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Actuation, Sensing And Control For Micro Bio Robots

Abstract
The continuing trend in miniaturization of technology, advancements in micro and nanofabrication and
improvements in high-resolution imaging has enabled micro- and meso-scale robots that have many
applications. They can be used for micro-assembly, directed drug delivery, microsurgery and high-resolution
measurement. In order to create microrobots, microscopic sensors, actuators and controllers are needed.
Unique challenges arise when building microscale robots. For inspiration, we look toward highly capable
biological organisms, which excel at these length scales. In this dissertation we develop technologies that
combine biological components and synthetic components to create actuation, sensing and assembly onboard
microrobots. For actuation, we study the dynamics of synthetic micro structures that have been integrated
with single-cell biological organisms to provide un-tethered onboard propulsion to the microrobot. For
sensing, we integrate synthetically engineered sensor cells to enable a system capable of detecting a change in
the local environment, then storing and reporting the information. Furthermore, we develop a bottom-up
fabrication method using a macroscopic magnetic robot to direct the assembly of inorganic engineered micro
structures. We showcase the capability of this assembly method by demonstrating highly-specified,
predictable assembly of microscale building blocks in a semi-autonomous experiment. These magnetic robots
can be used to program the assembly of passive building blocks, with the building blocks themselves having
the potential to be arbitrarily complex. We extend the magnetic robot actuation work to consider control
algorithms for multiple robots by exploiting spatial gradients of magnetic fields. This thesis makes
contributions toward actuation, sensing and control of autonomous micro systems and provides technologies
that will lead to the development of swarms of microrobots with a suite of manipulation and sensing
capabilities working together to sense and modify the environment.
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ABSTRACT

ACTUATION, SENSING AND CONTROL FOR MICRO BIO ROBOTS

Denise Wong

Vijay Kumar, Ph.D.

The continuing trend in miniaturization of technology, advancements in micro and nanofab-

rication and improvements in high-resolution imaging has enabled micro- and meso-scale

robots that have many applications. They can be used for micro-assembly, directed drug

delivery, microsurgery and high-resolution measurement. In order to create microrobots,

microscopic sensors, actuators and controllers are needed. Unique challenges arise when

building microscale robots. For inspiration, we look toward highly capable biological or-

ganisms, which excel at these length scales. In this dissertation we develop technologies

that combine biological components and synthetic components to create actuation, sens-

ing and assembly onboard microrobots. For actuation, we study the dynamics of synthetic

micro structures that have been integrated with single-cell biological organisms to provide

un-tethered onboard propulsion to the microrobot. For sensing, we integrate synthetically

engineered sensor cells to enable a system capable of detecting a change in the local envi-

ronment, then storing and reporting the information. Furthermore, we develop a bottom-up

fabrication method using a macroscopic magnetic robot to direct the assembly of inor-

ganic engineered micro structures. We showcase the capability of this assembly method

by demonstrating highly-specified, predictable assembly of microscale building blocks in a

semi-autonomous experiment. These magnetic robots can be used to program the assembly

of passive building blocks, with the building blocks themselves having the potential to be

arbitrarily complex. We extend the magnetic robot actuation work to consider control al-

gorithms for multiple robots by exploiting spatial gradients of magnetic fields. This thesis

makes contributions toward actuation, sensing and control of autonomous micro systems

and provides technologies that will lead to the development of swarms of microrobots with

a suite of manipulation and sensing capabilities working together to sense and modify the

environment.
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Chapter 1

Introduction

We can imagine tiny robots being used for surveillance, environmental clean-up and in

medicine. In medicine, compelling applications include directed drug delivery for localized

disease treatment, minimally invasive surgery to enable new procedures and reduce recovery

time and real-time health monitoring using embedded robots in the body to relay information

to a doctor. In some sense, the white blood cell can be seen as the ultimate medical

microrobot. It is able to circulate through the body in the blood stream in a passive

state monitoring the environment. When an infection is detected, the white blood cell

responds with a variety of methods depending on the type of white blood cell and the

infection detected. The responses include creating antibodies to fight infection or engulfing

the harmful foreign particle.

As the length scale of robots continues to decrease and approach the size of a single

biological cell, applications in biological research emerge. Microrobots enable the investiga-

tion of microbiology in ways which were not previously possible. Recent rapid fundamental

progress in microrobotics has given rise to applications including single-cell analysis, in vitro

drug delivery to neurons and micro assembly of biologically infused hydrogels with applica-

tions in tissue engineering.

This dissertation extends these capabilities toward enabling microrobots for in vivo ap-

plications. Capabilities that an in vivo medical microrobot would need include tetherless

1



precise actuation, onboard sensing to detect stimuli present in the environment and infor-

mation processing to respond to these changes. In the field of micro and nanofabrication,

we will need new techniques to create these tiny complex structures.

In the most general sense, microrobots are engineered systems which operate on microm-

eter length scales, typically with characteristic dimensions less than 100 microns. Unique

challenges arise when developing microrobots. Firstly, power sources and storage do not typ-

ically come in such small packages. Power is necessary for actuation and sensing activities.

Secondly, sensors also do not come in such small packages. In addition to developing sensing

capability on board microrobots it is necessary to store the data and then overcome the

microscale-to-world interface problem to report the signal. Thirdly, addressing individual

robots at this length scale is challenging because unique inputs are needed in a very small

space. Typically, global inputs are used, which affect the entire system making it difficult to

generate different responses between robots. Moreover, different physical phenomena domi-

nate at this length scale. Therefore, it is not feasible to simply miniaturize solutions used on

the macroscopic scale to create microrobots. It is important to appreciate these phenomena

and the effects that they have on the behavior of microrobots. These differing physical

phenomenon give rise to new opportunities for manipulation and control at the microscale.

Chapter 2 provides background information on swimming at low Reynolds number and a

literature review on related work.

This dissertation contributes to the field of microrobotics by developing technologies and

methods that can be used to overcome some of the challenges that arise when creating robots

at this length scale. We look to create systems that are a fusion of organic and inorganic

components. From a bottom-up approach we have synthetically engineered biological organ-

isms to be useful onboard sensors capable of taking in a signal, processing it and providing

a readout. We also used single cell biological organisms as motors to provide untethered

onboard power. At a slightly larger scale, we directed the assembly of inorganic engineered

structures that will eventually be synthesized with the biological components.

Biology has created elegantly packaged self-contained sensors. In Chapter 3, we demon-
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strate sensing by integrating genetically engineered, ultraviolet light-sensing bacteria with

magnetic microrobots, creating the first controllable biological microrobot that is capable of

exploring, recording and reporting on the state of the microscale environment. We demon-

strate two proof-of-concept prototypes: (a) an integrated microrobot platform that is able

to sense biochemical signals, and (b) a microrobot platform that is able to deploy biosensor

payloads to monitor biochemical signals, both in a biological environment.

We accomplish actuation, sensing and control in microrobots in a variety of ways on

several different platforms. In Chapter 4, we begin by exploring actuation. First, by inte-

grating organic and in-organic components using flagellated bacteria to create untethered

robots with onboard power. We probe the dynamics of the system by selectively immobi-

lizing the biological motors attached to the microrobot to understand the forces that are

being exerted. This informed a stochastic kinematic model that captures the predominant

clockwise rotation of the microrobot when not affected by any external stimuli. Additionally,

a bottom-up model is proposed to capture the stochasticity of such a system by modeling

the individual cell on the microrobot.

Controlling biologically actuated robots is very challenging due to the stochasticity in-

herent in biological systems. For tasks that require high-precision position control, a more

deterministic system may be preferable. Chapter 5 discusses the modeling of electromag-

netic coils for the manipulation of magnetic microrobots as well as strategies for calibration

of a magnetic manipulation system and the challenges which arise.

In Chapter 6, we consider, at a slightly larger scale, the control of single and multiple

magnetically actuated robots using stationary electromagnetic coils. This work enables more

complex micro manipulation tasks by enabling the control of multiple agents to accomplish

grasping motions in addition to pushing.

To address challenges in micro and nanofabrication, we develop a bottom-up manufactur-

ing technique to assemble complex microstructures from simple building blocks which uses

capillary forces that arise at fluid interfaces. In Chapter 7, the magnetic actuation work is

applied to enable the assembly of passive particles. The magnetically controlled robot acts
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as a fluid interface deformation source to direct assembly of passive building blocks driven

by capillarity. We leverage tools from interface physics to create a robust framework that

can be used for automated micro assembly. In this chapter, we also discuss design guidelines

and limitations of the system for future iterations of a magnetic manipulation system.
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Chapter 2

Literature Review

Cells are compelling candidates for use in microscale systems for two particular reasons.

Firstly, biological cells are self-contained systems which do not need an external power

source. Secondly, they have the natural ability to respond to environmental cues, such as

changes in chemical concentration, light exposure, and even magnetic field orientation. This

sensory framework is contained in an exquisitely small package, which in the case of the

rod-shaped bacteria Escherichia coli is typically 1 µm in diameter and 2 µm in length.

This chapter reviews the relevant concepts in low Reynolds number physics and related

literature that will be used throughout the dissertation. Section 2.1 reviews concepts on

swimming at low Reynolds number and related literature on bacteria propelled microrobots.

Section 2.2 reviews related literature on using biological sensors. Section 2.3 reviews related

literature in magnetic microrobot actuation and control for single and multiple robots.

2.1 Swimming At Low Reynolds Number

Building microscale robotic systems starts with understanding physics, specifically the fluid

mechanics, at low Reynolds number. The Reynolds number, Re, is a non-dimensional num-

ber which compares the importance of inertial effects to viscous effects. The Reynolds num-

ber is defined by Re = ρUl
η , where η, kinematic viscosity, and ρ, density, are fluid properties

and l, characteristic length scale, and U , velocity, are boundary conditions and determined
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by the robotic system in this case. In low Reynolds number environments, Re << 1, viscous

effects dominate over inertial effects. Motion is determined by forces at that instant, inde-

pendent of forces before or after this time [57]. The implications of this changes swimming

strategies at macroscale compared to at microscale. In microscale, the swimming motion

must be time reversible and non-reciprocal to result in a net displacement. Practically, this

means that a video of forward swimming using non-reciprocal motion will look different

when played backwards. Several different mechanisms are used by biological organisms for

swimming at low Reynolds number, we focus on biological swimming of organisms using the

rotation of helical flagella.

2.1.1 Flagellated Bacteria Swimming

Flagellated bacteria, such as E.coli and S.Marcescens, are made up of a cell body and

many hair-like flagella coming off of the cell body. These flagella are helical and have a

common and fixed chirality. These bacteria swim in fluidic environments by rotating these

flagella. When all the flagella attached to the cell body are rotating in the same counter-

clockwise direction (when viewed from behind), the flagella bundle together and the rotation

generates a propulsive force that causes the cell to swim forward, executing a run [21]. When

the rotation of a single flagellum switches direction, the flagella bundle is unraveled and a

propulsive force is no longer present, instead this unbundling causes a torque and the cell

rotates, executing a tumble. This mechanism of switching between run-and-tumble is what

flagellated bacteria use to change direction when swimming. When flagellated bacteria swim

in free solution, the motion can be approximated as a random walk [27], with a run to tumble

ratio of 10:1.

2.1.2 Microbiorobots Actuated By Bacteria

The use of a bacterial carpet for creating flow patters in fluids was first observed by Darnton

et al. [18]. In their experiments, they attached a monolayer of S. marcescens to a solid sub-

strate and observed the trajectory of passive tracer beads above the monolayer of bacteria.

The trajectories of particles close to the bacterial carpet when compared to trajectories of
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particles further away indicate active fluid mixing close to the bacterial carpet as a result of

the rotation of the bacteria flagella.

Flagellated bacteria can be attached directly to microstructures to provide onboard

power [4, 67]. The bacteria on these structures coordinate to propel the microstructures in

fluidic environments. Sakar et al. created a stochastic kinematic model for an MBR which

is comprised of a microfabricated microstructure made from negative photoresist (SU-8)

coated with a monolayer of swarming S. marcescens [61]. Instead of calculating the exact

force exerted by each bacterium, this model parameterizes the distribution of the bacteria

across the microstructure to predict the behavior of the MBR; these values are derived em-

pirically. While these high level parameters are sufficient to describe the trajectory of the

microstructure by taking into account the force exerted by the bacterium, it does not take

into account the non-contact, hydrodynamic surface interaction that arises from the flagella

of the bacteria near the edge of the MBR interacting with the planar surface under the MBR.

We extend this stochastic kinematic model by adding additional high level parameters to

capture both the propulsion by the bacteria and this hydrodynamic surface interaction.

2.1.3 Controlling Biological Systems

Several different methods have been proposed for controlling MBRs which comprise of flag-

ellated bacteria attached to passive microstructures. Steager et al. use electrokinetic and

galvanotactic behavior to control MBRs propelled by S. marcescens [68]. Behkam et al. tog-

gle the on-off behavior of the biological motors of S. marcescens used to propel polystyrene

beads through the addition of chemicals into the solution. By adding copper ions, the bac-

terial flagellar motors are stopped and the motion of bead is stopped, by adding ethylene-

diaminetetraacetic acid (EDTA) [4]. Zhuang et al. use chemotaxis to gather MBRs to a

specific region defined by pH across a pH-gradient created in a microfluidic channel [89].

Phototaxis can also be used to control the behavior of bacterial actuators. Exposure to UV

light will cease the motion of S. marcescens, this can be used to control microstructures that

are propelled by cell that are attached to the microstructure [67] as well as cells that are in

free solution [34].
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2.2 Biological Sensors

In addition to being used for propulsion and control, the natural environmental responses

of cells have been used in motility-based biosensors, where readout is performed based on

the motility of the cells [69]. The sensory network in cells can also be used as onboard

sensors on MBRs. We can leverage the rapid advancements in synthetic biology which have

enabled the design of cells with highly specified functionality through genetic engineering

[58]. By utilizing the ability to edit the genes of model organisms, like E. coli, the behavior

of the cells or biosensors can be programmed. This programmability can extend well beyond

innate sensing capabilities.

Synthetic gene networks have been designed to create digital signal processing capabilities

such as bi-stable gene expression to create a toggle switch behavior that act as cell-based

memory units [28]. Molecular systems can be constructed from predefined elements to

perform multi-input logic computations within mammalian cells, where these components

can be combined to create a biomolecular computer [60]. Moreover, synthetic gene networks

have been constructed to emulate cell-based digital circuits based on principles of modern

computing, such as counters[26]. Population behaviors can also be used to create edge

detectors using light sensitive cells [77]. Furthermore, by employing existing mechanisms for

quorum-sensing that enable communication between cells, capabilities can be extended to

include population-level sensing and decision making [81].

2.3 Magnetically actuated robots

Magnetic actuation has also been demonstrated as a method for manipulation and has

gained particular traction because of several properties that make it ideal for microrobot

manipulation. Firstly, magnets can be controlled with and without line of sight, which

allows the robot to be used in small and difficult to reach areas. Secondly, magnetic fields

are widely accepted as safe to biological cells and tissue, and are already widely used in the

medical field [25]. Numerous systems have been developed for magnetic manipulation of

micro and meso-scale magnets using electromagnetic coils [36, 40, 52, 71]. In general, these
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systems have been designed to manipulate one magnetic robot by controlling the global field

of the workspace uniformly.

Microscale robots have demonstrated applications in biology such as cell manipulation

and directed drug delivery [71]. Additionally, microrobots with sensing capabilities for mea-

suring small forces [35, 74, 76] and external optical stimuli [73] have been developed.

2.3.1 Control of Multiple Magnetic Robots

A variety of methods have been demonstrated for the control of multiple magnetic micro-

robots. Magnetic actuation is an effective method for applying large forces, but individually

addressing magnetic robots is challenging because magnets respond similarly in a global

field. Khalil et al. [38] controlled a cluster of 100µm diameter paramagnetic microparticles

to manipulate microstructures in a plane for microassembly. Multiple microparticles are

manipulated together to push non-magnetic microstructures into a desired position. While

multiple microparticles are manipulated, all the particles move in the same general direc-

tion and microparticles are not individually addressable. Strategies for transport of passive

payloads using a team of homogeneous robots controlled by global inputs are discussed by

Becker et al. [3].

Heterogeneous teams of magnetic microrobots generate different resultant forces under

the same global field. Diller et al. [20] used a team of microrobots which are geometrically

different but had similar effective magnetization, which resulted in different rotational inertia

and therefore angular acceleration. Position control of 3 robots, each having dimensions less

than 1mm, is demonstrated; however, the motion of the robots is coupled and arbitrary

trajectories are not possible. Cheang et al. [15] demonstrated control of 2 geometrically

similar and magnetically heterogeneous microswimmers using a global rotating magnetic

field. By balancing the applied magnetic torque and the hydrodynamic torque, simultaneous

control of two microswimmers moving in opposing directions with arbitrary speeds can be

achieved. Mahoney et al. [42] demonstrated control of two helical microrobots using robots

with different magnetization and friction such that different forward swimming speeds result

from the same magnetic field rotation frequency. The direction traveled at a given time step

9



is the same but the velocity is different, which allows trajectories of the same shape but

different size to be achieved. In these three methods, two microswimmers cannot swim in

the same direction at the same velocity because the robots are heterogeneous.

Specialized printed circuit boards have been used to manipulate local magnetic fields

on a surface to control multiple microrobots. Pelrine et al. [54] used layers of parallel and

perpendicular traces on a printed circuit board to manipulate mm-sized magnetic robots.

The current through the traces generate a local magnetic field and by varying the current

through the traces the position of the robot is controlled. Cappelleri et al. [11] used micro-

coils on a printed circuit board to control multiple magnetic microrobots by affecting the

local magnetic field. Planning and control algorithms for multiple microrobots on a planar

system controlled by these microcoils are discussed by Chowdhury et al. [17]. Pawashe et

al. [53] used a surface with electrostatic pads to selectively brake magnets and prevent them

from moving while allowing the manipulation of other magnets away from the pad. These

brakes are in fixed locations and the allowable trajectories are dominated by the position of

the pads.

Apart from electromagnetic coils, mobile permanent magnets have also been used to

control magnetic microrobots. Nelson and Abbott [48] demonstrated the ability to manip-

ulate two magnetic devices by manipulating a single rotating magnetic dipole around the

workspace. Converging, diverging and similar trajectories are achieved by exploiting the

different magnetic field and field gradient at various locations around the magnetic dipole.
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Chapter 3

Sensing using Biology

Microscale robots offer an unprecedented opportunity to perform tasks at resolutions ap-

proaching 1µm, but the great majority of research to this point focuses on actuation. Po-

tential applications for microrobots can be considerably expanded by integrating sensing,

signal processing and feedback into the system. Due to the similarity in length scale to single

cells, microrobots enable the investigation of microbiology in ways which were not previously

possible. In Chapter 4, microrobots are used to probe the dynamics of the biological cells

used to propel the robot. Biological organisms also have a natural inherent ability to sense

their environment.

This chapter explores the integration of synthetic biology with microrobotic systems to

create cell-based programmable mobile sensors, with signal processors and memory units.

Specifically, we integrate genetically engineered, ultraviolet light-sensing bacteria with mag-

netic microrobots, creating the first controllable biological microrobot that is capable of

exploring, recording and reporting on the state of the microscale environment. We demon-

strate two proof-of-concept prototypes: (a) an integrated microrobot platform that is able

to sense biochemical signals, and (b) a microrobot platform that is able to deploy biosensor

payloads to monitor biochemical signals, both in a biological environment. These results

have important implications for integrated micro-bio-robotic systems for applications in bi-

ological engineering and research.
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Figure 1: Biosensors. Cells engineered to sense UV radiation are attached either directly to the
Integrated magnetic microrobot (left), or attached to Distributed passive microplates (right). The
integrated approach is useful for rapid exploration of a workspace, but cell response and readout
is on the order of hours. The distributed approach requires arrangement of several passive sensors,
but mapping can be performed more quickly due to greater coverage.

The research in this chapter was originally published in [73].

3.1 Introduction

Rapid advancements in synthetic biology have enabled the design of cells with highly spec-

ified functionality through genetic engineering [58]. Cells are compelling candidates for use

in microscale systems for two particular reasons. Firstly, biological cells are self-contained

systems which do not need an external power source. Secondly, they have the natural ability

to respond to environmental cues, such as changes in chemical concentration, light exposure,

and even magnetic field orientation. This sensory framework is contained in an exquisitely

small package, which in the case of the rod-shaped bacteria Escherichia coli is typically 1

µm in diameter and 2 µm in length. Given the extensive knowledge base on the genetic

and proteomic makeup of model organisms such as E .coli , as well as rapid advances in

genetic engineering, we can extend the idea of cells being good natural candidates for mi-

croscale biosensors to the concept of these cells being programmable. This programmability

can be extended well beyond innate sensing capabilities. Combining advancements in both

microrobotics and synthetic biology is an investigative path with significant potential [62].
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3.2 Methods

We demonstrate a microrobotic system capable of sensing environmental changes with spa-

tial resolutions at the scale of individual cells. We combine two technologies: (a) the ability

to create mobile microrobots using magnetic actuation; and (b) tools from synthetic biology

to create novel biosensors. These biosensors are designed to sense low doses of ultraviolet

(UV) light. The information is stored in a toggle switch architecture, a switch that allows

cells to toggle between stable states based on environmental stimuli, and the information

readout is performed via production of fluorescent proteins within the cell. This form of

sensing is useful for seeking potentially pathological conditions. The UV sensor is used here

as a proxy for chemical biosensors, since it is simpler for proof-of-concept demonstrations

with UV light, and, because of the similarity in architecture, it is not too difficult to engineer

similar cells that can sense biochemicals.

