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Glossary

Aharonov Bohm effect

The magnetic flux enclosed in between propagating quantum mechanical waves shifts their relative phases as a result
of the underlying electromagnetic vector potential. This gives rise to distinct oscillations in the magnetoconductance
of a ring conductor.

Landauer-Büttiker formalism

For phase-coherent quantum transport, the Landauer-Büttiker formalism relates the conductance of a device to the
transmission probability of charge carriers.

Rashba- and Dresselhaus spin-orbit coupling

Coupling of the spin degree of freedom to the orbital motion of charge carriers due to structural or bulk inversion
asymmetry in semiconductors.

Ratchets

Devices that convert unbiased fluctuations or perturbations into directed motion.

Spintronics

Extension of charge-based electronics in metals or semiconductors by utilizing the spin degree of freedom of the
charge carriers.
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FIG. 1: Aharonov-Bohm physics with spin: Two-dimensional Aharonov-Bohm ring of mean radius r0 used for numerical
calculations of the conductance presented in Fig. 2. An additional perpendicular magnetic field B generates a flux φ = πr2

0B.
The grey zone corresponds to the region subject to a finite Rashba coupling switched adiabatically on and off in the leads (from
Ref. [4]).

I. DEFINITION OF THE SUBJECT AND ITS IMPORTANCE

Mesoscopic conductors are electronic systems of sizes in between nano- and micrometers, and often of reduced
dimensionality. In the phase-coherent regime at low temperatures, the conductance of these devices is governed by
quantum interference effects, such as the Aharonov-Bohm effect and conductance fluctuations as prominent exam-
ples. While first measurements of quantum charge transport date back to the 1980s, spin phenomena in mesoscopic
transport have moved only recently into the focus of attention, as one branch of the field of spintronics. The interplay
between quantum coherence with confinement-, disorder- or interaction-effects gives rise to a variety of unexpected
spin phenomena in mesoscopic conductors and allows moreover to control and engineer the spin of the charge carriers:
spin interference is often the basis for spin-valves, -filters, -switches or -pumps. Their underlying mechanisms may
gain relevance on the way to possible future semiconductor-based spin devices.

A quantitative theoretical understanding of spin-dependent mesoscopic transport calls for developing efficient and
flexible numerical algorithms, including matrix-reordering techniques within Green function approaches, which we
will explain, review and employ.

II. INTRODUCTION

Charge and spin transport through phase-coherent conductors of mesoscopic scales carry imprints of wave interfer-
ence as predominant and characteristic features: in the simplest case of a point contact, the conductance increases
stepwise with Fermi energy, reflecting the discrete number of quantized open transverse channels contributing to
transport; for more complex mesoscopic systems, such as ballistic quantum dots or diffusive conductors, the conduc-
tance typically wildly fluctuates, upon varying the Fermi energy or other parameters, around its classical mean value.
Among the different effects on charge transport, the Aharonov-Bohm (AB) effect represents possibly the most genuine
interference phenomenon at the heart of mesoscopic physics: The magnetoconductance of a ring conductor coupled
to two leads exhibits distinct sinusoidal oscillations when monitored as a function of a perpendicular magnetic field
threading the ring, with a period given by the magnetic flux quantum. As the AB signal stems from interfering waves
travelling through the two different arms of the ring, it requires phase coherent wave functions extending over the ring
typically on micron scales [1]. Hence the AB effect is frequently being used as a tool to investigate phase coherence
and dephasing mechanisms of the orbital part of the wave functions, while the spin degree of freedom was usually
neglected.

With rising interest in spin-dependent transport, the interplay of the electron spin and charge degree of freedom
has been exploited in a variety of spin interference devices, to be discussed below. Different types of couplings to the
electron spin have been considered for spin engineering in non-magnetic conductors. On the one hand this is possible
through the Zeeman coupling to an externally applied magnetic field. Non-uniform B-fields with spatially varying
direction are being employed to achieve a tailored spin dynamics, including the possibility for guided spin evolution or
triggering spin flips. On the other hand, intrinsic spin-orbit (SO) interaction proves to be relevant in spin-dependent
transport. It exists in systems with bulk inversion asymmetry and/or structure inversion asymmetry, e.g. due to the
vertical confinement in semiconductor heterostructures (Rashba SO coupling [2, 3]).

Among the mesoscopic spin interference systems considered in the literature, ring geometries have again played
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FIG. 2: Mesoscopic Aharonov-Bohm spin interference: The conductance of spin-up polarized carriers entering a single-channel
two-dimensional Aharonov-Bohm ring (see Fig. 1) is shown as a function of flux φ = πr2

0B (in units of the flux quantum
φ0 = hc/e) through the ring in the presence of Rashba spin-orbit coupling. For panel (a) and (b) the scaled spin-orbit coupling
strength takes the values 0.2 and 1.0, expressed as the product ωRT0/2π of the precession frequency ωR of the spin around
the effective spin-orbit magnetic field and the time T0 for travelling of the electrons around the ring. The overall conductance
(solid line) is split into its components G↑↑ (dashed line) and G↓↑ (dotted line). Note in panel (b) the continuous change of the
spin polarization, related to G↑↑

− G↓↑, with φ and the spin switching at φ = φ0/2 (adapted from Ref. [4]).

an important role, opening up the field of spin-based AB physics (See Refs. [5, 6] for recent accounts including
overviews over the literature). This includes topics such as Berry phase-signatures in transport, both theoretically
[7, 8, 9, 10, 11, 12, 13] and experimentally [14, 15, 16, 17], spin-related conductance modulation [4, 18, 19], persistent
currents [7, 20], spin Hall effect [21], spin filters [22, 23] and detectors [24], and spin switching mechanisms [5, 11].

To illustrate how the spin polarization can be tuned by exploiting (orbital and spin) interference in such an AB
setup, we consider as an introductory example spin switching in a two-dimensional (2D) ballistic phase-coherent ring
symmetrically coupled to two single-channel leads (Fig. 1, Ref. [4]). We assume Rashba SO coupling which is relevant
in conductors laterally defined on GaAs- or InAs-based two-dimensional electron gases (2DEGs). Rashba SO coupling
will be defined and discussed in Sec. V. It can be viewed as the coupling of the spin to a fictitious in-plane magnetic
field directed perpendicular to the electron momentum. Hence in a ring it points mainly in radial direction. The
strength of the SO field can be tuned by an external gate voltage [25] allowing to control experimentally the spin
evolution.

We assume spin-polarized spin-up electrons entering the ring from the right (see Fig. 1). Fig. 2 displays numerically
computed (see Sec. III) conductance traces as a function of the external magnetic flux φ for weak and moderate
Rashba strengths. The overall conductance is presented as a solid line, and its spin-resolved components, G↑↑ and
G↓↑, corresponding to outgoing spin-up and -down channels, are shown as dashed and dotted lines, respectively. In
the weak SO coupling limit, Fig. 2(a), the overall conductance (solid line) shows the usual AB oscillations of period φ0

and is dominated by G↑↑ (dashed line). As expected for weak spin-coupling, the spin polarization is almost conserved
during transport. Interesting features appear for the case of moderate SO coupling depicted in panel (b). There,
both components, G↑↑ (dashed line) and G↓↑ (dotted line), contribute similarly to the overall conductance (solid line).
However, the spin polarization of the transmitted electrons varies as a function of the magnetic flux φ: G↓↑ = 0 at
φ = 0, while G↑↑ = 0 at φ = φ0/2. Hence, for zero flux all transmitted carriers conserve their original (incoming)
spin-orientation, while for φ = φ0/2 the transmitted particles reverse their spin polarization. In other words: by
tuning the magnetic flux from 0 to φ0/2 we can reverse the spin-polarization of transmitted particles in a controlled
way. Hence the AB ring with SO coupling acts as a tunable spin-switch. This switching can be traced back to
constructive or destructive AB interference [5].
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Switching a given spin polarization requires the generation of spin-polarized particles in non-magnetic mesoscopic
conductors in the first place. Since spin injection from ferromagnets into a semiconductor remains problematic [26],
alternative proposals have been made to achieve spin-polarized currents or spin accumulation without magnets, which
we will briefly review in Sec. V. Among those are the spin Hall effect [27] and, in the context of coherent mesoscopic
transport, concepts for Zeeman- and SO-mediated adiabatic spin pumping and spin ratchets.

