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1. 

To 

Gillian 

You have the right to work, but for 
the work's sake only. You have no 
right to the fruits of work. Desire 
for the fruits of work must never be 
your motive in working. 

Bhagavad Gita 
The Yoga of Knowledge 



2. 

ABSTRACT 

The thesis consists of a survey of the classical methods 

of two-dimensional digital filter design in the space domain and 

their extension to multidimensional systems. 

Design techniques in the frequency domain are studied 

with particular reference to techniques involving spectral 

transformation methods between one and many dimensions. Some of 

the more recent methods are extended to n dimensions and the 

limitations of the transformations studied. Specific numerical 

design examples are given for three-dimensional filter specific-

ations having approximately spherical symmetry. 

New design techniques are proposed for the realization 

of two-dimensional fan filters of recursive form having guaranteed 

stability. The techniques are shown to be extendable to three-

dimensional systems, in which two dimensions are linear and one is 

temporal. 

A critical comparison is made of the several techniques 

proposed. 
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CHAPTER ONE 

INTRODUCTION 

For just as a man cannot see without 
eyes, so a scholar would be blind 
unless he learnt from books. 

"Piers the Ploughman" 

William Langland 



9. 
INTRODUCTION 

1.1 	PREAMBLE 

One of the significant problems in communication is the 

processing of signals which have been passed through a system which 

has resulted in a deterioration in their quality. The need for such 

processing resulted, in the early days, from the distori,ion produced 

in telephone links over relatively long distances. The whole theory 

of analogue signal processing developed from this need and led to the 

classical Zobel filters and other passive network designs and later 

developed into the more modern aspects of active network synthesis. 

More recently, digital signal processing has been introduced 

for the treatment either of analogue signals which have been sampled 

periodically to produce a set of discrete pulses or of signals which 

from transmission to reception are in discrete form. Such signals may 

be considered to be represented by a sequence of numbers representing 

the value of the signal at successive instants of time. Once this 

conceptual approach to time sequences has been accepted it may be 

realized that digital signal processing may be considered in the simpler 

manner as a means whereby an array of numbers may be modified according 

to some selected laws to generate an output array; these arrays may be 

of one or more dimensions. In one dimension the most common variable 

is time; in multidimensional systems the variables may be spatial, 

temporal or any other desired parameter. The discrete data processor 

usually operates on the input array sequentially; when the data is 

spatially or otherwise distributed, it will need to be scanned in time 

before processing. This may be accomplished in real time or, 

alternatively, the data may be stored and processed at leisure by a 
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relatively slower system. Occasionally a parallel processor may be 

used but this is generally uneconomical for large systems. 

It is now shown that the data available for processing may 

vary in two or more dimensions. Examples of two-dimensional arrays are 

found in facsimile and other visual images, electron micrographs, X-ray 

images, isotope scanning images where the two dimensions are both 

spatial. Other two-dimensional arrays occur in the field of seismic 

exploration where the output array is displayed in the two dimensions 

of linear space and time. 

Such arrays need to be processed in order to remove anomalous 

signals and also to enhance certain aspects of the data. For example 

in medicine, X-ray films may be processed to remove low spatial 

- frequency variations, thereby enhancing the sudden variations of 

abnormal conditions. In the case of scanned isotope detection the 

processor may be required to remove the striations on the image 

produced by the finite width of the scanning lines and other distortion 

which occurs as a result of the finite resolution of the gamma ray 

scanner [13 . In electron microscopy the purpose may be to reduce the 

low frequency background noise which is inherent in such processes. 

In the field of geophysical prospecting echoes from boundaries of 

geological strata of a detonation are detected by a linear array of 

detectors placed in line with the source. Desired echoes will be 

received by the detectors from various changes in geological strata, 

whereas undesired echoes may occur from multiple reflections, and 

random signals may also be generated by wind noise [2,3] 

It is conceptually simple to appreciate that arrays are now 

no longer restricted to two dimensions but may be extended to any 
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number of dimensions. An example of a three-dimensional array might 

be the output from a rectangular grid of detectors placed near to a 

detonation, the three coordinate axes being the two spatial dimensions 

of the grid and the time of reception of reflection at each detector. 

Again the processing of images obtained by tomographic scanning of the 

human body in detecting tumours will also result in a three-dimensional 

array. A television picture is another example of a three-dimensional 

signal with two spatial and one temporal dimension. 

Although practical examples of higher order arrays are not 

available at present, it is convenient to consider multidimensional 

processes as opposed to the restricted two-dimensional arrays. 

The processing of such multidimensional arrays poses certain 

problems which do not apply to one-dimensional arrays. In principle 

it is possible to consider a "parallel" process whereby the output 

for every point of an array is produced at the some instant of time 

by a very large number of identical processors connected to the 

appropriate input array data. This conceptual approach is the one 

most frequently adopted in the development of any theoretical work. 

However, the design of a system based on this concept would be absurd 

as each of the parallel processors would be identical. It is 

therefore customary to carry out the processing on each group of 

input data, giving one element in the output data, in a sequential 

manner in time using a single processor. 

This idea of time scanning of space data introduces a 

fundamental difference between time and space series. In any two sets 

of time series representing cause and response, the response r(t
o
) at 

a certain time t
o can only be dependent on values of the cause c(t) at 
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values of t o
. This is known as the principle of causality. In 

spatial arrays such a distinction does not exist and the response 

r(x o
) for a one-dimensional array may depend on all values of the 

cause c(x) for - co< x < 00 or more rigorously for A <x <B where 

A and B define the physical bounds of the input array. This 

distinction results in the inability of a time-scanned processor 

effectively to implement all the requirements of a digital filter 

operating on spatial data in one single run of a time scanner in one 

direction. This will be considered in greater detail in Section 1.2. 

1.2 	REPRESENTATION OF MULTIDIMENSIONAL SIGNALS  

A multidimensional array may be represented by, 

h = 	th(m)} 

= Ihml,...,mn1 = [hull 	(1.2) 

where fml is defined as the multiple Imi,...,mand hm  is assumed to 

be zero for all subscript multiples fml which do not belong to the 

definition set of h. The definition set of h usually corresponds to 

the set bounded by the physical limitations of the given array. Such 

an array is in general defined for positive and negative values of 

the elements of the subscript sets. 

In the particular case in which h
m
= 0 for all subscript 

sets 
lull in which any m. < 0 the array is known as a first quadrant 

array and represented by a superscript 1 as 

1h = {lm =1111m 
l'""mn/ 

havingAzero values only for () m. > 0. i=1 

(1.3) 
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Other single quadrant arrays 

Ph = {Phm 
 lS 
	

(1.4) 

may be defined which are non-zero only when some or all of the elements 

of the multi7ele bill are negative. There are thus 2n  single quadrant 

arrays possible in any n-dimensional system. The definition of a first 

quadrant array given by equaLion (1.3), when considered in one 

dimension, is identical with the definition of a causal array in time 

and thus multidimensional arrays having this property are sometimes 

termed causal. Since causality is meaningless outside the time 

dimension, I shall retain the term 'first quadrant array'. 

A digital array may alternatively be represented by its 

Z-transform, defined as 

H(z
1'n

) 	11(z) 

• • • 

cc 

zm
1 
	9; n  h 

ml"."mn 1 	
n 

 m n 

1.3 	CLASSIFICATION AND RJiPRESENTATION OF  
MULTIDIMENSIONAL DIGITAL FILTERS  

Digital filters may be subdivided into two classes, linear 

and non-linear. A typical example of a one-dimensional non-linear 

filter is the adaptive or automatic equalizer in digital communication 

systems. In two dimensions we may quote contrast enhancement of images 

as a typical example. 

Most digital filters at present are linear systems; for 

example, those used in the equalization of fixed digital communication 
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channels, filters used in the synthesis of speech and similar applic-

ations. This thesis will be entirely concerned with finite linear 

digital filters. 

Linear filters may be divided into two classes. First are 

non-recursive filters in which the output array is a function of the 

input array only; such filters will have a response to an input 

impulse which is bounded in duration in any dimension; it is thus 

termed a finite impulse response (FIR) filter. Second, recursive 

filters are those in which the output array is dependent, not only upon 

the input array,but also upon neighbouring values of the output array; 

such filters usually have unbounded duration of their impulse response 

arrays in all dimensions and are thus known as infinite impulse 

response (IIR) filters. 

The output array 1r 	1 of a non-recursive filte..v—s. is mi,...,mn  

related E..4,] to the input array tc 	1 by the convolutional 
ml' ".' n1  , 
	. 

equation 

    

m 	m 
19..., 

• •• 

 

a. 	. .c 
J1'""in m1-31,""mn-in 

  

Similarly 	recursive filters may be represented by 

	

M1 	Mn  

= 	a4  
ml'""mn 	JI.'""jn•cm 	. . m 

	

j1=0 	j
n
=0 	1 '1' • 7  n 'n 

.6. 	b4 	4  .r 
J1'""Jn ml-J1'""mn-jn* ji=0 
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In the one-dimensional case where the variable is time, the neighbouring 

values of the output must always be previous values, whereas in spatial 

systems they may be to the right or left, above or below, etc. Thus 

any scanning system in time, used to recursively process spatially 

distributed data will be limited to generating output functions which 

are constrained in only one Tquadrantt of multidimensional space. 

The above digital filters may alternatively be represented 

by the Z-transform relationships from which the Z-transfer functions 

may be obtained. 