We investigate two methodologies (Figure 1) for microrobotic biosensing systems. The

first method, which we refer to as an integrated system, utilizes cells directly attached

to magnetic microrobots. The integrated system enables rapid exploration of a region,

however, the biosensor readout timescale is considerably longer than actuation time by the

robot. Thus, actuation time is greatly restricted by readout. In the second method, which

we call a distributed system, we attach cells to microscale plates that are then independently

arranged by a single magnetic robot. In this system, several biosensors are rapidly arranged

to cover a region. In both systems, the sensor consists of a population of cells, whether they

are attached to the microrobot or the passive microscale plate.

A single cell is not a reliable biosensor because individual cells exhibit stochastic behavior.

However, reliable results can be obtained for groups of cells. Fluorescence microscopy is

used to read out the response of cell populations. Specifically, we show how sensors can be

transported and read out to indicate the presence of UV radiation.

13



3.2.1 Experimental Setup

The experimental setup consists of four in-plane electromagnetic coils which use magnetic

field gradients to actuate the magnetic microrobots. The coils are integrated on the stage of

an epifluorescence microscope. The precise details of the setup have been previous described

in detail and modeled [71].

3.2.2 Microrobot Fabrication

Microrobots are fabricated in a single-exposure process using traditional microfabrication

techniques [63]. First a layer of 10% dextran in spin-coated on a clean glass slide, which

acts as a sacrificial release layer. Next, a 2 µm layer of SU8-2002 is spin-coated. This

layer is necessary as a mediating interface and enables uniform coating in the subsequent

spin-coating step. Next, SU8 mixed with 5% iron oxide nanoparticles is spin-coated to a

thickness in the range of 4-10 µm. A dark-field photomask is used during the exposure step,

and the entire slide is then developed in PGMEA and dried with nitrogen.

3.2.3 Fabrication of Plasmids and Strains

Plasmids pHPTa and pCIRa were derived from the published pTAK plasmids and pZ ex-

pression vectors and previously published [28]. The plasmid pLPTa was built by performing

site-directed mutagenesis on pHPTa to change the Glutamine at residue 233 of the cI protein

to a Lysine to confer more sensitivity to UV irradiation. Co-transformations of pLPTa and

pCIRa into E .coli strain JM2.300 yielded the experimental strain for all data collection. The

experimental strains were cultured at 37◦C in LB broth (BD Biosciences) supplemented with

appropriate levels of ampicillin and tetracycline (Sigma) to maintain selection. Typically,

cultures were inoculated with appropriate selection antibiotics and initial isopropyl-beta-

thiogalactopyranoside (IPTG) to set toggle state and grown at 37◦C for 16 hours. Cells

were centrifuged and resuspended in fresh LB broth twice before additional growth periods

dependent on downstream experiments.
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3.2.4 Fabrication of Biosensors

Biosensors are SU8 epoxy microstructures with bacteria adhered to the surface (Figure

2). The fabrication process is optimized for compatibility with biological cells as well as

compatibility with traditional bright-field and fluorescence microscopy. Initially, a water-

soluble sacrificial layer of dextran is spin-coated onto a No. 0 glass slide to allow release of

biosensors in subsequent experimental steps. On top of the dextran layer, 5-10 µm thick SU8

2000 series negative tone, photosensitive epoxy plates are fabricated using a single exposure

through a chrome mask. For this study, a combination of 40, 60 and 80 µm diameter disks

were fabricated. E .coli cells do not naturally adhere to SU8, so the surface of the plates

were treated with 0.1% poly-L-lysine for 10 minutes, a protein which promotes binding of

biological cells. The slides were then dried with compressed air. For SU8 experiments,

following overnight cultures and subsequent washing away of IPTG, cells were grown in

liquid LB media supplemented with appropriate antibiotics at 37◦C for 4 hours before being

deposited onto poly-L-lysine substrates and allowed to adhere for 5-10 minutes. Excess

cells were washed from the surface and biosensors released into the experimental setup by

inversion. Integrated biosensors were treated in a similar manner.

3.2.5 Flow Cytometry

Flow cytometry is used to characterize the level of fluorescence of individual cells. For cy-

tometry experiments, following overnight cultures and subsequent washing away of IPTG,

cells were grown in liquid culture at 30◦C for 2 hours before exposure to UV irradiation

(Stratalinker UV Crosslinker 2300) and additional growth at 30◦C for 6 hours before analy-

sis using a LSRFortessa cell analyzer (BD Biosciences) equipped with 488-nm argon excita-

tion laser and 530/15 nm emission filter and a PMT setting of 360 V. Measurements were

calibrated using Rainbow Calibration Particles (Spherotech RCP-30-5A) to normalize data

between different experimental runs. For each sample, 10,000 events were collected.
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Figure 2: Biosensor microfabrication. (a) Glass slides are coated with dextran, which acts as a
water-soluble sacrificial release layer. (b) SU8 forms the substrate of the biosensor. (c-d) Biosensors
are patterned with photolithography. (e) Poly-L-lysine is deposited on the biosensor surface to
enhance attachment of cells. (f) Microrobots are released in solution and dextran dissolves.

3.2.6 Microscopy and Tracking

Integrated and distributed biosensors were actuated and positioned using bright-field mi-

croscopy. Readout was performed using fluorescence at excitation/emission wavelengths

optimized for green fluorescence protein (GFP). Although SU8 epoxy is fluorescent at wave-

lengths close to GFP, the emission spectra of SU8 and GFP do not significantly overlap.

3.2.7 UV Exposure

Cells were exposed to UV light with a mercury lamp with collimation optics. The light source

was masked to create discrete regions of UV exposure. Exposure times of 10 seconds were

sufficient to induce the population to switch to high state, thus activating the synthetically

engineered response of producing Green Fluorescent Protein (GFP), which is a readout for

this high state.
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3.3 Low Power Toggle Cells

3.3.1 Biochemical Model

Bistability occurs in a genetic circuit when two repressible promoters are arranged in a

mutually inhibitory network [28]. Promoters regulate the activity of genes that transcribe

proteins. Each promoter, pλ and plac, triggers a gene, lacI and λcI respectively, that regu-

lates the production of a protein, LacR and λCI respectively, which represses the behavior

of the other promoter, Figure 3. In the absence of inducers, two stable states are possi-

ble: (1) when promoter, plac, transcribes the repressor protein λCI (low-state,) (2) when

promoter, pλ, transcribes the repressor protein LacR (high-state.) A transient, externally

triggered inducer can be used to switch between these two stable states. Hence the name

toggle switch. In this toggle switch, the inducers are chemical inducer IPTG and UV light.

By inducing the cells with IPTG, the transcription of protein LacR is repressed, which

results in a high level of activity of gene λcI and the transcription of protein λCI (low-state),

Figure 3(b). At low-state promoter pλ is repressed and therefore the activity of gene lacI is

low. The cells will stay in low state even after IPTG is removed from the environment Figure

3(c). By inducing the cells with a transient pulse of UV light, the cell switches to high-state.

UV light causes repairable DNA-damage wherein the DNA becomes single-stranded, this

activates an SOS-pathway and causes degradation of the protein λCI Figure 3(d). The

degradation of protein λCI alleviates the repression of promoter pλ, increases the activity of

gene lacI and hence the transcription of protein LacR. This protein represses the promoter

plac and therefore the activity of gene λcI is low, Figure 3(e). In order to detect that a cell

is at high state, transcription of green fluorescent protein (GFP) is synthetically engineered

to be triggered by the transcription of the protein LacR. Thus, GFP transcription occurs

in parallel with LacR transcription and is used as a signal indicating a cell is at high-state

during experiments.

While bistable systems occurs naturally in biology, most are difficult to interface with

as the inducers are not easily controlled externally and states are difficult to determine
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Figure 3: Schematic showing gene circuit under different inducers and the corresponding activity of
genes λcI and lacI. (a) No inducer, basal levels of activity of both genes, (b) Induction with IPTG
reduces activity of lacI and increases activity of λcI, (c) Low-state, even after IPTG is removed the
cell is stable in low-state, (d) Induction with UV light causes the degradation of protein λCI and
increases activity of lacI, and is linked to GFP production (e) High-state, even after the UV light is
removed the cell is stable in high-state.
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Figure 4: Mathematical model of the toggle switch dynamics. Transition between low-state where
protein λCI is abundant and represses the transcription of protein LacR and high-state when protein
LacR is abundant and represses the transcription of protein λCI. The time scale for the case in this
work is on the order of hours.

externally as well. The specific sensor cell used in the experiments described here are E .coli

JM2.300 cells synthetically engineered to include plasmids pLPTa and pCIRa. Plasmids are

circular DNA molecules separate from the chromosomal DNA within the cell that carries a

few genes that can be expressed within the cell. Plasmid pCIRa carries the genes for GFP

production which is used as a reporter for high-state[39]. Plasmid pLPT is the regulatory

circuit that contains the genes λcI and lacI and controls the expression of GFP in plasmid

pCIRa.

3.3.2 Mathematical Model

The interactions between the components in the genetic toggle circuit can be described by

a pair of coupled dimensionless nonlinear differential equations [28]:

dU

dt
=

α1

1 + V β
− U ,

dV

dt
=

α2

1 + Uγ
− V

where U is the concentration of repressor protein LacR, V is the concentration of repressor

protein λCI, α1 is the effective rate of synthesis of repressor protein LacR, α2 is the effective

rate of synthesis of repressor protein λCI, β is the cooperativity of repression of promoter

pλ and γ is the cooperativity of promoter plac.

Figure 4 illustrates the interactions between levels of proteins λCI and LacR. The start
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of the graph shows the cell in low-state after IPTG induction when the level of protein

λCI is high and level of protein LacR is low. The grey region indicates UV induction, this

is modeled by decreasing the effective rate of synthesis of repressor protein λCI, α2, and

decreasing the cooperativity of repression of promoter, pλ. Increasing the effective rate of

synthesis of repressor protein LacR, α1, has a similar effect. UV induction causes a sharp

change in the levels of each protein which destabilizes the high λCI state and drives the

system to switch to the other stable state where the level of protein λCI is low and the level

of protein LacR is high and as a result GFP is expressed. While the UV light exposure is

transient, the effects of the induction are lasting; therefore the induction process extends

beyond the duration of the UV light exposure.

Stochasticity in this system arises from the combination of bistable architecture with

bimolecular processes involving few molecules [50]. This results in bimodal population dis-

tributions despite the same experimental conditions and induction levels. It has been shown

that even a single-molecule event may trigger such phenotype switching [16]. Therefore,

reading the fluorescence signal from multiple cells is important.

3.3.3 Cell Validation

Engineered cells need to be designed, tested and verified in liquid or agar cultures before in-

tegrating them with microrobots and sensor plates. Cells in JM2.300 background harboring

both plasmids pCIRa and pLPTa as described in the methods were first tested and analyzed

in a robot-free environment. Bulk cultures of the genetically engineered cells were grown to

stationary phase over 16 hours at 37◦C in the presence of IPTG. The introduction of IPTG

set the cells into a state of high cI and low LacR with a basal level of GFP fluorescence. The

IPTG was subsequently washed out and cells were grown in exponential phase for 3-4 cell

divisions (2 hours at 30◦C). The culture was split into two aliquots, and one was exposed to

50 µJ/cm2 UV irradiation. The two independent cultures were then grown for an additional

9-12 cell divisions (6 hours at 30◦C) and analyzed by flow cytometry. For cells exposed

to UV irradiation compared to cells that did not receive any UV irradiation, there is an

approximately 10-fold increase of fluorescence in the GFP channel (Figure 5).
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Figure 5: Flow cytometry analysis of engineered bacterial cells. Cells in JM2.300 background har-
boring both pCIRa and pLPTa exposed to 50 µJ/cm2 UV irradiation. Initially, a homogenous
population shows basal levels of fluorescence (black). The split population is then given or not
given UV input and monitored after 6 hours with the exposed cells having a median fluorescence of
1030 A.U. and unexposed cells having a median fluorescence of 106 A.U., an approximately 10-fold
increase in GFP fluorescence.

3.4 Results

3.4.1 Biosensor Transport

Biosensors are pushed in fluid using a magnetic robot (Figure 6). The sensor height should

be a minimum of 5 µm so that the magnetic microrobot properly engages the edge of

the biosensor for positioning. Microrobots transport 40-80 µm diameter biosensors of all

sizes at speeds ranging from 0 to roughly 10 µm/s, despite the relatively significant viscous

shear between the disk-shaped biosensor and the substrate. This process may be performed

autonomously using visual feedback, as demonstrated in previous work [71].

3.4.2 Sensor Response

To replicate the appropriate cellular response after transferring cells between labs, as well

as to characterize the UV response on the experimental apparatus used for magnetic actu-

ation, cells were again characterized for UV exposure dose in liquid culture. The response
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(c)

(b)

(a)

Figure 6: Transport of biosensor substrates. (a-c) An 80 µm SU8 plate is approached from the left,
engaged, and transported. Biosensors are individually distributed in this fashion.

is dramatic for UV exposure times of approximately 10 s as observed using fluorescence mi-

croscopy (Figure 7). It should be noted that exposure times much greater than 10 s cause

cell death, which is an expected outcome. It was not assumed that cells would respond as

designed upon attachment to biosensors. The attachment of cells to substrates or to the

poly-L-lysine interface was anticipated to be a potential disruption to proper operation of

the designed circuit. However, the cellular response is largely preserved for the conditions

of the experiment. We did find that exposure conditions were affected by experimental

apparatus. Microscope optics and lab ware such as Petri dish lids act as filters at the UV

wavelengths that trigger the toggle switch.

As shown in Figures 8 and 9, GFP response is strong after 12 hrs, although not all cells

switch to high state, which is observed as fluorescence. Even in an unexposed population

of cells, there is a small subpopulation of cells in high state. Therefore, larger sensors give

a more reliable readout of UV exposure due to the larger number of attached cells. The

smallest sensors only have a few high state cells for the cell densities achieved in these

experiments, and it should be considered that there is a significant chance that readings

from small sets of total cells (5-10) may result in incorrect determination of UV exposure.

For the integrated system, where low power toggle cells are directly attached to the

microrobot, a workspace may be traversed in a matter of seconds (Figure 10). However,

22



0"s" 10"s"
Figure 7: Low power toggle cells in low vs high states at 40× magnification. (Left) With no exposure
to UV, the bulk of the population of cells stay remain in the low state (non fluorescent), however
a small number of cells do express GFP. (Right) 10 s exposure to UV light induces cells to switch
to high state, thus expressing GFP, but the expression of sufficient fluorescence for read out takes
several hours. The high state image is taken 12 hours after exposure (induction).

40 mm 

60 mm 

80 mm 

Exposed (On) Unexposed(Off) Diameter 

Figure 8: Sensor readout. Exposed sensors exhibit higher mean fluorescence with significantly higher
numbers of cells in high state. Unexposed sensors still include a small population of fluorescing cells,
which is an example of biological stochasticity. Thus, larger sensors give more reliable readout due
to the higher number of cells.

expression of fluorescence takes several hours after exposure to UV light. Thus, mapping

spatial location to the region of UV exposure is ambiguous, unless the robot is moved on

a time scale matching readout. For the distributed system, collection and arrangement of

biosensors takes minutes, and the position of the sensors are spatially correlated with UV

exposure. As shown in Figure 11, distributed biosensors are collected and arranged with the
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Figure 9: Mean fluorescence intensity averaged across several distributed sensor micro plates. Ex-
posed sensors have significantly higher mean fluorescence intensity in comparison to unexposed
sensors.

Read%out)

(a))

(b))

Figure 10: Integrated biosensing microrobots. (a) Magnetic microrobots are driven through a region
of interest. Scale bar is 40 µm. (b) Cells attached in high state. Robot outline is indicated by
dashed lines.

microrobot so that six divisions of the workspace are occupied by sensors. Current work in

synthetic biology is targeted at greatly reducing the time required for readout, which would

greatly enhance the practicality of these systems.

24



GFP$Channel$

(a)$

(b)$

Figure 11: Distributed biosensors. (a) Six sensors are distributed to cover six division of a workspace,
as delineated with dashed gray lines. (b) High state cells attached to the sampled biosensor indicate
exposure to UV light. Scale bar is 40 µm.

3.5 Conclusion

In this chapter, we demonstrated the integration of microrobotic actuation techniques with

engineered cells to create mobile biosensors. For this proof-of-concept prototype, we used

cells that were programmed to respond to and report on exposure to UV light. This is the

first time low power toggle cells have been attached as biosensors onto robots, a signifi-

cant achievement that promises a pathway for transitioning research in synthetic biology to

robotics. This means that cells that can serve as chemical sensors, data-loggers, or quorum

sensors can also be incorporated into such systems. Thus advances in synthetic biology offer

many techniques to integrate new capabilities into cells and microrobots, and provide an

alternative path to microfabricating organic signal processors, power sources, and memory

units.

While the results of this study are promising and suggest many exciting bridges between

synthetic biology and robotics, there are several practical considerations. In most conven-

tional robotic systems the characteristic time scales for sensing, processing and actuation

are matched allowing for closed loop feedback control and motion planning. In our pro-

totype systems, biosensors prove to be the bottleneck. The characteristic time for genetic

regulation is of the order of minutes and that for cell division is of the order of tens of

minutes. Whereas, as seen in Figure 11, it is clear that in the duration of a few minutes

25



a single robot can be used to place tens or even hundreds of sensors in targeted location

enabling cell-specific measurements in samples of biological tissue. However, it will take

much more time before a signal can be detected. In future work, it may be beneficial to

consider other biological sensing mechanisms and reactions that have shorter reaction times

that more closely match the time scales for actuation of the magnetic microrobots.
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Chapter 4

Actuation Using Biology

In microscale applications such as cell manipulation, microassembly, and targeted drug de-

livery to cells, accurate control over a micromanipulator is important. At these length

scales, having a self-powered, untethered system allows a wide range of environments to be

explored, such as those that may be difficult to access. Additionally, such a system could

be appropriate for in vivo applications.

This chapter explores the dynamics of microbiorobots (MBRs), which are robots con-

structed of a neutrally-buoyant microstructure powered by a monolayer of swarming flag-

ellated bacteria adhered to the surface. The bacteria swim to propel the microstructure in

a fluidic environment in the absence of external forces. The trajectory is a combination of

translation and rotation, with the rotation generally observed to be clockwise when viewed

from above.

The research in this chapter was originally published in [82, 85].

4.1 Bacteria Powered Microrobots

By attaching many of these biomolecular motors to a microstructure, the bacteria collectively

cause the microstructure to move [4, 44, 67]. The work discussed in this section builds on

the design of the microbiorobots (MBRs) proposed in [67]. The inherent motion of an MBR

without any external forces applied has been characterized for such a system [61]. However,

27



this model does not take into account the hydrodynamic interaction between the flagella

and the planar glass surface under the MBR. Further, the system is characterized by three

unknown parameters which must be identified from experimental data.

A mathematical model is proposed for truly self-actuated microrobotic system driven by

flagellated bacteria. The model considers both the propulsion force exerted by the bacteria

and the non-contact, hydrodynamic surface interaction that arises from the flagella of the

bacteria near the edge of the MBR interacting with the planar surface under the MBR.

Experimental observations are used to validate this model.

4.1.1 Experimental Setup

A sacrificial layer of 10% dextran is first spin coated onto a glass slide, Figure 12 (a),

followed by a layer of 5 µm SU-8 spin-coated on top. The SU-8 is then patterned by a

photolithographic method. The slide is developed in Propylene Glycol Monomethyl Ether

Acetate (PGMEA) and dried with nitrogen, Figure 12 (b). The microstructures release

from the glass slide when exposed to water, Figure 12 (c). S. marcescens (ATCC 274)

are cultured in LB broth to saturation. This culture is then used to inoculate an agar

(swarm) plate (L-broth containing 0.6% Difco Bact -agar and 5 g/l glucose). Swarming

begins in approximately 8 hours. The microstructures are blotted on the swarming bacteria

and immediately released in a small petri dish with motility buffer (0.01 M potassium

phosphate, 0.067 M sodium chloride, 10-4 M ethylenediaminetetraacetic acid (EDTA), and

0.002% Tween-20, pH 7.0) for experiments and observation.

