each traffic class remains unchanged in every backoff which increases the collision rate, packet delivery delay and energy consumption, and decreases the throughput. Further, each backoff period range starts from zero which can cause non-prioritized channel access to all BMSNs. Moreover, the backoff period ranges of high priority traffic classes are repetitively used as a subpart in the backoff period ranges of low priority traffic classes which also result in a high collision. In addition, the upper limit of the backoff period range that is assigned to the BMSNs with ordinary data packets is 63 which is very high backoff value, therefore, also raises the packet delivery delay. Thus, the performance of PLA-MAC is degraded in terms of packet delivery delay, throughput and energy consumption due to the aforementioned shortcomings.

Pandit et al. (2015) propose an energy-efficient Multi-constrained MAC (eMC-MAC) to provide emergency traffic handling mechanism with better energy efficiency. In eMC-MAC, the traffic is categorized into five classes each with a specific priority. According to eMC-MAC, emergency traffic is sporadic by nature and must be delivered instantly. In eMC-MAC, the BMSNs either with emergency traffic or with non-emergency traffic use prioritized random backoff to access the channel during contention. Therefore, authors try to save the non-emergency traffic from ignorance. However, in eMC-MAC, the critical and reliability packets get the channel before emergency packets because they use zero as backoff number and emergency packets choose random backoff number from the backoff period range, i.e., [0 - 3]. Also, in each backoff, all backoff period ranges starts from zero, therefore, nonemergency traffic can access the channel before emergency traffic. Furthermore, no mechanism is provided to handle an emergency at more than one BMSNs. Also, a very high backoff period range is assigned to the lowest priority traffic class BMSNs which causes a high packet delivery delay, therefore, in the result, the traffic with the lowest priority is ignored.

Rasheed *et al.* (2017) propose Priority Guaranteed MAC (PG-MAC) to provide emergency traffic management technique with a reduced delay and energy consumption. In PG-MAC, the traffic is categorized in three classes, but the highest priority is given to sporadic emergency traffic. All the BMSNs that belong to three traffic classes contend to access the channel using prioritized random backoff during contention. Therefore, the authors try to save the non-emergency traffic from ignorance. Also, the emergency traffic is selected based on the lowest traffic class value, the highest data generation rate and the generated packet size. The authors also try to handle the emergency traffic at multiple BMSNs. However, the consideration of emergency traffic based on lowest traffic class value and highest traffic generation rate is not the real-time medical approach because the BMSNs with lowest traffic class value and highest traffic generation rate are not considered by doctors in an emergency situation.

A number of emergency-based traffic adaptive MAC protocols have been proposed to address the issue of contention-based dynamic adjustment of traffic in sporadic emergency situations. Rahman *et al.* (2011) propose A Traffic Load Aware Sensor (ATLAS) protocol to adjust the traffic dynamically, to preserve the energy of sensor nodes with non-emergency traffic, and to create a balance between energy and throughput in an emergency situation through traffic load estimation. In ATLAS, various modes of operation in a superframe are provided to adjust the dynamic variations in heterogeneous traffic rates. The traffic load is categorized into four types based on traffic load estimation. The standard slotted-CSMA/CA is used by all the sensor nodes to access the channel in the CAP period.

However, ATLAS does not provide traffic prioritization (Hossain *et al.*, 2014). Also, ATLAS MAC does not provide the opportunity to high priority traffic to access the channel before the low priority traffic and does not consider prioritized backoff class to avoid packet collision (Anjum *et al.*, 2013). Also, it does not consider prioritized channel access for heterogeneous nature BMSNs during contention (Pandit *et al.*, 2015). Moreover, it provides dynamic adjustment of traffic through various modes of operation in superframe using traffic load estimation which causes an extra computational load (Pandit *et al.*, 2015). Additionally, the collision is increased due to the non-prioritized channel access which may become worse in an emergency situation. Because of that all sensor nodes consume high energy, show very low throughput and face a long delay. Thus, ATLAS lacks in energy preservation of nonemergency sensor nodes and creating a balance between throughput and energy.

Furthermore, PLA-MAC (Anjum et al., 2013) also focuses on emergency based traffic load adaptivity with high throughput, low delay and less energy consumption. In PLA-MAC, the traffic is categorized into four classes, and the highest priority is assigned to emergency traffic. In PLA-MAC, the Emergency Data Transfer Slots (ETS) are introduced to transmit emergency traffic, and the number of ETS slots is determined dynamically in each superframe. Although in PLA-MAC, traffic prioritization is provided, if there is no emergency traffic, then ETS slots allocation results in wastage of resources. As a result, PLA-MAC becomes unsuccessful in achieving dynamic adjustment of traffic to accommodate the variations in heterogeneous traffic rates. In addition, in PLA-MAC, the specific backoff period range is assigned to the BMSNs of each traffic class that remains unchanged in every backoff. Therefore, a high traffic load in emergency situation results in a high collision which increases the packet delivery delay and energy consumption and reduces the throughput. Consequently, PLA-MAC becomes weak to preserve the energy of BMSNs with non-emergency traffic and to create a balance between throughput and energy.