For the non-recursive filter, the Z-transfer function is 

jn H(z1"." zn) = 	
Zia 

For the recursive filter 

jl 	in • • • E a. 	. .z, 
J1"'")11 

il=° 	in=°  

ji 	in .z„ 	 n 31"."4/1 ji=0 

1.3.1 	Zero Phase Filters 

. 
Jul 	Jun 

 
The spectrum of a filter H(e 	I may be determined 

jui  
from the Z-transform of the transfer function by setting zi  = e . 

A zero phase filter is one in which 

jui 	jun  
Arg H(e 	) = 0 for all values of u.. 

1 

241 	Mn 

j1"'"in 1 
	zn 

j1=° 	jn=0 

A(z l'""zn)  H(z...,z 	- 1 n)  B(z„...,z ) 

1 N L 	Mni  
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It may be easily shown that this leads to the condition 

jul 	Su 	ju2 	Su

n)I IH(e 	= 111(e 	,e 

	

Jul -ju2 
= 1 H(e 	,e jun)I = 

-jui  

	

= 15(e 	,e
-ju2 

,aeoye'- 

namely that the magnitude spectrum is symmetrical about all frequency 

axes. 

1.4 	HISTORICAL BACKGROUND 

The earliest work on digital filters was performed on FIR 

filters using direct convolution of the filter coefficients and the 

input sequence. This was computationally inefficient and rendered 

design difficult since it needed to be carried out in the time domain. 

Fourier transform methods allowed simpler design techniques 

to be evolved, as the only requirement was the specification of a set 

of weighting coefficients in the frequency domain. The advent of the 

Fast Fourier Transform [6] WO enabled computer efficiency to be 

spectacularly improved. It suffered, however, from the restriction 

that it was limited to relatively small arrays of data if computer 

storage were not to become excessive; this limitation is of even 

greater significance when processing multidimensional arrays. 

Many of the applications of two-dimensional filters require 

that the point spread functions in the space domain should be 

circularly symmetric, as any distortion is equally likely to occur in 

any radial direction. This results in a frequency response classific-

istic which is circularly symmetric about the origin. Very similar 

Jun ) I 
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requirements are likely to be demanded in multidimensional systems, 

in particular where all the ?spatial' dimensions are of the same nature. 

Other situations arise in which the distortion of the desired 

signal has not been produced by a homogeneous medium and therefore any 

filter designed will similarly need to have a different response along 

each of the coordinate axes. An example might be the removal, or 

reduction, of scan lines in facsimile or television pictures. This 

results in frequency responses which are also not identical along the 

various axes. Another situation where this may occur is that in which 

the various axes do not represent the same type of variable, for 

example, in processing a television image, two axes are spatial and one 

temporal. In the processing of geophysical data frequently one (or 

two) axes are spatial and the third temporal; a classic example is 

the "fan filter" C2,24] . 

Most of the earliest work was on the design of circularly 

symmetric filters (or those closely approximating that ideal). One 

of the earliest papers was by Darby and Davies [7] who used the two-

dimensional Fourier transform to generate the impulse response of a 

filter specified in the frequency domain and then to process this by 

convolution techniques. Huang [8] extended this by investigating the 

use of windowing techniques of two-dimensional arrays. 

McLellan [9] initiated the concept of using a one dimension 

to two dimensions transformation to generate a two-dimensional filter 

from a one-dimensional prototype. 

An alternative approach was used by Merserau and Dudgeon Di] 

who proposed a method for the representation of two-dimensional 

arrays as one-dimensional sequences, in which a two-dimensional pass 
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or stop band filter was transformed into a multiple pass band one-

dimensional design. The resulting designs have not been very encouraging. 

The desire, in the one-dimensional case, to process data in 

real time and with small computers led to attempts to reduce the 

complexity of implementation by recourse to the use of recursive 

filters. A great deal of work has been published on the design of 

recursive,  filters in both the spatial and frequency domains. In the 

field of space domain synthesis we may mention the work of Kalman in 

1958 [x] ; Steightz and McBridie, 1965 D5] ; Shanks, 1967 [X] ; 

Bordner, 1974 E.0.3 ; Bertram, 1975 [39] , and Lal, 1975 M. The 
earliest of these techniques was the separable product technique 

suggested by Hall in 1970 	. This was followed by the design of 

Shanks et al, in 1972E53 in which one-dimensional filters were rotated 

to give an approximation to a desired cut-off boundary. Costa and 

Venetsanopoulos, 1974, further improved this technique [16] . More 

recently Bernabo et al, in 1975, modified the transformation of 

McClellan to apply to recursive two-dimensional filters [17]. 

One of the greatest problems in the design of a recursive 

filter is the assessment of the stability of the filter and the 

modifications to be applied to the transfer function to rectify any 

observed instability. 

The determination of the stability of a two-dimensional digital 

filter was first studied in 1972 by Shanks [5] and Huang [10] who 

independently published effectively equivalent tests for the stability 

of two-dimensional recursive digital systems. Anderson and Jury [il] 

and Maria and Fahmy [12] further contributed to the work although the 

computational effort is still considerable. 
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Methods of correcting unstable transfer characteristics have 

been proposed for two-dimensional systems by Shanks [5] , who based 

his method on an unproved conjecture which has since been shown to be 

invalid. Reid and Treitel Emj put forward an alternative technique 
based on the well-known properties of the Hilbert transform. Unfort-

unately neither of these methods has been found to work in all cases 

and it is,still a matter of conjecture whether this is due to a 

fundamental theoretical limitation or is due to approximations made in 

the computational implementation of the methods. 

A technique proposed by Pistor E133 and expanded by Ekstrom 

E14:1 not only detects the stability or otherwise of a filter, but at 
the same time effects a stabilizing routine where needed. It has been 

suggested by Pistor that the technique, which works well with zero-

phase functions, may also be applied in general. This has not been 

justified and examples have again provided inconclusive evidence as to 

the reasons for apparent failure of the technique in such cases. For 

zero-phase networks, the partitioning into single quadrant stable 

functions can be carried out in all cases if sufficient accuracy in 

computation is demanded. 

1.5 	OUTLINE OF ME THESIS 

The thesis will first review the problem of stability and 

stabilization of multidimensional digital filters. It will then 

consider the problem of the design of multidimensional filters, part-

icularly those whose responses approximate circular symmetry in the 

space domain. This will be followed by a review of frequency domain 

design techniques, introducing an extension of the Ahmadi E220 method 
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to n dimensions and also referring to a new method by Kap [23] which 

may also be extended to multidimensional systems. 

Subsequent work refers to the design of two-dimensional 

filters with fan-shaped cut-off boundaries, giving particular emphasis 

to a transformation technique from one-dimensional low pass filters to 

two-dimensional fan filters. This method is compared with earlier 

techniques for fan filter design and examples designed by the technique 

are presented. 



CHAPTER TWO 

STABILITY AND STABILIZATION 

To gain sagacity our mind must be 
trained on the very problems that 
other men have already solved, and 
it must methodically examine even 
the most trivial of human devices, 
but especially those which manifest 
or imply an orderly arrangement. 

"Regulae ad directionem ingenii" 

Descartes 
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lcm1' ...,mnI <- (2.2) 
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STABILITY AND STABILIZATION  

2.1 	DEFINITIONS OF STABILITY 

The most commonly used definition of stability is bounded 

input, bounded output (BIRO) stability; a system is defined as being 

BIRO stable if the output is bounded in response to a bounded input. 

This has been studied in considerable detail in continuous and one-

dimensional systems and has more recently been extended to two- and 

multidimensional systems. 

Consider the multidimensional input array {c ' m11— mn 
This is an absolutely bounded array if 

le 	• • • M 	P  < M 1 	n. 

and the array is absolutely summable if 

(2.1) 

where P and Q are positive real numbers. 

We may develop the conditions for an n-dimensional system to 

be BIBO stable as follows. The output array, tr 	1, is given 
ml'...,mn 

by the convolution of the input array, to 	1, with the impulse m   

response array of the filter, La. 	 Namely 4   

M1 	Mn 

     

r
m 
1
,...,m • • • 

  

aJ1' 
. 	.c 	

"n-  J 
. (2.3) 

''''Jn ml-j1,'" m n 

 

311=  

Application of Schwarz's inequality leads to 
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Ml 	Mn 

I rm 	m  I <>--••• > la' 
1"." n 	J1''''' 

il=f)  in=°  

l •  lc  m -31,...,m - 1 	n j  n 

and utilising the bounded nature of the input given by (2.1) results in 

ril 	M
n . 

I r
ml gees. 
	P 	

in=° 

	 (2.5) 

Comparison of (2.5) with (2.2), for a BIBO stable system, shows that 

Ta. 	I must be an absolutely summable array. We have, above, 
J1'...'3n  

shown that this is a necessary condition for BIM stability. It has 

also been shown by Farmer and Bedner to be a sufficient condition E251-] . 

Thus a necessary and sufficient condition for a network to be 

BIBO stable is that its impulse response shall be absolutely summable. 

An alternative, but less familiar, form of stability is that 

in which we require the output sequence to be absolutely summable if 

the input sequence is absolutely summable (SISO stability). By a 

similar application of Schwarz's inequality to the convolution equation 

(2.3) it may be shown that a necessary but not always sufficient 

condition is that the impulse response of the system shall be absolutely 

summable. 