4.2 Stochastic Kinematic Model

A stochastic kinematic model of the motion of a self-actuated MBR, e.g. actuated by the

running and tumbling action of individual bacteria, is proposed by Sakar et al. [61]. The

behavior of the bacteria are modeled as a Markov chain with two states, run and tumble,

occurring at a ratio of 10 to 1 [61]. We extend this model with an added force from the

interaction between the flagella of the bacteria close to the edge of the MBR interacting with

the bottom surface under the MBR. 3 additional parameters are introduced in this model.
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Figure 12: Microfabrication of MBRs, (a) Deposition of dextran layer onto glass slide, (b) Deposition
and patterning of SU-8 on dextran, (c) Bacteria is blotted to the SU-8 microstructures and the MBRs
are released using water.

b

Glass	substrate

a

SU8

Figure 13: Image and schematics of an MBR: (a) Bacteria adhered to the surface of a 40 x 40µm
MBR (b) An oblique view from behind a bacterium extending past the edge of the SU8. Dashed
ellipses with arrows indicate direction of rotation of the flagellum and MBR. Arrows Fnn̂i and Ftt̂i
indicate the normal and tangential forces respectively. The normal force originates from the forward
propulsion of the bacterium, the tangential force originates from the hydrodynamic interaction
between the flagella and glass substrate when the bacterium is in the run state. The shaded region
under the flagella indicates the hypothesized region of this hydrodynamic interaction. This tangential
force creates a clockwise moment on the MBR which biases the rotation direction.
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Figure 14: Forces exerted by bacteria on MBR. The shaded region indicates the region where the
flagella of a bacterium may extend beyond the microstructure, (a) Nb,c: Bacterium located at center
of MBR with force pi in direction ni, (b) Nb,c: Bacterium located close to edge of MBR and oriented
such that the flagella extends into the microstructure, so exerts force pi in direction ni only, (c)
Nb,e: Bacterium located close to edge of MBR and oriented such that the flagella extends off the
microstructure, so exerts force pi in direction ni and qi in direction ti.
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4.2.1 System Description

The total number of bacteria attached to the MBR, Nb, can be separated into bacteria

attached in the center, Nb,c, and bacteria attached near the edge, Nb,e which are oriented

such that the flagellar bundle extends off the MBR. The force exerted (or applied) by the

bacteria at the center is modeled by a propulsive force of magnitude, pi, along the length

of the body, with the direction denoted by the unit vector in the inertial frame, n̂i, Figure

14(a,b). The force exerted by the bacteria near the edge has the force pi in the direction

n̂i, similar to the bacteria at the center of the structure. These also exert an added force of

magnitude, qi, in the direction, t̂i, where t̂i is perpendicular to n̂i, Figure 14(c). This is the

force from the hydrodynamic interaction between the flagella and the bottom surface under

the MBR [41]. The force vector exerted by each bacterium in the bacterium-fixed coordinate

frame, which is rotated θi from the body-fixed frame ( not shown in the schematic ) in the

center, Fi,c and near the edge, Fi,e are given by

Fi,c = pini (4.1)

and

Fi,e = pini + qiti (4.2)

4.2.2 Equations of Motion

With the additional tangential force component by the bacteria near the edge of the MBR,

qi, (as compared to the previous model) the equation of translational motion of the MBR is

given by

M
d2r

dt2
=

Nb∑
i=1

pini +

Nb,e∑
i=1

qiti − kT
dr

dt
, (4.3)

where M is the total mass of the MBR system including the bacteria and kT is the trans-

lational viscous drag coefficient. The equation of rotational motion of the MBR is given
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by

I
d2α

dt2
=

Nb∑
i=1

pi · (bi,x sin θi − bi,y cos θi) +

Nb,e∑
i=1

qi · (bi,x cos θi − bi,y sin θi)− kR
dα

dt
(4.4)

where (bi,x, bi,y) is the vector describing the location of the bacterium, i, from the center of

the MBR in the body frame, I is the moment of inertia of the MBR and kR is the rotational

viscous drag coefficient. At low Reynolds number flows such as the system we have here,

viscous effects dominate inertial forces, (e.g. kT >> M and kR >> I) allowing us to

eliminate the M and I terms in the equations of motion. Thus, equations (4.3) and (4.4)

reduce to:

dr

dt
=

1

kT

 Nb∑
i=1

pini +

Nb,e∑
i=1

qiti

 , (4.5)

dα

dt
=

1

kR

Nb∑
i=1

pi · (bi,x sin θi − bi,y cos θi) +
1

kR

Nb,e∑
i=1

qi · (bi,x cos θi − bi,y sin θi) . (4.6)

From observations of the steady state behavior of E.Coli in the absence of external

driving forces such as chemical gradients, we can make the extension that the propulsive

force exerted by each bacterium is a stochastic process [6] and can be modeled as a Markov

chain [12]. The frequency of the run and tumble states of the bacteria can be used to

calculate the expected value of force exerted by the bacteria. Since in a tumble, the flagella

unbundle and the propulsion force axial to the cell-body disappears, it is reasonable to

assume that the tangential force also disappears during a tumble. By making this assumption

the expected force exerted by each bacterium irrespective of the location of the bacterium can

be calculated. These are expressed as p̄ and q̄ for the axial and tangential propulsion force

for the bacterium. The expected values can be used to estimate the steady state behavior

of the system as time approaches infinity, because the ratio of the standard deviation of

motion to the expected value of the state of the system approaches 0 [61].

Taking equation (4.5), we can break this up into the expected motion in the x− and y−
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direction in the body-fixed frame and we can write the expected angular velocity expression,

dxf
dt

=
p̄

kT

Nb∑
i=1

cos θi −
q̄

kT

Nb,e∑
i=1

sin θi, (4.7)

dyf
dt

=
p̄

kT

Nb∑
i=1

sin θi +
q̄

kT

Nb,e∑
i=1

cos θi, (4.8)

dα

dt
=

p̄

kR

Nb∑
i=1

(bi,x sin θi − bi,y cos θi) +
q̄

kR

Nb,e∑
i=1

(bi,x cos θi − bi,y sin θi) . (4.9)

From these equations (4.7-4.9), 6 parameters that characterize the dynamics of the sys-

tem can be identified:

β1 :=
1

kT

Nb∑
i=1

cos θi, β2 :=
1

kT

Nb∑
i=1

sin θi, β3 :=
1

kR

Nb∑
i=1

(bi,x sin θi − bi,y cos θi) .

γ1 := − 1

kT

Nb,e∑
i=1

sin θi, γ2 :=
1

kT

Nb,e∑
i=1

cos θi, γ3 :=
1

kR

Nb,e∑
i=1

(bi,x cos θi − bi,y sin θi) .

These parameters are dependent on the geometry as well as the distribution of bacteria

on the MBR. It is clear that γ1 is a (negative) fraction of β2, since the summation for γ1 is

the fraction of bacteria that are near the edge of the MBR. Similarly, γ2 is a fraction of β1.

The relationship between β and γ are also geometry- and bacteria-distribution dependent

and will vary case by case.

Using these parameters, the expectant motion in the inertial frame is given by

dx

dt
= (p̄β1 + q̄γ1) cosα− (p̄β2 + q̄γ2) sinα, (4.10)

dy

dt
= (p̄β1 + q̄γ1) sinα+ (p̄β2 + q̄γ2) cosα, (4.11)

dα

dt
= p̄β3 + q̄γ3 (4.12)

From experimental data for 80µm square MBRs, the magnitude of the system parameters

for β1,2 and γ1,2 are on the order of 10s of µm/(s pN) and β3 and γ3 are on the order of 1
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rad/(s pN). This model can be fit to experimental data and the parameters β1,2,3, and γ1,2,3

can be determined by observing the motion of the MBR.

4.3 Orientation Experiment

The first experiment conducted to probe the dynamics of the system involved using mi-

crostructures that had an asymmetric marking, the letter F, on them to determine the

orientation of the MBRs. MBRs settle near the bottom of the observation chamber in one

of two possible orientations. Either the bacteria are on the top of the SU-8 (bacteria up),

or bacteria are on the bottom of the SU-8, such that the bacteria are close to the surface

(bacteria down).

Microstructures of 40µm squares with a letter F etched out of them were used. The

microstuctures are oriented during fabrication such that when viewed from above, the F

is not inverted and the MBRs are bacteria up, whereas when the F is inverted, the MBRs

are bacteria down. This orientation convention is ensured because the SU8 microstructures

are attached to the glass slide when blotted on the bacteria and do not release from the

slide until the glass slide with the MBRs are placed in the experimental chamber. For this

experiment, in order to increase the number of MBRs that are bacteria down, the slide

is inverted and shaken in the experimental chamber such that there is a distribution of

up/down orientations.

4.3.1 Results

The rotation direction of 37 square MBRs, each with 40µm sides, were observed. Since

the rotation rate varies greatly between different MBRs, a threshold of π radians per 60

seconds is used to determine whether an MBR is considered to be rotating. MBRs that

have rotations under this threshold (i.e. not rotating as defined by this metric) have been

ignored for this study. This threshold was chosen to eliminate MBRs that were not rotating

or rotating very slowly. If a threshold less than π were used, the results would qualitiatively

be the same.

Figure 15 shows a histogram of these results, while both the bacteria up and bacteria
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Figure 15: Histogram of rotation direction of 40µm square MBRs characterized by whether the
structures are bacteria up(left) or bacteria down (right). Results show the MBRs are have a tendency
to rotate in the clockwise direction.

down MBRs can rotate clockwise (CW) and counter clockwise (CCW), the overall tendency

irrespective of orientation is for the MBRs to rotate CW. The distribution in rotation di-

rection and rate can be attributed to stochasticity in the system. This could be from the

orientation and distribution of the bacteria or the randomness associated with the behavior

of the bacteria. These results support the hypothesis that rotation of the MBRs is in part

driven by a force tangential to the cell body that arises from the interaction between the

glass slide on the bottom surface of the experimental chamber and the flagella of the bacteria

close to the edge of the MBR; since the orientation will not affect the direction in which

this tangential force is exerted. Additionally, this study also suggests that when the MBRs

are released using the method of placing the glass slide on the bottom of the experimental

chamber (without shaking upside down) the majority of MBRs will remain in the bacteria

up orientation.

4.4 Edge Effect

To probe the effect of cell location on the MBR and the force exerted, we utilize the response

of S. Marcescens to UV light to selectively immobilize the bacteria in localized regions of the

MBR [67]. In all experiments, a square geometry for the MBR is used. A symmetric shape

was chosen to negate any resultant moment that may be caused by randomly swimming
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Figure 16: UV exposure to the center of a 80 × 80µm square MBR: (a) Rotation direction of the
MBR before UV exposure, (b) Location of UV exposure, (c) Orientation angle as a function of
time for Table I. experiment (a), greyed out section indicates UV exposure. Angular velocity is
approximately constant and independent of UV exposure. Scale bar is 20µm.

bacteria in solution colliding with the structure [65].

To isolate the force contributions of bacteria adhered onto different parts of the MBR,

S.marcescens are immobilized at localized regions on the MBR by selectively exposing the

MBR to near-UV light. A DAPI (4’,6-diamidino-2-phenylindole) filter and constricted iris

aperture are used to create a circular spotlight of near-UV light with a diameter of 40µm at

40X magnification. The microscope stage is moved to expose different areas of the MBR to

the spotlight. Since the stage must be moved continually to direct the light on the desired

part of the MBR, only data on the rotation and not the translation of the system are tracked.

4.4.1 Results

Square microstructures of 60 and 80µm with a thickness of 2µm were used for this exper-

iment. The SU-8 photosensitive epoxy fluoresces under these wavelengths, and enables the
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Table 1: MBR center exposure to near-UV light experiment.

Angular Velocity (rad/sec)a Changeb

Before UV During UV (%)
(a) -0.012 -0.013 8.8
(b) -0.009 -0.011 23.3
(c) -0.011 -0.014 21.8
(d) -0.018 -0.019 9.5
(e) -0.008 -0.007 -9.3

a Fits measured data with at least a coefficient of determination of 0.98.
b Percent change before, ω1, and during, ω2, UV exposure, ∆% = ω2−ω1

ω1
.

a b

c

Figure 17: UV exposure to the corner of a 60 × 60µm square MBR: (a) Rotation direction of the
MBR before UV exposure, (b) Location of UV exposure, (c) Orientation angle as a function of time
for Table II. experiment (a), greyed out section indicates UV exposure. Angular velocity is reduced
after edge exposure. Scale bar is 20µm.
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Table 2: MBR edge exposure to near-UV light experiment.

Angular Velocity (rad/sec)c Changeb

Before UV During UV (%)
(a) -0.045 -0.010 -77.5
(b) -0.057 -0.029 -48.3
(c) -0.048 -0.030 -36.8
(d) -0.137 -0.094 -31.4
(e) -0.027 -0.020 -26.2

c Fits measured data with at least a coefficient of determination of 0.95.

region where the bacteria were immobilized to be identified visually, Figure 16(b). Two

different cases were tested to isolate and compare the contribution to the MBR motion.

Firstly, the bacteria at the center of the microstructure were immobilized. In the second

case, bacteria at the edge of the microstructure were immobilized. A time series plot of

orientation angle is shown in Figure 16(c) and 17(c) to illustrate how immobilizing the bac-

teria on different regions of the MBR affects its angular velocity. Results from 5 different

experiments for each case are reported in Table 3 and 2 for the two cases respectively.

When bacteria in the center of an MBR are exposed and the bacteria in this region

are immobilized, only the bacteria on the edges are contributing to the angular velocity

of the MBR. Observations show that small changes in angular velocity are detected when

the center of the UV light is exposed (compared to angular velocity changes for the edge

exposure cases,) as shown in Figure 16(c) and Table I. This effect supports the hypothesis

that there is a near-wall hydrodynamic interaction between the flagella of the bacteria near

the edge of the MBR and the bottom surface under the MBR which in turn results in a

moment [41] causing the MBR to rotate.

When bacteria on one edge of an MBR are exposed, the angular velocity of the MBR

decreases, as shown in Figure 17(c) and Table II. This suggests that fewer bacteria are

exerting a tangential force on the edge contributing to the moment about the axis of rotation

perpendicular to the plane, therefore resulting in a decrease in angular velocity after near-UV

light exposure to the edge.

In a case where the bacteria in the center of the MBR are uniformly and randomly
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distributed, the expected resultant moment contribution from these bacteria is 0. In practice,

there is a resultant moment contribution by the center bacteria, but the magnitude is small

compared to the contribution by the bacteria near the edge of the MBR as a result of the

longer moment arm. This variation in bacteria distribution explains why the percentage

change in angular velocity before and during near-UV light exposure to the center of the

MBR varies between -9.3 and 23.3%.

4.5 Actuation By Active Suspension

Related works have shown that an active suspension, such as free-swimming bacteria in

solution, can produce a biased rotation of microstructures. This motion is produced by

stochastic collisions of bacteria with walls of asymmetric microstructure geometries, such as

micro-gears [65], [19]. Previously demonstrated in a thin fluid film of free-swimming bacteria,

asymmetric gear rotation has been observed primarily in the direction of the slanted edges of

the gear teeth. This behavior has been explained from the observation of bacteria packing

at the corners of gear teeth, in turn producing a moment acting on the microstructure

[65]. In the current experiment, the effect of microstructure geometry on MBR motility is

characterized. Specifically, two modes of interaction between bacteria and microstructure

geometric features were examined: (1) propulsion resulting from bacteria adhered directly

to the microstructure surface (Figure 18(a)) and (2) collisions between swimming bacteria

in solution and the microstructure out-of-plane walls (Figure 18(b)). Each interaction mode

was examined using asymmetric micro-gears of opposing gear tooth orientations, which

measured approximately 10µm in thickness and 70µm across tip-to-tip of the gear teeth.

Microstructures were fabricated by spin coating a layer of 10% dextran onto a glass slide

followed by a layer of negative SU-8 negative photoresist. The layer of SU-8 was patterned

via standard photolithographic methods, and subsequently developed with Propylene Glycol

Monomethyl Ether Acetate (PGMEA) and dried with nitrogen. Serratia marcescens ATCC

274 (American Type Culture Collection, Manasas, VA) was cultured using a swarm plate

technique (LB broth containing 0.6% Difco Bacto-agar and 5 g/L glucose). An agar plate
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was inoculated with approximately 2µL of S. Marcescens saturated culture and swarming

began in approximately 8 hours.

4.5.1 Results

The rotation direction was observed for 66 asymmetric micro-gears blotted with bacteria

Figure 18c. Counterclockwise or clockwise rotation was observed for micro-gears indepen-

dent of the tooth chirality. The distribution in rotation direction may be attributed to

stochasticity in the system, such as orientation and dispersal of bacteria on the microstruc-

ture surface. However, the overall tendency is for blotted MBRs to rotate clockwise. The

primary clockwise rotation direction may be supported by the near-wall swimming behavior

of bacteria.

The effect of collisions between free-swimming bacteria and the microstructure walls is

best observed by introducing an excess amount of surfactant to the motility solution. By

weakening the surface energy between the cell body and the microstructure surface, bac-

teria were prevented from adhering. Collisions between swimming bacteria in the solution

and walls of the structure created a net tangential force to rotate the MBR in a manner

defined by the asymmetries of the microstructure. In this case, when no bacteria are ad-

hered to the microstructures, all micro-gears possessing teeth of counterclockwise chirality,

Figure 18(b)(i), were observed to rotate clockwise. Conversely, all micro-gears possessing

clockwise oriented teeth, Figure 18(b)(ii), were observed to rotate counterclockwise. While

this behavior has been observed previously in a thin-film suspension [19, 65], our experi-

ments demonstrate that this effect of geometric microstructure asymmetries also pertains

to MBR motility near a wall. Previous discussions on these collisions have implicated a

bacterial packing effect which occurs at the corners of micro-gear teeth [65]. The experi-

ments performed in this work suggest a different mechanism by which torque is generated

to rotate these micro-gears. Bacteria in solution swim along the micro-gear slanted edges

and instantaneously collide with the flat edge of the tooth, which applies a moment to the

structure.
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Figure 18: (a)Schematic of MBR showing propulsion forces from adhered bacteria. (i) Sample distri-
bution of blotted bacteria on microstructure. (ii) Propulsive forces resulting from adhered bacteria.
(iii) Resultant clockwise moment and some arbitrary force. (b)Collisions between swimming bacteria
in solution and gears without adhered bacteria to the gears.(i) 100% clockwise rotation direction ob-
served for micro-gears exhibiting counterclockwise oriented teeth.(ii) 100% counterclockwise rotation
direction observed for micro-gears exhibiting clockwise oriented teeth. (c) Observed rotation direc-
tion for micro-gears propelled by adhered bacteria. Results indicate blotted MBRs have a tendency
to rotate in the clockwise direction, despite gear tooth asymmetry and orientation.
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Figure 19: Total stress profile of a translating H-shaped MBR moving at a velocity of 10µm/s.

4.6 Modeling Fluid Drag on an MBR

To investigate the forces required to actuate an MBR, a hydrodynamic simulation to ap-

proximate microstructure motility was developed. Many bacteria collectively swim to propel

a microstructure throughout a fluidic environment. While it would be very difficult to ex-

perimentally measure critical hydrodynamic parameters including shear stress and viscous

drag force, these may be computed via numerical methods. We use the computed force

required to rotate an MBR at a given angular velocity to estimate the collective force of

bacteria acting along the MBR edge as well as to determine the coefficients for translational

and rotational drag.

To approximate the hydrodynamic force required for translational motion of an MBR, we

can prescribe the exact geometry of the microstructure and compute values using a moving

wall model. Approximation of the hydrodynamic drag force on a translating MBR has been

previously described [74]. For a translating H-shaped microstructure moving at a velocity

of 10µm/s, the total drag force is 15 pN (Figure 19).

To approximate the hydrodynamic forces acting in the rotational frame, a disk-shaped

geometry is used due to computational modeling restrictions (Figure 20). The following was

assumed for the calculation of viscous drag on the plate:

1. Laminar flow

2. Incompressible flow,

3. Steady-state flow
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4. Pure tangential velocity, Vr = Vz = 0

5. Constant density, ρ

6. Constant viscosity, µ

Using these assumptions, hydrodynamic forces acting on the plate may be derived from first

principles. Beginning with the continuity equation in 3-dimensional polar coordinates:

∂ρ

∂t
+

1

r

∂

∂r
(ρrVr) +

1

r

∂

∂θ
(ρVθ) +

∂

∂z
(ρVz) = 0 (4.13)

where Vr, Vθ, and Vz are the velocities of the fluid in the r-, θ-, and z- coordinate

respectively. From the assumption for a Newtonian fluid, we can assume that the fluid

velocity is axisymmetric:
∂Vθ
∂θ

= 0 (4.14)

The Navier-Stokes equation of motion simplifies to the following in the r-component,

θ-component and z-component, respectively.

−ρ
V 2
θ

r
= −∂ρ

∂r
(4.15)

µ
∂2Vθ
∂z2

= 0 (4.16)

∂ρ

∂z
= 0 (4.17)

Using COMSOL Multiphysics Simulator for numerical analysis, the Navier-Stokes equa-

tions of fluid motion were simultaneously solved for velocity and viscous drag force on a

rotating plate. The parameters were solved for a 2-dimensional axisymmetric geometric

model in Stokes’ flow (low Reynolds number). A rotational velocity was prescribed about

the disk axis at its center, as well as appropriate moving wall boundary conditions on the

disk edges. Results of the simulation show the disk rotating at an angular velocity sym-

metric about its axis. As expected, the angular velocity increases in magnitude from its

center to the edge, where the velocity is maximum, this is illustrated qualitatively by the
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Figure 20: Computational fluid dynamic model parameters for an MBR. (a) Parallel-plate rheometer
model of an MBR. Rotation at a prescribed angular velocity of ω of a circular plate in polar coordi-
nates (b) Prescribed boundary conditions of a 2-dimensional axisymmetric geometry for numerical
simulation as follows, 1:Axial Symmetry, 2:Symmetry, 3: No-slip, 4: Moving wall at prescribed
angular velocity.

red color indicating the greatest stress in Figure 21(a). Additionally, the stress distribution

over the disk surface is as expected. Stress, in the angular direction, is greatest at the in-

terface between the bottom surface of the disk and the planar surface of the fluid container

21(b,c). Integrating total stress in the angular direction over the disk radius, and again over

the entire disk surface yields the viscous drag force. For a circular disk of radius 36.5 µm

and thickness 10 µm rotating at an angular velocity of 10 deg/s at a distance 5 µm between

the bottom surface of the MBR and the stationary planar glass slide, the magnitude of the

total force exerted at the edge of the disk is 0.329 pN. Limitations pertaining to rotational

modeling prevented the shapes used in experiments to be simulated. However, the results

obtained for a circular disk may be applied to microstructures of other shapes.