Summarizing the aforementioned discussion, it is observed from the previous research works that the existing MAC protocols consider traffic prioritization. Even though some of them use standard slotted-CSMA/CA to provide channel access during contention, and some of them customize the standard slotted-CSMA/CA to give prioritized channel access during contention. But still, there are many limitations in the existing MAC protocols regarding traffic prioritization as explained earlier. Thus, it is necessary to reconsider contention-based prioritized channel access for heterogeneous nature vital-signs information. Similarly, some of the existing MAC protocols also consider the issue of contention-based sporadic emergency traffic handling. But in fact, all of them do not address the issues of sporadic emergency traffic such as emergency traffic identification, emergency traffic handling at single or multiple BMSNs simultaneously, and providing appropriate transmission opportunity to non-emergency traffic. The particular issue which is addressed by them also has many shortcomings as described earlier.

In addition, some of the existing MAC protocols only focus the issue of contention-based sporadic emergency traffic handling but still have many weaknesses as illustrated before. Likewise, some of the current MAC protocols address the issue

of contention-based dynamic adjustment of traffic in sporadic emergency situations, but most of them fail to address the issue of energy preservation of non-emergency traffic BMSNs and the issue of creating a balance between throughput and energy. Additionally, even though, the existing MAC protocols either address all the issues or a specific issue of contention-based dynamic adjustment of traffic in sporadic emergency situations. But all of them have a lot of flaws as discussed before. So, it is extremely desirable to introduce mechanisms to resolve the weaknesses of existing MAC protocols.

1.3 Problem Statement

Wireless Body Area Network has a significant role in the domain of healthcare to observe the patient's health and due to its nature; it poses some unique constraints and challenges such as contention-based prioritized channel access for heterogenous natured vital-signs information, contention-based sporadic emergency traffic handling and the contention-based dynamic adjustment of traffic in sporadic emergency situations. These unique constraints and challenges need to be addressed while designing the MAC protocol for WBANs. Most of the existing MAC protocols partially address these issues except PLA-MAC (Anjum *et al.*, 2013).

Most of them use standard slotted-CSMA/CA during contention but still have many limitations regarding traffic prioritization. In particular, the same backoff period range is assigned to each traffic class in every backoff and the backoff period range of third backoff remains unchanged in fourth and fifth backoffs. Also, the backoff period range of first backoff is repetitively used in the backoff period ranges of second, third, fourth, and fifth backoffs. However, such repetitions could cause a high collision which increases the packet delivery delay and energy consumption and decreases the throughput and Packet Delivery Ratio (PDR). Besides, some of them customize the backoff period range of standard slotted-CSMA/CA to provide prioritized channel access. But still have many constraints such as, in each backoff, the backoff period range of high priority traffic class is repetitively used in the backoff period range of low priority traffic class. Therefore, a high priority traffic class BMSN faces a longer delay which is not appropriate in healthcare applications. Furthermore, the assigned backoff period ranges to various traffic classes in first backoff remain unchanged in second, third, fourth, and fifth backoffs. As a result, the packet collision, packet delivery delay and energy consumption are increased, and the throughput and packet delivery ratio are decreased. Also, a very high backoff period range is assigned to low priority traffic classes. In result such traffic classes face a very high packet delivery delay.

Furthermore, some of the existing MAC protocols address the issue of sporadic emergency traffic handling. However, they do not provide any mechanism to handle emergency traffic based on those patient's vital-signs which are considered by the doctors in an emergency situation. Some of them permanently consider a single or a particular group of BMSN(s) that always generate emergency traffic but emergency situation is sporadic and temporary by nature. In emergency situation, the nonprioritized channel access delays the emergency traffic which is not appropriate because it is dangerous for patient's life. Also, most of them provide mechanism to handle an emergency traffic at a single BMSN, but no mechanism is available to handle emergency traffic at multiple BMSNs. However, the BMSNs with emergency traffic also affect the closely related BMSNs. Some of them do not provide appropriate transmission opportunity to non-emergency traffic in an emergency situation whereas some of them address this issue but still lack due to the assignment of very high backoff period range to lowest priority traffic class and non-prioritized channel access.

The existing MAC protocols also attempt to adjust the traffic dynamically. But the dynamic adjustment of traffic through adaptive slot allocation increases the packet drop ratio and energy consumption of non-emergency traffic BMSNs. The nonemergency traffic BMSNs consume high energy due to non-prioritized channel access. Also, it is experimentally observed that the energy is highly consumed and throughput is throttled down due to high-rate emergency traffic but a balance is required between throughput and energy consumption. Because emergency traffic requires high throughput and non-emergency traffic BMSNs require low energy consumption in emergency situation. In emergency situation, some data packets are expired before transmission and communication channel is engaged with the transmission of dead data packets which puts an extra burden over the network but the existing MAC protocols do not provide any mechanism to manage the lifetime of data packets. As a consequence, the performance of the network is decreased in terms of packet delivery delay, throughput and energy consumption.

1.4 Research Goal

This research work aims to develop prioritization-based adaptive emergency traffic medium access control protocol for wireless body area networks. The proposed protocol is deemed to ensure the provision of contention-based prioritized channel access for heterogenous natured vital-signs information with the contention-based sporadic emergency traffic handling and the contention-based dynamic adjustment of traffic in sporadic emergency situation.

1.5 Research Questions

This research work addresses the following research questions:

- i. How to provide contention-based prioritized channel access to the heterogeneous natured BMSNs?
- ii. How to handle contention-based sporadic emergency traffic at single or multiple BMSN(s) without ignoring non-emergency traffic?
- iii. How to create a balance between throughput and energy consumption in sporadic emergency situation?

