36 research outputs found

    Hybrid optical and magnetic manipulation of microrobots

    Get PDF
    Microrobotic systems have the potential to provide precise manipulation on cellular level for diagnostics, drug delivery and surgical interventions. These systems vary from tethered to untethered microrobots with sizes below a micrometer to a few microns. However, their main disadvantage is that they do not have the same capabilities in terms of degrees-of-freedom, sensing and control as macroscale robotic systems. In particular, their lack of on-board sensing for pose or force feedback, their control methods and interface for automated or manual user control are limited as well as their geometry has few degrees-of-freedom making three-dimensional manipulation more challenging. This PhD project is on the development of a micromanipulation framework that can be used for single cell analysis using the Optical Tweezers as well as a combination of optical trapping and magnetic actuation for recon gurable microassembly. The focus is on untethered microrobots with sizes up to a few tens of microns that can be used in enclosed environments for ex vivo and in vitro medical applications. The work presented investigates the following aspects of microrobots for single cell analysis: i) The microfabrication procedure and design considerations that are taken into account in order to fabricate components for three-dimensional micromanipulation and microassembly, ii) vision-based methods to provide 6-degree-offreedom position and orientation feedback which is essential for closed-loop control, iii) manual and shared control manipulation methodologies that take into account the user input for multiple microrobot or three-dimensional microstructure manipulation and iv) a methodology for recon gurable microassembly combining the Optical Tweezers with magnetic actuation into a hybrid method of actuation for microassembly.Open Acces

    Light‐Powered Microrobots: Challenges and Opportunities for Hard and Soft Responsive Microswimmers

    Get PDF
    Worldwide research in microrobotics has exploded in the past two decades, leading to the development of microrobots propelled in various manners. Despite significant advances in the field and successful demonstration of a wide range of applications, microrobots have yet to become the preferred choice outside a laboratory environment. After introducing available microrobotic propulsion and control mechanisms, microrobots that are manufactured and powered by light are focused herein. Referring to pioneering works and recent interesting examples, light is presented not only as a fabrication tool, by means of twophoton polymerization direct laser writing, but also as an actuator for microrobots in both hard and soft stimuli–responsive polymers. In this scenario, a number of challenges that yet prevent polymeric light-powered microrobots from reaching their full potential are identified, whereas potential solutions to overcome said challenges are suggested. As an outlook, a number of real-world applications that light-powered microrobots should be particularly suited for are mentioned, together with the advances needed for them to achieve such purposes. An interdisciplinary approach combining materials science, microfabrication, photonics, and data science should be conducive to the next generation of microrobots and will ultimately foster the translation of microrobotic applications into the real world

    An overview of multiple DoF magnetic actuated micro-robots.

    No full text
    International audienceThis paper reviews the state of the art of untethered, wirelessly actuated and controlled micro-robots. Research for such tools is being increasingly pursued to provide solutions for medical, biological and industrial applications. Indeed, due to their small size they o er both high velocity, and accessibility to tiny and clustered environments. These systems could be used for in vitro tasks on lab-on-chips in order to push and/or sort biological cells, or for in vivo tasks like minimally invasive surgery and could also be used in the micro-assembly of microcomponents. However, there are many constraints to actuating, manufacturing and controlling micro-robots, such as the impracticability of on-board sensors and actuators, common hysteresis phenomena and nonlinear behavior in the environment, and the high susceptibility to slight variations in the atmosphere like tiny dust or humidity. In this work, the major challenges that must be addressed are reviewed and some of the best performing multiple DoF micro-robots sized from tens to hundreds m are presented. The di erent magnetic micro-robot platforms are presented and compared. The actuation method as well as the control strategies are analyzed. The reviewed magnetic micro-robots highlight the ability of wireless actuation and show that high velocities can be reached. However, major issues on actuation and control must be overcome in order to perform complex micro-manipulation tasks

