
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 9, SEPTEMBER 1999 2561

by either theory. Without going into detail, we have found a perfect 
match in that region with respect to the amplitude of the weight 
fluctuations, particularly its decrease along the tapped-delay line in 
the third-order approximation.

IV. Conclusions

This correspondence deals with the correlation matrix of the 
weight errors in an LMS-type adaptive TDL filter. Restricting our
selves to a white output noise and avoiding any independence 
assumption, we have determined the coefficients of a power series
V  — V\ ji+V-zji2 +1 ■!//’ H---- in terms of the stepsize //. The first term

is a scalar matrix, representing a set of equal-power, uncorrelated 
weight fluctuations, in agreement with what is found with the aid 
of the independence assumption [1]. The quadratic approximation 

represents a set of weakly correlated equal-power weight 
fluctuations with a slightly increased common power level. In the 
third-order approximation, we observe a power decrease along the 
delay line. This effect can run up to several percent and is more 
easily observed than the second-order effects [8].

We expect that the proposed iterative method will also lend itself to 
the treatment of adjacent questions such as adaptation transients and 
filter tracking. In addition, it might be applicable to other adaptive 
algorithms like the normalized LMS type. We were able to show that 
an independence assumption is not required so that teaching adaptive 
filtering is released from an inconsistent tool [11].
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Sufficient Stability Bounds for Slowly Varying 
Direct-Form Recursive Linear Filters and 
Their Applications in Adaptive IIR Filters

Alberto Carini, V. John Mathews, and Giovanni L. Sicuranza

Abstract—This correspondence derives a sufficient time-varying bound 
on the maximum variation of the coefficients of an exponentially stable 
time-varying direct-form homogeneous linear recursive filter. The stabil
ity bound is less conservative than all previously derived bounds for time- 
varying IIR systems. The bound is then applied to control the step size 
of output-error adaptive IIR filters to achieve bounded-input bounded- 
output (BIBO) stability of the adaptive filter. Experimental results that 
demonstrate the good stability characteristics of the resulting algorithms 
are included. This correspondence also contains comparisons with other 
competing output-error adaptive IIR filters. The results indicate that 
the stabilized method possesses better convergence behavior than other 
competing techniques.

Index Terms—Adaptive IIR filter, time-varying recursive linear filter.

I. Introduction

Adaptive IIR filters have been the subject of active research over 
the last three decades [5], [9], [11], [12], [15]. Despite a large amount 
of work that has been done, some open issues still remain. One of 
these issues is that of ensuring the stability of the time-varying IIR 
filter that results from the identification process.

Researchers have attempted to derive adaptive IIR filters that 
operate in a stable manner in several different ways. One class of 
algorithms is obtained by means of the equation-error technique. In 
the equation-error technique, the IIR filter is identified by the use of a 
two-channel adaptive FIR filter that operates on samples of the input 
and the desired response signals. Since the system model employed in 
equation-error methods is not recursive, the adaptive filter can operate 
in a stable manner when the step size is properly selected. However, 
this fact does not ensure the stability of the resulting IIR filter. 
Moreover, it is well-known that equation-error adaptive algorithms 
give biased solutions when the desired response signal is corrupted 
by noise.

Output error algorithms have become popular in adaptive IIR 
filtering research in recent years. In output error techniques, the 
adaptive filter operates in a recursive manner on the input signal 
to provide an estimate of the desired response signal. A class of 
such methods requires a certain system transfer function to be strictly 
positive real (SPR) in order to avoid problems with instability and to 
ensure the convergence of the algorithm. This class of algorithms 
includes the pseudo-linear regression algorithm (PRA) [3], which 
is also known as Feintuch’s algorithm, Landau’s algorithm [7], the 
hyperstable adaptive recursive filter (HARF) [4], and the simplified
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HARF (SHARF) [8]. An SPR condition is not easy to guarantee 
in practice. In the PRA, the SPR condition limits the range of the 
location of the poles of the unknown system for which convergence 
is guaranteed. This problem is avoided in HARF and SHARF 
algorithms. However, some a priori knowledge of the underlying 
system model is required in order to meet the SPR condition. 
Moreover, if the system consists of two or more parallel sections, the 
SPR condition is not sufficient to guarantee stability [16]. A second 
class of adaptive output-error direct-form filters employ stability 
monitoring by checking the location of the instantaneous poles of the 
system and projecting the coefficients back to a region for which the 
instantaneous poles are within the unit circle [9]. Unfortunately, time- 
varying filters may be unstable even when the instantaneous poles 
are within the unit circle. A simple example is given by the time- 
varying recursive linear system with two coincident poles located at 
(—l ) fc_10.5 at time fc with input-output relationship

y(k)  = ( - 1  ) * - y  fc -  1) -  0.2oy(fe -  2) +  x(k).