1.6 Research Objectives

The research objectives are as follows:

i. To design a Traffic Class Prioritization-based slotted-CSMA/CA scheme which assigns a distinct, minimized and prioritized backoff period range to each traffic class in every backoff during channel access in the CAP period that can reduce packet delivery delay, packet loss ratio and energy consumption while it increases throughput and packet delivery ratio.

- ii. To design an Emergency Traffic Class Provisioning-based slotted-CSMA/CA scheme which delivers the sporadic emergency traffic instantaneously, that occurs either at a single or multiple BMSN(s) with minimum delay and packet loss without ignoring non-emergency traffic in the CAP period.
- iii. To design an Emergency-based Traffic Adaptive slotted-CSMA/CA scheme which provides dynamic adjustment of traffic to accommodate variations in heterogeneous traffic rates along with energy preservation of BMSNs with non-emergency traffic, creating a balance between throughput and energy in the sporadic emergency situation.

1.7 Research Contributions

This research work proposes a MAC protocol which offers a realistic solution that considers several aspects of WBAN. A range of BMSNs is used to monitor the different vital-signs information of the patient's body by classifying the generated data of these vital-signs into Normal Data Packet (NDP), Delay-constrained Data Packet (DDP), Reliability-constrained Data Packet (RDP), Critical Data Packet (CDP), and Emergency Data Packet (EDP) as discussed in Pandit *et al.* (2015). Thus, the following are the research contributions, which are summarized as follows:

- i. The proposed Traffic Class Prioritization-based slotted-CSMA/CA scheme assigns a distinct, minimized and prioritized backoff period range to each traffic class in every backoff during channel access in the CAP period. Consequently, packet collision rate, packet delivery delay, packet loss ratio and energy consumption are decreased, while throughput and packet delivery ratio are increased.
- ii. The proposed Emergency Traffic Class Provisioning-based slotted-CSMA/CA scheme delivers the sporadic emergency traffic instantaneously occurring either at a single BMSN or multiple BMSNs with minimum delay and packet

loss without ignoring non-emergency traffic in the CAP period. As a consequence, energy consumption is decreased while the throughput and packet delivery ratio are increased.

iii. The proposed Emergency-based Traffic Adaptive slotted-CSMA/CA scheme provides dynamic adjustment of traffic to accommodate the variations in heterogeneous traffic rates with the energy preservation of BMSNs with nonemergency traffic and creates a balance between throughput and energy in the sporadic emergency situation.

1.8 Research Scope

The scope of this research work is as follow:

- i. This research work focuses on MAC layer for tier-1 (intra-WBANs) of wireless body area networks.
- ii. It is based on IEEE 802.15.4.
- iii. IEEE standard group also introduced IEEE 802.15.6 standard for WBANs by defining its PHY and MAC layers but due to many constraints (described in Section 2.3.1), it is outside the scope of this research.
- All BMSNs are fixed and connected in a star topology under the supervision of an on-body local base station known as BC, which is a Fully Function Device (FFD).
- v. The data communication between the BC and MS or server through any network (i.e., Wireless Local Area Network (WLAN), or wired, cellular) is outside the scope of this research.
- vi. The data communication among multiple collaborative WBANs is also outside the scope of this research.
- vii. The downlink data communication from the BC to the BMSNs is also outside the scope of this research.

1.9 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 presents the literature review of the existing MAC protocols for WBANs. It also identifies the various issues and challenges of MAC protocols for wireless body area networks. Chapter 3 provides the details of the research framework to design the proposed schemes. Chapter 4 presents the design and development of the proposed Traffic Class Prioritization-based slotted-CSMA/CA (TCP-CSMA/CA) with its performance evaluation. Chapter 5 illustrates the design and development of the proposed Emergency Traffic Class Provisioning-based slotted-CSMA/CA (ETCP-CSMA/CA) with comparative results. Chapter 6 presents the design and development of the proposed Emergency-based Traffic Adaptive slotted-CSMA/CA (ETA-CSMA/CA) with its performance evaluation. Finally, Chapter 7 concludes the thesis and provides the possible future directions.