4.7 Chemotactic Bottom-up Model

To capture the stochasticity of the MBR motion, a bottom-up model is developed that

incorporates the distribution of bacteria, models the bio-molecular network governing the

bacteria flagellar motor to capture the stochastic switching between run and tumble state of
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(a) (b) (c)

Figure 21: MBR hydrodynamic model results. (a) 2-dimensional axisymmetric velocity magnitude
of a rotating MBR at a prescribed angular velocity of 10 deg/s. (b) Total stress profile projection in
the x-y plane of a rotating MBR at a prescribed angular velocity of 10 deg/s. Stresses are radially
symmetric. (c) Total stress profile projection in the y-z plane of a rotating MBR. Stresses are
greatest at the disk edge and interface between the bottom surface of the disk and planar surface
below. Where red indicates the greatest velocity and stress in the respective figures.

each bacterium and carries out a force balance for the entire system. A simplified chemotaxis

model is used to simulate the run and tumble behavior of cells. Preliminary simulation

results validated by experimentally observed clockwise angular velocity bias are shown.

From observations of the steady state behavior of E.Coli in the absence of external

driving forces such as chemical gradients, we can make the extension that the propulsive

force exerted by each bacterium is a stochastic process [6]. This process can be modeled

in each cell using a Gillespie algorithm [29]. Assuming that cells do not interact with one

another, an independent Gillespie algorithm is used to predict the state, run or tumble, of

each cell attached to an MBR. By using a Gillespie algorithm, each generated trajectory

will be unique as a different combination of run-tumble sequences will emerge. The result

will be one possible trajectory for the MBR, by running many trials for the same system it

is possible to obtain a distribution of trajectories.

To model the stochasticity of the flagella, a simplified chemical model of the chemotaxis

network in E.coli is used. Since the specific interest is in the flagellum behavior in steady-

state in the absence of chemical attractants, a simplified model is used which involves kinases

CheA and protein CheY and the state of the flagella, equations 4.18 - 4.22, a specific rate

of reaction denoted by the Greek letters, α, β, γ, µ, ρ, governs the rate of each equation.
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Figure 22: Preliminary modeling results for a predominantly rotating MBR, trajectory starts at
green and ends at red. (a) Simulation trajectory, (b) Experimental trajectory.

CheA
α−→ CheA− p (4.18)

CheA− p+ CheY
β−→ CheY − p+ CheA (4.19)

CheY − p γ−→ CheY (4.20)

Tumble
µ−→ Run (4.21)

CheY − p+Run
ρ−→ CheY − p+ Tumble (4.22)

Equation 4.18 expresses the phosphorelation of kinases CheA to CheAp. The phosphoryl

groups are not explicitly expressed (aside from when attached to a protein) or tracked in

simulation as an abundance of them are assumed in the cell and therefore this is not a rate

determinant chemical.

Equation 4.19 expresses the transfer of the phosphoryl group from CheA to CheY.

Equation 4.20 expresses the dephosphorelation of CheY. While CheZ is typically associated

with this reaction, since CheZ does not change during this reaction and is not involved in

other reactions in the model, its effect is encapsulated in the reaction rate γ.

Equation 4.21 expresses the transition of the flagellum from a run to a tumble state. The

interaction of CheYp with the motor increases the probability of a tumble behavior, this

relationship is created by including CheYp as a reactant and product in this reaction. Since
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the state Run can only be 0 or 1, by setting the steady state of CheYp to be 1, when the

level of CheYp drops the rate of tumbling will also decrease.

Equation 4.22 expresses the transition from tumble to run state. The rate of this reaction

is unaffected by the levels of the chemicals in the cell. The state of CheA and CheY are

enough to model the state of the cell because the motor behavior is directly dependent on

its interaction with CheY; moreover, the phosphorelation state of CheY depends on CheA.

CheZ, CheW, CheB and CheR are omitted as well as methylation reactions even though

they are involved in the chemotaxis network. This is done to maintain simplicity of the

model and because response to chemical stimuli are not considered here.

In this model, CheW, CheB and CheR are omitted as well as methylation reactions even

though they are involved in the chemotaxis network. This is done to maintain simplicity of

the model. CheB and CheR are omitted as they are components involved in the adaptation

of receptor sensitivity to chemical concentration, which is not explicitly modeled in this

system.

To validate the simulation, a free solution - no chemo-attractants or chemo-repellents,

was simulated and compared to experimentally observed data. The following parameters

were used for the single cell simulation, reaction rates:

α β γ µ ρ

0.11 1×108 0.031 10 1

Initial conditions:

Receptor CheA CheAp CheY CheYp Flagella

I 0 0 1 1 Run

1000 simulations were run for 400 seconds. The trajectories generated show that direction

of travel is equally likely in all directions. Additionally, the run to tumble ratio is 10 to 1,

as shown experimentally [27]. These results help validate the simulation and it is consistent

with experimentally observed cell behavior in free solution.

The rates of reaction α, β and γ were determined based on averages found in literature

[9]. The rates for transition between run and tumble state were chosen so that the run and
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tumble ratio would be 10 to 1, and the exponential distribution of rates is inherit in the

Gillespie simulation. This ratio implies that the µ
ρ would have to be 10 in addition to the

steady-state value of CheYp being 1. This is because the reaction from run to tumble is

also a function of the concentration of CheYp; therefore, to maintain the run and tumble

ratio, the steady-state value of CheYp must be 1 (alternatively the rate ρ could be scaled

accordingly.)

For the simulation of an MBR, n-parrallel Gillespie simulations are run for n-cells at-

tached to the MBR. At each successive reaction time, the equations of motion are updated

and trajectory computed. The complexity of the simulation therefore increases linearly with

the number of cells to run a simulation for the same duration.

4.7.1 Preliminary Results

Figure 22 shows similar trajectories between experiment and simulation, however the orien-

tation does not match well. This suggests that there may be additional factors affecting the

motion of the MBR not captured in this model. This may include the forces from bacteria

running into the sides of the MBR and forces exerted on the MBR while the cell is in a

tumble.

4.8 Conclusion

In this chapter, we propose two models, first, a top-down stochastic kinematic model, which

informs the second, a bottom-up chemotactic model. The top-down stochastic kinematic

model is able to capture the biased clockwise rotation of microbiorobots propelled by flagel-

lated bacteria which are adhered to the surface of the robot. The model is validated in three

different experiments to determine the force exerted by the bacteria attached at different

locations on the microbiorobot. The force contribution by free-swimming bacteria in solu-

tion colliding with the sides of the microbiorobot is investigated by observing the dynamics

of micro structures powered by an active suspension of bacteria in the solution surround-

ing the microstructure compared to microbiorobots powered by bacteria attached to the

microstructure. The bottom-up model of bacteria propelled microstructures captures the
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stochasticity of cell behavior. This chapter makes contributions towards steering bacteria

propelled microbiorobots using external stimuli.
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Chapter 5

Actuation using Magnetic Fields

The microrobots propelled by biological organisms, discussed in Chapter 4, have the benefit

of onboard power in a small package; however, they are difficult to control because of the

inherent stochasticity of biological organisms. Another method of actuating microrobots is

embedding magnetic particles into the microstructures and using magnetic fields to actuate

the robots. Magnetic manipulation enables more deterministic control and have been pro-

posed for applications in various procedures in minimally invasive surgery and in vitro cell

manipulation in biological experiments [40, 47, 70]. High-resolution manipulation is impor-

tant in microrobotics, micro surgery, biosciences, micro materials, micro manufacturing and

soft matter.

This chapter discusses the use of magnetic fields for manipulation of magnetic robots.

An analytical solution to compute the magnetic field generated by a current carrying loop

is presented using the Biot-Savart law. This is also used to calculate the force exerted on a

magnet in the field. We discuss the empirical characterization of a magnetic manipulation

system that consists of 4 stationary electromagnetic coils used to manipulate a magnetic

robot made of permanent magnetic material pinned on an oil-water interface.
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5.1 Magnetics Background

Nomenclature

For clarity and convenience, the following table lists the nomenclature and the SI units

for each variable. These assignments are used throughout the thesis in the discussion of

magnetically actuated robots.

An arrow above a variable signifies a vector with direction and magnitude; without the arrow

signifies a scalar. A tilde above a variable signifies that it is non-dimensionalized. A hat

signifies a unit vector. A capitol letter in boldface indicates a matrix.

Ii Current through coil i A

Ri Radius of coil i m

Li Position of coil i measured from origin m

~mj Magnetic poles of permanent magnet j Am

~µj Magnetic dipole moment for magnet j Am2

~xj Position of magnet j measured from origin m

~Fj Force acting on magnet j N

~B Magnetic field T

~r Vector between two permanent magnets m

µ0 Permeability constant for air, 4π × 10−7 Tm/A

Magnetic Field

The magnetic field generated by a current loop can be derived by the Biot-Savart equation:

~Bloop =
µ0I

4π

∫
C

d~s× l̂
|l|2

(5.1)

where I is the current, µ0 is the permeability constant for air, l̂ is the unit vector from the

coil wire segment to the point of interest, and a closed loop integral is taken around the

entire current loop, C, for each segment ds.
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The magnetic field for the xy-plane at z=0 is computed using the Biot-Savart equation

(5.1) for a circular loop with radius R centered at [0,0] with the face of the loop in the

yz -plane and the axis of the coil aligned along the x-axis [5],

~B = Bxî+By ĵ

Bx =
µ0IR

4π

∫ 2π

0

R− ysinφ′

(R2 + y2 + x2 − 2yRsinφ′)3/2
dφ′ (5.2)

By =
µ0IRx

4π

∫ 2π

0

sinφ′

(R2 + y2 + x2 − 2yRsinφ′)3/2
dφ′ (5.3)

where φ′ is the variable of integration around the circular coil and is integrated around the

full circle from 0 to 2π. This is summed over each coil. The solution of these integrals can

be written in terms of incomplete elliptic integrals,

Bx =
µ0I

2π

1√
(R+ |y|2) + x2[

F(
π

2
, k2) +

R2 − y2 − x2

(R− |y|)2 + x2)
E(
π

2
, k2)

]
(5.4)

By =
IRµ0x

4π

√
α

(R− y)2 + x2

{
1

Ry
√
α (α+ 2Ry)[

α

(
E
(π

4
, n2
)

+ E
(

3π

4
, n2
))

− (α+ 2Ry)

(
F
(π

4
, n2
)

+ F
(

3π

4
, n2
))]}

(5.5)

where α = R2 + y2 + x2, k2 = 4R|y|
(R+|y|)2+x2 and n2 = −4Ry

R2−2Ry+y2+x2 in the incomplete elliptic

integrals of the first and second kind, respectively, F and E . The elliptic integral of the first

kind, F , and of the second kind, E , are given by,

F(φ, p2) =

∫ φ

0

1√
1− p2 sin2 φ

dφ (5.6)
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E(φ, p2) =

∫ φ

0

√
1− p2 sin2 φdφ (5.7)

These expressions are used to compute the force and torque exerted on a magnet.

Force

A force is exerted on a ferromagnetic particle with a magnetic dipole moment, ~m, when in

the presence of a magnetic field, ~B. This force, ~F , is calculated by,

~F = (~m · ∇) ~B (5.8)

The value for the magnetic dipole moment of the permanent magnet, ~m, depends on material

properties and geometry of the magnet.

Torque

The magnetic torque, ~τ , is calculated by,

~τ = ~m× ~B (5.9)

The torque acts to align the dipole of the robot with the field, ~B. In this model, we assume

that this reorientation occurs immediately for the robot, which is a permanent magnet,

and the robot is always torque free [1, 46]. The magnetic dipole moment, ~m, is therefore

expressed as:

~m =
|m|

|B(x, y)|
(Bx(x, y)̂i+By(x, y)ĵ) (5.10)

This is used with equation (5.8) and the expressions for the magnetic field to compute the

force exerted on the magnet.

Magnet-Magnet Interaction

Using Coulomb’s law for magnetic poles, which assumes that the magnetic poles are small

enough to be assumed a point, the force, Fj exerted on magnet j separated from magnet k
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by a vector ~r is given by,

~Fj =
µ0mjmk

4π|r|2
r̂ (5.11)

The value for the magnitude of the magnetic poles of the permanent magnet, mj and mk,

depend on material properties and geometry of the magnet and is derived empirically in

the Section 6.1.1. While Coulomb’s model is an approximation, the accuracy of the model

improves as distance between magnets increase and is relevant for our application.

5.2 Magnetic System Characterization

To achieve high-resolution micromanipulation of a magnetic robot, it is important to char-

acterize the system to generate an accurate model to map system inputs to robot behavior.

This section discusses the system characterization of a magnetic manipulation system that

consists of 4 stationary electromagnetic coils which is used to manipulate a magnetic robot

made of permanent magnetic material pinned on an oil-water interface. The characterization

of the system can be divided into two sections, magnetic field characterization and robot

characterization. We introduce an empirical characterization method to parameterize the

system. The system that is characterized here is used for experiments in Chapter 6 and 7.

5.2.1 Magnetic Field Characterization

The high-resolution manipulation of the magnetic robot requires an accurate model of the

magnetic field and its gradients. In Chapter 6, we show that for reliable manipulation, it is

important to have a spatial representation of the magnetic field to avoid creating regions of

high variability in the magnetic field gradient close to the robot. Furthermore, the control

algorithms proposed in Section 6.2 hinges on exploiting the spatially nonlinear magnetic field

gradient to independently control multiple robots. Thus, in order to achieve sub-millimeter

precision in robot position, it is important to have an accurate model that maps the vector

of input currents into the system to the spatial magnetic field throughout the workspace.

Creating an accurate model of the magnetic field is challenging because most magnetic

manipulation systems, including our own, are custom built. Variability can arise in custom

built systems if the electromagnetic coils are hand wound. Additionally, rapid prototyp-
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ing techniques and one-off designs can lead to low tolerances on measurements. For these

systems, there does not exist a set of specifications that detail the shape of the magnetic

field generated by each electromagnetic coil and the strength of the field. While electro-

magnetism is well studied and there are analytical equations that govern the magnetic field

created by current through a wire, implementing these equations typically involves making

some assumptions. Moreover, some of these equations do not hold for our system because

the workspace is in close proximity to the workspace.

To validate a model, we need to measure the magnetic field. There is a wide range of

commercially available tools for measuring magnetic fields. We needed to select one with

3-axes of measurement and a small form factor that allowed it to be maneuvered around the

workspace.

Magnetometer

We operate close to the electromagnetic coils because the magnitude of the magnetic field

decays at a rate of distance to the third power. As a result, using a point dipole model based

on the geometry of the coils does not generate an accurate model of the magnetic field. In

this model, we assume that the magnetic fields linearly superimpose and that neighboring

electromagnetic coils do not interfere with one another. Moreover, we try to fit the magnetic

field measurements to a point-dipole model parameterized to fit empirically measured data.

First, a 3-axis magnetometer, HMC 5843 Honeywell, is used to measure the magnetic

field and an Arduino Uno is used for data acquisition. The position of the magnetometer

is determined by tracking the AprilTag attached to the sensor using the overhead camera

on the magnetic manipulation platform. Magnetic field readings are collected at 9 different

locations on the workspace for a variety of different input currents being applied. For ease

of data collection, currents are changed at a rate of 0.5Hz, while magnetometer readings are

taken at 1Hz. Since the magnetometer returns a time averaged magnetometer reading, it is

important to avoid taking readings right after the current has changed to minimize error.

This experiment is used to determine Earth’s magnetic field, which is taken by averaging

the baseline magnetic field across the workspace when all the coils are off. Earth’s magnetic
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field is measured as ~BEarth = [36,−0.6]µT, in the workspace fixed coordinate frame. Once

these measurements are taken, it is important not to move the magnetic manipulation system

otherwise, the calibration will need to be repeated.

To determine the magnetic field generated by one coil, Earth’s magnetic field is sub-

tracted from each field measurement. Figure 23a shows an example of the raw data from

the measurements for coil 3, at [57.1, 0 ]mm with 1A of current through it. As shown, the

data taken using this method can be noisy. The data is sufficient to determine an order of

magnitude for the magnet moment for the point dipole model, however, it does not provide

the level of detail desired.

Empirical Method

The dipole moment of the electromagnetic coil is parameterized by the geometry of the coil

using a solenoid representation. The multipole expansion for the vector potential of a line

current of volume, V , is given by [30],

m =
1

2

∫
(r × V ) dv (5.12)

where m is the dipole moment, r is the distance from the center to the current carrying

element of wire and integrated over the volume, v. The solution to (5.12) for a solenoid with

a circular cross-section is given by [55],

m =
µ0
12
JL
(
3R3T + 3RiT

2 + T 3
)
. (5.13)

where J is the current density of the wire, L is the length of the winding along the coil axis

direction, Ri is the inner radius of the coil, T is the winding thickness of the coil.

To refine the model for each coil, we ran experiments with a magnetic robot to empirically

characterize the magnetic field. The robot is initialized in Earth’s magnetic field and then

one coil is turned on. The trajectory of the robot is divided into segments of length dt. For

each segment of the trajectory, the dynamics of the robot is simulated using the state of the

robot from the experiment. We optimize the inner radius of the coil to minimize the error
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Figure 23: Calibration of the magnetic field. (a) Measurement magnetic field for Coil 3 at [57.1, 0]
with a current of 1A (includes Earth’s magnetic field.) (b) Optimization of coil parameters for coil
2. The lines show the trajectory for several different values of inner radius of the coil, with the black
line showing the result with minimum error.
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Table 3: Electromagnetic coils parameters.

Wire diameter, Wd 0.643 mm
Wire cross-sectional area, Wa

π
4W

2
d mm2

Length of coil winding, L 6 mm
Thickness of coil, T 3 mm
Inner diameter of coil Ri O1 mm

between the robot position at the end of dt in simulation and experiment. This calibration

is run for each coil such that each coil has a unique inner radius. Figure 23b shows the

comparison between the simulation data and the trajectory for a window of 1s. The results

are for a current of 2A through coil 2. The different colors indicate simulations results for

different values of Ri and the black line indicates the best fit value to minimize the error in

the position at the end of this time window.

To add further detail to the simulation, we can measure the inductance of the electro-

magnetic coils to determine the temporal variation in the current and how that is affected

by the frequency that the current is updated. The coils in this setup have an inductance of

540-552µH at 1 kHz.

There are several sources of error with this method of calibration, including error in the

tracking of the April Tag, discrepancy between the sensor position and assumed position at

at the center of the device. Moreover, we assume that the three axes of the magnetometer

are aligned, which is not true. Due to the accuracy desired for microscale precision in

manipulation, a magnetometer with more detailed sensor placement would lead to a better

calibration.

5.2.2 Robot Characterization

This section outlines experiments that can be used to empirically derive the linear drag

coefficient and rotational drag coefficient of the robot. The drag coefficient is a function

of geometry of the robot, therefore, for each robot of a different shape and size, these

experiments will need to be run to derive their specific drag coefficient. The magnetic robot

that is characterized in this section is made of Samarium Cobalt, SmCo, cut into an isosceles
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triangle to allow the orientation of the robot and therefore the direction of the magnetic

dipole moment to be determined visually. This robot is also used in experiments in Section

7.5.

At low Reynolds number, inertial forces are negligible. In a Stokes regime, the force

and linear velocity relationship is linear and the torque and angular velocity relationship is

linear. While the Reynolds number for this system is about unity, we show that the linear

assumption generates a model that closely simulates empirical data.

Linear Drag Coefficient

At low Reynolds number, the linear velocity, ~v, and force relationship, ~F , is related by,

~F = CL~v (5.14)

where CL is the linear drag coefficient with units kg s−1. The force applied on the magnet

by a magnetic field is given by (5.8). To relate the applied magnetic field to the velocity, we

combine equations (5.14) and (5.8),

MrV (m̂ · ∇)B = CL~v (5.15)

in this expression, the magnetic dipole moment of the robot ~m is written as MrV m̂, where

Mr is the remnant magnetization of the robot, V is the volume of the robot, m̂ is the unit

vector of the dipole moment of the robot. This allows the robot dependent constants, Mr

and V , to be factored into the drag coefficient ratio, CL, which we define as,

CL =
CL
Mrv

(5.16)

and we can rewrite (5.15) as,

CL =
|m̂ · ∇B|
|~v|

. (5.17)

To compute CL for the magnetic robot, we need a magnetic field source with a known
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magnetic field. A permanent magnet with known remnant magnetization, Br, can be used.