For a recent account on spin phenomena in systems of reduced dimensions see [28]; for a review on the related field
of magnetization dynamics and pumping in layered magnetic heterostructures see[29].

A complete and quantitative understanding of spin phenomena in the mesoscopic realm requires computational
approaches to quantum transport which also serve as reference calculations for analytical predictions usually based
on model assumptions. However, also numerical approaches cannot cope with the full many-body transport problem
without relying on approximations. Here we focus on mesoscopic conductors, i.e. systems with a considerable number
of electrons, with strong coupling to external leads. Then, a mean-field treatment is usually justified which allows
one to reduce the Hamiltonian to a single-particle problem with an effective confinement potential resulting from a
combination of external and mean-field potentials.

We further consider coherent transport close to equilibrium at relatively low bias, excluding inelastic effects, such
that the Landauer approach to transport is justified. However, even in this case brute-force computational approaches
quickly reach their limits: Conductors at mesoscopic scales are typically characterized by extensions which are (at
least in one direction) much larger than the Fermi wavelength of the charge carriers, the shortest quantum scale
involved. This implies rapidly oscillating, complex and often irregular spinor wave functions extending throughout
the systems which require for the quantum mechanical numerical solution either huge sets of basis functions or,
in tight-binding approaches, the use of rather fine, preferentially adapted grids. The strength of the wide-spread
tight-binding approaches for transport discussed and reviewed here lies in their flexibility and general applicability.
Moreover, tight-binding transport codes can be combined with density-functional (DFT) calculations for structure and
electronic properties of the nano-conductors by using the parameters computed within DFT as input. This approach
is frequently applied to transport in nano- or molecular electronics.

The paper is organized as follows: In the methodological Sec. III we will first briefly summarize and provide the
key relations for spin quantum transport within the Landauer framework. In Sec. IV we focus on and explain in some
detail advanced computational concepts, making use of graph-theory, to implement powerful and flexible algorithms
for tight-binding transport codes. The numerical strength of the codes is demonstrated for ring-type geometries
showing that by efficient tight-binding implementation one can gain orders of magnitude in performance. In Secs. V
and VI we employ these numerical schemes to address two important aspects of spin-dependent transport, namely
spin filtering and generating pure spin currents. To this end we focus on laterally-confined 2D ballistic nanostructures
with Rashba SO interaction. We conclude with an outline of future research directions in mesoscopic spin transport
which we consider important.

III. NUMERICAL QUANTUM TRANSPORT

A. Landauer-Büttiker transport theory

If the dimensions of a device get smaller than the phase coherence length lφ of charge carriers, classical transport
theories are not valid any more. Instead, carrier dynamics is now governed by quantum mechanics and the wave-like
nature of particles becomes important. In general, the conductance/resistance of such a device does not follow Ohm’s
law.

Consider a two-point measurement setup as shown in Fig. 3: A scattering region is connected to large (phase-
breaking) reservoirs by leads. The leads are assumed to be perfect and infinitely long to define asymptotic eigenstates
φn,σ(y)e±ikx at energy E, where n is the quantum number of transverse confinement — also called the channel number
— and σ is the spin index. The total scattering eigenstate ψn,σ originating from channel n with spin σ in the left
lead is, within the lead region, given by

ψn,σ(x) =

{

φn,σ(y)eikx +
∑

m rm,σ′;n,σ φm,σ′ (y)e−ikx for x in left lead
∑

m tm,σ′;n,σ φm,σ′(y)eikx for x in right lead
, (1)

and obeys the stationary Schrödinger equation Hψn,σ = Eψn,σ. The conductance G in linear response can then be
calculated within the Landauer-Büttiker formalism [30, 31, 32] (for tutorials see [1, 33]):

G =
e2

h

∑

n,m

∑

σ,σ′

Tm,σ′;n,σ =
e2

h
TC , (2)
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FIG. 3: Schematic view of a two-point measurement setup.

where Tm,σ′;n,σ = |tm,σ′;n,σ|2 is given by the squared transmission amplitudes of the scattering states ψn,σ. The

fraction e2

h is called the conductance quantum. The scattering matrix Sm,σ′;n,σ is a useful definition that combines
reflection and transmission amplitudes for both leads into a single matrix. In this notation the index n, σ then also
contains information about the respective lead.

The problem of calculating the conductance G is thus reduced to calculating the scattering eigenstates ψn,σ.
Alternatively, the scattering amplitudes rm,σ′;n,σ and tm,σ′;n,σ can also be derived from the retarded Greens function
GR(x,x′) of the system. The retarded Greens function for a given energy E obeys the equation

(E −H + iη) GR(x,x′) = δ(x − x′) , (3)

where H is the Hamiltonian of the system and η an infinitesimally small number. Formally this equation can be
solved as

GR = (E −H + iη)−1 . (4)

The transmission and reflection amplitudes are then given by the Fisher-Lee relation [34]:

tm,σ′;n,σ = −ih̄√vmvn

∫

CR

dy

∫

CL

dy′φm,σ′(y)GR(x,x′)φn,σ(y′) , (5)

rm,σ′;n,σ = δmnδσ′σ − ih̄
√
vmvn

∫

CL

dy

∫

CL

dy′φm,σ′(y)GR(x,x′)φn,σ(y′) , (6)

where vn denotes the velocity of channel n and the integration runs over the cross-section CL (CR) of the left (right)
lead. Equations (5) and (6) are valid only for leads without magnetic fields and no spin-orbit interaction. Baranger
and Stone [35] have extended the formalism to also account for arbitrary magnetic fields in the leads, and their
description can also be applied to finite spin-orbit interaction.

B. Tight-binding representation of the Hamiltonian

Except for very simple geometries, the scattering problem cannot be solved analytically. Therefore, the use of
computers for a numerical solution of the scattering problem is very often the method of choice. However, the related
stationary Schrödinger equation Hψ = Eψ is a differential equation with continuous degrees of freedom that are
difficult to treat on a computer. In general, a numerical solution is thus only attempted within a discrete basis set
which converts the differential equation into a matrix equation.
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FIG. 4: Discretizing a continuous region on a square grid.