REFERENCES

- Ahmed, E. S. A., Altahir, I. K., Mohammed, A. A. and Salih, A. D. (2015)
 'Performance analysis of traffic patterns over MANET routing protocols in zigbee personal area network', *International Journal of Computer Science and Telecommunications*, 6(1).
- Alam, M. M., Berder, O., Menard, D. and Sentieys, O. (2012) Latency-energy optimized mac protocol for body sensor networks. 9th International Conference on Wearable and Implantable Body Sensor Networks (BSN). 09-12 May. London, UK: IEEE, 67 - 72.
- Alemdar, H. and Ersoy, C. (2010) 'Wireless sensor networks for healthcare: A survey', *Computer Networks*, 54(15), 2688-2710.
- Ambigavathi, M. and Sridharan, D. (2018) 'Traffic Priority Based Channel Assignment Technique for Critical Data Transmission in Wireless Body Area Network', *Journal of Medical Systems*, 42(11), 206.
- Anisi, M. H., Abdullah, A. H., Coulibaly, Y. and Razak, S. A. (2013) 'EDR: efficient data routing in wireless sensor networks', *International Journal of Ad Hoc and Ubiquitous Computing*, 12(1), 46-55.
- Anjum, I., Alam, N., Razzaque, M. A., Mehedi Hassan, M. and Alamri, A. (2013)
 'Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks', *International Journal of Distributed Sensor Networks*, 2013, 1-9.
- Ayatollahitafti, V., Ngadi, M. D. A. and Sharif, J. B. I. N. M. (2015) 'Requirements and challenges in body sensor networks: A survey', *Journal of Theoretical and Applied Information Technology*, 72(2), 227-238.
- Barakah, D. M. and Ammad-uddin, M. (2012) A Survey of Challenges and Applications of Wireless Body Area Network (WBAN) and Role of a Virtual Doctor Server in Existing Architecture. 3rd International Conference on Intelligent Systems Modelling and Simulation (ISMS). 08-10 February. Kota Kinabalu, Malaysia, 214 - 219.
- Barroso, A., Roedig, U. and Sreenan, C. (2005) μ-MAC: an energy-efficient medium access control for wireless sensor networks. *Proceedings of the 2nd European Workshop on Wireless Sensor Networks*. 31 January -2 February. Istanbul, Turkey: IEEE, 70 80.

- Bhandari, S. and Moh, S. (2016) 'A Priority-Based Adaptive MAC Protocol for Wireless Body Area Networks', *Sensors*, 16(3), 401-416.
- Boulfekhar, S. and Benmohammed, M. (2013) 'A novel energy efficient and lifetime maximization routing protocol in wireless sensor networks', *Wireless Personal Communications*, 72(2), 1333-1349.
- Boulis, A. (2007) Castalia: revealing pitfalls in designing distributed algorithms in WSN. *Proceedings of the 5th international conference on Embedded networked sensor systems*. 04-09 November. Sydney, Australia: ACM, 407 408.
- Bradai, N., Fourati, L. C. and Kamoun, L. (2014) 'Investigation and performance analysis of MAC protocols for WBAN networks', *Journal of Network and Computer Applications*, 46, 362-373.
- Cai, W.-X., Li, G.-S., Chen, X.-H., Hong, C.-Q., Zhu, S.-Z., Wu, Q.-H., et al. (2016) Education based new computer network simulator design and implementation. *Proceedings of the 2016 11th International Conference on Computer Science* & Education (ICCSE). 23-25 August. Nagoya, Japan: IEEE, 933 - 935.
- Cai, X., Li, J., Yuan, J., Zhu, W. and Wu, Q. (2015) 'Energy-aware adaptive topology adjustment in wireless body area networks', *Telecommunication Systems*, 58(2), 139-152.
- Cai, X., Yuan, J., Yuan, X., Zhu, W., Li, J., Li, C., et al. (2013) 'Energy-efficient relay MAC with dynamic power control in wireless body area networks', *KSII Transactions on Internet and Information Systems (TIIS)*, 7(7), 1547-1568.
- Cao, H., González-Valenzuela, S. and Leung, V. (2010) Employing IEEE 802.15.4 for quality of service provisioning in wireless body area sensor networks. 24th IEEE International Conference on Advanced Information Networking and Applications (AINA2010). 20-23 April. Perth, Australia: IEEE, 902 909.
- Cao, H., Leung, V., Chow, C. and Chan, H. (2009) 'Enabling technologies for wireless body area networks: A survey and outlook', *IEEE Communications Magazine*, 47(12), 84-93.
- Chen, C., Knoll, A., Wichmann, H. E. and Horsch, A. (2013) 'A review of three-layer wireless body sensor network systems in healthcare for continuous monitoring', *Journal of Modern Internet Things*, 2, 24-34.
- Chen, M., Gonzalez, S., Vasilakos, A., Cao, H. and Leung, V. C. (2011) 'Body area networks: A survey', *Mobile Networks and Applications*, 16(2), 171-193.
- Chiras, T., Paterakis, M. and Koutsakis, P. (2005) Improved medium access control for wireless sensor networks-a study on the S-MAC protocol. 14th IEEE

Workshop on Local and Metropolitan Area Networks (LANMAN 2005). 18 September. Chania, Crete, Greece: IEEE, 5 - 10.