    Actuation, Sensing And Control For Micro Bio Robots

    Get PDF
    The continuing trend in miniaturization of technology, advancements in micro and nanofabrication and improvements in high-resolution imaging has enabled micro- and meso-scale robots that have many applications. They can be used for micro-assembly, directed drug delivery, microsurgery and high-resolution measurement. In order to create microrobots, microscopic sensors, actuators and controllers are needed. Unique challenges arise when building microscale robots. For inspiration, we look toward highly capable biological organisms, which excel at these length scales. In this dissertation we develop technologies that combine biological components and synthetic components to create actuation, sensing and assembly onboard microrobots. For actuation, we study the dynamics of synthetic micro structures that have been integrated with single-cell biological organisms to provide un-tethered onboard propulsion to the microrobot. For sensing, we integrate synthetically engineered sensor cells to enable a system capable of detecting a change in the local environment, then storing and reporting the information. Furthermore, we develop a bottom-up fabrication method using a macroscopic magnetic robot to direct the assembly of inorganic engineered micro structures. We showcase the capability of this assembly method by demonstrating highly-specified, predictable assembly of microscale building blocks in a semi-autonomous experiment. These magnetic robots can be used to program the assembly of passive building blocks, with the building blocks themselves having the potential to be arbitrarily complex. We extend the magnetic robot actuation work to consider control algorithms for multiple robots by exploiting spatial gradients of magnetic fields. This thesis makes contributions toward actuation, sensing and control of autonomous micro systems and provides technologies that will lead to the development of swarms of microrobots with a suite of manipulation and sensing capabilities working together to sense and modify the environment

    Concept, modeling and experimental characterization of the modulated friction inertial drive (MFID) locomotion principle:application to mobile microrobots

    Get PDF
    A mobile microrobot is defined as a robot with a size ranging from 1 in3 down to 100 ”m3 and a motion range of at least several times the robot's length. Mobile microrobots have a great potential for a wide range of mid-term and long-term applications such as minimally invasive surgery, inspection, surveillance, monitoring and interaction with the microscale world. A systematic study of the state of the art of locomotion for mobile microrobots shows that there is a need for efficient locomotion solutions for mobile microrobots featuring several degrees of freedom (DOF). This thesis proposes and studies a new locomotion concept based on stepping motion considering a decoupling of the two essential functions of a locomotion principle: slip generation and slip variation. The proposed "Modulated Friction Inertial Drive" (MFID) principle is defined as a stepping locomotion principle in which slip is generated by the inertial effect of a symmetric, axial vibration, while the slip variation is obtained from an active modulation of the friction force. The decoupling of slip generation and slip variation also has lead to the introduction of the concept of a combination of on-board and off-board actuation. This concept allows for an optimal trade-off between robot simplicity and power consumption on the one hand and on-board motion control on the other hand. The stepping motion of a MFID actuator is studied in detail by means of simulation of a numeric model and experimental characterization of a linear MFID actuator. The experimental setup is driven by piezoelectric actuators that vibrate in axial direction in order to generate slip and in perpendicular direction in order to vary the contact force. After identification of the friction parameters a good match between simulation and experimental results is achieved. MFID motion velocity has shown to depend sinusoidally on the phase shift between axial and perpendicular vibration. Motion velocity also increases linearly with increasing vibration amplitudes and driving frequency. Two parameters characterizing the MFID stepping behavior have been introduced. The step efficiency ηstep expresses the efficiency with which the actuator is capable of transforming the axial vibration in net motion. The force ratio qF evaluates the ease with which slip is generated by comparing the maximum inertial force in axial direction to the minimum friction force. The suitability of the MFID principle for mobile microrobot locomotion has been demonstrated by the development and characterization of three locomotion modules with between 2 and 3 DOF. The microrobot prototypes are driven by piezoelectric and electrostatic comb drive actuators and feature a characteristic body length between 20 mm and 10 mm. Characterization results include fast locomotion velocities up to 3 mm/s for typical driving voltages of some tens of volts and driving frequencies ranging from some tens of Hz up to some kHz. Moreover, motion resolutions in the nanometer range and very low power consumption of some tens of ”W have been demonstrated. The advantage of the concept of a combination of on-board and off-board actuation has been demonstrated by the on-board simplicity of two of the three prototypes. The prototypes have also demonstrated the major advantage of the MFID principle: resonance operation has shown to reduce the power consumption, reduce the driving voltage and allow for simple driving electronics. Finally, with the fabrication of 2 × 2 mm2 locomotion modules with 2 DOF, a first step towards the development of mm-sized mobile microrobots with on-board motion control is made