where //a, is a time-varying scalar sequence. Our objective is to find a 
sufficient bound on the squared-norm of the increment vector f i uM fe) 
given by such that the time-varying system of (2 ) is
stable in the bounded-input, bounded-output (BIBO) sense. From such 
a result, we then find a bound on for guaranteeing the stability of 
the system. An adaptive filter with coefficient update as in (4) will be 
BIBO stable if is chosen smaller than or equal to such a bound. 
The basis for our work is the following theorem proved in [14]: 

Theorem 1: The linear state equation

x (k  +  1) =  A(k)x(k) , c(feo) =  Xn (5)

is uniformly exponentially stable if and only if there exists an N  x N  
matrix sequence Q(k)  that is symmetric for all fe and such that

and

(1)

(6)

A 1 (fe +  l)Q(fe +  l)A(fe +  1) -  Q(k)  <  - 7/  (7)

Even though the instantaneous poles are always bounded by one 
and far from the unit circle itself, it is straightforward to show that 
the response of this system to a unit impulse signal diverges ex
ponentially. Consequently, even though projection-based techniques 
that force the instantaneous poles of the system to stay within the 
unit circle work well in a large number of situations, they are not 
guaranteed to operate in a stable manner in all situations. A third 
class of output-error algorithms employs lattice structures [10], [12]. 
Normalized lattice filters are guaranteed to be stable if the reflection 
coefficients are bounded by one. Similar conditions can also be 
established for other filter structures such as power wave digital 
filters [6] and normal forms [12]. However, direct-form filters are 
particularly suited for the multiply-accumulate architectures found in 
most digital signal processors and, for this reason, are often preferred 
to the above-mentioned filter structures.

In this correspondence, we present a method for controlling the 
adaptation step size to guarantee bounded-input bounded-output sta
bility of output-error adaptive IIR filters. It is well-known [1], [2], 
[12]-[14] that a recursive time-varying homogeneous linear system 
is exponentially stable if its instantaneous poles are always inside 
the unit circle and if they are sufficiently slowly varying. We first 
derive a new upper bound on the maximum allowable coefficient 
variation for the stability of a direct-form linear recursive filter and 
then apply the results to control the step size of an adaptive IIR 
filter to ensure stable operation. Experimental results demonstrating 
the good convergence characteristics of the adaptive filter so derived, 
as well as comparing our stability bound with previously available 
results, are also included.

II. Sufficient Stability Conditions for 
Slowly-Varying Direct-Form Recursive Systems

We consider a time-varying recursive linear system with in
put-output relationship given by

A '- l  A '- l

y ( k)  = ^  b , ( k ) x ( k  -  i )  +  X I  ^ ( k ) v ( k  -  *)• (2)

Let

0(k) = [60(fc). &i (fe). • • •. 6,v -i (fe).ai (fe)
a2(k).  ■ ■ ■ .a.v-T (fe)]T (3)

denote the coefficient vector, and let the evolution of the coefficients 
be of the form

where and are finite positive constants.
The condition “matrix Q  <  p i ” in the theorem implies that 

for all vectors Exponential stability of the 
homogeneous system implies BIBO stability of the more general 
system in (2), provided that the coefficients of the nonrecursive part 
are bounded [12].

Theorem 1 is expressed in terms of the state transition matrix 
while we are interested in the direct-form realization. However, it is 
trivial to transform the direct-form representation in (2) to the state 
space representation by considering the state vector

1T

and the corresponding state transition matrix

A(k)  =

a-i (fe) 
1

0

0,2 (fe) 
0

0

a A'-i (fe) a A' (fe) 
0

0

(8)

(9)

Finite and bounded choices of the feedforward coefficients do 
not affect the stability of the system. Consequently, ignoring these 
coefficients in the rest of the analysis does not result in any loss 
of generality. In the derivations that follow, we find a sequence of 
candidate matrices that meets the Lyapunov conditions given 
by (6) and (7) for slowly varying recursive linear filters. We assume 
that the instantaneous poles of the recursive system are always inside 
the unit circle.