The method of finite differences is a very simple and yet powerful way to introduce such a discrete basis set and
has been applied to the Schrödinger equation already as early as 1934 [36, 37] (for an introduction see [1, 33]). Here
we illustrate, as an example, the application of the method for a simple one-dimensional effective mass Hamiltonian
including a potential

H = − h̄2

2m

d2

dx2
+ V (x) . (7)

In the method of finite differences, space is approximated by a grid of discrete lattice points spaced equidistantly
with lattice constant a. For the 2D case, usually a square grid is used as depicted in Fig. 4. Using the Taylor expansion
of the wave function ψ we can write

ψ(x+ a) = ψ(x) + ψ′(x)a +
1

2
ψ′′(x)a2 +

1

6
ψ(3)(x)a3 +

1

24
ψ(4)(x)a4 + . . . , (8)

ψ(x− a) = ψ(x) − ψ′(x)a +
1

2
ψ′′(x)a2 − 1

6
ψ(3)(x)a3 +

1

24
ψ(4)(x)a4 + . . . . (9)

Adding Eqs. (8) and (9), we arrive at an expression for the second derivative of the wave function in terms of values
of the wave function on the grid,

d2

dx2
ψ(x) =

1

a2
(ψ(x + a) + ψ(x− a) − 2ψ(x)) + O(a2) , (10)

valid up to second order in the lattice spacing a. The differential equation

− h̄2

2m

d2

dx2
ψ(x) + V (x)ψ(x) = Eψ(x) (11)

is thus replaced by a set of difference equations

− h̄2

2ma2
(ψ(xi+1) + ψ(xi−1) − 2ψ(xi)) + V (x)ψ(xi) = Eψ(xi) , (12)

where xi±1 = xi ± a, yielding the tight-binding representation of the Hamiltonian:

H =
∑

xi

− h̄2

2ma2
(|xi〉 〈xi+1| + h.c.) +

(

2
h̄2

2ma2
+ V (xi)

)

|xi〉 〈xi| . (13)

Here, |xi〉 denotes a state localized at grid point xi.
In principle, the quality of the finite differences approximation can be improved up to a desired precision by reducing

the lattice spacing a. However, since this leads to a larger problem size, the minimum lattice spacing achievable is
set by the available computing time and memory. Thus, one must keep an eye on the validity of the finite differences
approximation. In Fig. 5 we show the energy spectrum E(k) for the continuous one-dimensional Schrödinger equation
and the tight-binding (finite differences) approximation. The tight-binding approximation only holds for ka≪ 1 and

E ≪ h̄2

2ma2 , and it does not make sense to consider the whole energy spectrum given by the tight-binding band width.
The method of finite differences presented here can straight-forwardly be applied to more complex Hamiltonians,
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FIG. 5: Energy spectrum E(k) for the continuous Schrödinger equation (red dashed line) and the tight-binding approximation
(black solid line)

including for example spin-orbit interactions [4], and will be later used to calculate transport phenomena including
spin in sections V and VI.

A tight-binding representation of the Hamiltonian can also be obtained by applying the finite element method [38].
Furthermore tight-binding Hamiltonians are also used in treatments beyond the effective mass approximation, such
as from atomic orbitals in empirical tight-binding models [39, 40, 41], or from orbitals of the Kohn-Sham equations
within DFT [42, 43, 44].

C. Numerical algorithms

Within the tight-binding approximation the HamiltonianH can be represented by a matrix, even though this matrix
is still infinite as the leads are infinitely long. However, the infinite matrix problem can be reduced to a finite problem
by partitioning the system into three isolated parts: left lead, scattering region, and right lead. The Hamiltonian
then reads

H =





HL VLS 0
VSL HS VSR

0 VRS HR



 , (14)

where HL(R) is the (infinite) Hamiltonian of the left (right) lead, HS is the Hamiltonian of the scattering region and
of finite size. Since the leads are always chosen such that asymptotic eigenstates can be defined, the Hamiltonian
of the isolated leads must contain some periodicity that facilitates calculating their Greens functions gR

L,R. This can

be done analytically for simple systems [1, 33], for more complex situations the Greens function can be calculated
numerically either by iteration [45, 46] or semianalytical formulas [40, 44, 47]. Introducing the retarded self-energy
ΣR =

∑

i=L,R VSi g
R
i ViS, [1, 33] the Greens function GS of the scattering region is given by

GR
S =

(

E −H − ΣR
)−1

, (15)

reminiscent of Eq. (4) but with an effective Hamiltonian H + ΣR.
The original infinite-dimensional problem has thus been reduced to a finite size matrix problem that can, in principle,

be solved straight-forwardly on a computer. However, for any but rather small problems, the computational task of
the direct inversion in Eq. (15) is prohibitive. Therefore, many algorithms make use of the sparsity of the Hamiltonian
matrix in tight-binding representation — in particular they employ the property that this matrix can be written in
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FIG. 6: Block-tridiagonal matrix form arising in the method of finite differences. Grid points with the same x-coordinate are
placed into the same block.

block-tridiagonal form

H =



















































. . .
HL VL

V †
L HL H01

. . .
H10 H11 H12 0

H21 H22 H23
. . .

H32
. . .

. . .
. . . HN−1N

0 HNN−1 HNN HNN+1

. . . HN+1N HR VR

V †
R HR

. . .



















































. (16)

Here the index L (R) denotes the blocks in the left (right) lead, 1 . . .N the blocks within the scattering region, and 0,
(N + 1) the first block in the left (right) lead. Such a form arises naturally in the method of finite differences, when
grid points are grouped into vertical slices according to their x-coordinates, as shown in Fig. 6, but also applies to
any other sparse tight-binding Hamiltonians.

The block-tridiagonal form of the Hamiltonian is the foundation of several quantum transport algorithms, together
with the fact that, according to Eqs. (5) and (6), only the blocks GR

N+10 and GR
00 of the Greens function GR are

needed for the calculation of transmission and reflection probabilities. The transfer matrix approach applies naturally
to block-tridiagonal Hamiltonians, but becomes unstable for larger systems. However, a stabilized version has been
developed by Usuki et al. [48, 49]. In the decimation technique [50, 51], the Hamiltonian of the scattering region is
replaced by an effective Hamiltonian between the two leads by eliminating internal degrees of freedom. The contact
block reduction method [52] calculates the full Greens function of the system using a limited set of eigenstates. The
recursive Greens function (RGF) technique [53, 54, 55] uses Dyson’s equation to build up the system’s Greens function
block by block. It has also been adapted to Hall geometries with four terminals [56] and to calculate non-equilibrium
densities [57, 58]. Furthermore, the RGF algorithm has been formulated to be suitable for parallel computing [59],
and the modular recursive Greens function (MRGF) method is an extension to take advantage of special geometries,
such as circles or rectangles [60, 61].

Here we give a simple form of the RGF algorithm as described in [33, 55]. The RGF method makes use of Dyson’s
equation

G = G0 +G0V G (17)

to add successively blocks to the system, as depicted in Fig. 7. Let GR,(i) denote the Greens function for the system
containing all blocks ≥ i. Then, at energy E, the Greens function GR,(i) is related to GR,(i+1) by

G
R,(i)
i i =

(

E −Hi i −Hi i+1 G
R,(i+1)
i+1 i+1 Hi+1 i

)−1

and (18)
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FIG. 7: Schematic view of the recursive Greens function algorithm: the system is built up adding block by block.

G
R,(i)
N+1 i = G

R,(i+1)
N+1 i+1 Hi+1 i G

R,(i)
i i . (19)

Starting from G
R,(N+1)
N+1 N+1 = gR

R, the surface Greens function of the right lead, N slices are added recursively, until

GR,(1) has been calculated. The blocks of the Greens function of the full system necessary for transport are then
given by

GR
00 =

(

(

gR
L

)−1 − H01 G
R,(1)
11 H10

)−1

and (20)

GR
N+1 0 = G

R,(1)
N+11 H10 G

R
00 , (21)

where gR
L is the surface Greens function of the left lead.