Although the above conditions are basic to the definition 

of stability, they are of little value in assessing the stability of 

a specified network or system. For this it is simpler to operate in 

the frequency or z domain. The stability of a non-recursive filter, 

however, can only be specified in terms of the absolute summability of 

the coefficients of its Z-transform, which is a direct application of 

the above criterion [26] . 
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2.2 	SHANKS'; STABILITY THEORED4 

For a recursive filter it has been shown by Shanks D,26.] 

that the stability of a system is controlled entirely by the properties 

of the denominator of the transfer function. The conditions imposed on 

the denominator function B(zi,...,zn
) in order to be assured of 

stability are that 

. 	E D 	(2.6) 

where 	D'f(z-,1'19***/0"--11z.-<-11 
i=1 

Application of this theorem in one dimension is relatively straight-

forward since the fundamental theorem of algebra states that every real 

polynomial in a single variable may be factorized into real linear and 

quadratic factors and thus the location of the roots of the denominator 

may be obtained, if necessary in high-order systems, to any desired 

accuracy, by a computer algorithm. 

In two or more dimensions the fundamental theorem does not 

hold. In fact it may be shown that in the general case, it is not 

possible to factorize a multivariable polynomial into first and second 

order factors. The stability problem thus devolves into a determination 

of the continuum of values of zz2'...zn for which B(z
'
z
n
) = 0 

and checking whether they lie within the domain D. 

Shanks' approach was to define an infinite impulse response 

convolution filter, g 	, having a Z-transform 
ml"."mn 

G(zi ,...,z.) = 1/B(z 
1""'zn)  

He then showed that the stability condition 



• 

ri(z1'DO.,
n
) / 0 V(z

i
, i=1,...,n)e D 

is identical to the condition that G(zi,...,zr) shall be convolutionally 

stable, i.e. that there exists a stable filter, g, such that convolution 

of g with b shall yield the multidimensional impulse, 5 ; thus 

g b = 5 
	

(2.7) 

2.2.1 	Alternative Stability Formulation 

Anderson and Jury L273 have proposed an alternative formul- 

ation of the stability criterion of equation (2.6). This states that 

a system is stable if and only if (iff) 

B(z1,0,...,0) y  0 tL 1z11 	1 

/ 0 V zl l = 1 n 1z21 	1 

(2.8) 

n-1 

/ 0 	Ct(nizil = 1) r) Izni 
i=1 

This test may be formalized and applied by using the technique of 

Anderson and Jury E11,27] 

2.2.2 	Modification of Shanks' Theorem 

It has recently been shown by Goodman E28D that the necessity 

of Shanks' theorem fails under certain conditions in which the transfer 

function numerator as well as denominator are multivariable polynomials. 

He has shown this for two-variable functions but the limitation is also 

relevant to multidimensional systems. 
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A two-dimensional polynomial, although not factorizable into 

first and second order factors, may be factorized into a set of unique 

irreducibleApolynomials. 	 -there may be a number 

of points, (zi,z2), at which the demominator polynomial, B(zi,z2), is 

zero and it is these which control the statility. In the majority of 

cases the numerator, A(zi,z2) 	0, and the point (zi,z2) is termed a 

pole. However, in some cases A(zz2
) = 0 also; such a point is then 

termed a non-essential singularity of the second kind. The existence 

of such points modifies Shanks' theorem and may show a function to be 

stable despite the existence of points at which the denominator poly-

nomial vanishes. 

A modified function F(zz
2
) will represent a stable system 

if P(zi,z2) has no poles in D12  = f(zi,z2): Izil< 1 nlz21 < l and 

no essential singularities of the second kind, except possibly in 

Ri2  = t(z1,z2); Izil = 1 nlz21 = 

When B(zi,z2) X 0 in D12  = f(zi,z2); lz11< 1() 1z21< 11 

but F(z1'z2)  has a non-essential singularity of the second kind in R 12' 
it appears that F may or may not be stable. Examples in which either 

situation may occur have been given by Goodman. 

This may be summarized by saying that Shanks' stability 

theorem is both necessary and sufficient except when essential 

singularities occur in the domain R12. An extension to n dimensions 

would suggest that the necessity of Shanks' condition might fail if 

essential singularities occur on the domain R
n = f(zi,...,zn); n lz. 

i=1 
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2.3 	HUANG'S STABILITY TEST 

Shanks/ theorem has proved to be difficult to apply in 

practice and thus alternative techniques have been proposed for its 

implementation. Huang Di.] put forward a technique which is relatively 

simple for two-dimensional systems and although it might, in principle, 

be extended to multiple dimensions the application would be incredibly 

tedious. 

He states that a two-dimensional function 

A(z1,z2 ) 
H(zi,z2) _ 

B(zi,z2) 
(2.9) 

is stable iff 

1) the map of RI  = (z1: 1z1.1 = 1) in the z2  plane according 

to the transformation 13(zz
2
) = 0 lies outside the domain 

D2 = (z2
: 1z

2
1 EIZ. 1), and 

2) no point in D1  = (z1: 1z11 C  1) maps into the point 

z2  = 0 by the relation B(z1,z2) = 0. 

To apply this the unit circle R1 is mapped into the z2 
plane 

and checked to see whether it intersects the unit circle in the z
2 

plane. In addition the equation B(z1,z2) = 0 must be solved to check 

whether the magnitude of any root is less than unity. 

Despite the simplification, Uhe required computation is still 

laborious since it involves testing at an infinite number of points. 

Huang showed that the test could be simplified by reduction 

following a technique due to Ansel] [2:0 which would result in a finite 

number of steps. 
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2.4 	ANSELLIS STABILITY TEST  

Ansell's theorem E29] effectively transforms the filter function 

H(zz2
) from the z-domain to the s-domain via the two bilinear 

transformations 

1 - z1 s - 	 1 	1 + 

1 - z2 
2 - 1 z2 

1(sl's2)  to give A(si,s2) - 11(si,s2)  

(2.10) 

The stability criteria may now be transformed into the s-domain as 

follows. 

A filter H(zz2) is stable iff 

1) in all real finite u1, 
the complex polynomial in s

2' 

13(jul, s2), has no zeroes in Re(s2) ;-= 0, and 

A 
2) the real polynomial in sl, B(s1, 1), has no zeroes in 

Re(s1) ;% 0. 

Condition (2) of Ansellis test is relatively simple to apply 

using existing one-dimensional stability techniques. Condition (1) is, 

however, more difficult since it involves a study of the roots of a 

complex'polynomial of a complex variable. It may be put into an 

alternative form by considering the polynomial B(jui,ju2). This may 

be written as a complex polynomial in u2  whose coefficients are real 

and imaginary functions of ul. A matrix function of u1  may now be 

constructed in which the elements are functions of the above complex 

polynomial. 
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The first stability condition of Ansell is now satisfied if 

all the principal minors of-this matrix are positive for all real u1. 

The technique, albeit tedious, at least comprises a finite number of 

steps. 

It is also apparent that the same technique may be applied 

to multidimensional polynomials by successive branching techniques, each 

set of matrices having one variable eliminated. The computational 

labour precludes the use of such a technique at present for anything 

more complex than the most trivial examples for which the stability 

could almost be assessed by inspection. 

2.5 	ANDERSON AND JURY STABILITY TEST 

Anderson and Jury again tackled the significant problem of 

attempting to bring the stability testing procedure to a simpler form 

which would facilitate computation. Their technique originates from 

the formulation of the stability conditions of equation (2.8). 

The first of these is relatively simple since it is a 

function of only one variable and there are a number of tests for 

determining whether the roots of such a polynomial will lie within 

unit circle. One such method is by use of the Schur-Cohn DI: matrix; 
The second is based on the Jury table D1] . The former involves setting 

up a matrix formed from the coefficients of the function to be tested. 

In the Schur-Cohn test the positivity of all the eigen values of the 

constructed matrix is assessed. 

In the Jury test a sequence of polynomials is derived from 

the original polynomial using a simple recurrence equation. The values 
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of these polynomials at z = 0 are computed and their product obtained. 

The positivity of this quantity is a necessary and sufficient 

condition for the original polynomial to have all its zeroes outside 

the unit circle [5] . 

The second and subsequent members of equation (2.8) are 

more difficult to establish. 

Considering the second such polynomial which is a function 

of two variables, 7i s zos the test may be carried out in two parts. 

First, a Schur-Cohn matrix is constructed considering z2  as 

the variable parameter; the elements of the matrix will now be 

functions of zl. For stability the Schur-Cohn matrix must be negative 

definite for all zi  such that Izil = 1. This is now a problem 

involving self inverse polynomials. The procedure is protracted but 

will ultimately lead to the required assessment. 

For third and higher dimensional filters, the same branching 

technique may be used, but for anything greater than second order 

filters the size of the matrices becomes so great that they may only 

be manipulated with great difficulty and by using inordinate computer 

time. The technique has been well documented for two-dimensional filters. 

2.6 	MARIA AND FAUMY METHOD 

The second and subsequent elements of equation (2.8) have 

been tested by a technique developed by Maria and Fahmy [12] . 

They evolved an extended form of the Jury table which is 

obtained from the coefficients of the Original polynomial by the 

relatively Fimple tee lelique of computing a succession of 2 x 2 
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determinants. The series of initial elements of the Jury table must 

all be non-negative (except the first, which must be non-positive). 

For two-dimensional systems all these coefficients will be 

functions of the variable z1; however, much simplification is 

achieved since the multiplying coefficients are all real and as the 

test is applied on the bound-:y of the unit circle where Izil = 1, 

we may write z*
1 
 = z-1

1 
• 

For multidimensional systems the branching process outlined 

in the case of the Anderson and Jury test may be applied, but as no 

determinants of higher order than 2 need to be determined, the 

computational effort involved is minimized. 