The source should be chosen such that the velocity of the magnet is on the same order of

magnitude as the velocity of the magnet when controlled by the electromagnetic coils. The

magnetic dipole field of the permanent magnet is assumed to be a point-dipole

~B = 3
(~m · r) r
|r|5

− ~m

|r|3
(5.18)

where r is the distance from the point-dipole and ~m is the magnetic dipole moment of the

permanent magnet and the magnetization of the permanent magnet, M = Br
µ0

, is calculated

from the remnant magnetization of the permanent magnet.

This model is accurate far from the source, we assume that this distance is two-body

lengths away from the source and we truncate the data 8mm from the source. For each data

point along the trajectory, the position and orientation of the magnet is determined using

computer vision. While the magnetic field across the robot will vary, the robot is modeled as

a point magnet at the areal center of the projection of the robot in the image. The velocity

is calculated by numerically differentiating the position data and then smoothing it using a

sliding window average.

The orientation of the magnetic source relative to the magnetic robot strongly influences

the magnetic field at the location of the robot and therefore the force exerted on it. With

the size of the magnets being small and the camera needing to be far enough away to capture

the full trajectory, the magnet is just represented by a few pixels. Therefore, the orientation

of the magnetic source is difficult to determine accurately from the images. Instead, the

assumed orientation of the magnetic source is chosen by minimizing the absolute difference

between the angle of the robot’s magnetic dipole moment and the direction of the magnetic

field at the respective position, which is the sum of the magnetic field from the permanent

magnet source and Earth’s magnetic field. The magnitude of Earth’s magnetic field is on

the order of magnitude of the applied field by the electromagnetic coils and is strong enough

to reorient the magnetic robot to align to Earth’s magnetic field (see Section 6.2 for detailed

discussion.)
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Figure 24 shows an example trajectory of a permanent magnet moving towards a station-

ary permanent magnetic field source. The magnetic field source is a stack of 2 neodymium

(NdFeB, Grade N42) magnetic cylinders L:1/16mm dia.:1/16mm (K & J Magnetics, Inc.),

with remnant magnetization, Br =1.32T. The data from the trajectory of the robot is shown

in Figure 24a. Figure 24a shows the comparison between experimental data and the model

for the unit vectors of force and the magnetic field for the permanent magnetic source at

an angle of 2.94 rad from the x-axis at location [0, 0]. Figure 24c shows the drag coefficient

ratio, CL, at each point along the trajectory of the robot. While the drag coefficient ratio

varies throughout the trajectory, the variation is small. We choose a value of CL= 10 kg s−1

A−1 m−2 to represent the behavior.

Rotational Drag Coefficient

At low Reynolds number, the angular velocity, ω, and torque, τ , are related by,

τ = CRω (5.19)

where CR is the rotational drag coefficient with units N m s. The torque applied on a magnet

by the applied magnetic field is given by equation (5.9). To relate the applied magnetic field

to the angular velocity, we combine equation (5.19) and (5.9),

MrV
(
m̂× ~B

)
= CRω (5.20)

As with the linear drag coefficient ratio, we define the rotational drag coefficient ratio, CR,

CR =
CR
MRV

(5.21)

and we can rewrite equation (5.20) into a form of values that can be empirically derived,

CR =
|m̂× ~B|
|ω|

. (5.22)
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Figure 24: Empirically deriving the linear drag coefficient. (a) Overhead view of experimental setup
with trajectory of the magnet in blue. (b) Comparing the theoretical force and velocity of the robot
from experiments. (c) Linear drag ratio as a function of x-position.
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Figure 25: Empirically deriving the rotational drag coefficient. The Helmholtz coils are turned off
at time = 0s. Earth’s magnetic field is ~BEarth = [36,−0.6]µT. The red line shows the angle of the
robot for CR =3.2× 10−6 kg m s−1.

To compute CR for the magnetic robot, we apply a uniform magnetic field to rotate the

robot while minimizing translation. A uniform magnetic field is applied by using a pair of

electromagnetic coils in a Helmholtz coil configuration to apply a uniform magnetic field

in the positive y-direction. The electromagnetic coils are turned off and the robot rotates

to align to Earth’s magnetic field. The orientation of the robot is tracked using computer

vision, the angular velocity is computed by numerically differentiating the orientation of the

robot and the torque is compute at each orientation using equation (5.9).

Figure 25 shows the experimental data collected to derive the rotation drag coefficient

ratio, CR. A least squares fit is used to solve for the rotational drag coefficient ratio by

minimizing the difference between the experimental angle and theoretical angle of the robot.

For our robot, the rotational drag coefficient ratio, CR =3.2×10−6 kg m s−1. The orientation

of the angle using this value is shown by the red line in Figure 25.

5.3 Conclusion

This chapter reviews the analytical solution for manipulating a magnetic particle using mag-

netic fields. Specifically, the analysis considers the magnetic field generated by a circular

current loop. The analysis is extended to consider the characterization of a magnetic ma-

nipulation system consisting of 4 stationary magnetic coils used to manipulate a magnetic
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robot floating at a fluid interface. We outline a set of experimental studies that can be

used to determine the dynamics of a magnetic robot being manipulated by a magnetic field

generated by electromagnetic coils. We define drag coefficient ratios that relate the applied

field to force and torque exerted on a robot. Procedures for using a known magnetic field

to calibrate values for the drag coefficient ratio are presented. We found that when using a

magnetometer to measure the magnetic field, locating the precise position of the sensor for

each axis within the measurement device package is challenging and can lead to measurement

error.
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Chapter 6

Control of Multiple Robots

A major challenge of manipulating multiple magnets at the microscale is addressing them

individually using global magnetic fields. In particular, it is difficult to control magnets

which are identical in all aspects.

This chapter explores the use of electromagnetic coils to control multiple magnetic robots.

We propose a force control method to manipulate multiple magnets by utilizing spatially

varying gradients of the magnetic field with stationary electromagnetic coils. We first analyze

a one-dimensional case where two electromagnetic coils are arranged linearly and permanent

magnets are restricted to move axially along the vector of magnetization. Extending this to

a planar system, we analyze a system with four electromagnetic coils arranged in a square

around the workspace controlling two permanent magnets.

The research in this chapter was originally published in [84, 86].

6.1 Control of Multiple Magnets in 1D

We analyze a one-dimensional case where electromagnetic coils are arranged linearly and

permanent magnets are restricted to move axially along the vector of magnetization. A

mathematical model and dynamical simulation using empirically derived parameters demon-

strate the ability to control the n-magnets independently using n-coils. We developed an

experimental testbed to validate the mathematical and dynamical model.
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6.1.1 Linear Configuration

We consider the one-dimensional problem where two permanent magnets are orientated to

be repelling and are free to slide linearly in one dimension. Two electromagnetic coils bound

the workspace and have their axes aligned along the same axis, Figure 26(a).

For the configuration illustrated in Figure 26(a) where the permanent magnets are re-

stricted to travelling along the axis of the coil, Equation (5.1) simplifies to the magnetic

field on-axis of one turn of wire of the electromagnetic coil,

Bloop =
µ0IR

2

2 (x2 +R2)3/2
(6.1)

where x is the distance from the center of the fixed electromagnetic coil to the center of the

free permanent magnet. To calculated the magnetic field of the entire electromagnetic coil,

this value must be multiplied by the number of turns of wire that make up the electromag-

netic coil, n. Applying Equation (5.8) and (5.11), the force exerted on each magnet, F1 and

F2, at position x1 and x2 can be written in matrix form:

F1

F2

 =

−µ1
3x1µ0R2

1n

2(x21+R2
1)

5
2
−µ1

3(x1−L)µ0R2
2n

2((x1−L)2+R2
2)

5
2
− µ0m1m2

4π(x2−x1)2

µ2
3x2µ0R2

1n

2(x22+R2
1)

5
2

µ2
3(x2−L)µ0R2

2n

2((x2−L)2+R2
2)

5
2

µ0m1m2

4π(x2−x1)2



I1

I2

1

 (6.2)

We apply this equation to the experimental implementation where the coils are the same

size, R = R1 = R2 and the permanent magnets are assumed to always be aligned along

the x-direction and with identical magnetization, ~m = mx̂, |m| = m1 = m2, µ = µ1 = µ2.

To investigate the equilibrium point, we set the sum of forces to zero such that the force

between the magnets is equal to the opposing force exerted by the electromagnetic coils,

 µ0m2

4π(x2−x1)2

− µ0m2

4π(x2−x1)2

 =

−µ
3x1µ0R2n

2(x21+R2)
5
2
−µ 3(x1−L)µ0R2n

2((x1−L)2+R2)
5
2

µ 3x2µ0R2n

2(x22+R2)
5
2

µ 3(x2−L)µ0R2n

2((x2−L)2+R2)
5
2


I1
I2

 (6.3)
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Figure 26: Linear configuration. (a) Schematic showing magnetic poles of permanent magnet and
direction of poles when current is positive in coils. (b) Blue (dark) region shows geometrically
inaccessible configurations and yellow (light) region shows experimentally feasible configurations
given the current constraints. (c) Orange (light) region shows quantitatively the possible forces that
can be exerted on magnet 1, F1, (x-axis) and 2, F2, (y-axis) for [x1, x2] = [0.1, 0.9]; purple (dark)
regions for [x1, x2] = [0.35, 0.65].
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If a solution exists for values of the currents to reach the desired positions, the solution can

be found by inverting the 2x2 matrix and pre-multiplying that to the vector on the left con-

taining the inter-magnet forces. The determinant of the 2x2 matrix shows that a solution for

the currents through the two coil exists for arbitrary values of x1 and x2 with the exception

of x1 6= x2, a configuration that is physically infeasible. While these configurations are theo-

retically reachable, in a practical application of this model, the reachable configurations are

constrained by the range of current values that can be exerted. The experimentally feasible

configurations simulated using the parameters in Table 4 are shown in Figure 26(b). The

potential function, U , is used to explore the stability of the equilibrium; it is related to the

force by, F = −dU
dx = 0. The stability is determined by computing the Hessian and solving

for the eigenvalues. The equilibrium points for the linear configuration are unstable when

the orientation of magnet 1 and 2 are the same and stable when the orientation of magnet

1 and 2 are opposite as in Figure 26(a). While theoretically the result is very similar, in

application, stable systems are more forgiving to error and feedback loops with delays. The

stable system is what we implement here.

In simulation, a system consisting of three magnets and three electromagnetic coils is

explored. The third coil is added just right of coil 2 in the 2 magnet configuration, Figure

27. The forces acting on the system for the stable configuration of magnet orientations are

given by Equation (6.4).


F1

F2

F3

 =


−µ 3x1µ0R

2n

2(x21+R2)
5
2

−µ 3(x1−L2)µ0R
2n

2((x1−L2)
2+R2)

5
2

−µ 3(x1−L3)µ0R
2n

2((x1−L3)
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5
2
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µ 3x2µ0R
2n
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I1

I2

I3

µ0m
2

4π


(6.4)

A similar analysis for the 3 coil configuration will show that a solution for currents exists to

reach arbitrary values of x1, x2 and x3 as long as the magnets are in a physically reachable

configuration and maintain the same order, x1 < x2 < x3.

The currents to reach the desired set of positions can be found by setting the resultant

forces, Fj = 0, rearranging the equation and inverting the 3-by-3 matrix. A simulation of

three magnets moving along a trajectory of 3 different distances is shown in Figure 28. The
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Figure 27: Schematic of 3 magnet simulation showing start locations in dotted lines with magnets
in goal location for simulation experiment at time 1.2 seconds. Magnets are oriented in alternating
reverse polarity so that the equilibrium positions are stable. Coils (ellipses) and magnets are ordered
from left to right, in order 1, 2, 3. X-axis shows the non-dimensionalized position, x

L2
.

equations of motion are non-dimensionalized using the variable definitions with units:

x̃i =
x̃j
R [=] dimensionless

α = L2
R [=] dimensionless

Ĩj =
µ0µIj
R2 [=]N

F̃i = Fi [=]N

In this non-dimensionalized simulation, the coils are placed at a distance 0, 1 and 1.1.

No bound is placed on the current through the coils. A quintic polynomial position function

between two points is planned for each pair of start and goal locations to guarantee smooth

acceleration. The update frequency and feedback loop is at 100Hz and a PD controller is

implemented.

Similarly, to control more magnets in this linear configuration, additional coils can be

added to the ends beyond the existing electromagnetic coils to match the number of magnets.

6.1.2 System Implementation

An experimental system is constructed to validate the ability to control the position of two

magnets with two current inputs to the electromagnetic coils. In these experiments, the

orientation of the magnets are opposing so that the equilibrium positions are stable.

The electromagnetic coils are made of 6.5m of 22 gauge, enamel coated copper wire

(EIS) wound around an acrylic spool with an inner diameter of 51mm. Up to 5A of current

flows through the coils. The current through the electromagnetic coils is controlled by a
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Ĩ1 Ĩ2 Ĩ3
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Figure 28: Simulation results from 3 magnet configuration driving magnet 1 between [0.1,0.2],
magnet 2 [0.3,0.5], magnet 3 [0.5,0.9]. Non-dimensionalized variables showing desired values (des)
in dashed black and actual values (act) in solid colored lines. (a) Position. (b) Velocity. (c)
Acceleration. (d) Non-dimensionalized current updated at 100Hz.
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micro controller board (Orion robotics) and sends pulse width modulated (PWM) signals

through the coils. Each coil has a separate channel with a continuous 5A modulated signal,

the effective current is assumed the corresponding fraction of the maximum current, I =

PWM
512 Imax. The permanent magnets are comprised of four neodymium-iron-boron (NdFeB)

ring magnets, L:1.6mm ID:1.6mm OD:3.2mm (K& J Magnetics, Inc.), attached magnetically

to increase length and total magnitude of the magnetic pole. The magnets are constrained

in a clear plastic tube, the length of the magnet stack is greater than the inner diameter

of the tube and prevents the magnet from flipping. The tube is dithered (vibrated) using

a pager motor attached to one end of the tube to avoid stiction and to ensure the magnet

can reach the stable equilibrium. A magnet of opposing polarity is placed at the ends of the

tube to prevent the magnet from reaching the end and being ejected.

To determine the reachable equilibrium values given the physical constraints of the sys-

tem, parameters for the magnitude of the magnetic pole and the magnetic dipole moment

are determined empirically. Using these derived values and the limit of the current output

to the coils, the feasible configurations of the magnets can be computed, yellow region in

Figure 26(b). The feasible forces that can be exerted are shown for different position con-

figurations in Figure 26(c). When magnets are close to the electromagnetic coils, a wider

range of forces can be exerted than when the magnets are close to each other and far from

the electromagnetic coils.

Position control is possible by implementing a feedback loop to compute the desired

force in Equation (6.2). The position of the magnets is determined using vision feedback,

a grayscale image is used to maximize frame rate. The magnets are covered in black tape

and can be found in the image using a blob detector as implemented in OpenCV libraries

[8]. A trajectory controller calculates the commanded force, F des, using PID feedback from

position and velocity with a feed forward acceleration term, ~aT .

~F des = Kp (~xT − ~x) +Kd (~vT − ~v) +Ki

∫
(~xT − ~x) dt+ ~aTM (6.5)

where subscript T signifies the desired position, x, velocity, v, and acceleration, a, from
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planned trajectory and without the subscript the actual position or velocity. Kp, Kd, Ki

indicate the proportional, derivative and integral gains respectively. M is the mass of the

magnets. This desired force is added to the inter-magnet force, left-hand side of Equation

(6.3), to calculate the desired current.

Parameters

The force contribution by the electromagnetic coil on the magnet depends on two variables,

the distance between the two as well as the current applied, Equation (6.2). This relationship

is governed by the magnetic dipole moment for the magnet, µ, a value not typically specified

for commercially available magnets. Two experiments are used to derive and verify this

value. The setup consists of an electromagnetic coil, identical to that used in the system

implementation; and a stack of four magnets attached to a 0-10 gram load cell (GSO-10,

Transducer Techniques) using a brass (non-magnetic) screw. The force exerted between

magnets with and without the screw is measured to determine that the presence of the

screw does not have a significant effect on the force between the magnets. In the first

experiment, the distance between the magnet and the electromagnetic coil is kept constant

while the current was varied, Figure 29(a). As expected, the relationship is linear. From the

slope of this plot, the magnitude of the magnetic dipole moment can be derived. To verify

this value, the distance between the coil and magnet was varied while keeping the current

constant. Figure 29(b) shows the data points collected and the model fit for two different

currents.

The magnitude of the magnetic pole, m, in Equation (5.11) governs the force exerted

between magnets. This value depends on material properties as well as geometry and is

typically not part of the specifications of commercially available magnets. To determine

the magnitude of the magnetic poles of the permanent magnet stack, m, the repulsion

force between the magnets was measured for several distances. A stack of four magnets was

attached to a stationary 0-10 gram load cell (GSO-10, Transducer Techniques). An identical

stack of magnets was attached to an acrylic movable fixture. Rails were used to ensure the

axes of the magnet stacks were aligned. Figure 29(c) shows the data points collected and
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Table 4: Parameters for experimental setup

Parameter Value Units
L Distance between coils 0.100 m
R Radius of coils 0.029 m
m Magnitude magnetic pole 0.410 A m
µ Magnitude magnetic dipole moment 5.5 A m2

M Mass of magnet 0.282 g
I Current −5 < I < 5 A
n Number of turns of coil 44

the linear least squares fit to the data using Equation (5.11). The distance between the

magnets, r, was measured as the shortest distance between the magnets as this resulted in

less error compared to defining r as the distance between magnet centers.

6.1.3 Results

To illustrate that the theoretical model matches the physical model well, an experiment was

run in open loop with the right magnet stationary and the left magnet oscillating back and

forth, the position and current profile are shown in Figure 30(a). The system has a lag in

the response; this is likely a result of the dynamics of the system. While the model does not

capture the dynamics of the system, the currents computed using the model are similar to

the values necessary to drive the magnet to the desired locations. A controller can be used

to improve the performance of the system.

Two examples of independent control with visual feedback are provided. First, a trajec-

tory where both magnets are moving out of phase with the same amplitude (Figure 30(b)).

Second, a trajectory where the right magnet is held still while the left magnet oscillates

back and forth (Figure 30(c)). A trajectory controller to calculate the desired commanded

force using PID feedback from position and velocity with a feed forward acceleration term

is used, Equation (6.11). The current is updated at 5Hz.
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Figure 29: Empirically determining magnetic parameters. (a) Relating current to force for the
magnet stack fixed at a distance of 1cm. This data is used to estimate the magnitude of the
magnetic dipole moment, µ. (b) Verifying the µ value by comparing measured force for a constant
current at varying distances to model fit using derived µ. (c) Relating distance and force between
two magnets stacks. This data is used to estimate the magnitude of the magnetic pole, m.
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Figure 30: System implementation showing position of magnets and current value over time. Current
is updated at 5Hz, position updated at 100Hz. Yellow (light) lines show position of magnet 1 and
current value of coil 1, Blue (dark) lines show position of magnet 2 and current value coil 2. (a)
Open Loop Control: right magnet held, left magnet oscillating. (b) Closed loop control: magnets
oscillating out-of-phase. (c) Closed loop control: right magnet held, left magnet oscillating.
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Figure 31: Independent control of multiple magnetic robots utilizing spatially varying gradients of
the magnetic field. The grid of arrows shows the unit force exerted on a robot at that location as
calculated using the closed-form solution for magnetic field generated by an electromagnetic coil.
The streamlines are trajectories that a magnet would follow in a viscous fluid assumption using a
Stokes model for fluid flow. Several magnets are illustrated in the workspace with their orientation
and force vector, F̂ , illustrating the different forces exerted at different locations in the workspace.

6.2 Control of Multiple Magnets in a Plane

A major challenge of manipulating multiple magnets at the microscale is addressing them

individually using global magnetic fields. In particular, it is difficult to control magnets

which are identical in all aspects. This section proposes a force control method to manip-

ulate multiple magnets by utilizing spatially varying gradients of the magnetic field with

stationary electromagnetic coils. This approach is demonstrated using simulations and ex-

periments on a macroscopic, planar system with two identical magnets controlled by four

stationary electromagnets using visual feedback control. Simulation results show that this

control strategy is also relevant for microscale systems by simulating a low Reynolds number

environment.

6.2.1 Problem Formulation

To achieve independent control, the field gradient must be non-uniform such that different

forces can be exerted within the workspace. Figure 31 shows the unit force vector field

and corresponding streamlines lines generated by two opposing coils with equal and oppo-
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site current to illustrate the direction of forces, F̂ , applied at various locations within the

workspace and the orientation of a magnet at different locations. Depending on the location

of the magnets, It is possible to move magnets away from each other or towards each other

to obtain a grasping motion on a payload.

Equations (5.8), (5.2), (5.3) and (5.10) provide a mapping from the system inputs,

currents, ~u = [I1, I2, I3, I4]
T , to the forces, ~F = [F1,x, F1,y, F2,x, F2,y]

T , at specific positions,

~x = [x1, y1, x2, y2]
T . This mapping, Φ, which is a function of the robot positions, takes the

current inputs and maps it to force exerted on the robots, Φx : U → F .