A. Lyapunov Candidate Sequence

Since the poles of the system (2) are by hypothesis always inside 
the unit circle, we can consider as the Lyapunov candidate the 
unique, symmetric, and positive definite solution of the discrete-time 
Lyapunov equation

A  (k)Q„ (k)A(k)  -  Q „ ( k )  = - v ul y (10) 

, andwhere is a bounded positive sequence with
is an arbitrary interval of the positive real axis. 

Following the derivations in [2] and [14], it can be shown that 
Q„k (k) is given by

+  OC

Q Vk( k ) ^ n r £ [ A T ( k ) YA‘(k).  (11)
1=0

The closed-form solution for Q v (fe) is given by

0(k + 1) ^  0(k) + pu Mk ) (4) vec[0 (fe)] =  - v k[AT (k) 3  A T (k) -  J ^ n 1 vec[/,v ] (12)
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where Co indicates the Kronecker product, and “vec[Q]” is a vector 
operator that stores the columns of Q  in a predetermined order.

Since vk is bounded by the positive and finite values i/mj„ and 
and the eigenvalues of are in the open unit disk of the 

complex plane, it can be shown that the Lyapunov conditions in (6) 
are always satisfied. This result can be proved easily by following 
the derivations in [2] and [14]. As for the condition in (7), let us 
consider (10) at time k +  1 and add Q V k (k +  1) — Q Vk(k) to both 
sides of the expression. It follows trivially that the condition of (7) 
can be rewritten as

A t(k +  1 )QVk+1(k +  1 )A(k +  1) -  Q vJk) 

=  Q Vk+i( k + l ) - Q Vk(k)-uk+,I» 

<  - 7 I n ■

This condition is met if

\\QVkJ k + l ) - Q Vk( k ) \ \ < t v k + ,

\ m k + l ) - ^ l Q Vk(k)\\ < C < 1

for all , where is given by

Q 1( k ) ^ Y , [ A T (k)]"A"(k).

vec vec

vec vec vec

and manipulating the resulting expression gives an explicit condition 
on for the stability of (5) to be

vec (21)

(13)

(14)

where is a real positive constant, , and is the induced 
norm of the matrix . Dividing both sides of (14) by , (14) 

becomes

for all .
The stability conditions of (15) and (17) are derived without 

resorting to any approximation. However, these conditions can be 
employed in adaptive recursive filtering applications only with the 
help of projection techniques. Even though the derivation of (21) 
employs an approximation that is based on slow variations in the 
coefficients, this condition has the advantage of being useful in 
directly controlling the step size of adaptation.

1) Second-Order Case: The stability conditions derived in the 
previous subsection hold for any filter order. Computationally simple 
expressions that relate the filter coefficients to the stability bound can 
be derived for the second-order case. Therefore, the implementation 
of the stability conditions is simplest when the adaptive filter is 
realized as a cascade or parallel connection of second-order sections. 
Since the nonrecursive part does not affect the stability of the resulting 
system, provided that the coefficients are bounded, we consider the 
following second-order filter:

(15)

(16)

y(k)  =  a-i (k ) y(k  -  1) +  a2(k)y(k  -  2) +  x(k) . (22)

For the instantaneous poles of this system to be inside the unit circle, 
the coefficients must satisfy the inequalities

The above condition can be used to enable BIBO stable operation 
of an adaptive IIR filter equipped with a projection technique. Any 
projection technique that can move the coefficients back to a space 
that satisfies the condition in (15) can be used for this purpose. 
However, since most projection techniques have unpredictable com
putational complexity and since they may result in coefficient stalling, 
we now derive a closed-form bound for when the parameter 

, under the assumption that the coefficient vary slowly. In 
this case, the inequality in (15) reduces to

and

|ffl!(k )| +  a2(k) < 1

a2(k)  > — 1.

(23)

(24)

The candidate Lyapunov matrix in (16) can be shown to be 
given by

Q(k)  =
-2

a2(k) -  1
r (k ) 

a-, (k)a2(k)

- 2

r(k)

a-,(k)a2(k) 
r ( k )

4 k )  
r (k )

(25)

(17) where

for all . Since is fixed, we drop the subscript on such that 
from now on.