2.7 	COMPARISON OF STABILITY TESTS 

The Ansell stability test suffers from the difficulty of 

applying the bilinear transformation before application of relatively 

simple tests for roots of a function in a bounded space. Certain 

techniques have been evolved for mechanising the application of the 

bilinear transformation E52,33] which simplify the computational effort 

of this method. 

The Anderson and Jury test removes this drawback, but the 

formation of the Schur-Cohn' matrix for higher orders is tedious 

since the order of the matrix is equal to the degree of the denominator 

of the transfer function. 

The Maria and Fahmy method may perhaps be complimented 

on being the least tedious to implement since all the matrices 

involved are of second order only. 
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2.8 	STABILIZATION TECHNIQUES  

Having obtained a solution to a two-dimensional design 

problem and determined a multivariable transfer function which 

satisfies the desired specification, it is naturally a disappointment 

to the designer to complete a long and tedious stability assessment 

only to find that his carefully designed filter is unstable. 

To overcome this difficulty a number of techniques have been 

put forward which may be used to process a transfer function in order 

to obtain a new and stable function which has approximately the same 

amplitude response. This will naturally involve a modification to the 

phase response. 

Three techniques will be considered here. Two of them rely 

on varying the phase of a filter without affecting its amplitude. The 

third technique is mainly applicable to zero-phase functions, a class 

of functions which cannot be stabilized. by either of the two' earlier 

methods. 

	

2.8 	SIMS' STABILIZATION Mh1HOD 

The basis of this method is a conjecture which was put 

forward by Shanks D7:I which is a direct extension to two dimensions of 

an established property in one dimension D8] . It is regrettable that 

Genin and Kamp pl9,50] subsequently showed that the conjecture was 

false in the general case by quoting a counter-example. Further 

counter-examples have since been studied by Tola E513 . 

We shall start by stating a few basic definitions. 
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A one-dimensional minimum phase sequence, [1) 3 , is one which m) 

has no zeroes inside the z-plane unit circle, namely the z-transform 

B(z) is such that B(z) 	0 V i z i -5,-; 1. 

A two-dimensional minimum phase array, (1) 	1, is defined 
ml,m2 

as an array for which the Z-transform B(zz2
) has the following  

properties! 

( ) 
IA 

B(z1,z2) evaluated at any z1 such that i z
1 

= 1 has no 

zeroes inside the unit circle l z2
I = 1, namely that 

B(Z1,z2) 	0 VI Zil  = 1 n I z21.‹ 1, and 

(ii) 	B(z1, 2) 	0 V IZiI < 1 ni 21 = 1. 

From these definitions we may deduce that a necessary and sufficient 

Condition for an array fb 	1 to be minimum phase is that 
ml'  m2 

B(z
1
,z2) y4 0 V I  zil 1 r) lz21 ‹ 1 
	(2.11) 

A multidimensional minimum phase array [b • 	may 

similarly be defined as any array whose Z-transform B(z
1
, ...,zn

) 

satisfies the necessary and sufficient condition that 

zn) 	0 	 "(z., i=1,..•,n)e D 

where 	D = t(z 	n l z i' 	• i=1 

(2.12) 

Consider. 	now a multidimensional recursive filter having  

a Z-transform transfer function 

F(z1". '"zn )  = 13( z1, ...,zn ) 

We may resta-t. the stability condition of equation (2.6) in the form 

that F(z v -.49 zn)  represents a stable system if B(z 1 9.4v, zn
) is the 

Z-transform of a minimum phase array. 

A(7 
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An unstable network with transfer function P(21,...,zn) will 

have a denominator function B(z1,...,zn) which represents a non-minimum 

phase array tb
m 	

1. We may now define an array Lpm 	' /,...,mn  1, .. "mn  

whose size in any dimension m. is arbitrary and unrelated to that of b, 
1 

having the idealized property that the convolution of p with b is 

exactly equal to the multidimensional impulse array b. Such an array 

p will be termed'_ the planar least squares inverse (PLSI) of b. 

In general it will not be possible to obtain an array of 

arbitrary size which will exactly satisfy this equality. It is 

therefore necessary to define the PLSI as that array p which satisfies 

the convolution equation 

p * b = 

where p is chosen so that g approximates bin the mean square sense. 
9 

The mean square error Q between g and 6 is 

Q
2 

= (1  - 4,0,...,0
)2 2 

gi 
"1"..  in 

(2.13) 

where 	It1  . := M. . +N.1  - 1, 

and 	1, Ni1  I. and N. are the sizes of the arrays b and p respectively 

in the dimension m.. 
1 

It will be seen that this error function is a quadratic 

function of the variables g.. and hence its minimization will 
a/1—'3n  

result in a set of linear equations which may be solved in a 

relatively simple manner. 

Thus for any given multidimensional array, an infinite. 
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number of PLSI may be generated, each of a different size in one or 

more dimension. 

The significance of the planar least squares inverse arises 

from the conjecture of Shanks applied to tvu-dimensional arrays. 

Shanks conjecture may be stated as follows:- 

The planar least squares inverse of any two-dimensional 

array b 	is always minimum phase. 
m1'1/12 

The conjecture is an extension of a well-established property 

of one-dimensional arrays which has been shown to hold for a great many 

two-dimensional systems. However, as noted above, the technique is not 

infallible and it has now been shown that the conjecture is fundamentally 

false. Despite this, it still does provide a useful technique for 

stabilizing, or at the worst reducing the instability of, an unstable 

filter :51] . 

The stabilization technique proposed by Shanks involved 

determining the PLSI, p, of the denominator array, b, of an unstable 

filter and then obtaining a second PLSI, b, of the array, p. 

According to Shanks' conjecture the array b will be minimum phase and 

hence a filter designed using the original numerator function and a 

denominator function derived from b should be stable. Furthermore it 

may be surmised that the magnitude function of the original and the 

stabilized function should be approximately the same since one is a 

double planar least square inverse of the original. The accuracy of 

this approximation to the magnitude depends upon the closeness to 

which the array g approximates the unit impulse function bin the 

process of obtaining the PLSI. 
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It seems likely, therefore, that the greater the size of the 

PLSI array chosen, the more likely is the resultant function to have a 

magnitude closely approximating the original magnitude function. This 

fairly obvious assumption has been justified by simulation studies. It 

has also been shown that in situations where the technique fails to 

stabilize an unstable two—dimensional filter function, successful 

stabilization may be achieved by increasing the size of the inter-

mediate PLSI array. It is likely that these two phenomena may be 

related. 

No work has as yet been attempted on the application of the 

Shanks' technique to systems having more than two dimensions. Apart 

from the complexity involved in any increase in the number of dimensions, 

the failure of the technique in certain two—dimensional systems does 

not encourage expansion of the idea. 

At the present, after application of Shanks' stabilization 

technique, doubt will always remain about the success of the operation 

and a check on stability will need to be carried out. This again 

increases the computation involved in the solution of any problem. 

2.8.2 	Reid and Treitel Stabilization Technique 

It is a well known fact that the real and imaginary parts of 

a minimum phase network function are related by the Hilbert transform. 

In one dimension the real and imaginary parts F
r
(ejtjj) 

F.(ej(13) of the Fourier transform of a causal sequence f(m) are related 

by: 

Fi(ejW) 	2.7 ,J Fr(eiX  )cot(X  211"))dX 
	

(2.14) 
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If Lhe sequence i(m) is in addition, minimum phase, then the logarithm 

of its amplitude spectrum and its phase spectrum 0(e3(1)) are related 

by the Hilbert transform 

IL 
0(a3li) = 21ft  finIF(eiX)Icot( +2)dX 

-IT 
(2.15) 

This technique was used by Reid and Treitel [53] to modify the 

denominator function of an unstable network, which was therefore a non-

minimum phase network, to become a minimum phase network. Using this 

in place of the original denominator function resulted in a stable 

network function. 

In order to adapt equation (2.15) to evaluation on a digital 

computer it is necessary to utilize the discrete Hilbert transform 

instead of the continuous Hilbert transform of equation (2.15). This 

is represented in one dimension by 

N-1 

0(m) = N 	 ln IF( i)1[1-(-1)1111 cot IC  (Ni) 	(2.16) 

i=0 

where F(i) is defined over the discrete range of values i = 0,1,...N-1. 

This procedure may be viewed alternatively as an evaluation of the 

integral in equation (2.15) by a trapezoidal approximation. It is 

thus likely that any procedure based on this technique may not be 

satisfactory in all cases. 