Each step of the algorithm performs inversions and matrix multiplications with matrices of size Mi. Since the
computational complexity of matrix inversion and multiplications scales as M3

i , the complexity of the RGF algorithm

is ∝ ∑N+1
i=0 M3

i . Thus, it scales linearly with the “length” N, and cubically with the “width” Mi of the system.
While for certain geometries the RGF algorithm cannot compete with more specialized algorithms such as MRGF,

it is very versatile and easily adapted to many situations, and is thus our method of choice. In the next section we
will discuss matrix reordering techniques that improve the runtime of the RGF algorithm considerably and allow the
treatment of arbitrary systems.

IV. MATRIX REORDERING STRATEGIES FOR QUANTUM TRANSPORT

A. Graph-theoretical approaches to matrix reordering

As shown in the previous section, the structure of a Hamiltonian matrix H does influence the runtime of the
RGF algorithm. Thus, the runtime of the algorithm can potentially be improved by reordering the matrix with a
permutation P ,

H ′ = P H P−1 . (22)

At first glance, such an effort may seem pointless: For example, the block-tridiagonal structure naturally associated
with a finite difference grid (as discussed in section III) leads to a sparse matrix with a small bandwidth, as shown in
Fig. 8. However, as we show below, the choice of a suitable permutation P can still lead to a significant speed-up of
the RGF algorithm.

For this we define a weight w(H) associated with a given matrix H as

w(H) =

N+1
∑

i=0

M3
i where Mi is the size of block Hii . (23)

Optimizing the matrix for the RGF algorithm is then equivalent to minimizing the weight w(H). Since
∑N+1

i=0 Mi =
Ngrid, where Ngrid is the total number of grid points, w(H) is minimal, if all Mi are equal, and Mi = Ngrid/(N + 2).
Therefore, a matrix tends to have small weight, if the number N of blocks is large, and all blocks are equally sized.
The reordering problem of the matrix H is thus summarized as follows:

Matrix reordering problem: Find a reordered matrix H ′ such, that
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FIG. 8: Example of a sparsity structure of a matrix associated with a finite difference grid. Black dots mark non-zero entries.
The picture of the finite difference grid can also be interpreted as a graphical representation of a graph.

1. H ′
00 and H ′

N+1N+1 are blocks given by the left and right leads (as required by the RGF algorithm),

2. H ′ is block-tridiagonal (H ′
ij 6= 0, iff j = i+ 1, i, i− 1),

3. the number N of blocks is as large as possible, and all blocks are equally sized.

These requirements define the optimization problem of reordering the matrix H . Usually, in such optimization
problems finding the best solution deterministically is prohibitively expensive, and one has to resort to heuristic
strategies.

In order to do that, we reformulate our matrix problem using concepts from graph theory. A graph G is a pair
G = (V,E), where V is a set of vertices i, and E a set of pairs of vertices (i, j) ∈ V × V . Such a pair is called an
edge. A graph is called undirected, if for every edge (i, j) ∈ E also (j, i) ∈ E. Two vertices i and j are called adjacent,
if (i, j) ∈ E. A graph can be visualized by drawing dots for each vertex i and lines connecting these dots for every
edge (i, j). It should be noted, that all the pictures of finite difference grids shown so far can directly be interpreted
as graphs . There is a natural one-to-one correspondence between graphs and the structure of sparse matrices. For
a given n × n matrix H , we define a graph G = (V,E) with V = {1, . . . , n} and (i, j) ∈ E iff Hij 6= 0. Thus, the
symmetric zero–nonzero structure of Hermitian matrices, as considered in quantum transport, leads to associated
undirected graphs. An example of such a correspondence between a graph and a matrix has already been shown
in Fig. 8. With respect to matrices, graphs are also very convenient for storing and handling sparse matrix data
structures on a computer.

In terms of graph theory, matrix reordering corresponds to renumbering the vertices of a graph. Since we are only
interested in reordering the matrix in terms of matrix blocks (the order within a block should not matter too much),
we define a partitioning of G as a set {Vi} of disjoint subsets Vi ⊂ V such that

⋃

i Vi = V and Vi ∩ Vj = ∅ for
i 6= j. Using these concepts, we can now reformulate the original matrix reordering problem into a graph partitioning
problem:

Graph partitioning problem: Find a partitioning {V0, . . . , VN+1} of G such that:

1. V0 and VN+1 contain the vertices belonging to left and right leads,

2. there are edges between Vi and Vj iff j = i+ 1, i, i− 1 (block-tridiagonality),

3. the number of sets Vi is as large as possible and all sets Vi have the same cardinality. Such a partitioning with
all Vi equally sized is called balanced.

A partitioning that meets requirement 2 is called a level set with levels Vi and appears commonly as an intermediate
step in algorithms for bandwidth reduction of a matrix [62, 63, 64, 65]. These algorithms seek to find a level set of
minimal width, i. e. maxi=0...N+1 |Vi| as small as possible which is equivalent to requirement 3. The major difference
between our graph partitioning problem and the bandwidth reduction algorithms is requirement 1: In our case the
start and end blocks are given by the geometry of the system, whereas in the bandwidth reduction methods these can
be chosen freely. The implications of this difference will be discussed below.

The bandwidth reduction algorithms start with the observation that a breadth first search (BFS) starting from
any vertex in the graph creates a level set: In our situation, the BFS starts from level V0 of the left lead. Then,
successively for i = 0, 1, 2, . . . , all vertices adjacent to Vi that have not been assigned to a level yet are placed in
Vi+1. This construction ensures that each level Vi only has edges connecting to vertices in Vi+1,i,i−1 and thus ensures
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block-tridiagonality. The search stops, once a vertex adjacent to the right lead is encountered, and all unassigned
vertices are placed into the last level VN . The number of BFS steps determines therefore the maximum number N of
blocks and is related to the minimum distance between left and right lead in the graph. However, this construction of
the level set also suffers from a serious problem: Depending on the distance between the leads, the last level VN can
potentially contain a large number of vertices leading to a very unbalanced partitioning. In the bandwidth reduction
methods, the first and the last vertex are chosen to have (to a good approximation) maximum distance, and thus this
problem does not occur there. Hence, conventional bandwidth reduction algorithms can only be applied to quantum
transport problems, if the leads are — in terms of the underlying graph — furthest apart.

In this study, we will consider two reordering algorithms: First, the Gibbs-Poole-Stockmeyer (GPS) algorithm [65],
a widely used bandwidth reduction algorithm. The GPS algorithm combines the level sets originating from a BFS
from both left and right lead to give an optimized level set. Due to the limitations discussed above, it can only be used
efficiently for systems with leads far apart. To overcome this difficulty partly, we also propose a second algorithm,
later referred to as BFS partitioning: The system is bisected recursively by means of a simultaneous BFS from left
and right leads. In a bisection process, vertices that are closer (as given by the number of BFS steps) to the left
(right) lead are placed into the left (right) level. The resulting two levels are then further bisected recursively until
the final level set has been constructed. This algorithm tries to avoid an unbalanced partitioning, as every step tries
to create a balanced bisection. We have found this global approach — as opposed to the local approach in the BFS
— to yield balanced partitionings for systems where there are only few local minima in the weight w(H). For general
systems, a more sophisticated method should be used [66].

Obviously, reordering the matrix will only improve the runtime of the RGF algorithm, if the overhead of the
reordering process is small compared to the actual transport calculation. Because of this reason, applying general
optimization algorithms to the matrix reordering problem is not an option. Instead, heuristics designed for graph
problems give much better performance. The GPS algorithm scales linearly with the number of edges |E|, and since
in a tight-binding representation |E| ∝ Ngrid, its algorithmic complexity is O(Ngrid), whereas the BFS partitioning
algorithm scales as O(Ngrid logNgrid). In any case, the scaling is much more favorable than that of the RGF algorithm,

∝ ∑N+1
i=0 M3

i , so that for systems of typical size the overhead of the reordering process becomes negligible, as we will
demonstrate in the next section.

