22,525 research outputs found

    European Multidisciplinary and Water-Column Observatory - European Research Infrastructure Consortium (EMSO ERIC): Challenges and opportunities for Strategic European Marine Sciences

    Get PDF
    EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) is a large-scale European Research Infrastructure I. It is a distributed infrastructure of strategically placed, deep-sea seafloor and water column observatory nodes with the essential scientific objective of real-time, long-term observation of environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere. The geographic locations of the EMSO observatory nodes represent key sites in European waters, from the Arctic, through the Atlantic and Mediterranean, to the Black Sea (Figure 1), as defined through previous studies performed in FP6 and FP7 EC projects such as ESONET-CA, ESONET-NoE, EMSO-PP (Person et al., 2015).Peer ReviewedPostprint (published version

    The Hierarchic treatment of marine ecological information from spatial networks of benthic platforms

    Get PDF
    Measuring biodiversity simultaneously in different locations, at different temporal scales, and over wide spatial scales is of strategic importance for the improvement of our understanding of the functioning of marine ecosystems and for the conservation of their biodiversity. Monitoring networks of cabled observatories, along with other docked autonomous systems (e.g., Remotely Operated Vehicles [ROVs], Autonomous Underwater Vehicles [AUVs], and crawlers), are being conceived and established at a spatial scale capable of tracking energy fluxes across benthic and pelagic compartments, as well as across geographic ecotones. At the same time, optoacoustic imaging is sustaining an unprecedented expansion in marine ecological monitoring, enabling the acquisition of new biological and environmental data at an appropriate spatiotemporal scale. At this stage, one of the main problems for an effective application of these technologies is the processing, storage, and treatment of the acquired complex ecological information. Here, we provide a conceptual overview on the technological developments in the multiparametric generation, storage, and automated hierarchic treatment of biological and environmental information required to capture the spatiotemporal complexity of a marine ecosystem. In doing so, we present a pipeline of ecological data acquisition and processing in different steps and prone to automation. We also give an example of population biomass, community richness and biodiversity data computation (as indicators for ecosystem functionality) with an Internet Operated Vehicle (a mobile crawler). Finally, we discuss the software requirements for that automated data processing at the level of cyber-infrastructures with sensor calibration and control, data banking, and ingestion into large data portals.Peer ReviewedPostprint (published version

    Advancing Climate Change Research and Hydrocarbon Leak Detection : by Combining Dissolved Carbon Dioxide and Methane Measurements with ADCP Data

    Get PDF
    With the emergence of largescale, comprehensive environmental monitoring projects, there is an increased need to combine state-of-the art technologies to address complicated problems such as ocean acidifi cation and hydrocarbon leak detection

    European Multidisciplinary and Water-Column Observatory - European Research Infrastructure Consortium (EMSO ERIC): challenges and opportunities for strategic European marine sciences

    Get PDF
    EMSO (European Multidisciplinary Seafloor and water-column Observatory, www.emso-eu.org) is a large‐scale European Research Infrastructure I. It is a distributed infrastructure of strategically placed, deep‐sea seafloor and water column observatory nodes with the essential scientific objective of real‐time, longterm observation of environmental processes related to the interaction between the geosphere, biosphere, and hydrosphere. The geographic locations of the EMSO observatory nodes represent key sites in European waters, from the Arctic, through the Atlantic and Mediterranean, to the Black Sea (Figure 1), as defined through previous studies performed in FP6 and FP7 EC projects such as ESONET‐CA, ESONET‐NoE, EMSO-PP (Person et al., 2015)Peer Reviewe
    • 

    corecore