The technique proposed by Reid and Treitel D3] is based on 

the definition of a causal array given in Chapter 1. For an 

n-dimensional system, a causal array b(m
1 	mn) is defined as 

i=0 1  
U b(m 1,...,mn) = 0 

• 
(2.17) 
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wherem.1  varies over the discrete set 	
M.1-1) .dll i = 

The even and odd parts of such a sequence, be and bo
, are 

defined as: 

be(Tni  , • • ,mn) = 2 Eb(mi, . • • ,mn) + b(Mi-mi, • . • ,Mn-mrn 

b (m 	r- ,mn) 	 - b(M -m 	-mnri 0 	" ' 	 1 1 

(2.18) 

Using these two definitions and that for causality, we may write the 

relationship between the even and odd parts of a minimum phase 

multidimensional sequence as 

b (m o l'""mn)  = Esgn(m1' ...,m )4.-bdy(m l' • ' • 'FIn): be(ml n)  

(2.19) 

where the multidimensional signum function is defined as: 

1.-} 1 for ((0 <mi< Mi/2) 
1=1 

-1 for 	(Mi./2 <mi< 
1=1 

(2.20) sgn(mi,... , mei) 	- 

0 otherwise 

and the boundary function needed to make adjustments at the boundaries 

is defined as: 

1 for 3.C
I 1 

(m.=0) () (0 <m. <M,/2) 
= 	J 	J 

bdy(m
1 	

mn) = -1 for n (mi=0) 0 (Mi/2 <mi < M.) (2.21) 
1=1 
i j 

0 otherwise 

The sequence b(m
1 	m ) may be obtained from the even and odd parts: 

b(m 1,..orn) = be(m1,...,mn
) + b0(m1,...1mn) (2.22) 
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Now the real and imaginary parts Br(m1,...,mn
) and B.(m1 	n

) of 

the discrete Fourier transform of an n—dimensional array b(m 	mn) 

are related to the discrete Fourier transforms of the even and odd 

parts by 

B r(m,,..,,mn
) = DFT e(m1 	

mn).] 
	

(2.23) 

B.(ml'.•'  mn  ) = —j DFT o(m4'... mn)] 

Substituting equations (2.23) into (2.19) we obtain: 

,mn) 	—j DFT 	,mn)+bdy(mi,... ,mn)}. 

.IDFT[Br(m1,.. • ,mn)1-] 	(2.24) 

which defines the multidimensional discrete Hilbert transform. 

This may be applied to the denominator magnitude spectral 

array 1B(mi,...,mn)1 of an unstable transfer function to give the 

phase array, 0(mi,...,mn), by 

0(m/,...,mn) = —jDFT EIsgn(ml, 	,m.)1 . 

.IDFT llogi B (m1, . . 	I 1 

	

(2.25) 

The procedure has been applied by Reid and Treitel [53] to two—

dimensional sequences and shown to give satisfactory results in many 

cases. However, a number of situations in which it fails have been 

shown to exist DiC . The cause of this may be the result of the 

finite truncation of the infinite array 0(m1"."  mn) or the approxim-

ation of the integral by a finite sequence. In addition, although a 

uniqueness theorem has been proved in one dimension, such a theorem 

has not yet been discovered in two or more dimensions :563 . 
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It is again seen that after application of the technique in 

any situation, a stability check must be carried out to verify that 

the stabilization procedure has been satisfactory. 

2.8.3 	Pistor Stabilization Technique  

The techniques studied so far may be considered as true 

stabilization techniques in that they cause a modification of the 

transfer function of the network in such a manner that the amplitude 

response is kept approximately unchanged, while the phase response is 

adjusted to ensure stability of the modified transfer function. Such 

procedures are thus not applicable to zero-phase functions which do 

not permit phase modification in any manner which would improve the 

stability. 

In one dimension zero-phase functions can only represent, 

apart from a trivial case, non-causal sequences. It has been shown 

that such functions may be realized by processing data, first in the 

positive sense along the axis and cascading this with a processor 

working in the negative sense. As non-causal sequences do not exist 

in the time domain, this presents no problem; if the data is 

distributed in a single spatial dimension it may be stored and 

processed recursively (or non-recursively if required) in any manner 

demanded. 

With this in mind, the approach used by Pistor [13] in two 

dimensions is to decompose the array representing the impulse response 

of the filter into four single quadrant arrays, If, 
2
f, 

3
f, 

4
f, each 

recursing in a different direction. The output array for an arbitrary 
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input array may be obtained by convolving the input successively with 

the four quadrant arrays in the appropriate directions of recursion as 

shown in Fig. 2.1. 

The technique may be applied to any unstable filter function 

but in its simplest form, and probably most useful application, it is 

used with zero-phase functions. The essence of the problem is the 

determination of 4 sequences which represent stable transfer functions 

whose product is equal to the given unstable function and which recurse 

in the four cardinal directions shown in Fig. 2.1. 

This problem has been solved in two dimensions by Pistor E13] 

who transforms the denominator of the given network function B(e
jul 

 ,e
ju2 
 

A ill].  in2 
in the spectral domain into the function B(e 	,e 	) in the cepstrum 

domain by 

A  ju
1 
 ju2  / jul 	ju2N B(e 	, e 	) = 1n1D(e 	, e (2.26) 

The technique has been extended to n dimensions by Ahmadi and 

King [18,223 who show how an n-dimensional zero-phase filter may be 

designed as the cascade of 2n  stable recursive filters, each recursing 

in a different direction. The decomposition is done in the n-dimensional 

cepstrum domain in an identical manner to that given by Pistor. 

The procedure may be outlined with application to an unstable 

zero-phase n-dimensional filter having a transfer function 

A(z /,..,.z ) 
F(z 	_ 	' n 

(2.27) 

in which 
Ml  

B(7 1.2.6.9Zn) = >--- ••• 
.,=o 

 

Mn m
1 b

ml 	m n
.z1 	znn 	(2.28) 

  

m =0 n 



4
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INPUT 

ARRAY 

Fig.2.1 Pistor's decomposed single-quadrant 
filters convolved recursively with an 
input array. 	, 



-jul 	-junN B(e 	) = 

Mn 

• • • 

m =0 M
1
= 

-j(u14-...4-11n
) 

b 	.e m ...m 1' 	' n (2.29 ) 

Mn 

m =0 
n b 	.e m 	m 

1, 	n 
• • • 
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The spectrum of B may be evaluated on nizil = 1 as 
i=1 

The cepstrum B'may now be evaluated directly as 

A f .."j111 	rI 
B(e 	,...,e 	) ) = 

A 
The cepstrum array Lb 	is now decomposed into 2

n 
 single quadrant 

ml,""mn 
arrays. No optimum procedure has been obtained for this decomposition. 

One satisfactory technique is to decompose b symmetrically so that for 

the k
th 

quadrant filter 

= g bml  
mi,...,m 

n 
where 	g = 1/2n 	for n (m. = 0), 

1=1 1  

g = 1/2n-1  forallvaluesofm.along coordinate one-dimensional 

axes common to quadrant k and any other quadrant, 

g = 1/2n-P for all p-dimensional coordinate planes common 

to quadrant k and any other quadrant, 

g = 1 	otherwise. 

The next step in the design is to transform the single quadrant array  

lib in the cepstrum domain to the frequency domain array 
u  mi,..., mn  

tcb 	This is achieved by initially determining the value 
ml"'"mn 

at the origin from 

1% 
	
= exp(4 

0,...,0). 



41k. 

and then deriving the remaining values by the recursion formula 

• • • 

Pi= I pn 
for all i = 1 	.,n and m. 	0 

This infinite array now requires truncation to a finite length before 

the single quadrant denominator function 1{B(z1,...,zn
) may be 

generated. 

The advantage of the Pistor technique is that, in theory, 

the overall transfer function of the cascade of single quadrant filters 

should be identical with that of the given transfer function; this 

is not achieved in practice since the single quadrant filters are, of 

necessity, truncated approximations to the infinite length filters 

designed by the technique. Furthermore, the technique involves the 

determination of multidimensional Fourier transforms, and these can 

only be performed to a limited accuracy by computational techniques. 

The technique will always give stable single quadrant 

filters and it has been shown that the accuracy of the approximation 

to the specified impulse response is improved by using larger arrays 

for the intermediate Fourier transforms E13,143 . The truncation of 

these arrays is liable to introduce undesirable poles in the transfer 

function. Ekstrom and Woods [110 have proposed the introduction of 

weighting functions in the two-dimensional case to remove these 

possible poles from the unstable region. It has been shown that 

the same technique using multidimensional weighting sequences may 

improve the design procedure in these problems. 

m
1n 

m. 
1 	mn 

...T(
L).1TT) 

	

m. 	
.kb 

	 1 	-1"."1)11 ml-P1"."111n-pn 
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2.8.4 	Review of Stabilization Techniques 

Shanks' method has been found to be highly satisfactory in 

many cases, is simple to implement, but is based on an erroneous 

assumption which invalidates its application in some situations. It 

is not suitable to multidimensional systems or to zero-phase functions. 

Read and Treitel's method is also not capable of guarant-

eeing the stabilization of even non-minimum phase networks. The 

failure appears to be due to a theoretical error rather than comput-

ational approximations although it does give satisfactory results in 

many cases. 

Pistor's technuque may be applied to all types of zero-phase 

filter of any dimensionality and although stability of the resulting 

decomposed filters cannot be guaranteed, an increase in the size of 

the intermediate arrays will always lead to a stable result. 



CHAPTER THREE 

SPATIAL DESIGN TECHNIQUES 

Metiri sua regna decet, vires — que fateri. 

"Pharsalia" 
Lucan 
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SPATIAL DESIGN TECHNIQUES  

3.0 	INTRODUCTION 

Although the theme of this thesis is the application of 

transformations in the spectral domain to the problem of the design of 

multidimensional digital filters, it is desirable to look briefly at 

other design methods in order to appreciate the advantages of the 

spectral transformation methods. 

Probably the most obvious technique which may be adopted to 

design a filter to process a given multidimensional input array is a 

direct optimization routine. This consists of designing a filter to 

give an output approximating the desired output and then to modify the 

filter coefficients in such a manner as to minimize some function of 

the error between the output and the specified output. 

The main drawback to this approach is that there is no direct 

means of ensuring stability of the output array when the true error is 

used as the criterion and that techniques for stabilization of a filter 

in the space domain are not available. 