For clarity, the system of four equations can be written as:

F1,x = [m1,x,m1,y]D1,x~u

F1,y = [m1,x,m1,y]D1,y~u

F2,x = [m2,x,m2,y]D2,x~u

F2,y = [m2,x,m2,y]D2,y~u (6.6)

where ~mi = [mi,xmi,y] is the vector of the magnetic dipole for the i-th robot and Di,j is

the 2 × 4 matrix form of the gradient of the magnetic field for the i-th robot in the j-th

direction. Di,j is expressed as:

Di,x =
∂Bi

∂x

Di,y =
∂Bi

∂y
. (6.7)

The magnetic field at the position of the i-th robot is written in matrix form as a sum of

the magnetic field contribution from each of the four coils is expressed as:

Bi~u =

 B1,i,x B2,i,x B3,i,x B4,i,x

B1,i,y B2,i,y B3,i,y B4,i,y

 ~u (6.8)

where B is the current-normalized magnetic field, the first index is the coil number, the
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second is the i-th robot location and the third is the component direction.

To follow trajectories for two magnets in this planar configuration, the mapping, Φx,

is inverted to solve for currents required to exert a desired force given the robot positions,

Φ−1x : F → U . This inverse mapping cannot be derived explicitly because the force does not

linearly depend on current, given that the orientation of the magnetic dipole, ~m, is also a

function of the current. The desired force is calculated by the feedback control algorithm

and can be a function of the present and desired position, velocity and acceleration of the

magnet. The desired force implemented in the simulation and experiments are described in

the respective sections.

6.2.2 Approximate Model

To simplify the computations, a point-dipole model is used to approximate the magnetic field

generated by the electromagnetic coil, equation (5.2), (5.3). The magnetic field generated

by a coil with radius R centered at [x, y] = [0,0] mm, oriented with its axis along the y-axis,

with a current I computed by the point-dipole model is given by

Bx =
µ0IR

2

4r3

[
2− 3y2

r2

]
By =

3µ0IR
2xy

4r5
(6.9)

where r =
√
x2 + y2, the distance from the center of the coil.

Far away from the coil, R << r, the magnetic field computed by the exact solution

using elliptic integrals converges to the point-dipole model. Close to the coil, Figure 39(c,d)

compares the discrepancy in the direction and magnitude of the magnetic field near one coil

of radius 25.5mm positioned at [x, y] = [−57.5, 0] mm to mimic coil 1 in the experimental

setup. The plot region represents the 60mm square workspace centered at [0, 0] mm, which

is the center of the four coils. As expected, close to the edge of the coil, the angle and

magnitude discrepancy is the greatest, and is relatively small at the center of the workspace.
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Figure 32: (a) Image of experimental implementation. The petri dish shown has a diameter of
85mm and the magnets contained in the dish each have a diameter of 2mm. (b) Schematic of coil
placement. (c) Comparison between the angle of the magnetic field computed by elliptic integral
and point-dipole model measured in radians. (d) Comparison between normalized magnitude of
magnetic field (unit-less).
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Figure 33: Simulation results. (a) Trajectory of magnets in simulation, colored markers represent
the actual trajectory and the dotted black line represents the desired trajectory. (b) Position error
from trajectory waypoints. (See Supplementary Video.)

6.2.3 Simulation

Control of the position of 2 magnets using the four coil system is first demonstrated in

simulation. The magnetic field generated by the coils is modeled as a point-dipole using

equation (6.9). The force exerted at each magnet is computed using equation (6.6). The

parameters used for the electromagnetic coil and magnet simulate the experimental setup

and are described in Section 6.2.4.

The equations of motion consider the force exerted on each robot from the electromag-

netic coil and a drag force. Inter-magnet forces are not included because the electromagnetic

coils are unable to pull apart magnets once they have attached to each other. Therefore, the

trajectories planned ensure a distance between the magnets such that the interaction force

between magnets is small and negligible compared to the force exerted by the electromag-

netic coils. To simulate the magnets floating, the drag force is modeled as quadratic drag,

where the force is proportional to the square of the velocity of the robot,

~Fdrag = −1

2
|v|2ρCDAv̂ (6.10)
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where ρ is the density of water, CD is the drag coefficient, A is the cross-sectional area of

the object and v is the velocity of the magnet . For simplicity, the drag force is calculated

using the model for a sphere moving in a fluid. A drag coefficient of 0.47 is used and the

area is modeled as the cross-sectional area of a sphere with diameter 2mm. This is likely

an overestimate of the drag on a flat plate, because the drag on a sphere would be greater;

additionally, the plate is at an air-water interface as opposed to submerged fully in water.

Inertial forces are observed in the experiments, and therefore quadratic drag is used. When

the electromagnets switch from on to off, the magnet continues to drift for a short but

perceivable period of time. The Reynolds number in simulation is on the order of 100.

A trajectory with waypoints defined by time, desired position, velocity and acceleration

is pre-computed. A PD controller with a feed forward term is used. The controller is updated

at 100Hz and the position of the robot is propagated between updates as a result of the

current through the coils. At each controller update, a numerical solver is used to calculate

the currents required to achieve the desired force at the present position of each robot by

solving the system of four equations (6.6). MATLAB is used to simulate the system and the

numerical solver function vpasolve is used to compute solutions to the system of equations

(6.6). The differential equation solver function ode45 is used to calculate the position of the

magnet as a result of the applied force.

Figure 33 shows a simulated trajectory where one robot is held at coordinate [-20,-20]

mm and the other travels between [20, 0] to [0, 20] mm. This example trajectory is used to

illustrate our control strategy because holding one magnet still while moving another magnet

within the same workspace is challenging using stationary electromagnetic coils. Additional

simulation examples are shown in the video included in the Supplementary Materials.

A fast update rate is needed because there can be high spatial variation in the magnetic

field gradient causing changes in velocity as the magnet moves through space. Moreover, by

updating the desired position to the next waypoint when the magnet position is within a

certain bounding distance, as opposed to temporally prescribing the trajectory, can reduce

position error for more complicated trajectories or when position errors are large. This
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position based waypoint update policy is implemented in the experimental system.

6.2.4 System Design

Each electromagnet consists of a coil that has an inner diameter of 51mm and a length of

6mm. The coil carries 40 wraps of 22 gauge, insulated copper wire. The electromagnetic

coil has a resistance of 0.34Ω. The supporting structure of the equipment is made of acrylic.

The current through each electromagnetic coil is independently controlled by a micro-

controller board (RoboClaw 2x5A Motor Controller, Orion Robotics) and sends pulse width

modulated (PWM) signals through the coils. A continuous 5A supply current is indepen-

dently modulated with 10-bit resolution. The effective current through the coil is calculated

by I = PWM
512 Imax.

The robots are magnetic disks of rubber impregnated with ferrite magnetic material and

have a diameter of 2.0mm and a thickness of 0.25mm. The magnetization of the magnet

is not affected by the applied field. The robots are placed in a water-filled chamber at the

center of the four coils. The robots float on the surface of the water, restricting motion of

the robots to the plane of the surface. This surface is assumed flat at the center far from the

edge of the chamber. The air-water interface minimizes translational drag in the plane and

rotational drag about the z-axis resulting in a system that is very sensitive to small changes

in current through the coils.

One stationary camera provides visual feedback from the top. The camera, Point Grey

Flea 3 Monochrome, is fitted with a Cosmicar Television Lens 6mm resulting in a frame size

of 640 x 480 pixels with an effective pixel size of 0.207mm2. Position feedback is provided by

visual processing using OpenCV library [8]. A blob detector is used to locate the position

of the magnets and correlation of position between frames is used to differentiate the two

magnets. The system is controlled through C++ and Python using Robot Operating System

(ROS).

A trajectory controller to calculate the desired forces, ~F des, uses a PID controller with
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a feed-forward acceleration term,

~F des = Kp (~xT − ~x) +Kd (~vT − ~v) +Ki

∫
(~xT − ~x) dt+ ~aTM (6.11)

where M is mass of the robot, the subscript T indicates the desired position, x, velocity,

v, and acceleration, a, from the precomputed trajectory; without the subscript indicates

the actual position or velocity. Kp,Kd,Ki indicate the proportional, derivative and integral

gains respectively.

For straight line trajectories, a quintic polynomial position function is fit between way-

points to ensure smooth accelerations. For circular trajectories, a constant angular velocity

trajectory is used. Position feedback is processed and controller commands computed at

100Hz, while the current through the coils are updated at 10Hz.

To parameterize the system, trajectories of one robot resulting from a known current

through one coil were captured in open loop. A resultant force profile of the robot was ex-

tracted from the trajectory and an effective radius of the coil, Reff , and effective magnitude

of the magnetic dipole moment, |meff |, were computed. These values are used to compute

the magnetic field. By empirically solving for these parameters, it ensures that the model

matches the observed behavior of the system. The values used in the closed loop feedback

experiments are Reff = 75mm and |meff | = 35.8µAm2.

6.2.5 Experimental Results

Due to the sensitivity of the magnets to small changes in the magnetic field, as discussed in

Section 6.2.4, small currents can generate rotation and translation of the robot. The applied

field magnitudes are 10-400µT. This is on the order of magnitude of Earth’s magnetic field

as evident by the consistent reorientation of the magnets when no current is applied. This

causes a bias in the orientation of the magnet. Therefore, the expression for the magnetic

dipole moment, expressed previously by equation (5.10), is written as the sum of the applied
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Figure 34: Experimental result demonstrating the same velocity for two robots, colored markers
represent the actual trajectory and the dotted black lines represent the desired trajectory. (a) Tra-
jectory of magnets. (b) Time series of x-position. (c) Time series of y-position. (See Supplementary
Video.)

magnetic field by the coils, ~B, and Earth’s magnetic field, ~BEarth:

~m =
|m|

| ~B(x, y) + ~BEarth|
( ~B(x, y) + ~BEarth) (6.12)

The magnitude and direction of Earth’s magnetic field is empirically derived as ~BEarth =

-40 î µT in the fixed frame of the workspace.

Waypoints are precomputed for each trajectory, with each waypoint defining a desired

position, velocity and acceleration. The control sequence updates the desired position,

velocity and acceleration to the next waypoint once the magnets are within a threshold

radius from the desired waypoint. A threshold radius of 1.5mm is used on the magnets that

are moving along trajectories in the experimental results in Figure 34 and 35.
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Figure 35: Experimental result demonstrating varying trajectories, solid colored lines represent the
actual trajectory and the dotted black lines represent the desired trajectory. (a) Trajectory of
magnets. (b) Time series of x-position. (c) Time series of y-position. (See Supplementary Video.)
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A unique feature of this system is the ability to exert the same forces on magnets at

different locations so that magnets can move with the same velocity in addition to being

able to move along differing trajectories. Figure 34 shows a trajectory where both magnets

are moving at the same velocity in the positive x-direction. Figure 35 shows a trajectory

where one robot is held stationary as the other is moving in a counter-clockwise arc with

a radius of 15mm. Our method uses homogeneous robots that are identical in all aspects

and can accomplish independent direction control of robots without the use of a specialized

substrate.

6.2.6 Relevance to Microscale Systems

In our experimental system where the Reynolds number is on the order of 10−1, inertia

causes the magnet to drift slightly after the electromagnetic coils are turned off. This makes

the control problem challenging. As the system is scaled down to the microscale, we can

qualitatively consider the governing physics equation to begin to understand feasibility of

our proposed control strategy. Abbott et al. [2] provided a scaling analysis for pulling a

magnet, of diameter d, with gradients generated by two opposing current coils at a separation

distance, 2L. The radius of the coils are assumed to be the optimal size for maximizing the

gradient at the center between two coils, R =
√

2
3L. The magnetization of the robot and

the current through the coils enter linearly into the maximum velocity and force, so the

results are normalized to these quantities. They show that the gradient of the magnetic

field scales with coil separation as ∼ L−4, while maximum force scales as ∼ d3. Forces scale

favorably as the system reduces in size as the electromagnetic coils move closer together and

the magnetic robot reduces to microscopic size as long as scaling is comparable.

At microscale, viscous forces will dominate as inertial forces become insignificant. Drag

force on the magnet in macroscale is modeled as quadratic in velocity, whereas in viscous

flows drag force is linear in velocity. Experimentally, when a magnetic field gradient is

applied, the magnetic robot will reach terminal velocity almost instantaneously, and similarly

will come to a halt when the magnetic field gradient is removed.

To understand how the magnetic fields will scale to the microscale, we simulate a low
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Reynolds number system. The simulation is analogous to the simulation described in Section

6.2.3 with the geometry of the electromagnetic coils and magnet reduced by 2 orders of

magnitude. The drag force is computed using Stokes’ drag,

~Fdrag = −3πηd~v (6.13)

where η is the dynamic viscosity of water. This equation is used to compute the desired

force for a desired velocity. A similar prescription of desired velocities is precomputed at

waypoints for a given trajectory and an open loop controller is simulated for a system with-

out disturbances. Simulation results are shown in the video included in the Supplementary

Video. While our simulation is idealized, these results suggest that the force control al-

gorithm introduced here for multi-magnet control is relevant for microscale systems where

inertial forces are dominated by viscous forces. An experimental implementation would need

to include a closed loop feedback system to overcome disturbances unique to microscale sys-

tems.

At smaller scale a variety of interaction forces become important to consider, such as

surface interactions, electrostatic forces and van der Waals forces as the order of magnitude

of these forces are comparable to manipulation forces. In our case, where robots are being

manipulated at a fluid interface, we take advantage of the surface interaction forces to stay

confined to the fluid interface and away from solid surfaces in order to minimize electrostatic

and van der Waals forces, which are prevalent at solid interfaces. A controller capable of

handling external disturbances unique to microscale manipulation, such as those caused by

convective flows due to temperature fluctuations, is needed.

6.2.7 Discussion

The mapping from force to current is not a one-to-one mapping, and there can be many

solutions for current given a set of positions and desired forces. Different solutions will

result in the same force exerted but with the robot in varying orientations. The system

of equations (6.6) used in our implementation does not guarantee smooth orientation of
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Figure 36: Multiple solutions satisfy the same constraints on the position of robots and de-
sired forces. ~x1 = [−10, 0] ~x2 = [3, 0] ~F1,des = [−3, 0] ~F2,des = [−1, 0]. Arrows indicate unit
force vector field and lines show force streamlines. (a) ~u = [0.45,−2.93,−1.93, 2.93] A. (b)
~u = [−0.17, 0.05, 0.02,−0.05] A.

the magnets and constrains only force. Large variations in current between updates cause

high rotational velocity, drastically changing the orientation of the robot and can lead to

momentary instability, resulting in deviation from the desired trajectory. This is shown in

the y-position time series plot at time 50 seconds for the linear trajectory case, Figure 34(c),

and can also be observed in the Supplementary Video.

Figure 36 shows the normalized force vector field for two solutions to the same force and

position constraint. For this control problem, given the assumptions and approximations

used, it is important to choose the most robust solution. There are many different measures

of robustness; one method would be to consider the spatial derivative of the force around the

solution and to consider critical points in the force vector field, where the spatial derivative

of the magnetic field is zero and force on the magnet is zero [75]. In the example in Figure

36, solution (b) would be a more robust solution than (a). In solution (b) both robots

are on a stable manifold such that small perturbations in position would still exert a force

on the robot in the desired direction; whereas in solution (a), there is an unstable critical

point close to the location of the robot at [3,0] mm such that a slight error in the positive

x-direction would lead to a force being exerted in the opposite direction than desired. The

existence of many suboptimal solutions at each control update makes this a challenging

problem. The Levenberg-Marquardt algorithm as implemented in the Eigen libraries for

C++ [32] returns solutions that are dependent on the initial value provided. One method

87



of ensuring robust solutions is by initializing the Levenberg-Marquardt algorithm with a

robust solution for a similar problem. In both the example trajectories in Section 6.2.5, the

currents were precomputed at each waypoint for the desired force.

An additional source of uncertainty is the orientation of the magnet. The controller

assumes that the robot reorients instantaneously, however, there is a delay due to non-zero

rotational drag of the disk. For improved force control it would be beneficial to track the

magnet’s orientation or implement both field and gradient control [56]. Additionally, for tra-

jectory planning, geometric analysis of singularities must be considered to ensure feasibility

and also to select trajectories that are robust given the electromagnetic coil configuration

[79].

6.3 Simulations of Multi-Magnet Control

To control multiple magnets independently using a set of stationary electromagnetic coils,

large variations in the magnetic field across the workspace are created. This translates to

large field-gradients and therefore forces being exerted on the magnets. As a result of these

variations in the magnetic field, a small deviation in position and orientation of the magnetic

robot can lead to varying forces being applied ot the robot. Therefore, it is important to have

an accurate mapping between coil current input and the spatial properties of the magnetic

field generated.

In simulation, where the system is idealized and we have perfect information about the

state of the system, we can develop controllers that might be able to be used for such a

system. Moreover, we can visualize the accuracy needed in the shape of the magnetic field

to obtain the desired force outputs.

6.3.1 Simulation Design

We simulate a system that models the dynamics of the robot using the linear and rotational

drag coefficients derived empirically in Chapter 5. In our previous simulation in Section

6.2, we assumed that the magnetic robot immediately aligned to the magnetic field and

therefore the orientation of the robot was a function of the applied current, an assumption
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that is relevant at the microscale. In this simulation we relax the constraint that assumes

no torque in the system and instead allow the robot to rotate to align to the magnetic field.

As illustrated in the empirical studies in this chapter, allowing the robot to rotate more

accurately describes the observed behavior.

By treating the orientation of the magnet, ~m, as a known quantity that can be determined

by visual feedback of the system, the force exerted on each of the robots, ~F , by the applied

field is a linear function of the applied currents. (The equations are repeated here for clarity.)

F1,x = [m1,x,m1,y]D1,x~u

F1,y = [m1,x,m1,y]D1,y~u

F2,x = [m2,x,m2,y]D2,x~u

F2,y = [m2,x,m2,y]D2,y~u (6.6)

Where ~u is the 4-element column vector of the applied currents through each coil and Di,j

is the 2× 4 matrix form of the gradient of the magnetic field for the i-th robot in the j-th

direction. Di,j is a function of the position of the robots. The system of equations (6.6)

can also be expressed in a matrix form where the force can be written as a function of the

magnetic field gradient,

~F =



m1,x m1,y 0 0 0 0

0 m1,x m1,y 0 0 0

0 0 0 m2,x m2,y 0

0 0 0 0 m2,x m2,y





∂B1,x

∂x

∂B1,x

∂y

∂B1,y

∂y

∂B2,x

∂x

∂B2,x

∂y

∂B2,y

∂y


= F (~m)G (6.14)

where the function F(~m1, ~m2) packs the components of the magnetic dipole moment of each

robot into a matrix so that it can be multiplied by the vector of the field-gradient, G.
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The torque can be written in matrix form as

~τ =

−m1,y m1,x 0 0

0 0 −m2,y m2,x




B1,x

B1,y

B2,x

B2,y


= S (~m)B (6.15)

where the function S(~m1, ~m2) packs the components of the magnetic dipole moment of each

robot into a cross product matrix so that it can be multiplied by the vector of the magnetic

field, B.

The field, B, and gradient, G, are a function of both position and current. We can

separate the dependence by introducing two variables

B (~x, ~u) = B (~x) ~u

G (~x, ~u) = G (~x) ~u (6.16)

where B is the current normalized vector and G is the current normalized field gradient

vector, which is a function of the position of the two robots.

In our system, there are 6 degrees of freedom and 4 current inputs. Therefore, the system

is under actuated. In the controller we simulate, we control the force exerted at each magnet.

The system inputs are calculated using equation (6.14) and inverting the matrix F(~m)G(~x),

~u = inv (FG) ~F (6.17)

FG is a 4 × 4 matrix which is a function of the pose of the robots. The manipulation

matrix, FG, maps the current inputs to the system to the force exerted at each robot and

is analogous to the Jacobian of the system. A solution to the desired force exists as long as

FG is invertible. The determinant can be used to determine if FG is invertible.
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We simulate constant velocity trajectories defined by equally spaced waypoints. The

desired force is calculated using a proportional controller with a feed forward term,

~F des = Kp (~xT − ~x) +Kd~vT (6.18)

where the subscript T indicates the desired position, x, and velocity, v along the trajectory

and Kp and Kd are the proportional and derivative gains respectively. The actual velocity

at time T is not used in this formulation because a Stokes flow environment is assumed, in

which case inertia is negligible and the velocity varies linearly with force.

At each controller update, the pose of the magnets is used to compute the matrix FG.

The determinant is calculated to ensure that the matrix can be inverted. If the determinant

is non-zero, equation (6.17) is used to calculate the desired current to exert the desired

force. The vector of current inputs is applied to the system for a fixed time step, 1
freq , based

on the frequency update of the controller. MATLAB is used to simulate the system. The

differential equation solver function ode45 is used to calculate the pose of the magnet as a

result of the applied current and the dynamics of the system defined by equations (6.14),

(6.15).

6.3.2 Simulation Results

For a given set of trajectories, the stability of the system is a function of the initial conditions

of the system, specifically the orientation of the magnetic dipole of each robot.

Figure 37 shows a simulation of the robots moving toward each other along the edges of a

rotated V. The robots are initialized at the start of the trajectory oriented with the magnetic

dipoles aligned with Earth’s magnetic field to simulate a state of all coils off. Figure 37a

shows the desired trajectory of the 2 robots in red, with the start indicated by green circles.