- Chiu, H.-L., Chu, H., Tsai, J.-C., Liu, D., Chen, Y.-R., Yang, H.-L., et al. (2017) 'The effect of cognitive-based training for the healthy older people: A meta-analysis of randomized controlled trials', *PloS one*, 12(5), e0176742.
- Dâmaso, A., Freitas, D., Rosa, N., Silva, B. and Maciel, P. (2013) 'Evaluating the power consumption of wireless sensor network applications using models', *Sensors*, 13(3), 3473-3500.
- Darwish, A. and Hassanien, A. E. (2011) 'Wearable and implantable wireless sensor network solutions for healthcare monitoring', *Sensors*, 11(6), 5561-5595.
- Elhadj, H. B., Boudjit, S. and Chaari Fourati, L. (2013) A cross-layer based data dissemination algorithm for IEEE 802.15. 6 WBANs. International Conference on Smart Communications in Network Technologies (SaCoNeT 2013). 17-19 June. Paris, France: IEEE, 1 - 6.
- Fahmy, H. M. A. (2016) Simulators and emulators for WSNs, in Wireless sensor networks. Springer: Singapore, pp. 381-491.
- Fang, G. F. G. and Dutkiewicz, E. (2009) BodyMAC: Energy efficient TDMA-based MAC protocol for Wireless Body Area Networks. 9th International Symposium on Communications and Information Technology (ISCIT2009). 28-30 September. Incheon, Korea, 1455 - 1459.
- Gao, T., Massey, T., Selavo, L., Crawford, D., Chen, B.-r., Lorincz, K., et al. (2007) 'The advanced health and disaster aid network: A light-weight wireless medical system for triage', *IEEE Transactions on Biomedical Circuits and Systems*, 1(3), 203-216.
- Gopalan, S. A. and Park, J.-T. (2010) Energy-efficient MAC protocols for wireless body area networks: survey. *International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT 2010)*. 18-20 October. Moscow, Russia: IEEE, 739 - 744.
- Ha, I. (2015) 'Technologies and research trends in wireless body area networks for healthcare: A systematic literature review', *International Journal of Distributed Sensor Networks*, 11(6), 573538.
- Hanson, M. A., Powell Jr, H. C., Barth, A. T., Ringgenberg, K., Calhoun, B. H., Aylor, J. H., et al. (2009) 'Body area sensor networks: Challenges and opportunities', *Computer*(1), 58-65.

- Hidalgo, J. A., Cajiao, A., Hernández, C. M., López, D. M. and Quintero, V. M. (2015)
 'VISIGNET: a wireless body area network with cloud data storage for the telemonitoring of vital signs', *Health and Technology*, 5(2), 115-126.
- Hiep, P. T. and Kohno, R. (2014) Control superframe for high throughput of clusterbased WBAN with CSMA/CA. 25th Annual IEEE International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC). 02-05 September. Washington DC, USA: IEEE, 1125 - 1130.
- Hossain, M. U., Kalyan, M., Rana, M. R. and Rahman, M. O. (2014) Multidimensional traffic adaptive energy-efficient MAC protocol for Wireless Body Area Networks. 9th International Forum on Strategic Technology (IFOST 2014). 21-23 October. Chittagong, Bangladesh: IEEE, 161 - 165.
- Huq, M. A., Dutkiewicz, E., Fang, G., Liu, R. P. and Vesilo, R. (2012) MEB MAC: Improved channel access scheme for medical emergency traffic in WBAN. *International Symposium on Communications and Information Technologies* (ISCIT). 02-05 October. Gold Coast, Australia: IEEE, 371 - 376.
- Issariyakul, T. and Hossain, E. (2011) *Introduction to network simulator NS2*. 1st edn. Boston, MA: Springer.
- Issariyakul, T. and Hossain, E. (2012) *Introduction to Network Simulator NS2*. 2nd edn. Boston, MA: Springer.
- Khan, A. N., Frank, J., Geria, R. and Davidson, S. (2007) 'Utilization of personal digital assistants (PDAS) by pediatric and emergency medicine residents', *Journal of Emergency Medicine*, 32(4), 423-428.
- Khan, Z., Rasheed, M. B., Javaid, N. and Robertson, B. (2014) 'Effect of packet interarrival time on the energy consumption of beacon enabled MAC protocol for body area networks', *Procedia Computer Science*, 32, 579-586.
- Kim, B. and Cho, J. (2012) A novel priority-based channel access algorithm for contention-based MAC Protocol in WBANs. *Proceedings of the 6th International Conference on Ubiquitous Information Management and Communication (ICUIMC '12).* 20-22 February. Kuala Lumpur, Malaysia: ACM, 1 - 5.
- Kwak, K., Al Ameen, M. and Huh, J. (2012) Power efficient wakeup mechanisms for wireless body area networks. 6th International Symposium on Medical Information and Communication Technology (ISMICT). 25-29 March. La Jolla, California, USA: IEEE, 1 - 6.

- Latré, B., Braem, B., Moerman, I., Blondia, C. and Demeester, P. (2011) 'A survey on wireless body area networks', *Wireless Networks*, 17(1), 1-18.
- Li, C., Hao, B., Zhang, K., Liu, Y. and Li, J. (2011) 'A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks', *Journal of Medical Systems*, 35(5), 1265-1275.
- Li, H. and Tan, J. (2010) 'Heartbeat-driven medium-access control for body sensor networks', *IEEE Transactions on Information Technology in Biomedicine*, 14(1), 44-51.
- Liao, X. and Xiao, N. (2016) 'Emerging High-Performance Computing Systems and Technology', *SCIENTIA SINICA Informationis*, 46(9), 1175-1210.
- Liu, B., Yan, Z. and Chen, C. W. (2011) CA-MAC: A hybrid context-aware MAC protocol for wireless body area networks. 13th IEEE International Conference on e-Health Networking Applications and Services (Healthcom 2011). 13-15 June. Missouri, USA: IEEE, 213 - 216.
- Liu, B., Yan, Z. and Chen, C. W. (2013) 'MAC protocol in wireless body area networks for e-Health: Challenges and a context-aware design', *IEEE Wireless Communications*, 20(4), 64-72.
- Manirabona, A., Fourati, L. C. and Boudjit, S. (2017) 'Investigation on healthcare monitoring systems: innovative services and applications', *International Journal of E-Health and Medical Communications*, 8(1), 1-18.
- Marinkovic, S. and Popovici, E. (2012) 'Ultra low power signal oriented approach for wireless health monitoring', *Sensors*, 12(6), 7917-7937.
- Marinković, S. J., Popovici, E. M., Spagnol, C., Faul, S. and Marnane, W. P. (2009) 'Energy-efficient low duty cycle MAC protocol for wireless body area networks', *IEEE Transactions on Information Technology in Biomedicine*, 13(6), 915-925.
- Miller, M. J. and Vaidya, N. H. (2005) 'A MAC protocol to reduce sensor network energy consumption using a wakeup radio', *IEEE Transactions on Mobile Computing*, 4(3), 228-242.
- Mohammadi, M. S., Zhang, Q. and Dutkiewicz, E. (2014) Channel-adaptive MAC frame length in wireless body area networks. *International Symposium on Wireless Personal Multimedia Communications (WPMC2014)*. 07-10 September Sydney, Australia: IEEE, 584 - 588.
- Monowar, M. M., Hassan, M. M., Bajaber, F., Al-Hussein, M. and Alamri, A. (2012) 'McMAC: Towards a MAC protocol with multi-constrained QoS provisioning