To derive the result, we note that

\\Q(k +  1) -  Q(k)\\ < ||vec[Q{fe +  1)] -  vec[Q(fc)]||. (18) and

Combining (17) and (18), we derive a sufficient condition for the 
exponential stability of the system in (5) to be

r{k)  — —o,2(fe) +  ti2 (k) +  a \ {k )a 2{k) 

+  a2{k) +  f/'i' (k) — 1 
=  (a2 +  1)[— (a2 — I ) - +  fli]

n{k) — 0,2(fe) -  0,2(k)  +  a\ {k)a2{k) 
+  a2{k) +  a\{k)  — 1.

(26)

(27)

(19)

for all . In the hypothesis of slowly varying coefficients, the 
following approximation can be applied:

(20)

Substituting (25) into (21) results in the bound for //a, for the second- 
order system in (28), shown at the bottom of the page, where

w(k )  =  (3o|(fe) +  a'i(k) -  2a2(k) +  1 ) i ’2(k)

(29)

where indicates the gradient vector operator with respect to the 
coefficient vector and Recall from (4)
that AO(k) — jikib(k). Substituting the approximation of (20) in (19)

and

v(k)  =  (-3o|(fe) +  2a2(k) +  a'i(k) +  1 ) v 2(k)

(30)

l‘ k <
l (k)

y ' 4 ( r ( k ) - v 2( k ) - ( a 2( k ) - l ) - v ( k ) f  +  &((m(kyd-2(k) +  a2( k ) ^ ( k ) ) - r ( k ) - m ( k ) a 2( k ) - v ( k ) f  +  ( r ( k ) - w ( k ) - v ( k ) - s ( k ) f
(28)
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It follows from (26), (24), and (23) that cannot be zero if the 
instantaneous poles of the system in (22) are inside the unit circle.

We can see from (28) as well as (21) that the magnitude of the 
coefficient increment does not depend on as the magnitude
of increases to infinity when the step size is controlled by 
our approach. Consequently, coefficient updates are not stalled when 

becomes large. The magnitude of the coefficient increment 
vector depends primarily on the location of the instantaneous poles 
of the adaptive filter.

III. Stabilized Output Error Adaptive IIR Filters

In this section, we apply the stability condition derived in Section II 
to the stabilization of output-error adaptive IIR filters. Even though 
the ideas presented here are applicable to almost all adaptive IIR 
filters, we describe our approach using the Gauss-Newton output error 
adaptation algorithm [9]. Furthermore, since the implementation of 
the stability condition is simplest when the adaptive filter is realized 
as a cascade or parallel connection of second-order sections, we 
have considered adaptive IIR filters employing parallel second-order 
sections.

Each second-order section is of the form

y, (k)  = au (k)y, (k ~  1) +  a2l(k)y, (k  -  2)

+  boiv(k)  +  h , v ( k  -  1) +  h M k  -  2) (31)

where denotes the input to the section. Let the data vector and 
the coefficient vector of the th section be given by

, TX , ( k )

and

(32)

9i(k) =  [b0, (k ) , bu ( k), b2, (k), a , (k),  a2, (k)]‘ (33)

X ( k )  = [X [ ( k ) . X 2 (k), ■ ■ ■ , X TL(k)\T (34)

and

0(k) = [ 0 U k ) , 0 l ( k ) , - 9 l ( k ) ] T (35)

diag

where is the a priori estimation error defined as
L

e(k) = d(k) -

and

t ( k )  -  (k),  4>l(k), ■ ■ ■, <t>\(k)\T

is the information vector whose th vector element is
1

4>i(k)
1 -  au(k)g  1 -  a2,(k)q

~ X , ( k ) .

(37)

(38)

(39)

(40)

where is a parameter that controls the convergence
and tracking speed of the estimation of the autocorrelation matrix. 
Its inverse may be evaluated recursively using the matrix inversion 
lemma as

R  1 (k +  1) 
(

a - 1 (fc)fl-1 a-,)

y A -  , i k . O i k . J
(42)

respectively. We define the data and coefficient vectors for the overall 
structure to be

The BIBO stability of the above adaptive filter can be achieved by 
constraining the step sizes associated with the recursive component 
of each section to meet the conditions specified by (28). We point 
out again that the instantaneous poles must always lie within the 
unit circle and that the coefficients of the feedforward part must be 
bounded. In all our experiments, we have also limited the maximum 
step size value. Doing so has two advantages: i) It allows the 
designer to control the steady-state behavior of the adaptive filter 
independently of the characteristics of the adaptive filter coefficients, 
and ii) it ensures that the coefficients vary slowly so that the 
approximations in the derivation are valid.