The unit-vector fields show the magnetic field (blue) and the applied force assuming the

magnet aligns with the magnetic field (red). The force vector field is calculated assuming

that the magnet is oriented with the applied magnetic field. The dotted lines indicate the

manifolds of the force field, with the green line indicating a stable manifold and the purple

91



(a) (b)

0 2 4 6

−0.5

0

0.5

1

Time (s)

C
ur
re
nt

(A
) I1 I2 I3 I4

(c)

0 2 4 6

−2

0

2

4

Time (s)

P
os
it
io
n
(m

m
) x1

y1
x2
y2

(d)

0 2 4 6
0

20

40

Time (s)D
ip
ol
e
m
om

en
t
an

gl
e
(d
eg
)

θ1
θ2

(e)

Figure 37: Simulation results of 2 magnetic robots moving toward each other. (a) Trajectory of
the robots and the magnetic and force field applied at time = 0.04s, (b) Time series of the applied
current, (c) Time series of position of the robots, (d) Time series of the angle of the magnetic dipole
of the robot.
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line an unstable manifold.

The time series plots show that, with the exception of the first controller input time

interval, the position and angle of the robot is smooth. The applied currents are also step-

wise continuous, larger steps indicate the transition between waypoints. The smoothness in

the pose of the robot suggests that the robot is staying on the same side of a manifold. Far

from the manifold, the gradient of the force field is uniform. Figure 37b shows the applied

field at time 7.66 s, at the end of the trajectory, the magnets are still on the same side of

the manifold throughout the trajectory, the critical point shifts continuously to apply the

desired force.

Once the magnetic dipole aligns with the torque minimizing configuration for the desired

force, the angle of the magnetic dipole and position changes smoothly. To understand how

this occurs, we take a look at the dynamics of the robot at time 0 - 0.02 s, the first time

step for the update rate of the simulation, 50Hz, in Figure 38. Here we look into detail at

the dynamics of robot 1, which starts at coordinates [2.5, 3] mm. At time 0 s, the magnetic

dipole is aligned to Earth’s magnetic field at 0 ◦. The current that is applied initially moves

the robot in the desired direction along the red line, however as the robot rotates to align

to the applied magnetic field, the robot’s trajectory deviates from the desired trajectory. In

this case, it moves in the positive y-direction, which is opposite of the desired trajectory.

After a duration of 0.02 s, the robot has moved 22µm to coordinates [2.5009, 3.0220]mm

and is oriented at an angle of 45.3 ◦. The currents at the next controller update generates

a field that closely aligns to the angle of the robot and the robot moves toward the desired

waypoint as desired. In this example, from this time onward, the behavior of the robot and

the inputs into the system are smooth and the torque exerted on the robot is small.

By taking a closer look at the behavior of the robot at the start of the simulation, we

can gain an appreciation of how sensitive the behavior of the robot is to the orientation of

the magnetic dipole. This highlights the importance of the accuracy in the sensing of the

pose of the robot as well as the model for the magnetic fields.
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Figure 38: A closer look at the start of the simulation of 2 magnetic robots from the first controller
input (Same as in Figure 37. (a) Trajectory of robot 1 at time = 0s, (b) Time series of the x position
of robot 1, (c) Time series of the y position of robot 1, (d) Time series of angle of the robot 1.
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6.4 Conclusion

In this chapter, we provide a model for controlling magnets using the spatially varying gra-

dient of the magnetic field close to the electromagnetic coil and the superposition of the

independent fields generated by several stationary electromagnetic coils. Firstly, we demon-

strate independent control of multiple permanent magnets along the axis of electromagnetic

coils. A model for local magnetic fields, generated by superposition of the field generated

by the electromagnetic coils and neighboring permanent magnets, is used to compute re-

sultant force on each permanent magnet. This model is verified through a one-dimensional

experimental system where we demonstrate both open-loop and closed-loop visual feedback

control of the position of two magnets with two electromagnetic coils; and in simulation

the positions of three permanent magnets with three electromagnetic coils. Furthermore,

we have contributed a theoretical framework to achieve independent position control of two

identical magnets in a planar system. We analyze this method in simulation and experi-

ment in order to show that independent forces can be applied on each robot. Experimental

results demonstrate trajectory following using visual feedback. These results are relevant

for microscale systems where inertia is negligible. Furthermore, using empirically derived

parameters for the dynamics of the robot, a simulation for controlling two identical robots

where inertia is not negligible is demonstrated. Our results shows that in special cases, it

is possible to control two robots independently. We find that the behavior of the robot is

dependent on the initial orientation of the robot and that this controller minimizes torque

over time. These results highlight the need for an accurate map of the magnetic field in

order of achieve high resolution manipulation given that the controller inputs create critical

points in the force field close to the position of the robots. We may also consider strategies

for designing trajectories to minimize torque. This control scheme has potential applications

in micromanipulation for automated high-throughput biological experiments and use inside

microfluidic channels for analysis and microassembly.
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Chapter 7

Applications to Assembly

At the microscale, additive manufacturing techniques to build structures from bottom up

has numerous advantages such as using only the materials that are necessary for the struc-

ture and being able to create and reconfigure assemblies from the same simple building

blocks. When considering assembly at the microscale, one can take advantage of physical

phenomenon that dominate at these length scales.

This chapter explores a micro assembly strategy that combines passive particle assembly

in soft matter with robotics to develop new means of controlled interaction. In capillary

assembly, particles distort fluid interfaces and move in directions that minimize the surface

area. We propose a robot that serves as a programmable source of fluid curvature and allows

the collection of passive particles. We study of the interaction between the robot and the

passive particles and demonstrate automated assembly.

The research in this chapter was originally published in [83].

7.1 Introduction and Related Work

Micro assembly is the manipulation and assembly of sub-millimeter sized parts with high-

resolution capabilities. Micro assembly has applications in many fields including micro

surgery, microrobotics, biological sciences, micro manufacturing and soft matter. The abil-

ity to manipulate with microscale precision to assemble components is important in all of
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Figure 39: Magnetic robots can be used to direct assembly of passive micro structures using capillary
effects at fluid interfaces. (a) The actuated robot (the triangle) can selectively assemble passive
structures (shown as circles) to predetermined locations. (b) The curvature of the fluid interface
created by the robot and the passive particle result in an attractive force that binds the robot and
particle. (c) Top view of robots. Differently shaped robots will have different types of effect on the
surface curvature and can direct particles with specificity to assemble to corners or more randomly
around a circle.

these applications. To address these challenges in micro manipulation, a wide range of meth-

ods have been explored including probing payloads using a micro manipulator [10], using

microfluidics to manipulate cells [33] and using capillary interactions to build tissues [24].

In recent years, magnetic manipulation has attracted increasing attention because of

several key associated advantages. Magnetic manipulation allows control of the robot with

high degrees-of-freedom, without the need for line-of-sight interaction or tethers. Addition-

ally, magnetic manipulation allows selective addressability, in contrast to electric fields. This

allows the robot to function in small and difficult to reach places. Additionally, magnetic

fields are well known to be safe to biological cells and tissue, and are widely used in the

medical field [25].

A variety of different strategies for magnetic micro actuation in fluidic environments

using magnetic fields generated by electromagnetic coils have been demonstrated [2]. Image

based position control of a single magnetic particle at an water-air interface is explored in

one-dimension by Dkhil et al. [22] and in a plane by Keuning et al. [37]. In work that

combines magnetic manipulation and capillary interaction, Grosjean et al. [31] use three

soft ferromagnetic beads powered by externally applied magnetic fields to swim across a

water-air interface. The beads were collectively controlled along trajectories by oscillating

the magnetic field to break the symmetry in the system. One of the advantages of this system

is that the structure is self assembled by capillary interactions, making scaling the system to
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micro-scale applications feasible, as precise manipulation for assembly of the system is not

required. This system differs from our work in that all particles in the system are magnetic

and locomotion is based on non-reciprocal motion.

Micro manipulation and assembly of passive parts using magnetic actuation has been

demonstrated using a variety of methods. Ng et al. [49] combine a mixture of magnetic and

non-magnetic gears assembled by capillarity at a perfluorodecalin-air interface. An exter-

nal magnetic source is used to rotate the magnetic gears and torque is transferred to the

non-magnetic gears by a combination of mechanical interaction, hydrodynamic shear and

capillarity. Martel et al. [43] use a swarm of magnetotactic bacteria to manipulate micro

bricks to assemble structures. While this method may be effective, precise control of the

micro bricks is challenging. Diller et al. [78] used a magnetic microrobot to manipulate

building blocks submerged in fluid in 2D and 3D settings. In this example, heterogeneous

building blocks of rigid and soft materials were combined to create complex functional ma-

terials. However, while the structures could be reconfigured with a resolution of tens of

microns, the robot was teleoperated, and manipulation of the building blocks was challeng-

ing, as only pushing motions were possible, and no grasping or pulling of objects could be

achieved with the cube shaped microrobot.

In soft matter, assembly of colloids and other microscale objects lends fundamental

insight into collective behaviors that emerge from many-body interactions, and provides a

route to form reconfigurable materials. Magnetized ferrofluids comprising suspensions of

ferromagnetic particles have been widely studied in this context [45, 80]. There are other

means of organizing colloids that do not rely on the usual electromagnetic fields. One

important means exploits the energy stored by distortions made by particles in their soft

matter hosts. Capillary interactions are an example; particles attached to fluid interfaces

deform those interfaces. The energy stored from this deformation is the product of the

surface area of the distortion and surface tension. When surface distortions from neighboring

particles overlap, particles interact and assemble [7]. More generally, when particles distort

curved interfaces, they move along principle axes to sites of high curvature to lower the
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surface area, and hence the energy, of the interface via curvature capillary migration [13, 64,

87]. The particles themselves can be arbitrarily complex, for example, cell-laden microgel

particles trapped at liquid interfaces were assembled by Du et al.[24] into biomimetic 3D

tissues.

In this paper, we demonstrate that an untethered, independently actuated magnetic

robot can serve to control the surface deformation source at a liquid interface, Figure 39.

Passive particles located at that interface interact with the robot via curvature capillary

migration, and are attracted to its edges. Moreover, by tailoring robot geometry, preferred

sites for particle assembly are defined, e.g. at robot corners, where associated interface

curvatures are high, Figure 39c. The ability to move the robot allows specific particles to

be selectively assembled at predictable sites in a way which would not occur without the

ability to manipulate the robot. Furthermore, the bulk motion of the assembly of passive

particles can be manipulated precisely as a result of being docked to the magnetic robot.

7.2 Capillarity Background

Capillary interactions are ubiquitous among particles on fluid interfaces. Particles can dis-

tort interfaces because they are heavy [14]. Particles of negligible weight can also distort

interfaces, for example, if they have rough surfaces, patchy wetting [51] or complex shapes

[64, 66]. Any of these cause the contact line, where the interface meets the particle, to

be undulated. The undulated contact line deforms the interface around the particle. The

capillary energy for an isolated particle is given by the product γA, where γ is the interfacial

tension and A is the area associated with the particle’s distortion. When neighboring parti-

cles’ distortions overlap, the interfacial area decreases and particles approach each other to

minimize interfacial energy.

Curved interfaces offer special opportunities for directing capillary assembly. For heavy

particles, particles migrate downhill to lowest sites on the interface. For particles with

undulated contact lines, the interaction is more complex. The leading order mode of the

interface distortion made by such particles is a quadrupolar mode in polar coordinates (r, φ)
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Figure 40: Capillary driven assembly on a curved interface. (a) Side view of the curved interface
for a micropost of diameter 250µm [88]. (Reprinted with permission.) (b) Time-stamped image
(∆t=1 sec) showing trajectory of microsphere migration on a stationary curved fluid interface pinned
around a micropost. Scale bar is 100µm [64]. (Reprinted with permission.) (c) Curved interface at
the edge of the robot. Scale bar is 250µm (d) Time-stamped image (∆t=1 sec) showing trajectory
of bead assembling to a mobile magnetic robot, with position of the bead taken in the frame of the
robot. Scale bar is 250µm.
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centered on the particle, given by hqp(a2/r2) cos 2φ, where hqp is the magnitude of this mode

and a is the characteristic length of the particle. In the limit of small interface slope, the

shape of the fluid interface near the particle can be decomposed into two parts:

hhost =
r2H

2
+

∆c

4
r2 cos 2φ (7.1)

where 2H is the sum of the principal curvatures, and ∆c, the deviatoric curvature, is the

difference in principal curvatures. When a particle with an undulated contact line attaches

to this interface, the associated capillary energy, Ecurv, owing to finite ∆c is [87]:

Ecurv = E0 − γπa2(
hqp∆c

2
), (7.2)

where the first term is a constant. The associated capillary force, Fcurv, moves particles

along gradients in the deviatoric curvature is:

Fcurv = −∇Ecurv = γπa2
hqp
2
∇(∆c) (7.3)

This has been observed for various particle shapes, including cylinders, disks and spheres

[13, 64, 88]. For example, we can mold interface curvature by pinning a fluid at the edge of a

micropost, Figure 40a. Particles on this surface migrate to sites of high deviatoric curvature

owing to this curvature cue, Figure 40b. However, thus far, this has been studied only near

fixed curvature cues.

7.3 System Design

Interface deformations made by passive microparticles decay rapidly, within a few particle

radii. Deformations made by fixed curvature cues also have a limited spatial range, so they

can only assemble particles in their vicinity. Therefore, a mobile curvature cue is needed to

collect particles from desired locations. Furthermore, control over the curvature cue shape,

such as corners, can define sites of high curvature to promote assembly at well defined sites.

Moreover, a mobile curvature cue can shuttle assemblies about an interface. Here, we design
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a magnetic robot to be used as a mobile curvature cue to interact with passive microdisks

and microspheres on fluid interfaces.

7.3.1 Magnetic Robots

The magnetic manipulation system consists of four identical electromagnetic coils arranged

around the square workspace at a distance of 115mm apart along the x- and y-axis. Each coil

has an inner diameter of 51mm and a length of 6mm, with 40 turns of 22 gauge, insulated

copper wire and has a resistance of 0.34Ω. The support structure is made of acrylic.

Each electromagnetic coil is independently controlled using a microcontroller board

(RoboClaw 2x5A Motor Controller, Orion Robotics.) A pulse width modulated (PWM)

signal is used to modulate a 5A supply current with 16-bit resolution. The effective current

through each coil is calculated as Ieff = PWM
32768 Imax.

The magnetic robot is made of rubber impregnated with ferrite magnetic material. The

rubber is heated, mixed with the ferrite magnetic material and poured into a sheet mold,

which is exposed to a strong magnetic field to orient the poles of the magnetic material.

Magnetic sheet stock was purchased and cut into different shapes for specific experiments.

The disk is 2mm in diameter and 0.25mm in thickness. The right-angled triangle has sides

of length 1.5 - 2.5mm and a thickness of 0.25mm. The ratio of the size of particles to

the robots were chosen to achieve similar interactions observed in previous work with a

stationary deformation source [64]. The magnetization of the magnet is not affected by the

applied field and is assumed to be constant. The robot is placed in a chamber filled with

water (bottom) and hexadecane (top.) Pre-wetting the robot with hexadecane facilitates

trapping at the interface.

The robot and passive particles are trapped on to the water-oil interface by surface ten-

sion. Absent particles and the robot, the interface is assumed flat from the edges of the

chamber. The presence of hexadecane reduces stray convection, allowing capillary interac-

tions to dominate particle motion.

102



7.3.2 Passive Particles

The passive particles used in these experiments are glass spheres and SU-8 disks.

Spheres

The glass spheres have diameters ranging from 150-210µm (Polysciences, Inc.) Particles are

suspended in hexadecane, and gently introduced into the oil phase. The particles sediment

until they encounter the water-oil interface, where they adsorb and become trapped.

Disks

The fluorescent disks are fabricated by photolithography, Figure 41. A negative-tone epoxy

photoresist SU-8 (Microchem Corp.) is used to make microdisks. SU-8 2025 is aliquoted into

an amber-colored glass bottle and mixed thoroughly with 0.1% by weight Rhodamine B, a

red dye. This epoxy mixture is then spin-coated onto a silicon wafer with a 10 nm chromium-

coat. After soft-baking, the wafer is exposed to UV light on a tabletop mask aligner (Model

100; OAI) through a photo mask with arrays of 150µm diameter circles. The wafer is then

transferred to a hot plate for post-exposure baking, which allows the UV-exposed regions to

cross-link. Subsequently, the wafer is immersed in SU-8 developer to dissolve the unexposed

region leaving only arrays of microdisks on the wafer. The resulting microdisks are 150µm

in diameter and 30µm in height. These microstructures are then released from the wafer

by dissolving the chromium coating with Nichrome etchant, and cleaned and dried before

further use.

The disks are immersed in hexadecane, and then released into the top surface of the

chamber using a pipette. Particles sediment, and attach to the interface.

7.3.3 Feedback Control

One overhead stationary camera provides visual feedback. The camera, Point Grey Flea 3

Monochrome, is fitted with a Navitar F1.4 6mm 1/2" M30.5 08C video camera lens resulting

in a frame size of 1280 × 960 pixels with an effective pixel size of 0.207mm2. Position

feedback is provided by visual processing using the OpenCV library [8]. The image is first
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Figure 41: Disk fabrication by photolithography. (a) Sputter chromium on a clean silicon wafer.
(b) Spin-coat negative epoxy on the wafer, expose to UV light, and dissolve away the non-exposed
region. (c) Use chromium etchant to dissolve the chromium layer and clean disks with water and
isopropanol.

converted to a binary image by thresholding and a blob detector is used to locate the position

of the magnet. The system is controlled through C++ and Python using Robot Operating

System (ROS).

7.4 Experimental Results

The reader is encouraged to view a video online 1 to see the experimental results.

7.4.1 Assembly Using a Stationary Deformation Source

When the magnetic robot is placed in the oil phase, it quickly settles to the water-oil

interface, where it becomes trapped. The water-oil interface pins to the lower edge of the

magnet. Owing to its weight, the magnet pulls downward, curving the interface. The

interface profile pinned by the magnetic robot is similar to that of the interface pinned by

the micropost in previous work [13] as shown in Figures 40a and 40c. Microspheres are

then carefully introduced; those that settle near the robot sense the curvature field and

migrate towards the robot’s edge in a manner similar to the microsphere migration towards

the stationary micropost, Figure 40b. A time-stamped image in the reference frame of the

robot, ∆t=1 sec, of microsphere trajectory is shown in Figure 40d, where the microsphere

accelerates towards the magnetic robots as it migrates. Since the position of the magnetic
1https://youtu.be/5qOWN9MZKjo
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t	=	202	sec
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Magnetic	Robot

Passive	
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Figure 42: Directed capillary driven assembly using an actuated magnetic robot. Large image shows
the distribution of particles at time, t = 0 sec. Inset shows particles attached to the magnetic robot
at time, t = 202 sec. Scale bar is 2mm.

robot is not fixed on the interface, it drifted slightly during the experiment, however, the

drift is small compared to the movement of the microsphere.

7.4.2 Assembly Using a Mobile Deformation Source

Actuation allows the robot to collect particles initially sparsely dispersed on the interface,

which would not occur with a stationary surface deformation structure such as the micro-

post. For example, in Figure 42 the robot is driven back and forth along the x-axis. The

particles are initially sparsely distributed. As the magnetic robot moves, the traveling sur-

face deformation and flow associated with the robot motion cause the particles to migrate

toward the center, and eventually to assemble on the robot, as shown in the inset. In this

example, the orientation of the robot is held fixed; particles aggregate at the front and back

side of the magnet.
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Figure 43: Geometry effects on assembly dynamics. Interferogram of passive particles (a) SU-8
microdisk and (b) glass sphere on an water-air interface. The peak-to-valley values are measured
in µm. Scale bars are 100 µm. (c) Trajectory of disk assembly to the corner of the robot. (d)
Trajectory of sphere assembly to the corner of the robot. (e) Euclidean separation distance between
particle and robot docking location as a function of time to attachment for comparison between
assembly rate of the disk and sphere to corner of the robot.
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7.4.3 Geometry Effects on Assembly Dynamics

The interface shape around the robot depends on the robot weight and geometry. By tai-

loring the robot geometry, locations for preferred particle assembly can be defined. Corners

are particularly interesting in this regard, as interfaces pinned to the corner of the robot

have high curvature gradients. Such interface shapes exert high curvature capillary forces

on passive particles, and should guide them to assemble at corners on the robot, Figs. 43c

and 43d.

However, aberrations in the magnetic robot geometry like uncontrolled roughness arising

from the cutting process can cause curvature to vary rapidly. Since such interface distortions

decay with the characteristic wavelength of the roughness, these aberrations are important

only in the near field, close to the robot surface [87]. Therefore, when the particle is close

enough to the robot, the associated curvature fields can cause the passive particle to be

attached to the robot’s edge as opposed to its corner. With improved manufacturing tech-

niques, such aberrations can be avoided, and more precise docking locations can be designed.