B. Example: ring geometry

In order to demonstrate the performance of the algorithms discussed above, we consider their application to a
ring geometry in finite difference approximation. The performance of the RGF algorithm after matrix reordering is
compared with the performance using the ordering that arises naturally in finite difference grids as shown in Fig. 6
(in the remainder referred to as natural partitioning).

In Fig. 9(a)–(d) we show four different approaches for calculations in a ring geometry. A ring can be treated as
a circular cavity (see Fig. 9(a)), with a large potential on the lattice points inside the inner ring diameter. This
approach is easier to implement than a real ring but less efficient, as a large additional number of lattice points
enters the calculation. However, this approach has been used frequently in the past, and therefore we also consider
its performance. Transport calculations in a real ring require somewhat more bookkeeping because of the non-
trivial geometry, but can be easily done describing the grid as a graph. For the circular cavity, we only consider
natural partitioning, as shown in Fig. 9(a), for the ring we consider natural partitioning (Fig. 9(b)), GPS partitioning
(Fig. 9(c)) and BFS partitioning (Fig. 9(d)).

The partitionings in Fig. 9(c) and (d) are dramatically different from the natural partitioning. The levels align
mainly in vertical or diagonal directions as these are the preferred directions in the square lattice. The number of
levels is increased with respect to the natural partitioning, as the distance between both leads is much larger than
the number of vertical slices, leading to a larger number of blocks in the block-tridiagonal matrix, as can be seen
from Fig. 9(e). Both GPS and BFS partitioning lead to a drastically reduced block size with respect to the natural
partitioning and the result is rather balanced. Though the actual partitionings in Fig. 9(c) and (d) look quite different,
with respect to minimizing the weight w(H) they are equally good. The BFS partitioner conforms to the geometric
structure, as it puts vertices in levels according to their distance from the leads. Except for a small number of blocks
in the beginning and the end of the block-tridiagonal matrix (see Fig. 9(e)), the GPS partitioner leads to an equally
balanced structure, although the partitioning looks quite different. The GPS partitioner works well in this case, as
the leads are almost at maximum distance in this ring structure.

We now apply the recursive Greens function algorithm from Sec. III to the different partitionings. In Fig. 10(a)
we show the runtime of the algorithm as a function of the number of lattice points in the leads, which is also the
number of lattice points across the arms of the ring. Note that in all cases the runtime includes both the time spent
in calculating the matrix reordering and the time spent in the actual transport calculation.
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FIG. 9: Partitioning of the different systems considered in the performance study. (a) Circular cavity in natural partitioning,
where the ring structure is enforced by a potential term in the middle of the cavity, (b) ring in natural partitioning, (c) ring
in GPS partitioning and (d) ring in BFS partitioning. In (a)-(d), vertices belonging to the same level in the partitioning are
marked with the same color, different levels are marked in alternating colors. Note that, in order to reveal the partitioning
structure more clearly, the grids shown here are much smaller than in a typical calculation. (e) Size Mi of the blocks Hii in
the block-tridiagonal matrix for a ring with 20 lattice points in the leads for natural, GPS and BFS partitioning (the circular
cavity is not shown here).

The runtime scales similarly in all cases, as this is the scaling of the RGF algorithm. Nevertheless, the runtimes of
the different approaches can differ by a factor that is significant. As expected, the circular cavity is slowest, due to the
extra number of lattice points. GPS and BFS partitionings lead to a rather similar performance that is significantly

better than the ring in natural partitioning. It outperforms the circular cavity even by a factor of up to 100. In
the remainder, we examine the performances of the ring for different partitionings in more detail and leave out the
circular cavity. In Fig. 10(b) we show the relative performance gain of GPS and BFS partitionings over the natural
partitioning. Except for the smallest of systems that are too small to be useful in practice, the performance of GPS
and BFS partitionings is better than the natural partitionings. Even for moderately sized systems the performance
gain through the matrix reordering is approximately 3, with the BFS partitioner being slightly better than the GPS
partitioner. In Fig. 10(b) we also show estimates of the performance gain calculated from the weights w(H) of the
different partitionings. These estimates predict a performance gain of approximately 4. For small system sizes, we
see deviations from these estimates because of the overhead of the partitioning process, for larger system sizes we
almost reach the estimated value. On modern computer architectures, runtime does not only depend on the number
of arithmetic operations [67], and thus we do not achieve the full theoretical potential of the reordering, yet still
significant improvements. In Fig. 10(c) we show the fraction of time spent in calculating the matrix reordering with
respect to the total computation time, and as expected the overhead becomes negligible already for moderately sized
systems. It should be noted that in actual calculations the partitioning is commonly only done once, and transport
calculations can be done repeatedly with the same partitioning: Usually one is interested in transport properties
depending on some parameters, and these generally do not change the structure of the Hamiltonian matrix but only
the values of the respective entries. In this case, the partitioning overhead becomes even more irrelevant.

It should be emphasized, that for all the situations, the same transport code was used. In addition to the significant
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FIG. 10: Performance of the partitionings (for rings, Fig. 9): (a) runtime of the different systems as a function of the number
of lattice points in the leads, i.e. as a function of system size. The calculations were performed on a Core2Duo T5500 processor
and 1GB of memory, and the runtime includes both partitioning overhead and transport calculation. (b) Performance gain
of GPS and BFS partitionings with respect to natural partitioning and (c) overhead of the matrix reordering as a function of
system size.

speedup through the graph techniques considered here, the abstraction of the system through graph structures allows
for very generic transport codes. This is an additional strength of this approach, as the well-established RGF algorithm
is thus readily applied to arbitrary systems that would require special treatment otherwise, such as a scattering region
with perpendicular leads, as depicted in Fig. 11.

Of course, for any system, an algorithm designed for that special system will probably outperform generic ap-
proaches. However, the combination of matrix reordering and RGF algorithm can be applied to arbitrary systems
and is thus probably the most versatile transport approach. In addition, all the algorithms relying on the block-
tridiagonal structure of the Hamiltonian mentioned in Sec. III can benefit from these matrix reordering strategies.

Modern transport calculations tend to be more and more complex and time-consuming. For example, an electronic
calculation including the electron spin typically takes 23 = 8 times longer than a calculation on spin-less electrons.
Furthermore, calculations including disorder involve averages over many disorder configurations. Any increase in
computation speed is therefore beneficial, and the added versatility through matrix reordering methods makes these
techniques even more useful.

V. SPIN FILTERING IN NANOSTRUCTURES

In the introductory example in Sec. II it was shown how to realize systems that work as spin switches making
use of the interference of wavefunctions propagating clockwise and counterclockwise in Aharonov-Bohm rings with
SO-interaction. However, several other device proposals have been put forward making use of different concepts in
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FIG. 11: BFS partitioning of a ring with perpendicular leads. Note that in this case the two leads are closer together and thus
the number of blocks is reduced. Therefore the block sizes tend to be larger than in the previous examples.

order to achieve spin filtering in mesoscopic systems.
A very prominent category is transverse focusing of ballistic electrons/holes in two dimensional electron/hole gases

(2DEGs/2DHGs) [68]. In materials that exhibit SO interaction the cyclotron radius of ballistic electrons/holes due
to a magnetic field perpendicular to the 2DEG/2DHG depends on the spin state of the charge carriers. Therefore,
it is possible to filter out either spin-up or spin-down electrons by an appropriate arrangement of quantum point
contacts and a proper choice of the perpendicular magnetic field. Apart from several theoretical treatments of this
topic [69, 70, 71], spin filtering by transverse focusing has already been experimentally verified in a GaAs-based
2DHG. [72] In related experiments, spin-polarized currents in 2DEGs/2DHGs were detected by a setup consisting of
point contacts and making use of transverse focusing of the charge carriers [73]. With such a detector it was possible to
confirm the presence of spin-polarized currents emitted from mesoscopic quantum dots utilizing quantum interference
at high in-plane magnetic fields [74] and from quantum point contacts, which were either made spin sensitive with
high in-plane magnetic fields [73] or showed a pronounced ”0.7-anomaly” [75].