However, some of the techniques available are of considerable 

interest and will be reviewed here. 

3.1 	KALMAN TECHNIQUE 

In 1958 Kalman D4=1 proposed a technique for the design of 

one-dimensional recursive filters which was later extended to two 

dimensions. 

The Kalman technique is outlined in this section in a form 



.z 	z 
ml 	mh D(z1,...,zn) = 	 .•.E dml"..'mh 1 	n 

m1=0 m n=0  
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applicable to multidimensional systems as derived in a direct extension 

from two dimensions by Nowrouzian et al D6,373 . 

Suppose that the desired impulse response of an n-dimensional 

system is fd 	1 for all m E SK, where 
m19••  • °In 

(3.1) SK  = 	i = 1,2,...,n): (-) 0 <mi< K. 
i=1 

Then the desired filter transfer function is 

KI Kn 

Let the approximating n-dimensional recursive filter be 

(3.2) 

A(z1""zn) 

P(z1"."zn)  B(zzn) 	
(3.3) 

c°E
c% 	. :11 	z h 	(3.4) mi.9.00,M'iri  1 

m1=0 mn=0 

N 	Nn1 	
m 

 A(z
n) = E 	zn 	(3.5) 1 	

' n
. m 	m zl 

	

m =0 	mn=0 1 
M1 	Mn 

1"'"z  ) = 	b 	z 	z 	(3.6) n 	El•••• E 	.ml  m1,000,mh 1 	
mn B(z   

where b0 	0 = 1 without loss of generality. 

The Z-transform of the n-dimensional unit impulse array 

(6m 	m 1, 	nj is defined as X(z 1"'"zn).  

We now wish to choose coefficients a 	, b 
ml'''''mn ml"'"mn 

of A(z1,..,,zn) and B(z n) such that the coefficients of the 

following true, finite error rare minimized in a least mean squares 

sense. 

Let 

and 

M
1
=0 Mia70 
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A(z1,...,zn) 
T(z "

z
n
) _ B(z 	z " n

) X(z1"..'zn) - D(zl'""zn) 

K 

.z1 	zn
n (3.7) 

m 	' m n 
mn7°  

This is a highly nonlinear optimization problem and is thus not amenable 

to simple computational procedures. However, an iterative solution may 

be formulated whereby the minimization may be carried out by a succession 

of linear processes. 

This design technique is relatively simple and results in a 

good approximation to the desired impulse response specified. A 

solution to the problem is always guaranteed. Unfortunately, there is 

no assurance that the filter so designed will be stable. 

3.2 	SHANKS? METHOD 

Shanks [38] proposed a solution to the design problem by 

minimizing a false error function in order to obtain a recursive filter 

structure. This has been extended to n-dimensions by Nowrouzian et al 

[36,37,18]. 

Consider the approximating filter function given by equation 

(3.3). This may be written in the form 

A(z
'zn) = B(z 	zn).F(z 	z ) ' 	l'"" n 

Transforming this into the space domain expresses the numerator sequence 

in terms of the convolution of the denominator sequence and the impulse 

response of the filter. Thus 

ml_ 

ml 



••• m1110.011M

n 

b. 	. .f 	. 
J1"—"n ml-J "."mn-jn =0 

M
n 

n jn=0 

n iiA0 	-m E SN  
i=1 

mi''",mn 
. .f 	. 

J1" —"n ml 	n 
m 

b.. .d 	. 
il"""n 1121-31,""mn -in 

••• 

J1=0  n n=°  

1=1 
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a 

for all m ESN. 

= 0 	for all m ESN 
	( 3 . 8 ) 

where 	m = the vector fm1,...,mn) 

and 	SN  = nzt SN  

A
n 

and 	SN  = f(mi, 1=1,2,...,0 : (1 0 < m1< Nil 
i=1 

Noting that b0,0,...,0 = 1 we may write equation (3.8) as 

We may now choose the coefficients b.. such that f 
31"—"n 	m 002 M 

1 	n 
closely approximates the desired impulse response d 	. We mi,...,mn  
may write 

    

n 
• • • 

 

b. 	. .d 	. 	• (3.9) 
J1"""n m1 -j1,""mn -3n 

n jn=0 n i=1 
m E (TN  ()SK) 

where 	SK  is defined in (3.1). 	 • 

Now we may again define a finite error, e 	, which is ml,...,mn  

not a true error since it is only defined over a limited range of the 

given impulse response, by 

d 	= e m
1n 	m • • • m 1 	n 

-v- m c TN. n SK 	(3.10) 
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Thus 

 

M
n 

 

 

emi,••.,mh  :E] 4 9 

	

4  .d 4 	
-inm1-

J"1"n 
4 

b

0  
m Ccr  n sid 

(3.11) 

The error E2  = e2 is now minimized with respect to the 
mi,...,mn  

SE)  

coefficients of B. This may be carried out relatively simply since the 

optimization may be effected by setting the partial derivatives of E
2 

with respect to the b.. to zero, and these form a set of linear 
al"."an 

simultaneous equations in the denominator coefficients. 

Having computed the denominator coefficients, we may obtain the 

numerator coefficients by minimizing the mean square difference between 

the coefficients of F(zl'"'zn) and the coefficients of the desired 

response D(zi,...,zn). Thus the numerator coefficients are chosen such 

that the mean square error 

K1 	Kn  

e2  = LEfi 	. - d. 	
. 

-1""'in J"."3n 
il=°  jn=°  

(3.12) 

is minimized with respect to the coefficients a.. . This is, 
49.-.1Jn  

in fact, a Wiend-r filtering problem in n-dimensions and it again results 

in a set of linear simultaneous equations which are, in principle, 

directly soluble. 

An alternative method for determination of the numerator 

polynomial, albeit of lower accuracy, is to compute the coefficients 

a 	from the convolution of b 	and d 	derived ml,...,mn 	 m
1n 	m 	m 1" n 

from 

A(z 1,...,z) = B(z 	"zn)j)(z1"."zn) 

	
(3.13) 

- 	 Esic  



co 
ET; 	- f . 	. 

-19.""n J19""ii:j2  

  

e
2 

= 

i =0 

(3.14) 
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The Shanks method appears to provide a good solution since it 

depends only on the solution of linear simultaneous equations. It also 

does guarantee a solution to the problem. However, the procedure 

involves minimization of a false, though finite, error and results in a 

filter which is not necessarily stable. 

3.3 	BORDNER SYNTHESIS TECHNIQUE  

Bordner [20:1 proposed a synthesis technique which involves 

augmenting the given finite length impulse response array by a "tail" 

array to convert it into an infinite array and then minimizing the error 

between the filter impulse response and the augmented desired impulse 

response. 

This procedure may be extended to n-dimensions in the 

following manner [36,37,18] . 

Let us assume that a hypothetical sequence fa 	1 is j1,...,jn  

given for E. Sop  where Soo  is the set of integers defined by 

Soo  = [(ji,...,jn) : n 0 Cji<oo }. 
i=1 

An n-dimensional recursive digital filter is to be designed 

with transfer function P(z19 	n) such that the true, infinite, mean —9  
square error 

is minimized. 

It has been shown that with appropriate choice of d. 
J19...,jn  

minimization D03 of equation (3.14) results in a stable recursive 

filter. 
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N1  Nn 
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Now consider the specified impulse response sequence 

.. defined for all .1 E SK  and let us define 
a1,""an 

a.. 	= 
al"'"an 	Jl"."in 

= ft 
J1"."in 

- L EisK  

-v- j E (co 	) (3.15) 

The technique originates from the simple argument that if the specified 

sequence were, in fact, infinite, rather than of finite length, the 

least mean square minimization solution would of necessity lead to 

a stable recursive filter. It is intuitively obvious that the 

augmenting sequence should be the most natural extension of the given 

sequence d.. and which is square summable over S. This 
J1" ."an 

ensures stability of the designed filter. 

Thus the sequence D 	, must have exactly the same 
J1" .".-In 

functional form as f,, . Its n-dimensional Z-transform is given by 
J1"."Jn 

1 
A-(z1,...,zn) 

Ft(z . zn 1"" )  _1111(Z1,...,zn) 

in 

fJ
t. " 1.". .z„ 	zn 	(3.16) 

3n 

where 	Al(z  1 "zn) = 	ai„ 	„ .z, n J1=0 in=0 Ji."'"Jn Jl 

	in 	(3.17) 

M1  Mn 

and 

The problem may now be formulated as the minimization of the 

mean square error defined by 

= in 	(3.18) „ .z, 	zn J1"."Jn 
j1=0 in=0 
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2 
e 	= 	•• • 	 - f . 

31,—"Jn 31"."j  

2 
+ 	Ef 	4 	f4 

j1"."'In .J1')  

2 _ f„ 
'119•""n Jl""" 

(3.19) 

 

with the only constraint that Ft(z1"*"zn)  must represent the transfer 

function of a stable recursive filter. (This constraint is identical 

with the requirement for square summability already mentioned.) 

This minimization may be performed iteratively by first 

selecting a stable n-dimensional sequence which has a Z-transform, 

Fqz...,zn) and then solving the minimization of equation (3.19) to 

obtain f. 	. These may now be used as a fresh approximation to 
J1"."Jn 

the utailli sequence f!: 	. The optimization is repeated until 
J1"—"n 

the error f. 	„ 	„ is equal to the n-dimensional zero 
J1"""n til"""n 

sequence. 