The computational complexity of calculating the step size bound in 
(28) corresponds to 16 multiplications, one square-root operation, and 
one division per second-order section. Consequently, the complexity 
of implementing the stability bounds for a cascade or parallel adaptive 
filter is linearly proportional to the order of the filter. Furthermore, 
this complexity is comparable with or smaller than the complexity of 
adapting the coefficients in many adaptive IIR filtering algorithms.

IV. EXPERIMENTAL RESULTS 

In the first set of results presented below, the adaptive filters were 
employed to identify an unknown, fourth-order IIR filter with transfer 
function

H(z )  = 1 -  1 .86c-1 +  0.8698c-2 
9

+ 1 - +  0.5c (43)

respectively, where denotes the number of parallel sections.
The coefficients are updated in this method as

0(k  +  1) =  e(k)  +  i i ( k ) R ~ \ k  +  l)<j>(k)e(k) (36)

where is a time-varying step size matrix of the adaptive filter 
defined as

using measurements of the input and output signals. The poles of the 
above system are located at and The
adaptive filters employed a parallel connection of two second-order 
systems and were adapted using the Gauss-Newton algorithm. The 
input of the unknown system is a colored Gaussian signal with zero 
mean value obtained by filtering a white Gaussian signal with zero 
mean value and unit variance with the FIR filter of transfer function 
given by

W( z )  =  1 +  0.5 (44)

In the above expression, the notation refers to a unit delay 
operator. The matrix is an estimate of the autocorrelation matrix 
of the information vector, and it is recursively computed as

R(k)  =  AR ( k  -  1) +  (1 -  A)<t , (k) f (k) (41)

The desired response signal was generated by processing this signal 
with the unknown system and then corrupting the output with 
an additive, zero-mean and white Gaussian noise sequence that is 
statistically independent of the input signal. The variance of the 
measurement noise was such that the output signal-to-noise ratio 
was 30 dB. The adaptive filter employed a different step size 
sequence for each second-order section and for the recursive and 
nonrecursive part of each section. The step size of the recursive part 
was selected to be the minimum of 0.001 or the bound suggested 
by our conditions, whereas that of the moving average part was 
fixed at 0.0005. The forgetting factor in the evaluation of the 
inverse of the autocorrelation matrix was chosen to be 0.9999. 
Almost all output error adaptive recursive filters are susceptible to
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X 1(T

Fig. 1. Evolution of the feedback coefficients of one of the parallel sections 
of the stabilized adaptive IIR filters.

Time
Fig. 3. Evolution of the step size sequence of the stabilized adaptive IIR 
filters.

Fig. 2. Evolution of the mean-square estimation error in the stabilized 
adaptive IIR filters.

converging to the wrong local minima of the squared estimation 
error surface. In the results presented here, all the experiments that 
resulted in convergence to wrong local minima were eliminated from 
the calculation of the ensemble averages. In this way, we are able 
to observe the speed of convergence of the adaptive filter when it 
converged to the true solution. The results displayed in the figures 
are averages of the first 50 experiments in which the coefficients 
converged to the correct solution.

In addition to constraining the step size to values below the stability 
bound at each time, we must also verify that the instantaneous poles 
of the updated filter are within the unit circle. In the experiments 
described below, the updates for a particular iteration were simply 
skipped whenever one or more poles crossed the unit circle. Ex
cursions of the poles outside the unit circle have occurred rarely in 
our experiments when the step size was selected according to our 
bounds. Consequently, problems due to coefficient stalling because 
of skipped updates did not occur in any of our experiments. In order 
to ensure the BIBO stability of the adaptive filter feedforward part, 
we also imposed an upper bound on the absolute value of feedforward 
coefficients. The upper bound chosen was 1000, and in no experiment 
did the feedforward coefficients reach this bound. The algorithm was 
initialized with the coefficients of the feedforward parts equal to 0.5 
and the poles of the recursive part equal to [0.1 ±  0.1'] and [-0.1 ±
0.1i], respectively, for each second-order section.