A further appealing approach to filter spins are three terminal structures, that act as mesoscopic Stern-Gerlach type
spin filters [76]. In these devices one of the leads injects spin-unpolarized current and, after passing a region where
the spin-degeneracy is lifted, oppositely-polarized output currents exit through the other two leads. This separation
of up and down spins can be accomplished, e.g., by utilizing Rashba SO interaction [77, 78, 79].

However, three terminals are not required to create spin polarized currents. Many devices, as e.g. the AB-ring
presented in Sec. II, typically rely on two terminals only, where transport through tailored geometries with SO
interaction [80, 81, 82], magnetic fields [83, 84, 85] or a combination of both [86] can result in a significant spin filter
effect.

As a representative example for the methods mentioned above, in the present section we present spin filtering due
to Rashba SO interaction in quantum wires connected to two terminals. We consider a quantum wire in y-direction
realized in a 2DEG in the (x, y) plane connected to two nonmagnetic leads. The Hamiltonian of the system, whit
spatially dependent Rashba SO interaction is given by

H0 =
p̂2

2m∗
+
α(x)

2h̄
(σ̂xp̂y − σ̂y p̂x) + (σ̂xp̂y − σ̂y p̂x)

α(x)

2h̄
+ V (x, y) + UB(x, y) . (24)

Here V (x, y) is the lateral transverse confinement potential forming the quantum wire, while UB(x, y) is an additional
electrostatic potential in the system, e.g., realized by gate voltages. Furthermore, σ̂i denote the Pauli spin matrices,
and m∗ is the effective electron mass of the semiconducting material. We consider a constant Rashba SO interaction
strength (= αC) in the central region of the system, which is connected to two semi-infinite leads on opposite sides,
where α(x) is chosen to be zero avoiding ambiguities in the definition of spin current that arise for leads with SO
interaction [87]. In order not to introduce additional effects due to an abrupt jump in the SO coupling strength,
the parameter α(x) is changed sufficiently smooth from zero to αC between the leads and the central region. For
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the numerical calculations presented in the next two sections the Hamiltonian (24) is discretized as shown in Sec. III
yielding a tight-binding Hamiltonian on a square grid.

In the rest of this section we investigate the transport properties in the linear response regime due to an infinitesimal
bias voltage δU applied between the left and right contact. The charge (C) and spin (S) current in the Landauer
formalism are then given by

IC/S = GC/STC/SδU,

where GC = e2/h and GS = e/4π are the conductance quanta of charge and spin respectively. Since, opposite to
charge current, the spin current can be different in the right and left lead [85], here we choose to evaluate the respective
currents in the right lead. Then the transmission probabilities TC/S at the Fermi energy are given by

TC = T+,+ + T+,− + T−,+ + T−,−, TS = T+,+ + T+,− − T−,+ − T−,−, (25)

where Tσ,σ′ =
∑

n∈R,n′∈L |Sn,σ;n′,σ′ |2 is the probability for an electron, injected into the left (L) lead with spin state

σ′ to be transmitted to the right (R) lead and end up there in spin state σ. In the present and the following section
we fix the spin quantization axis to the y-axis. The scattering matrix elements Sn,σ;n′,σ′ and therefore also the spin
resolved transmission probabilities Tσ,σ′ are evaluated using the recursive Greens function algorithm presented in
Secs. III and IV.

One general feature of Landauer transport in a quantum wire with SO interaction and non-magnetic leads is the
absence of spin-polarized currents in a lead that supports only a single transversal mode. This property can be derived
from the invariance of the system under the time-reversal operator T̂ = −iĈσy [88], where Ĉ is the operator of complex
conjugation. For a perfect quantum wire which is translationally invariant in the direction of transport all occupied
transversal subbands transmit without reflection and spin polarization is not possible due to SO interaction. However,
if backreflection, caused by deviations from a perfect quantum wire, is present, it is possible to observe spin-polarized
currents in leads with at least two transversal channels. There the typical mechanism responsible for spin polarization
is the mixing of spins from different transversal subbands due to the SO interaction.
In Eq. (24) this translational invariance in y-direction is already broken by the spatially varying SO interaction α(x)
even if the quantum wire was perfect in y-direction otherwise, i.e. V (x, y) = V (y) and UB(x, y) = UB(y). However, if
the region where α(x) is turned on/off is sufficiently long, reflection due to the change of α(x) is negligible.
There exist several device proposals relying on this mixing of spins from different transversal subbands due to x-
dependent lateral confinement potentials V (x, y) or other superimposed electrostatic potentials UB(x, y). These
device designs include, e.g., constrictions [80, 89], lateral side pockets [81], or electrostatic barriers [82], to name only
a few.
In most of those proposals, systems symmetric with respect to inversion of the x-coordinate were considered, i.e.
V (x, y) = V (−x, y), UB(x, y) = UB(−x, y) and α(x) = α(−x). Then the Hamiltonian (24) is left invariant upon
application of the symmetry operation

P̂ = −iĈR̂xσ̂z , (26)

where the operator R̂x inverses the x-coordinate. The scattering wavefunctions inside the leads are changed by
the operator P̂ in the following way: R̂x exchanges the leads, i.e., a transversal mode index n is replaced by the
corresponding mode index n̄ in the other lead. The operator of complex conjugation transforms incoming (outgoing)

states into outgoing (incoming) states with complex conjugated amplitude. Moreover, the combined effect of Ĉσz is
to rotate a spinor with the coordinates (θ, φ) on the Bloch sphere to the coordinates (θ,−φ + π). Exploiting this
invariance of the Hamiltonian one can derive the relation Sn,σ;n′,σ′(E) = Sn̄′,σ′;n̄,σ(E) between the elements of the
scattering matrix (see Refs. [85, 88] for related expressions). This results in the equality of the spin flip transmissions
T+,− = T−,+. Therefore, for those devices to be able to work as a spin filter, in view of Eq. (25) the spin conserving
transmissions T+,+ and T−,− need to be different.

As an example, in the following we consider Landauer transport through a Rashba SO quantum wire with a
constriction. Similar calculations were carried out in Refs. [71, 80] where it was shown, that this setup is able to
produce a spin polarized current of sizeable quantity. It was conjectured, that the mechanism responsible for the spin
polarization was the depletion of higher transversal modes of the wire and a subsequent spin dependent repopulation
of those modes when traversing the constriction [80]. To experimentally observe the predicted spin polarization the
use of a transverse electron focusing technique was suggested [71].