The minimization of equation (3.19) involves the least mean 

square approximation for absolutely summable infinite multidimensional 

sequences. This has been solved for one and two dimensions [400and 

the solution is amenable to extension to n dimensions. A solution is 

guaranteed which minimizes the true error and which ensures that the 

designed filter is stable. Unfortunately the solution does not 

necessarily converge on a global minimum. The computational labour 

is very great and finally the initial choice of an appropriate n-

dimensional "tail" array is arbitrary but the choice of a natural 

ni 2 



j1=0  n=°  

Db. 
J1,...,in  

N1 	Nn  of ml,...,mn  
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extension array to the given impulse response array is vital to the 

reduction of complexity of solution. 

3.4 	BERTRAM1 S DESIGN TECHNIQUE  

A two-dimensional design technique proposed by Bertram [39] 

has been extended to n-dimensional systems as outlined below [37,36] . 

The method proposed is essentially an iterative one which starts from 

an arbitrary initial set of numerator and denominator coefficients 

and attempts to improve on these values to give a closer approximation 

to the desired impulse response. 

At the (p-1)th  iteration assume that we have obtained a set 

of coefficients (A(P-1), B(1 1)) = C(P-1)  for both numerator and 

denominator. Then we wish to improve this set by minimizing the mean 

square error 

K K1 	n  2 
e2  = 	E Ed 

m 	- f 
1"m  n ml""'m  m1=0 mn=0 

(3.20) 

Now we may approximate this error by means of a truncated n-dimensional 

Taylor series 

K1 Kn 

C=C(p-1)  
of  ce 	E Ed 	 - f 

mi,...,mn  
m1=0 mn=0 

	

N1 	Nn Bfm 
1,..,,m 

o na 

	

j1=0 	n =o 31"."in c=
c(1)-1) J11.4"jn 

lb. 
t C=clP,-.1) AJi,•••,ji 2 (3.21) 
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where 	L\a. 	= acP) 	. - a(P-1) 	(3.22) 
J1"*".3n 31"— "n j1"'"jn 

and 	Ab. 	. 	= b(P) 	. - bcP-1)  . 	(3.23) 
31"—"n 31"""n J1'!7"Jx1 

The partial derivatives in equation (3.21) may be computed by 

means of a recursion formula and the problem now reduces to minimization 

of ef 
2 
 with respect to na. 	and Ab.. and since this is a 

.31"—"n 	31"'"Jn 
quadratic function of the variables, a global minimum is assured. 

Values of the coefficients may now be determined from equations (3.22) 

and (3.23) and the iteration continued until the error is less than a 

prescribed minimum value. 

The convergence of this algorithm is assured and a solution 

to the n-dimensional problem is guaranteed. The computational labour 

may be shown to be relatively simple. However, the main disadvantage -

is that the initial values need to be chosen so that they do not 

deviate too far from the final value. Furthermore, the mean square 

error given by the Taylor series is a poor approximation to the true 

error and once again the designed filter is not necessarily stable. 

3.5 	LAMS DESIGN TECHNIQUE  

Lai/sod] technique is an extension of Shanks/ method. 

Instead of attempting to obtain a transfer function which approximates 

to the complete specified impulse response and hence optimized to a 

very high order transfer. function, Lal partitioned the desired impulse 

response into a number of smaller arrays. Using a two-dimensional 

system as an example, the whole desired impulse array of magnitude 

L1  x L2  may be subdivided into N1,N2  subgroups each of size ki  x k2  

(where Nk. =Li.) as follows. 
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- k 2 
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H12 

-k2 
Z2 

H13 
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7- -7-- -7 

-k2 	-k2 
Z2 	Z2 

H21 	H22 
1 

-ki T  7  zi 

H23 

II 

Z1 
- ki 

If 
	 OUTPUT 

-k2 	 - k2 
Z2 
	

Z2 

Hml 
	

Hm2 
	

Hmn 

T  T ,. 

Fig.3.1 Lal's partitioned filter. 
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Each of these groups may be approximated to a relatively close degree 

by the basic 2-dimensional transfer function 

a11 + a12z1 
+ a21z2 + a22

z
1
z
2  Hnin2(z1,z2) - b11  + bi2zi  + b21z2  + b22z1z2  

in which simple constraints on the denominator will ensure stability. 

The realization takes the form shown in Fig. 3.1. 

3.6 	CRITICISM OF DESIGN TECHNIQUES IN THh SPACE DOMAIN  

The techniques have been discussed in turn at the conclusion 

of the relevant sections. It may be seen that the Bordner technique 

appears most desirable in that it is guaranteed to be stable whereas 

the other techniquei require a concluding stability test. Such a test 

on a multidimensional transfer function may well involve as much 

computational time as is saved by one of the other techniques. It does, 

however, suffer the disadvantage that a global optimum cannot be 

guaranteed and hence one of the earlier techniques may give rise to a 

'better' solution with smaller error. 

One other factor in any design Process of this nature is the 

choice of the degree of both numerator and denominator of the transfer 

function. In general, the. higher degree transfer function chosen, the 

more likely one is to obtain a good approximation to the desired 

sequence. Inevitably such a course of action brings with it the 

concommitant increase in complexity of the design algorithm. 
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Normally the order of numerator and denominator polynomials is kept 

small compared with the size of the specified impulse response. If 

this condition is not observed it would probably be more economical 

to design the filter in non-recursive form. 



CHAPTER, FOUR 

SPECTRAL TRANSFORMATIONS 

It . is vain to do with more 
what can be done with less. 

William of Occam 
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SPECTRAL TRANSFORMATIONS 

4.1 	INTRODUCTION • 

Having considered a number of methods for designing multi-

dimensional digital filters in the space domain, a study of the 

techniques for design in the frequency domain is the obvious sequel 

since the performance of a system in one of these domains is 

directly correlated with its performance in the other domain by the 

multidimensional Fourier transform. 

The obvious approach to frequency design would be to 

follow that in the space domain and attempt an approximation to a 

frequency response characteristic at a discrete number of frequencies 

and use an optimization technique to minimize the error between the 

desired multidimensional frequency response and the specified response. 

Such an approach is of no practical value since it can only minimize 

the error at a finite number of discrete frequencies and no control 

can be exercised over the behaviour of the function between these 

discrete frequencies. There is, in general, an infinite set of 

network transfer functions which can be used to approximate at a 

set of discrete frequencies. The space domain response obtained by 

taking the inverse multidimensional Fourier transform of any such 

rt.slEico- 
transferAmay well result in an impulse response which has highly 

undesirable characteristics. If the realization is attempted using 

a recursive filter structure, a design technique based on the above 

may easily result in an unstable filter. 

An alternative technique would involve generation of an 

analytic function of the multivariable frequency argument Af 
1'" ., n 

which would "fit" the desired specification at an arbitrary number 
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of discrete points. This effectively is the approach used in one-

dimensional analogue filter design when obtaining Butterworth, 

Chebyshev, elliptic, etc. approximations to a given specification. 

In this one-dimensional case it is possible to obtain the required 

analytic function in closed form with the assurance that the 

function will give rise to a stable filter. 

A similar approach has been investigated by McClellan 

for design of a two-dimensional filter frequency response function 

to fit a given specification in a Chebyshev sense E24..] . There are 

two reasons why this is not possible. First, it is impossible for 

any set of functions defined on a two- or multidimensional domain 

to satisfy the Haar condition El ; thus the alternation theorem 

applies in a weaker form. Second, there is no possibility of ordering 

the external frequencies as in the one-dimensional case, where 

progress along the ordered sequence guarantees that the error changes 

sign from one point to the next. 

It is therefore impossible to extend the design techniques 

used in one dimension of transforming a known stable one-dimensional 

analogue filter into a one-dimensional digital filter using an 

appropriate transformation function between the s plane variable and 

the z plane variable. 

One further difference between one-dimensional and multi-

dimensional filters lies in the response characteristics. In one 

dimension it is only necessary to specify the shape, either as 

amplitude, phase, group delay, etc. as a function of frequency, 

giving such parameters as pass band range, stop band range, 

transition band attenuation gradient, pass band ripple, minimum 
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pass band attenuation etc. In two- or multidimensional systems 

these parameters need to be defined in one or more dimensions, 

resulting in a specification in which the cut-off frequency is 

replaced by a cut-off contour in two dimensions or a cut-off 

hyper-surfyce in multiple dimensions. Most of the examples used 

as illustrations in this thesis will be restricted to two dimensions 

in order to facilitate graphical representation; however, to 

demonstrate the versatility of the technique some three-dimensional 

filters will be studied. 

One other important difference between one- and multi-

dimensional systems lies in the analytic properties of multivariable 

polynomials. In a single variable thetifundamental theorem of 

algebra" states that any polynomial may be factorized into the 

product of a number of.first and second order factors with real 

coefficients. This permits the designer to factorize the given 

specified transfer function in either the continuous s-domain or 

the discrete z-domain into a number of first or second order 

functions which may be cascaded to give the required specification. 

No theorem corresponding to this exists for multivariable polynomials 

and hence such simple design techniques are not possible this may 

easily be verified by a simple counter example). Thus the designer 

is forced to use techniques which involve the direct design of high 

order systems. 

It is for this reason that a number of techniques have 

been evolved for transforming stable one-dimensional filters into 

two- or multidimensional filters whose cut-off boundaries have 

prescribed shape and whose amplitude spectrum in some given cross-

sections is determined from the prototype filter. 
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Besides these transformations for generating higher 

dimensional systems from one-dimensional systems, certain other 

transformations have been proposed which relate two-dimensional 

filters having some given properties with new two-dimensional 

filters having different frequency characteristics; for example, 

transformation from two-dimensional low pass to two-dimensional band 

pass. These transformations are entirely analogous to the similar 

transformations in one-dimensional analogue and digital filters. 