    The development of optical nanomachines for studying molecules : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Mechatronics Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Chapter 3 is ©2020 IEEE. Accepted manuscript is reprinted, with permission, from 2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Chapter 5 is ©2022 IEEE. Accepted manuscript is reprinted, with permission, from 2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS).Optical tweezers have been used for a number of applications since their invention by Arthur Ashkin in 1986, and are particularly useful for biological and biophysical studies due to their exceptionally high spatial and force-based resolution. The same intense laser focus that allows light to be used as a tool for micro-nanoscale manipulation also has the potential to damage the objects being studied, and the extremely high force resolution is coupled with the limitation of very low forces. There is potential to overcome these drawbacks of optical manipulation through making use of another laser based technique: two-photon absorption polymerisation (TPAP). This thesis has brought these together to demonstrate the uses of optical nanomachines as helpful tools for optical tweezer studies. The project was highly interdisciplinary, concerning the intersection of optical trapping, 3D micromachine design and development, and DNA stretching. The thesis was based around the strategy of first developing microrobots and demonstrating their manipulation using optical tweezers, then adjusting the design for specific applications. Microlevers were developed for lever-assisted DNA stretching and amplification of optical forces. The influence of design features and TPAP parameters on microlever functionality was investigated; particularly the influence of overlapping area and presence of supports, and the effects of differently shaped "trapping handles". These features were important as lever functionality was tested in solutions of different ionic strength, and stable trapping of the levers was required for force amplification. DNA stretching was chosen as a target application for distanced-application of optical forces due to its status as a well-known and characterised example of single-molecule studies with optical tweezers. Amplification of optical forces was also seen as an application that could demonstrate the utility of optical micromachines, and microlevers with a 2:1 lever arm ratio were developed to produce consistent, two-fold amplification of optical forces, in a first for unsupported, pin-jointed optical microrobotics. It is hoped that in the future fully-remote, micromachine-assisted studies will extend optical tweezer studies of laser-sensitive subjects, as well as increasing the forces that can be applied, and the results obtained in this thesis are encouraging. All in all, the thesis confirms the potential of optical micromachines for aiding studies using optical tweezers, and demonstrates concrete progress in both design and application

    Bioinspired Light Robots from Liquid Crystal Networks

    Get PDF
    Bioinspired material research aims at learning from the sophisticated design principles of nature, in order to develop novel artificial materials with advanced functionalities. Some of the sophisticated capabilities of biological materials, such as their ability to self-heal or adapt to environmental changes, are challenging to realize in artificial systems. Nevertheless, many efforts have been recently devoted to develop artificial materials with adaptive functions, especially materials which can generate movement in response to external stimuli. One such effort is the field of soft robots, which aims towards fabrication of autonomous adaptive systems with flexibility, beyond the current capability of conventional robotics. However, in most cases, soft robots still need to be connected to hard electronics for powering and rely on complicated algorithms to control their deformation modes. Soft robots that can be powered remotely and are capable of self-regulating function, are of great interest across the scientific community.In order to realize such responsive and adaptive systems, researches across the globe are making constant efforts to develop new, ever-more sophisticated stimuliresponsive materials. Among the different stimuli-responsive materials, liquid crystal networks (LCNs) are the most suited ones to design smart actuating systems as they can be controlled and powered remotely with light and thereby obviate the need for external control circuitry. They enable pre-programable shape changes, hence equipping a single material with multiple actuation modes. In addition to light, they can also be actuated by variety of stimuli such as heat, humidity, pH, electric and magnetic fields etc., or a combination of these. Based on these advantages of LCNs, we seek inspiration from natural actuator systems present in plants and animals to devise different light controllable soft robotic systems.In this thesis, inspired from biological systems such as octopus arm movements, iris movements in eyes, object detection and capturing ability of Venus flytraps and opening and closing of certain nocturnal flowers, we demonstrate several light robots that can be programmed to show pre-determined shape changes. By employing a proper device design, these light robots can even show the characteristics of selfregulation and object recognition, which brings new advances to the field of LCNbased light robots. For instance, octopod light robot can show bidirectional bending owing to alignment programming using a commercial laser projector; artificial iris is a fully light controllable device that can self-regulate its aperture size based on intensity of incident light; the optical flytrap can not only autonomously close on an object coming into its ‘‘mouth’’ but it can also distinguish between different kinds of objects based on optical feedback, and finally, integration of light and humidity responsiveness in a single LCN actuator enables a nocturnal flower-mimicking actuator, which provides an opportunity to understand the delicate interplay between different simultaneously occurring stimuli in a monolithic actuator.We believe that besides providing a deeper understanding on the photoactuation in liquid crystal networks, at fundamental level, our work opens new avenues by providing several pathways towards next-generation intelligent soft microrobots

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    New Trends and Applications in Femtosecond Laser Micromachining

    Get PDF
    This book contains the scientific contributions to the Special Issue entitled: "New Trends and Applications in Femtosecond Laser Micromachining". It covers an array of subjects, from the basics of femtosecond laser micromachining to specific applications in a broad spectra of fields such biology, photonics and medicine
    corecore