for diverse traffic in wireless body area networks', *Sensors*, 12(11), 15599-15627.

- Mouzehkesh, N., Zia, T. and Shafigh, S. (2013a) Traffic aware fuzzy-tuned delay range for wireless body area networks medium access control protocol (MAC). *IEEE 8th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP)*. 02-05 April. Melbourne, Australia: IEEE, 60 65.
- Mouzehkesh, N., Zia, T., Shafigh, S. and Zheng, L. (2013b) D 2 MAC: dynamic delayed medium access control (MAC) protocol with fuzzy technique for wireless body area networks. *IEEE International Conference on Body Sensor Networks (BSN 2013)*. 06-09 May. Massachusetts, USA: IEEE, 1 - 6.
- Movassaghi, S., Abolhasan, M. and Lipman, J. (2013) 'A review of routing protocols in wireless body area networks', *Journal of Networks*, 8(3), 559-575.
- Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D. and Jamalipour, A. (2014) 'Wireless body area networks: A survey', *IEEE Communications Surveys & Tutorials*, 16(3), 1658-1686.
- Muthulakshmi, A. and Shyamala, K. (2017) 'Efficient patient care through wireless body area networks—enhanced technique for handling emergency situations with better quality of service', *Wireless Personal Communications*, 95(4), 3755-3769.
- Nazir, B. and Hasbullah, H. (2013) 'Energy efficient and QoS aware routing protocol for clustered wireless sensor network', *Computers & Electrical Engineering*, 39(8), 2425-2441.
- Nepal, S., Dahal, S. and Shin, S. (2016a) 'Does the IEEE 802.15. 4 MAC Protocol Work Well in Wireless Body Area Networks', *Journal of Advances in Computer Networks*, 4(1), 52-57.
- Nepal, S., Pudasaini, A., Pyun, J.-y., Hwang, S.-s., Lee, C. G. and Shin, S. (2016b) A New MAC Protocol for emergency handling in wireless body area networks. 8th International Conference on Ubiquitous and Future Networks (ICUFN). 05-08 July. Vienna, Austria: IEEE, 588 - 590.
- Nie, P., Jin, Z. and Gong, Y. (2010) Mires++: a reliable, energy-aware clustering algorithm for wireless sensor networks. *Proceedings of the 13th ACM international conference on Modeling, analysis, and simulation of wireless and mobile systems (MSWiM '10).* 17-21 October. Bodrum, Turkey: ACM, 178 -186.

- Otal, B., Alonso, L. and Verikoukis, C. (2009) 'Highly reliable energy-saving MAC for wireless body sensor networks in healthcare systems', *IEEE Journal on Selected Areas in Communications*, 27(4), 553-565.
- Pandit, S., Sarker, K., Razzaque, M. A. and Sarkar, A. J. (2015) 'An energy-efficient multiconstrained QoS aware MAC protocol for body sensor networks', *Multimedia Tools and Applications*, 74(14), 5353-5374.
- Qadri, S. F., Awan, S. A., Amjad, M., Anwar, M. and Shehzad, S. (2013) 'Applications, challenges, security of wireless body area networks (WBANs) and functionality of IEEE 802.15. 4/ZIGBEE', *Science International*, 25(4), 697-702.
- Quwaider, M. and Jararweh, Y. (2015) 'Cloudlet-based efficient data collection in wireless body area networks', *Simulation Modelling Practice and Theory*, 50, 57-71.
- Rahman, M. O., Hong, C. S., Lee, S. and Bang, Y.-C. (2011) 'ATLAS: A Traffic Load Aware Sensor MAC Design for Collaborative Body Area Sensor Networks', *Sensors*, 11(12), 11560-11580.
- Rajput, O., Qureshi, S., Solangi, A. R., Aziz, Z. and Shaikh, F. K. (2013) Applicable operational mechanisms to assist visually impaired people-A WSN perspective. 5th International Conference on Information and Communication Technology for the Muslim World (ICT4M 2013). 26-27 March. Rabat, Morocco: IEEE, 1 - 6.
- Ramachandran, V. R. K., Zwaag, B. J. V. D., Meratnia, N. and Havinga, P. J. M. (2014) 'Evaluation of MAC Protocols with Wake-up Radio for Implantable Body Sensor Networks', *Procedia Computer Science*, 40, 173-180.
- Ramli, S. N. and Ahmad, R. (2011) Surveying the wireless body area network in the realm of wireless communication. 7th International Conference on Information Assurance and Security (IAS). 05-08 December. Malacca, Malaysia: IEEE, 58 61.
- Ranjit, J. S. and Shin, S. (2013) 'A modified IEEE 802.15. 4 superframe structure for guaranteed emergency handling in wireless body area network', *Network Protocols and Algorithms*, 5(2), 1-15.
- Rasheed, M. B., Javaid, N., Imran, M., Khan, Z. A., Qasim, U. and Vasilakos, A. (2017) 'Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks', *Wireless Networks*, 23(4), 1249-1266.

