3,064 research outputs found

    Sufficient stability bounds for slowly varying direct-form recursive linear filters and their applications in adaptive IIR filters

    Get PDF
    Journal ArticleAbstract-This correspondence derives a sufficient time-varying bound on the maximum variation of the coefficients of an exponentially stable time-varying direct-form homogeneous linear recursive filter. The stability bound is less conservative than all previously derived bounds for time-varying IIR systems. The bound is then applied to control the step size of output-error adaptive IIR filters to achieve bounded-input bounded-output (BIBO) stability of the adaptive filter. Experimental results that demonstrate the good stability characteristics of the resulting algorithms are included. This correspondence also contains comparisons with other competing output-error adaptive IIR filters. The results indicate that the stabilized method possesses better convergence behavior than other competing techniques

    Motion from "X" by Compensating "Y"

    Get PDF
    This paper analyzes the geometry of the visual motion estimation problem in relation to transformations of the input (images) that stabilize particular output functions such as the motion of a point, a line and a plane in the image. By casting the problem within the popular "epipolar geometry", we provide a common framework for including constraints such as point, line of plane fixation by just considering "slices" of the parameter manifold. The models we provide can be used for estimating motion from a batch using the preferred optimization techniques, or for defining dynamic filters that estimate motion from a causal sequence. We discuss methods for performing the necessary compensation by either controlling the support of the camera or by pre-processing the images. The compensation algorithms may be used also for recursively fitting a plane in 3-D both from point-features or directly from brightness. Conversely, they may be used for estimating motion relative to the plane independent of its parameters

    Design of multidimensional digital filters by spectral transformations

    Get PDF
    Imperial Users onl

    Reducing “Structure from Motion”: a general framework for dynamic vision. 1. Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of apparently unrelated models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The “natural” dynamic model, derived from the rigidity constraint and the projection model, is first reduced by explicitly decoupling structure (depth) from motion. Then, implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for models seen so far in the literature, but we can also derive novel ones

    Spin-polarized Quantum Transport in Mesoscopic Conductors: Computational Concepts and Physical Phenomena

    Get PDF
    Mesoscopic conductors are electronic systems of sizes in between nano- and micrometers, and often of reduced dimensionality. In the phase-coherent regime at low temperatures, the conductance of these devices is governed by quantum interference effects, such as the Aharonov-Bohm effect and conductance fluctuations as prominent examples. While first measurements of quantum charge transport date back to the 1980s, spin phenomena in mesoscopic transport have moved only recently into the focus of attention, as one branch of the field of spintronics. The interplay between quantum coherence with confinement-, disorder- or interaction-effects gives rise to a variety of unexpected spin phenomena in mesoscopic conductors and allows moreover to control and engineer the spin of the charge carriers: spin interference is often the basis for spin-valves, -filters, -switches or -pumps. Their underlying mechanisms may gain relevance on the way to possible future semiconductor-based spin devices. A quantitative theoretical understanding of spin-dependent mesoscopic transport calls for developing efficient and flexible numerical algorithms, including matrix-reordering techniques within Green function approaches, which we will explain, review and employ.Comment: To appear in the Encyclopedia of Complexity and System Scienc

    Integration of a failure monitoring within a hybrid dynamic simulation environment

    Get PDF
    The complexity and the size of the industrial chemical processes induce the monitoring of a growing number of process variables. Their knowledge is generally based on the measurements of system variables and on the physico-chemical models of the process. Nevertheless this information is imprecise because of process and measurement noise. So the research ways aim at developing new and more powerful techniques for the detection of process fault. In this work, we present a method for the fault detection based on the comparison between the real system and the reference model evolution generated by the extended Kalman filter. The reference model is simulated by the dynamic hybrid simulator, PrODHyS. It is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of industrial systems. The use of this method is illustrated through a didactic example relating to the field of Chemical Process System Engineering

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones
    • …
    corecore