Fig. 1 shows the ensemble averaged behavior of the coefficients of 
the parallel section that correspond to the coefficients 1.86 and 0.8698 
(corresponding to the poles located at [0.93 ±  0.07j])  of the unknown 
system. Fig. 2 shows the ensemble averaged, squared estimation error 
at the output of the adaptive filters. The horizontal line in the figure 
represents the noise floor. Fig. 3 displays the ensemble averaged 
step size sequence for the parallel section tracking the poles of the 
unknown system at [0.93 ±  0.07j]. The results indicate that step 
size selection using the closed-form conditions in (28) results in 
stable operation of the adaptive filter. The initial values of the step 
size are small in this example because the initial estimation error is

large. Combined with the large error, the initial values of the step 
size produced the largest changes possible that still maintained the 
exponential stability of the system.

We now compare the performance of the stabilized adaptive IIR 
filter with that of the SHARF algorithm. In order to make the 
comparisons as fair as possible, we used a single second-order 
system for identifying an unknown second-order system with transfer 
function

=  1 -  1 .9 c -1 +  0 .905c-2 ' (45)
We used the same experimental conditions as in the previous example, 
with the difference that we employed the same step size sequence 
for adapting the moving average and the recursive coefficients of 
the system. The coefficient update in the SHARF algorithm was 
implemented as in [15] in the following manner:

(46)

where

R - \ k +  1) =  -  
A R _1 (fe) -

j r 1 (k)X(k)xT(fc)ir1 (fc) 
- A _ + X T (k)R-Hk)X(k) J

e(fc) =  d(k) - 0T(k)X(k)

and
p - i

if(k) — y ' c(m)e(k — tn).

(47)

(48)

(49)

The input vector is defined in this case as
In order to obtain satisfactory convergence of the SHARF 

algorithm, the FIR filter with transfer function that gives the 
filtered estimation error must be such that , where

is the denominator of the transfer function of the unknown filter. 
In our case, we have considered the optimal choice of

Both the algorithms were initialized with the coefficient of the 
feedforward part equal to 0.5 and with the two poles at the origin.

The step size ii. was selected to be 0.000 08 for the SHARF 
algorithm so that the steady-state excess mean-square error was 
identical to that of the stabilized adaptive IIR filter of this paper. 
We note that the coefficient update equations (46) and (47) have the 
form of a Gauss-Newton update. The similarity of this set of update 
equations to those in (36)-(42) and the choices of the step sizes so 
that the steady-state errors are almost identical make it possible to 
make fair comparisons of the performance of the two algorithms.

Fig. 4 plots the evolution of the mean-squared estimation error for 
the two algorithms. We can see from this figure that the SHARF
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(a)

(b)

Fig. 4. Comparison of the stabilized adaptive filter of this paper and the 
SHARF algorithm.

algorithm converges much slower than the method introduced in this 
correspondence. Note that the time scales used in the two plots are 
different from each other. In general, when the instantaneous poles 
are initialized to be sufficiently removed from the unit circle, we 
have observed that our method converges significantly faster than the 
SHARF. However, it is possible to slow the initial convergence rate 
of our method by initializing the instantaneous poles to be very close 
to the unit circle. Such an initialization will force the initial values 
of the step size to be very small and, therefore, will result in slow 
convergence.

We also studied the convergence behavior of the Gauss-Newton 
output error algorithm with fixed step size using the same experi
mental conditions. Without pole projection inside the unit circle, the 
algorithm became unstable in all 50 experiments we performed with 
a step size equal to , which was lower than the maximum
step size value we allowed for the stabilized adaptive filter. With pole 
projection and a step size equal to , the instantaneous poles
moved to locations outside the unit circle so often that the overall 
speed of convergence was much slower than that of the stabilized 
algorithm. Furthermore, the evolution of the coefficients toward their 
steady-state values was very erratic for the method employing only 
pole projection. In our experiments, with the adaptive filter employing 
the new step-size bound, only in one of the 51 experiments did 
the coefficients of the system not converge to the correct coefficient 
values after 20 000 samples. With the fixed step size, the coefficients 
in 16 of 66 experiments did not converge to the correct values during 
the same time span.