- Rashidi, P. and Mihailidis, A. (2013) 'A survey on ambient-assisted living tools for older adults', *IEEE Journal of Biomedical and Health Informatics*, 17(3), 579-590.
- Razzaque, M. A., Hira, M. T. and Dira, M. (2017) 'Qos in body area networks: A survey', ACM Transactions on Sensor Networks (TOSN), 13(3), 25.
- Rezvani, S. and Ali Ghorashi, S. (2012) 'A Novel WBAN MAC protocol with Improved Energy Consumption and Data Rate', *KSII Transactions on Internet* & Information Systems, 6(9), 2302-2322.
- Rezvani, S. and Ghorashi, S. A. (2013) 'Context aware and channel-based resource allocation for wireless body area networks', *IET Wireless Sensor Systems*, 3(10), 16-25.
- Ruzzelli, A. G., Jurdak, R., O'Hare, G. M. and Van Der Stok, P. (2007) Energyefficient multi-hop medical sensor networking. *Proceedings of the 1st ACM SIGMOBILE international workshop on Systems and networking support for healthcare and assisted living environments (Mobisys '07)*. 11-14 June Puerto Rico, USA: ACM, 37 - 42.
- Sailunaz, K., Alhussein, M., Shahiduzzaman, M., Anowar, F. and Al Mamun, K. A. (2016) 'CMED: Cloud based medical system framework for rural health monitoring in developing countries', *Computers & Electrical Engineering*, 53, 469-481.
- Seo, Y.-S., Kim, D.-Y., Cho, J. and Lee, B. (2010) OCDP: a WBAN MAC protocol for contention-based medical and CE applications. *Proceedings of the 4th International Conference on Uniquitous Information Management and Communication (ICUIMC '10).* 14-15 January Suwon, Republic of Korea: ACM.
- Thapa, A. and Shin, S. (2012) 'QoS Provisioning in Wireless Body Area Networks', KSII Transactions on Internet and Information Systems (TIIS), 6(5), 1267-1285.
- The Institute of Electrical and Electronics Engineers (2011). *IEEE Std 802.15.4TM* 2011. NY, USA: The Institute of Electrical and Electronics Engineers.
- The Institute of Electrical and Electronics Engineers (2012). NY, USA: The Institute of Electrical and Electronics Engineers.
- Thotahewa, K. M., Khan, J. Y. and Yuce, M. R. (2014) 'Power efficient ultra wide band based wireless body area networks with narrowband feedback path', *IEEE Transactions on Mobile Computing*, 13(8), 1829-1842.

- Timmons, N. F. and Scanlon, W. G. (2004) Analysis of the performance of IEEE 802.15. 4 for medical sensor body area networking. 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (IEEE SECON 2004). 04-07 October. Santa Clara, California: IEEE, 16 - 24.
- Touijer, B., Maissa, Y. B. and Mouline, S. (2017) MAC protocols for Wireless Body Area Networks: An overview. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). 26-30 June. Valencia, Spain: IEEE, 1227 - 1232.
- Ullah, F., Abdullah, A. H., Kaiwartya, O. and Arshad, M. M. (2017a) 'Traffic Priority-Aware Adaptive Slot Allocation for Medium Access Control Protocol in Wireless Body Area Network', *Computers*, 6(1), 9.
- Ullah, F., Abdullah, A. H., Kaiwartya, O. and Cao, Y. (2017b) 'TraPy-MAC: Traffic Priority Aware Medium Access Control Protocol for Wireless Body Area Network', *Journal of Medical Systems*, 41(6), 93.
- Ullah, S. (2013) RFID-enabled MAC protocol for WBAN. *IEEE International Conference on Communications (ICC 2013)*. 09-13 June. Budapest, Hungary: IEEE, 6030 6034.
- Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012) 'A comprehensive survey of wireless body area networks', *Journal of Medical Systems*, 36(3), 1065-1094.
- Ullah, S. and Li, C. (2015) 'Energy-efficient MAC protocols for WBANs: Opportunities and challenges', *Telecommunication Systems*, 58(2), 109-110.
- Ullah, S., Mohaisen, M. and Alnuem, M. A. (2013) 'A Review of IEEE 802.15.6 MAC, PHY, and Security Specifications', *International Journal of Distributed Sensor Networks*, 2013, 12.
- Ullah, S., Shen, B., Riazul Islam, S., Khan, P., Saleem, S. and Sup Kwak, K. (2009) 'A study of MAC protocols for WBANs', *Sensors*, 10(1), 128-145.
- Wang, R., Wang, H., Roman, H. E., Wang, Y. and Xu, D. (2013) A cooperative medium access control protocol for mobile clusters in wireless body area networks. 1st International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare (Ubi-HealthTech 2013). 01-03 July. Jinhua, China: IEEE, 1 - 4.