A typical grid (with lattice spacing a) used in the calculation for the symmetric point contact in a wire of width
W = 15a is shown in Fig. 12a, where the constriction of length LPC = 10a is formed by hard-wall potentials:

V (x, y) =

{

0 for C(x) < y < 15a− C(x)

∞ else
with C(x) =

{

2.05a
(

1 − cos
(

2π(x+LPC/2)
LPC

))

for |x| < LPC/2

0 otherwise.
(27)
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FIG. 12: Panel a) The square lattice discretization of a quantum wire (width W = 15a) with a single constriction of length
LPC = 10a, see also Eq. (27). Panel b) Periodic array of N = 5 electrostatic barriers with period length L and barrier height
UB. Panel c) Charge TC, spin TS and spin resolved transmission probabilities Tσ,σ′ for the system depicted in panel a) and

specified in the text at fixed SO interaction strength ᾱ = m∗a
h̄2 αC = 0.1 with respect to the Fermi energy Ē = 2m∗a2

h̄2 E. The

n-th transversal mode in the wire opens at Ēn = π2n2

(W/a)2
.

Additionally UB(x, y) is set to zero. In Fig. 12c we present the relevant transmission probabilities with respect to the
Fermi energy E for this system. There we observe that the total conductance TC is reduced in comparison with that of
a perfect quantum wire. In the latter case TC exhibits sharp steps due to conductance quantization [90, 91] which are
washed out here due to tunneling processes through the constriction. Furthermore, for energies, where only a single
transversal mode is supported in the quantum wire, the spin transmission vanishes as expected, i.e. T+,+ = T−,− for
energies Ē <∼ 0.175. Also the relation T+,− = T−,+ is fulfilled as required by the symmetry of the setup. Finally, at
energies where a new transversal mode opens up (Ē2 ≈ 0.18, Ē3 ≈ 0.39) dips in the transmission probabilities become
apparent. Those dips can be explained by interference of localized states in the central region where α(x) = αC and
the scattering states in the quantum wire where α(x) = 0 [92].
In order to study the influence of the adiabaticity of the constriction on the degree of spin polarization that can be

extracted, in Fig. 13 we show TS as a function of the length of the constriction LPC for several values of αC. For all of
the curves we clearly observe an increase in spin transmission with increasing LPC, in accordance with the mechanism
suggested in Ref. [80]. There it was argued in the context of Landau-Zener transitions that the repopulation of higher
transversal subbands will be more efficient for more adiabatic constrictions or barriers, resulting in a higher degree of
spin polarization. For ᾱ = m∗a

h̄2 αC = 0.1 the spin transmission even approaches the maximal possible value TS = 2.
One drawback of the presented system is its restriction to unidirectional spin polarization. In agreement with the
model of Ref. [80], Figs. 12 and 13 give evidence that TS ≥ 0 for the parameter range considered. This limitation to
output current with fixed spin polarization direction restricts the usability of the spin filter to special purposes. A
possible way to circumvent this constraint is the use of a periodic array of electrostatic barriers [82], which we now
briefly investigate. Fig. 14 shows the spin transmission of a straight hard-wall quantum wire (C(x) = 0 in Eq. (27))
subject to N = 5 electrostatic barriers,

UB(x, y) = UB(x) =

{

UBarr

(

0.5 − 0.5 cos
(

2π(x+L/2)
L

))

for −NL/2 < x < NL/2

0 otherwise ,

(as shown in Fig. 12b). The spin transmission is plotted as a function of the Fermi energy and the SO interaction
strength. Again, one observes TS = 0 for energies below Ē2. Furthermore, different regions in parameter space exhibit
opposite sign of TS, enabling to change the sign of the output polarization, e.g., by tuning αc via gate voltages [25].
This additional functionality is due to resonant tunneling, which is absent for a quantum wire with only a single
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FIG. 14: Spin transmission probability TS plotted as a function of the Fermi energy Ē and SO interaction strength ᾱ for a

quantum wire with N = 5 electrostatic barriers of length L = 10a and height ŪBarr = 2m∗a2

h̄2 UBarr = 0.2.

constriction or barrier.

VI. PURE SPIN CURRENT GENERATION

In the preceding sections we focused on mesoscopic geometries that exhibit functionalities such as spin filtering or
spin switching when applying an external bias between the contacts in the system. In the case of a static dc bias in a
two terminal geometry those spin currents arise due to different currents of spin-up and spin-down electrons flowing
into the direction of the contact with the lower chemical potential. However, over the last few years a growing number
of device proposals has been put forward, that exhibit the interesting feature of pure spin current generation, i.e. spin
currents in the absence of net charge transport. This intriguing case appears, when the direction of motion of spin-up
electrons is opposite to the direction of motion of spin-down electrons and both currents equal in absolute magnitude.

Among the devices sharing the prospect of creating pure mesoscopic spin currents are systems with more than
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two terminals realized in 2DEGs exhibiting Rashba [2, 3] and/or the Dresselhaus [93] SO coupling. Here a charge
current is induced in this multiterminal structure by the application of bias voltages between the different contacts
of the system. However, if the voltage of one of the leads is adjusted to make it work as a voltage probe, no charge
current passes this lead but a pure spin current can appear owing to the SO coupling present in the system. The basic
working principle behind these devices is the so-called mesoscopic spin Hall effect [94], a version of the intrinsic spin
Hall effect [27], where the typical system size does not exceed the phase coherence length of the electrons. The SO
interaction leads to different transport dynamics for different spin species, which can be used to extract the desired
pure spin currents by a clever design of the multiterminal geometry [21, 95, 96].
Complementary to the generation of pure spin current in multiterminal geometries, there are other types of devices not
relying on the application of a net dc-bias. In spin pumping, the cyclic variation of two or more system parameters,
such as e.g. gate voltages, induces spin-polarized currents at zero bias, where the induced charge current can be
tuned to disappear, leaving pure spin currents. Several realizations of spin pumps in mesoscopic systems have been
proposed, relying on SO interaction [97, 98] or the Zeeman coupling of electrons to external magnetic fields [99].
The latter proposal has been experimentally confirmed [100] by detecting spin-polarized currents making use of a
transverse electron focusing technique [73] mentioned in the previous section.

Complementary to pumps, ratchets only require a single driving parameter to achieve directed transport, and
the current direction can be switched upon tuning external parameters such as temperature. In addition to the
requirement of a broken spatial symmetry the ratchet has to be operated out of thermal equilibrium. The concept
of particle ratchets, which has been addressed in numerous works [101], has recently been extended to systems called
spin ratchets. To be specific, the mesoscopic spin ratchets proposed so far [82, 85, 102], are based on a quantum
wire realized in a 2DEG. Between the two contacts attached to the quantum wire an ac bias voltage UR(t) is applied
(rocking ratchet) with zero net (time-averaged) bias. Furthermore, in the central region of the quantum wire the spin
degeneracy is lifted due to either SO interaction [82] or the Zeeman coupling to an external magnetic field [85, 102].
Upon appropriate choice of the system geometry and tuning of the external driving the charge transported in the
forward (UR > 0) and backward bias (UR < 0) situation can be made equal allowing for spin currents in the absence
of net charge transport.
In the following we outline the model for the spin ratchets introduced in Refs. [82, 85, 102]. There, driving with
a period t0 is considered. It is implied, that this period is much larger than characteristic time scales related to
the electron transport through the quantum wire. Therefore, the system is assumed to be in a steady state at every
instance of time, and the Landauer-Büttiker approach to transport is used for the computation of the ratchet currents.
To be specific, we consider an unbiased square wave driving UR(t) = U0 sign [sin(2πt/t0)], where UR(t) is restricted to
the values ±U0. The net current is then given by the average of the steady-state currents in the two rocking situations
(labeled +U0 and −U0 respectively) for both charge and spin,

〈IC/S(U0)〉 = [IC/S(+U0) + IC/S(−U0)]/2. (28)

Since the spin ratchet effect requires nonlinear transport [102], i.e. finite bias voltages, the Hamiltonian (24) introduced
in the previous section has to be extended to additionally include the effective electrostatic potential in the conductor
due to the applied bias. Therefore, we add the term HR = eURg(x, y;UR) to the Hamiltonian (24) yielding the full
Hamiltonian at finite bias:

H = H0 +HR. (29)

Furthermore at finite bias a generalized version of the expressions for charge and spin current valid at UR 6= 0 has
to be used. For coherent Landauer transport those currents can be obtained from an integration of the transmission
probabilities over the Fermi window [1]. Finally, the averaged charge 〈IC〉 and spin 〈IS〉 currents can be written as [85]

〈IC/S(U0)〉 =
GC/S

2e

∫ ∞

EC

dE∆f(E,U0)∆TC/S(E,U0) .