Finally, we compare the bounds given by (28) with the bounds 
derived in [1] and [2] for the maximum allowable variations in the 
coefficients of an exponentially stable, second-order linear system 
with time-varying coefficients. The stability bounds in [1] and [2] are 
expressed in terms of the state transition matrix. In order to make the 
comparison as fair as possible, we derived the maximum allowable 
coefficient variation for the state transition matrix defined in (9). 
Fig. 5 displays the three bounds as a function of the magnitude of 
the complex instantaneous poles of the system. The curve a refers

Fig. 5. Comparison of the bound in (28) with that derived in [1] and [2].

to the bound given by (28), whereas the curves b  and c  refer to the 
stability bounds derived in [1] and [2], respectively.

The bounds were obtained for the case when the complex conjugate 
pole pair moved along straight lines located at ±45° to the real axis. 
The coefficients were assumed to change as in (4), and the vector 
<j>(k) was assumed to have unit magnitude at each time. The bounds 
are for the scaling factor in the coefficient evolution equation (4). 
It is clear from the results of Fig. 5 that all three stability bounds 
converge to zero as the instantaneous poles approach the unit circle. 
However, the rate at which in (28) approaches zero when the 
poles tend to the unit circle is several orders of magnitude slower than 
the bound derived in [2]. Furthermore, the bound for jiik) given 
by (28) is much greater than the bound in [1]. This result is an 
additional demonstration of the usefulness of the sufficient stability 
bounds derived in this correspondence.

V. Concluding Remarks

This correspondence presented a novel stability condition for 
time-varying direct-form recursive linear systems. This condition 
was successfully applied for designing bounded-input, bounded- 
output stable adaptive IIR filters. The experimental results not only 
confirmed the reliability of the derived bound but also demonstrated 
the better convergence characteristics of the stabilized algorithm when 
compared with other stable adaptive IIR filters. The time-varying 
bound derived in this correspondence may be incorporated into any 
practical adaptive IIR filter. It is well known that certain adaptive 
IIR filtering algorithms such as Feintuch’s method diverge for all 
choices of the step size for certain input signals [16]. Experimental 
results, as well as theoretical considerations, indicate that the step-size 
bound derived in this correspondence eventually goes to zero in such 
situations, thus preserving the BIBO stability of the adaptive filter.
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TABLE I
Square Root Mean Squared Errors (SRMSE) of 

Estimation Using the LPA and Various Wavelet Methods

A New Method for Varying Adaptive Bandwidth Selection

Vladimir Katkovnik

Abstract—A novel approach is developed to solve a problem of varying 
bandwidth selection for filtering a signal given with an additive noise. 
The approach is based on the intersection of confidence intervals (ICI) 
rule and gives the algorithm, which is simple to implement and adaptive 
to unknown smoothness of the signal.

Index Terms—Adaptive filtering, adaptive varying bandwidth, adaptive 
varying window length, segmentation.

I. Introduction

In this correspondence, we introduce an adaptive filter that pro
duces piecewise smooth curves with a small number of discontinuities 
in the signal or its derivatives. It allows certain desirable features 
such as jumps or instantaneous slope changes to be preserved in the 
smooth curves. The algorithm is adaptive to unknown smoothness of 
the signal. The local polynomial approximation (LPA) is used as a tool 
for filter design as well as for a presentation of the developed general 
method of the bandwidth selection. This method can be applied for 
a variety of quite different linear and nonlinear problems where the 
bandwidth selection involves the bias-variance compromise usual for 
nonparametric estimation.
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N r  = var r  =  4.4 Wavelets

Blocks

256 0.61 1.56 (0.68-1.20)

512 0.46 0.92 (0.59-1.12)

1024 0.33 0.74 (0.47-1.03)

2048 0.25 0.49 (0.41-0.85)

1
Heavy

256 0.47 0.79 (0.49-0.62)

512 0.37 0.67 (0.40-0.55)

1024 0.31 0.49 (0.32-0.46)

2048 0.24 0.34 (0.38-0.61)

Fig. 1. Adaptive estimates, m =  2, r  =  4.4.

Suppose that we are given noisy observations of a signal 
with a sampling period , i.e.,

, where are independent and identically distributed 
Gaussian random errors . It is assumed that
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