- Xia, F., Li, J., Hao, R., Kong, X. and Gao, R. (2013) 'Service differentiated and adaptive CSMA/CA over IEEE 802.15. 4 for cyber-physical systems', *The Scientific World Journal*, 2013.
- Xia, F., Wang, L., Zhang, D., He, D. and Kong, X. (2015) 'An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems', *Telecommunication Systems*, 58(2), 125-138.
- Yick, J., Mukherjee, B. and Ghosal, D. (2008) 'Wireless sensor network survey', *Computer Networks*, 52(12), 2292-2330.
- Yoon, J. S., Ahn, G.-S., Joo, S.-S. and Lee, M. J. (2010) PNP-MAC: preemptive slot allocation and non-preemptive transmission for providing QoS in body area networks. 7th IEEE Consumer Communications and Networking Conference (CCNC 2010). 09-12 January. Las Vegas, Nevada, USA: IEEE, 1 - 5.
- Yu, J., Park, L., Park, J., Cho, S. and Keum, C. (2016a) 'CoR-MAC: Contention over Reservation MAC Protocol for Time-Critical Services in Wireless Body Area Sensor Networks', *Sensors*, 16(5), 656-675.
- Yu, L., Guo, L., Deng, H., Lin, K., Yu, L., Gao, W., et al. (2016b) Research on Continuous Vital Signs Monitoring Based on WBAN. *International Conference on Smart Homes and Health Telematics*. 25-27 May. Cham: Springer, 371 - 382.
- Yuan, J., Li, C. and Zhu, W. (2013) Energy-efficient MAC in wireless body area networks. Proceedings of the International Conference on Information Science and Technology Applications (ICISTA-13). 17-19 June. Macau, China, 21 - 24.
- Zhang, J., Long, J., Zhao, G. and Zhang, H. (2015) 'Minimized delay with reliability guaranteed by using variable width tiered structure routing in WSNs', *International Journal of Distributed Sensor Networks*, 11(10), 689504.
- Zheng, T., Radhakrishnan, S. and Sarangan, V. (2005) PMAC: an adaptive energyefficient MAC protocol for wireless sensor networks. *Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS* '05). 03-08 April. Denver, Colorado, USA: IEEE, 65 - 72.
- Zhou, J., Guo, A., Xu, J. and Su, S. (2014) 'An optimal fuzzy control medium access in wireless body area networks', *Neurocomputing*, 142, 107-114.

LIST OF PUBLICATIONS

Journal with Impact Factor

- Farhan Masud, Abdul Hanan Abdullah, Gaddafi Abdul-Salaam, and Fasee Ullah. (2017). Traffic Adaptive MAC Protocols in Wireless Body Area Networks. *Wireless Communications and Mobile Computing*. 2017 (8267162). 14 pages. (Impact Factor: 0.869)
- Farhan Masud, Abdul Hanan Abdullah, Gaddafi Abdul-Salaam, and Muhammad Kamran Ishfaq. (2018). Emergency Traffic MAC Protocols in Wireless Body Area Networks. *Adhoc & Sensor Wireless Networks*. 2018 41. (Impact Factor: 0.753)
- Farhan Masud, Abdul Hanan Abdullah, Ayman Altameem, Gaddafi Abdul-Salaam, and Farkhana Muchtar. (2019). Traffic Class Prioritization-Based Slotted-CSMA/CA for IEEE 802.15.4 MAC in Intra-WBANs. 2019, 19, 466. (Impact Factor: 2.475).
- Fasee Ullah, Abdul Hanan Abdullah, Gaddafi Abdul-Salaam, Marina Md Arshad and Farhan Masud. (2017). CDASA-CSMA/CA: Contention Differentiated Adaptive Slot Allocation CSMA-CA for Heterogeneous Data in Wireless Body Area Networks. *KSII Transactions on Internet and Information Systems (TIIS)*. 11(12). 5835-5854. (Impact Factor: 0.611)
- Farkhana Muchtar, Abdul Hanan Abdullah, Suhaidi Hassan and Farhan Masud. (2018). Energy conservation strategies in Host Centric Networking based MANET: A review. *Journal of Network and Computer Applications*. 111. 77-98. (Impact Factor: 3.991)
- Muhammad Anwar, Abdul Hanan Abdullah, Ayman Altameem, Kashif Naseer Qureshi, Farhan Masud, Muhammad Faheem, Yue Cao and Rupak Kharel. (2018). Green Communication for Wireless Body Area Networks: Energy Aware Link Efficient Routing Approach. *Sensors*. 18(10). p.3237. (Impact Factor: 2.475)

Indexed Journal

 Muhammad Anwar, Abdul Hanan Abdullah, R.R. Saedudin, Farhan Masud and Fasee Ullah. (2018). CAMP: Congestion Avoidance and Mitigation Protocol for Wireless Body Area Networks. *International Journal of Integrated Engineering*, 10(6). (Indexed By Master List of Web of Science).