The shape and weight of the passive particle also affect the assembly dynamics. We

experiment with two different passive particles, spheres and disks. The interferogram reveals

the interface shape around the particle on otherwise planar interfaces, shown in Figs. 43a

and 43b. Disks pin the interface on their weakly rough sides, and make distortions of only

a few microns, as is evident in the heat map. More interestingly, these distortions exhibit

a quadrupolar symmetry. In Figure 43a, starting at the east, and moving clockwise around

the particle at some constant radius, the heat map changes from green, to blue, to green,

and to blue again, indicating the interface has alternating regions of rise and fall around

the circle, i.e. a cos2φ distribution. The spheres also pin the interface. In the far field,

spheres can exhibit either a monopolar deformation, indicating that the particle weight is

significant enough to pull down on the interface, or a quadrupolar deformation, suggesting

that the particle weight is negligible [14]. Figure 43b shows that close to the sphere surface,

the shape of the interface is irregular and a monopolar deformation is observed, which has

a far longer range of interaction owing to its slow decay. Furthermore, the magnitude of
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Figure 44: Small-scale features determine docking location. (a) The assembly of passive spheres to a
triangular magnetic robot. By placing the robot at different poses relative to spheres, its attachment
position of the particle to the robot can be controlled. The sphere attaches to the edge as opposed
to the corners here because of surface roughness along the edge of the robot. Robot is teleoperated.
Time in seconds is shown in each panel. (b) Microsphere attachment on stationary microstructure
with undulated controlled roughness. Scale bar is 50µm.

the deformation is an order of magnitude larger than that of the disk, which also implies a

stronger interaction with the curvature field.

Figs. 43c and 43d shows the trajectory of the passive particle and the position of the

docking location over time as the two approach and finally assemble for a disk and sphere,

respectively. In both cases the trajectory of the particle is slightly curved, as expected. Since

the magnetic field drives the triangle robot to move on the interface, this motion also induces

flow on the interface. Even in the presence of this flow, disks and spheres quickly detect

the change in the height profile and migrate to locations of steepest curvature. Figure 43e

shows a log-log plot of the Euclidean separation distance between the passive particle and

robot docking location, at the corner of a triangle robot, as a function of time to attachment

(note that this reverses the time on the x-axis.) This plot shows that the sphere attaches to

the robot faster than the disk of a similar diameter.

Inspired by the aberrant surface roughness that caused particles to dock on edges rather

than corners, Figure 44a, we can design new docking motifs. By deliberately introducing
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wavy edges, we can excite near field deformations that attract particles to preferred sites

along the sides of the microstructure. Figure 44b shows how such undulations on a fixed

curvature cue can create specified docking locations for particles.

7.5 Autonomous Assembly

Autonomous micromanipulation poses numerous challenges. Microscale interactions such as

hydrodynamic forces, electrostatic forces and van der Waals forces are challenging to model.

Moreover, tracking the robot and the object being manipulated can be challenging at these

small length scales because imagery is often in low resolution, small particles can be difficult

to differentiate and using tags to identify objects is not yet practical.

To create a system that is able to use capillary interactions for autonomous microassem-

bly, we will need high-resolution manufacturing capabilities to create local regions of high

curvature gradient that result in specified docking locations for passive particles. This sec-

tions discusses modifications to the system described above and presents experimental re-

sults demonstrating that predictable and repeatable autonomous assembly can be achieved

by combining the design of preferential particle docking locations to the geometry of the

robot with closed loop feedback for position control of the robot. Through an understand-

ing of capillary interactions, we design geometric structures on the robot to create regions

of high interface curvature to assemble passive microspheres with high specificity.

7.5.1 System Design Modifications for Autonomous Assembly

Robots

A material that can be machined with high-precision and with a high magnetic remanence

is desired. This ensures first, that regions of high curvature gradient can be created and that

there are minimal surface roughness affects that may cause more preferred docking locations

for the passive particle as seen in the experiments in section 7.4. Secondly, a high magnetic

remanence results in higher sensitivity of the robot motion to changes in magnetic field and

allow the robot to be maneuvered throughout the workspace with higher resolution.

To that end, the robots in the following experiments are 500µm thick Samarium Cobalt

109



Water

Oil

(a) (b)

Robot
Water

Oil

!

(c) (d)

Figure 45: Autonomous robot for directed assembly (a) The magnetic robot (the triangle), magne-
tized along the plane, can be autonomously controlled to selectively assemble passive micro spheres.
(b) Side view of the interface curvature caused by the robot and the sphere, (c) Side view of the
curved fluid interface for a SmCo robot. The red lines indicate the angle of the interface at the
edge of the robot with the horizontal, (d) Time-stamped image (∆t = 0.5 sec) of 3 different initial
positions and trajectories of microsphere assembly to the robot.
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(SmCo) magnets. A laser is used to cut the SmCo to the desired geometry (IPG Microsys-

tems IX-200-F). This fabrication method minimizes surface roughness. By minimizing sur-

face roughness, attachment to a desired location can be highly specified because a single

high curvature gradient dominates in the global as well as local region of the robot. Robots

in the shape of triangles with edge lengths between 1-2mm are used. Each corner creates a

high curvature gradient which creates a desired docking location for passive microspheres.

Figure 45b shows the goniometer image of the side view of the robot. The interface around

the robot is downward sloping at approx. 10 ◦.

The direction of the magnetic dipole of the sheet of SmCo is into the plane. To ensure

predictable dynamics of the robot, it is desirable to change the magnetic dipole of the SmCo

to be along the plane of robot at the oil-water interface. To do this, the magnets are heated

above the Curie temperature of SmCo, 800 ◦F to demagnetize the robots. The demagne-

tization of the robot can be verified using the magnetic manipulation system because the

robot will not respond to applied magnetic fields. The robot is remagnetized in the desired

orientation by bringing it close to a strong permanent magnet, Neodymium cylindrical mag-

net, Grade N42, Dia.: 15mm L: 50mm (D8Y0, K & J Magnetics, Inc. ), and aligning the

magnetic field lines to the desired magnetic dipole moment of the robot. The successful

re-magnetization of the robot can also be verified using the magnetic manipulation system.

While it is likely that there is some amount of remanent magnetization after heating the

robot past the Curie temperature, for the purposes of these experiments, this method of re-

magnetization is sufficient to create a magnetic robot with predictable dynamics as a result

of an applied magnetic field.

The use of a rotationally asymmetric magnet allows the orientation of the robot to be

tracked. This is important for control because the applied force and torque on the robot is a

function of the magnetic dipole moment vector. For the isosceles triangle robots, a custom

computer vision algorithm using the OpenCV libraries is designed to extract the orientation

of the robot from the camera. As before, the image is first blurred using a Gaussian blur, a

blob detector is used to determine the location of the robot. The blobs are filtered by size.
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The contour of each blob is fit to a polygon using the Ramer-Douglas-Peucker algorithm (as

implemented in the OpenCV libraries) [23, 59]. Then blobs that fit polygons with 3 edges

are filtered out. This typically ensures that only one blob remains, which is the robot. If

not, the candidate blobs are filtered based on proximity to the robot’s last known location.

Once the blob of the robot is known, the corners of the blob from the polygon fit are used

to determine the corners corresponding to the longest edge. The orientation of the robot is

determined relative to he longest edge. This algorithm runs at 20Hz, and has the potential

to be optimized to run faster such as by narrowing the search space for blobs based on prior

knowledge of where the robot was in the last frame and the maximum speed that the robot

can travel.

Controller

A DAQ (Measurement Instrument, USB-3103) is used to control the current via a custom

power electronics circuit. Each coil has a DC current supply and can carry up to ±1A.

The current is updated at 10Hz. We use a PI controller to move the robot to the desired

position, which is defined manually. The current input, ~u, is calculated by

~u = ~e(t)kp +

∫ t

0
~e(t)ki (7.4)

where ~e(t), is the position error between the goal and actual location at time t, ~xgoal(t) −

~xactual(t), kp and ki are the proportional and integral gain respectively. This equation

returns two values for current inputs, while there are four electromagnetic coils. Depending

on the sign of the input, different coils are activated such that only two coils are energized

at each time, one along the x-axis and another along the y-axis. The coil corresponding to

the direction in which the robot is moving is used, e.g. if the coil is moving in the positive

x, the coil located in the positive x direction of the center of the workspace is used. To

minimize the torque on the magnet, the direction of the magnetic field applied by each pair

of magnetic coils along the axes is the same such that the magnet is always pointed within

a 90 ◦ envelope.
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Figure 46: Assembly dynamics of microsphere assembly to triangular robot. Time series (a) robot
moving toward 2 microspheres that assemble to the middle and top corner, (b) robot maneuvering
around workspace while avoiding assembly to 2 microspheres.

Once the magnet reaches the desired position, all coils are turned off, allowing Earth’s

magnetic field to orient the magnet. Given the uniformity of Earth’s magnetic field across

the workspace, this method stably orientates the magnet to align with the Earth’s magnetic

field.

7.5.2 Results

Actuation of the robot enables the topology of the fluid interface to be dynamic, allowing

microspheres to be assembled to the robot selectively. The geometry of the robot dictates

the shape and axis of high interface curvature, which will create sites of preferred assembly

for the microsphere. We demonstrate this by using a robot with 3 corners. The corners

create regions of high interface curvature, when the interface distortion of the robot and

of the microsphere overlap, the distance between the two will decrease to minimize the

total capillary energy of that interaction. Capillary energy is minimized locally, thus the

initial position of the microsphere relative to the robot will determine the assembly site of

the microsphere to the robot, Figure 45d. Supplementary videos show examples of semi-
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autonomous control of the robot to enable selective assembly of microspheres to specific

sites on the robot by maneuvering to positions would present the desired site closest to the

target microsphere.

Capillary force is a function of the relative distance between the robot and the micro-

sphere. By maneuvering the robot to pass microspheres at the close proximity, assembly

can be accomplished, Figure 46a. Assembly can be avoided by maintaining a larger distance

from microspheres as well as a high velocity when moving past microspheres, Figure 46b.

The parameters for assembly depend on the geometry of the robot and passive particles.

Different shapes will result in different assembly dynamics. These interactions are difficult

to derive empirically because of the high-resolution imaging necessary to determine details

of the interface geometry. Instead, these interactions can be characterized empirically as

demonstrated here.

7.6 Design Guidelines and Limitations

In order to explore the design of a magnetically actuated microrobotic system for specific

applications, we can begin by considering the capabilities and limitations of the system.

Here, we specifically quantify the capabilities of the 4-coil system that was introduced in

Section 6.2.4 and also used in the assembly experiments in this chapter. Table 5 lists some

of the key parameters and properties of this magnetic manipulation system.

With an estimate of the forces that can be exerted by our magnetic manipulation sys-

tem, we can begin to consider applications that may or may not be feasible using such a

system. We already demonstrated that the robots exert enough force to manipulate pas-

sive microscale particles on fluid interfaces. Some examples of tasks in minimally invasive

medicine that may be appropriate for microrobots are discussed by Nelson et al. [47]. As

an example, it may not be feasible to extract a cell sample from a tissue during minimally

invasive surgery using a pulling force, as the force required for this task exceeds the force

that can currently be exerted by magnetic robots at this scale. Given that large torques

can be applied, perhaps a torquing motion to activate a tool would be more effective for
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Table 5: Magnitude of key parameters for multi-magnet manipulation setup

Earth’s magnetic field O 10e-6 T
Applied magnetic field O 10e-6 T
Magnetization of the robot O 1e-4 Am2

Robot velocity O 1e-1 mm s−1

Magnetic torque O 1e-8 Nm
Damping torque O 1e-8 Nm
Magnetic force O 1e-9 N
Friction force O 1e-9 N
Robot weight O 1 g

removing a cell sample from tissue. On the other hand, tasks that require small forces and

torques align well with the capabilities of the magnetic microrobot; for example, it may be

feasible to perform rheological measurements for fluids by being able to track the rotation

of a magnetic robot on top of a fluid.

Certainly, design modifications can be made to enhance specific capabilities. For a

different design, a separate analysis would be necessary.

Spatial scales

An additional consideration is the ability to image the robot and the environment. In our

systems, we have used cameras to track the pose of the robot using computer vision. This

requires a clear and stationary fluid, ample lighting and line of sight between the camera

and the robot. Additionally, this puts limitations on the visible workspace where the robot

can be fully tracked.

Time scales

When designing a microrobotic system, depending on the application, different time scales

will become important. In assembly, we can compare the timescale between capillary in-

teraction of the particles and moving the robot. As shown in experiments earlier in this

chapter, particles that create a smaller surface deformation and therefore have smaller cap-

illary energy will typically assemble more slowly than particles that create larger surface

deformation. For spheres of different sizes, larger spheres will assemble more quickly than
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smaller spheres. This is an important consideration, especially as the system is scaled down.

When interfacing magnetic microrobots with biological organisms, we need to consider

the time scales that biology operates compared to the time scales for manipulation. For

example, in Chapter 3 where biological organisms are used as sensors manipulated by mag-

netic microrobotics, there is a large discrepancy between the time it takes to manipulate

the biological payload, which is on the order of seconds; compared to the time for gene

expression, which is on the order of hours. There are other biological reactions that have

shorter response times, such as protein-protein interactions, which occur instantaneously.

7.7 Conclusion

In this chapter, we developed a system which uses magnetic robots as the interface curvature

source to guide the assembly of passive unactuated particles at liquid interfaces. We explored

the assembly of SU-8 disks and glass spheres on the water-oil interface to study the effect of

geometry on directed assembly. In the case of passive assembly, spheres and disks migrate

to the high curvature sites at the edge of the circular magnetic robots. In active assembly,

by controlling the motion of the robot, particles assemble to preferred locations around

the robot based on the velocity of the robot and the orientation of the robot relative to

the particle. Moreover, geometric cues can also direct particles to assemble to corners and

rough sites. By strategically designing the geometry of the robot, preferred docking sites

for passive particles can be created. We demonstrate semi-autonomous microassembl, we

manually identify the initial position of the microsphere and command the required position

of the robot to obtain the desired assembly, the robot is controlled autonomously using

closed-loop visual feedback to the planned goal position to achieve predictable assembly of

the microsphere to the robot. This system enables spatial and temporal control of surface

curvature and suggests new opportunities to create complex and reconfigurable assemblies.

As an extension to the application of micro magnetic robots, we explore design considerations

and limitations of our system and create guidelines which are important to consider when

determining feasible applications for micro magnetic robots.
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Chapter 8

Conclusion

8.1 Contributions

Unique challenges arise when building microscale robots, macroscale robots cannot simply

be miniaturized. This dissertation makes several contributions towards creating swarms

of microrobots that can be controlled with high-precision and sense the environment. We

investigate methods to integrate biological organisms with synthetic components to create

hybrid organic-inorganic microbiorobots.

We begin by exploring the use of biological organisms, specifically bacteria, for sensing

and actuation. Chapter 3 presents the use of synthetically engineered biological cells for

sensing onboard microrobots to create a system capable of detecting a change in the local

environment, storing and reporting the information. We demonstrated the integration of

microrobotic actuation techniques with engineered cells to create mobile biosensors. For

this proof-of-concept prototype, we used cells that were programmed to respond to and

report on exposure to UV light. This is the first time low power toggle cells have been

attached as biosensors on to robots, a significant achievement that promises a pathway for

transitioning research in synthetic biology to robotics. These results have implications for

incorporating other synthetically engineered cells that can serve as chemical sensors, data-

loggers, or quorum sensors onboard microbiorobotic systems. This work paves the path for

using synthetic biology as a technique to integrate new capabilities into microrobots, and
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provides an alternative path to microfabricating organic signal processors, power sources,

and memory units.

In Chapter 4, we use bacteria attached to microstructures to create un-tethered mi-

crobiorobots with onboard power. We present two models, first, a top-down stochastic

kinematic model, which informs the second, a bottom-up chemotactic model. We demon-

strate that the top-down stochastic kinematic model is able to capture the biased clockwise

rotation of microbiorobots propelled by flagellated bacteria which are adhered to the sur-

face of the robot. The model is validated by three different experiments to determine the

force exerted at different locations on the microbiorobot. The force contribution by free-

swimming bacteria in solution colliding with the sides of the microbiorobot is investigated by

observing the dynamics of micro structures powered by the active suspension compared to

microbiorobots powered by bacteria attached to the micro structure. Our bottom-up model

of bacteria propelled microstructures is able to capture the stochasticity of cell behavior.

This chapter makes contributions towards steering bacteria propelled microbiorobots using

external stimuli, such as using patterned light to control the dynamics of microbiorobots

[34, 72].

Magnetic fields are used to deterministically actuate magnetic microrobots. Chapter 5

explores the characterization of our magnetic manipulation system to create a model that

would enable the implementation of novel control schemes for both single and multi-robot

control. Chapter 6 explores the control of multiple magnetic robots which are affected by

the same global field. We provide a model for controlling magnets using the spatially vary-

ing gradient of the magnetic field close to the electromagnetic coil and the superposition

of the independent fields generated by several stationary electromagnetic coils. A model,

simulation and experiments are shown for a one-dimensional systems as well as a planar sys-

tem. Our force-based control algorithm allows un-coupled independent control of multiple

magnetic robots. Chapter 7 presents a system which uses magnetic robots as the inter-

face curvature source to control the assembly of passive unactuated micro particles at fluid

interfaces. We explore the effect of geometry of both the robot and the passive building
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blocks on the assembly dynamics and the ability to design assembly configurations through

these geometries. With an understanding of the assembly dynamics, we demonstrate that

autonomous microassembly is possible, which has applications in microassembly of complex

structures. While having implications in the field of microrobotics, this work also has im-

plications in the field of soft matter, where being able to repeatedly probe a system in a

controlled manner is powerful.

8.2 Future Work

8.2.1 Organic and Inorganic Microrobots

Biology will continue to play a crucial role as robots scale down, both as components on

microrobots and also microrobots will be an indispensable tool in the biological sciences.

Continued developments in synthetic biology will enable biosensors that are integrated into

cells that are capable of sensing a wide array of stimuli such as toxins, metals, salinity, pH,

temperature and light. These responses can be integrated into a more complex biomolec-

ular network that will filter and amplify the inputs to allow it to be processed for logical

operations. With specialized microbiorobots, a swarm of heterogeneous microbiorobots can

create a communication network to sense and modify an environment in a coordinated fash-

ion. The behavior at the microscale can also be linked to larger scale robots to create a

two-way micro-to-macro world interface where signals at the microscale can be interpreted

and communicated to the macroscale and commands can be broadcast from the macroscale

to the microrobots.

In the biological sciences, microrobots can be used to synthesize desired behaviors in

populations of bacterial and mammalian cells by delivering chemicals or expediting and

controlling the transport of cells that secrete chemicals. With advancements in automation

of micro machines, microrobots will also play a role advancing and standardizing synthetic

biology.
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8.2.2 Magnetic Robots for Probing Scientific Phenomenon

The magnetic microrobot manipulation system used to demonstrate capillary driven assem-

bly can be extended by engineering functionalities into the passive building blocks. For

example, chemical sensors can be incorporated into the robot to enable them to sense and

report on their surroundings. Furthermore, the robot can also be imbued with hierarchical

structures and additional functions.

As we improve the manufacturing processes for the magnetic robot and develop model-

based nonlinear control algorithms derived from our understanding of the interfacial me-

chanics and curvature affects, we will develop the ability to predict the trajectories of the

particles in response to the robot deformation field. This will enable us to plan trajectories

through a crowded interface while avoiding unwanted interactions en route to a selected par-

ticle to collect it or to interrogate it. A controller that does not require a prior i knowledge

of the system parameters would enable the same controller to be used for different shaped

robots.

This work could also feed back into the field of soft matter and materials science. With

spatial and temporal control of a fluid interface curvature source, the assemblies can be

reconfigured by locally changing the stresses of the material. In essence, the device acts as

the master, while the passive particles follow its direction. Designing the master is the key

towards hierarchical assembly on interfaces.

Future work will involve implementing automation to enable the assembly of complex

predefined structures and also consider capabilities that would allow assembled structures

to be released from the magnet. Furthermore, the size of the robot can be scaled down to

more precisely interact with smaller passive particles.

8.2.3 Multi-Robot Control

The control scheme introduced for multi-magnetic robot control has applications in microma-

nipulation for automated high-throughput biological experiments and use inside microfluidic

channels for analysis and microassembly. Validating the algorithm on the microscale would
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enable applications in micromanipulation and extensions to micromanpulation. Further-

more, it would be possible to incorporate more electromagnetic coils to extend control to

more degrees-of-freedom. Additionally, more robust controllers can be developed to take

into account critical points that arise based on the current input configuration to improve

accuracy of trajectory following as well as introduce a new strategy for controlling swarms

of magnetic robots.

8.3 Concluding Remarks

This dissertation presents several strategies to address challenges which arise when creating

microscale robots. We consider each challenge individually to present a collection of modular

methods that can be combined to create microrobots with a suite of capabilities. Each

method is validated with a model as well as experimental demonstration of the potential of

that technology. Depending on the specifications of the microscale system that is desired,

different strategies will be more useful. It is worth noting that combining this methods

is non-trivial. Future work in microrobotics will be a cross-disciplinary endeavor. It will

combine these strategies into a single system while continuing to make these individual

strategies more robust, reliable and accurate. In synthetic biology, engineered cells with

an array of sensing capability with more robust signals that have high signal-to-noise ratio

are needed. In interface science, a highly detailed model of the interactions at the interface

would enable creation of complex structures through automated directed assembly. We hope

that the work in this dissertation will help create swarms of microrobots with an ensemble

of manipulation and sensing capabilities working together to be able to sense and modify

the environment.
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