Here EC is the energy of the conduction band edge and ∆f(E,U0) = [f(E,EF + eU0/2) − f(E,EF − eU0/2)] is the
difference between the Fermi functions of the leads at bias voltage U0, defining the Fermi window. The averaged
charge/spin transmission is just the difference between the steady state transmissions in the two rocking situations:

∆TC/S(E,U0) = TC/S(E,+U0) − TC/S(E,−U0). (30)

Considering the Hamiltonian (29) we now show under what conditions the net charge transported after one full
rocking period is zero, i.e., 〈IC(U0)〉 = 0. If the electrostatic potentials V (x, y), UB(x, y) and the Rashba SO strength
α(x) are invariant under inversion of the x-coordinate,

V (x, y) = V (−x, y), UB(x, y) = UB(−x, y), α(x) = α(−x) , (31)
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FIG. 15: Net ratchet spin transmission probability ∆TS(U0) = 2 (T+,−(+U0) − T−,+(+U0)) for a stripe with a junction (see

text) presented as a function of injection energy Ē and SO interaction strength ᾱ at finite applied voltage eU0 = 0.02 h̄2

2m∗a2 .
Note the sign change in the spin transmission upon tuning the SO coupling.

it is appropriate to assume that the electrostatic potential distribution due to the finite applied voltage g(x, y;UR) also
possesses this symmetry. Then the total Hamiltonian (29) is invariant under the action of the symmetry operation

P̂ = −iĈR̂UR̂xσz where RU switches the sign of the bias voltage (±U0 ↔ ∓U0), yielding the relation

Tσ,σ′(E,±U0) = Tσ′,σ(E,∓U0)

between the spin-resolved transmission probabilities in the two rocking situations [85]. Inserting this relation into
Eq. (30), we observe that the expression for the net charge transmission ∆TC is zero, resulting in vanishing net charge
current. Furthermore it can be used to simplify the expression for the net spin current:

〈IS(U0)〉 =
GS

e

∫ ∞

EC

dE ∆f(E;U0)
[

T+,−(E,+U0) − T−,+(E,+U0)
]

.

At U0 = 0 the Hamiltonian (29) reduces to Eq. (24), which is invariant under the operation of Eq. (26), yielding
T+,−(E, 0) = T−,+(E, 0). This absence of net spin current 〈IS(U0 = 0)〉 = 0 in the linear response regime is in
agreement with the theoretical prediction [85]. However, for finite rocking voltages U0 6= 0 the additional potential
introduced via HR breaks this symmetry and therefore enables different spin flip transmissions and thus a resulting
net spin current.

We now turn our attention to the quantum wire shown in Fig. 12a. For this system, which exhibits the symmetries
of Eq. (31), we perform numerical calculations at finite bias U0, in order to confirm its operability as a spin ratchet. In
general, the function g(x, y;UR) has to be obtained by self-consistently solving the Schrödinger and Poisson equation
of the system. However, in the present treatment we make use of a simple model for g(x, y;UR) assuming a linear
voltage drop in the region where the point contact is formed in the quantum wire:

g(x, y;UR) = g(x) =











1/2 for x < −LPC/2 ,

−x/LPC for − LPC/2 < x < LPC/2 ,

−1/2 for x > LPC/2 .

It is well known that a constriction in a quantum wire acts as an effective potential barrier constituting a region
where the voltage applied across the wire is likely to drop. Since the bias voltages we consider are small compared
to the energy shift introduced by the constriction, this assumption of a linear voltage drop should be an appropriate
approximation for the actual distribution of the electrostatic potential in this wire [103].
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In Fig. 15 we plot the net spin transmission ∆TS as a function of ᾱ and the injection energy in the range, where
both leads support two transversal modes. We observe that |∆TS| reaches values of up to 0.9 in the parameter range
shown. Furthermore, for a given value of injection energy, the sign of ∆TS can be switched by changing αC. Since
the strength of the Rashba SO interaction αC can be tuned via gate voltages [25] the presented system offers also the
possibility for experimentally steering and switching the spin current direction.

VII. FUTURE DIRECTIONS

In the present work we outlined general theoretical and computational concepts of coherent spin-dependent transport
at low temperatures and focussed, with regard to numerical examples and possible experimental realizations, onto
ballistic two-dimensional nanostructures based on non-magnetic high-mobility semiconductors.

In order to experimentally achieve high spin polarizations and reasonable spin currents, if possible at room temper-
ature, broad efforts are made to investigate and design novel materials for spintronics. Here, prominent and promising
examples, both with respect to fundamental physics and possible applications, are magnetic semiconductors such as
GaMnAs [104] or semimagnetic materials with huge g-factors, for instance HgTe [105]. Charge transport in these
materials is based on holes. However, relatively few theoretical papers deal with phase coherence effects for hole (spin)
transport, though the rich band structure and the interplay between heavy and light hole (or electron- and hole-like)
degree of freedoms promise interesting additional features.

The theoretical methods for quantum transport, presented here in the context of mesoscopic systems, are also
applied and extended to treat transport in a further prospective field, namely through single-molecule junctions
[106], for instance (break) junctions with a molecule bridging the gap between two leads or scanning tunneling
microscope measurements of tunnel current through molecules at surfaces. In Molecular Spintronics [44, 107] spin
effects in transport through molecules are addressed. This subfield of spin electronics is still in its infancy. On
the computational side these systems pose considerable problems since an adequate approach requires an appropriate
description of the electronic and possibly vibrational properties of the molecule including the coupling to and effects of
the leads. Whether (spin) DFT calculations for such an embedded molecule, combined with Landauer-type transport
calculations, are appropriate, remains to be an issue, in particular if charging or non-equilibrium effects are involved.

As a further future direction we expect that spin transport in graphene, monolayers of graphite, may evolve as
another future research line. After its experimental discovery in 2004 [108], graphene has gained much experimental
and huge theoretical attention owing to its many exotic properties such as the massless charge carriers, internal
spin-like degree of freedoms and unconventional transport characteristics. Also first experiments on graphene-based
nanoconductors, e.g., measurements of the Aharonov-Bohm effect in graphene rings [109], are on their way. Graphene
is also viewed as a prospective candidate for spin-electronics, since the spin decoherence and spin relaxation times
in graphene are expected to be long [110, 111]. Recent promising experiments already succeeded in injecting spins
from ferromagnetic metallic contacts into graphene, although the conductance mismatch between graphene and the
ferromagnetic leads is expected to suppress the efficiency. Recent theoretical proposals predict efficient spin injection
into bulk graphene from graphene ribbons employing the occurrence of current-carrying spin-polarized edge states in
the ribbons [112].
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