We may review the field of spectral transformations by 

considering the following categories: 

1. One-dimensional to one-dimensional. This will include 

z to s, s to z, s to s' and z to zi. 

2. One-dimensional to two-dimensional (or multidimensional) 

transformations to include z to s s 1, 2,.., ; 	s to 	 ' zl
..z 	• 

2'  

s to si,s2,... ; z to zz
2
.. 

3. Two-dimensional to two-dimensional transformations, 

namely, s1,s2,... to si,s,... ; Zi,Z2,.4. to Z Z 2I  17 	,0.6 

Further extensions to these may be envisaged but so far 

no work has appeared on the subject and it appears a rather sterile 

field. 

4.2 	ONE DIMENSION TO ONE DIMENSION TRANSFORMATIONS 

One of the earliest uses of spectral transformations was 

in analogue filters to transform between low pass, high pass, band 

pass, band stop and other more complex multiple band filters using 

transformation of the form 
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w ==4 1/w 	Low pass to high pass 

w ==4 wo/w - w/wo Low pass to band pass 

Their use permits a prototype low pass filter design to be trans-

formed to a high pass, band pass or band stop filter having similar 

pass band, transition band and stop band characteristics. 

Another transformation of this form is the bilinear 

transformation 

z 
- 1 + z 

(4.1) 

which is the most commonly used of a whole range of transformations 

designed to generate the transfer function of a digital filter from 

that of an analogue filter having a similar nature of frequency 

response. 

Other transformations may be derived to generate more 

complex filters, such as high pass, band pass, etc. from low pass 

prototypes. For example 

_ 1 z 
- 1 - z 

(4.2) 

will give a high pass from a low pass prototype. 

In addition to these, there exist digital to digital trans-

formations which change say a low pass filter F
1
(z) into a high pass 

filter F2(z/) via the transformation 

Z = 	 (4.3) 
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4.3 	TWO DINENSION.  TO IWO DIMENT SION TRANSFORMA:i' ION S 

A similar concept, outlining two-dimensional to two-

dimensional digital transformations, has been summarized by 

Prendergrass [!] . These transformations may be applied, for 

example, to a two-dimensional low pass digital filter having a 

cutoff boundary of approximately circular shapei to generate filters 

having a variety of combinations of low pass, high pass, band pass, 

band stop characteristics in the two frequency dimensions, retaining 

approximately the original shape of the cut-off boundary contour 

when transformed. This cut off boundary is rather poorly transformed 

in the case of low pass to high pass or transformations which covertly 

incorporate such a relationship. 

In his consideration he has deliberately restricted himself 

to transformations which have the following properties: 

1. First quadrant stable transfer functions generate 

first quadrant stable transfer functions. 

2. Real functions transform to real functions. 

3. Some important characteristic of the amplitude 

response is maintained after the transformation. 

Although these are his self-dictated terms of reference it 

may be appreciated that the third one is the only requirement of 

fundamental significance and with some of the stabilizing techniques 

at present available neither of the first two conditions need be 

imposed in order to obtain usable transformation functions. The 

significance of the removal of the first two constraints will become 

apparent subsequently where a wide range of useful transformations 
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will be proposed which do not conform to these restrictions. 

The class of transformations which he considers are all 

of the form of two-dimensional all pass transfer functions. Their 

general form is 

z21  = G1 (zl'  z2  ) 

(4.4) 

and 

.. 	- K
1 	

z k  ( 	a 	z 

	

2 ` 	1j 1 
z 2j 

1=0 j=0 
Mk Nk 

i=0 j=0 

z2 = G2 (zl'  z2 
 ) 

which has the same functional form as equation (4.4) but with 

different constants a. .• 
1J 

It has been shown that if and only if the functions 

G/(zi,z2) and G2(z1,z2) represent stable two-dimensional transfer 

functions and that they are used as transformations on a stable 

two-dimensional transfer function H(zz
2)' 

then the resultant 

transfer function HiG1(zz2)' G2(zz2)1 will also be stable. 

Initially he shows that transformations which involve only 

one variable, i.e. 1.  = G1(z1), z12 = G2(z2) result in the generation 

of a useful class of two-dimensional filters. The simplest of these 

a + z1 
z1  - 	 1 	1+ az1 

(4.5) 
b + z2 z? 2 - 1 +bz

2 
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results in a transformation from low pass to band pass or from 

low pass to a low pass filter with changed cut-off characteristics 

along each frequency dimension. The type of transformation depends 

on the values chosen for the parameter a. Second degree transformations 

of this form introduce band pass or band stop characteristics in the 

appropriate dimension. 

Another class of transformations studied by Prendergrass is 

those of the form of a second order all pass function 

a. + b.z1 
 + c

i
z
2 
+ z

1
z2  

ze 
1 + c

i
z
l 
+ b

i
z
2 
+ a

i
z
1
z
2 

i = 1,2 	(4.6) 

The stability of this function must be considered and this imposes 

constraints on the coefficients ai, bi, ci. This transformation is 

particularly useful in controlling the shape of the amplitude 

contours in the vicinity of the principal diagonal on the frequency 

plane. 

4.4 	ONE DIMENSION TO TWO DIMENSION TRANSFORMATION 

The preceding transformations are of great value when an 

initial design has been achieved of, say, a low pass two-dimensional 

filter with appropriate cut-off boundary. However, this itself is 

one of the more difficult problems to solve, and the techniques of 

Prendergrass do not allow much modification of the boundary shape, 

since the limited number of parameters available in the transformation 

permits constraints on the transformed function at a limited number 

of points only. 

One of the most significant problems is that of designing 

a two-dimensional low pass or high pass filter having a cut-off 
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boundary approximating to circular. It is obvious that the contours 

corresponding to other values of the magnitude contour must deviate 

from circular to a greater or lesser degree since the outermost 

contour must coincide with the sampling limits of the digital filter 

at w
1 
= -Tt , w2 -IT which is essentially rectangular. 

A few of the attempts at this circular boundary approxim-

ation will be summarized below. 

4.4.1 	Separable Product  

One of the earliest attempts at a solution to this problem 

was put forward by Hall [15] in 1970. He suggested that a two-

dimensional filter could be made from the cascade of two filters, 

each of which varied in one dimension only. Thus 

H(zi,z2) = F1(z1).F2(z2) 
	

(4.7) 

The justification for inclusion of the separable product filter in 

the class of filters obtained by spectral transformation is that a 

two-dimensional filter H(zz2) may be made by cascading the two 

two-dimensional filters lyzi) and F2(z2); these are generated 

from prototype one-dimensional filters Fi(z) and F2(z) by the 

spectral transformations z, = z and z2  = z, respectively. 

The cut-off boundaries of the F
1`  
(z
1  ) filter are parallel 

to the z
2 axis, and of the F2(z2) filter, parallel to the z1 

axis. 

Thus, the cut-off contour of H(zz
2
) will be approximately 

rectangular with rounded corners. The only parameters available in 

the design are those of the prototype one-dimensional filters Fl(z) 

F2(z) and hence no control on cut-off boundary shape is possible. 
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An example of a design using this technique applied to a 

3rd order Butterworth prototype digital filter, having cut-off 

frequency at w = TI/2, is shown in Fig. 4.1; the frequency response 

is shown by the isometric projection of Fig. 4.1(a) and the contour 

plot of lines of equal amplitude of response in Fig. 4.1(b). A 

similar design using a Chebyshev filter having the same cut-off 

frequency in the prototype is illustrated in Fig. 4.2. the only 

difference between the two is in the expected sharper cut-off of the 

Chebyshev response and the ripple in both frequency directions in 

the pass band. All subsequent designs will be carried out using a 

3rd order Butterworth prototype unless any significant variations 

are apparent by using a Chebyshev filter. 

4.4.2 	Shanks? Rotated Filters 

Shanks E5:1 proposed a technique which also originated from 

a one-dimensional low pass filter, in this case designed in the 

continuous frequency domain. Such a filter function may be 

represented by the product of first order numerator and denominator 

factors as 

F( s) . TT (s _ 
.1 

(4.8) 

Transformation into a function of two dimensions may be achieved by 

setting sl  = s and leaving s2  unspecified. The result is a two-

dimensional transfer function 

H
1
(ss

2
) = F(s

1
) 
	

(4.9) 

having cut-off boundary parallel to the s
2 
axis. This filter may 

now be rotated anti-clockwise through an angle 0 by the transformation 
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1 H( wi,w2)1  

(a) Isometric plot. 

(b) Contour plot. 

Figure 4.1. Separable product filter. Prototype: third order 
Butterworth digital filter; wo  = n/2. 
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(a) Isometric plot. 

(b) Contour plot. 

Figure 4.2. Separable product filter. Prototype: third order 
Chebyshev digital filter; coo  =11/2, b = 1%. 
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generating a two-dimensional continuous filter having a transfer 

function 
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(4.10) 

(4.11) 

The analogue transfer function of equation (4.11) may be 

converted to a discrete form by means of the bilinear transformation 

(normalized to T = 1), 

1 - z1 

(4.12) 

2 s' - 	 2 	1 + z 

to give a discrete transfer function of the form 

N 

a111 . + a21iz1  + a12iz2  + a .z z 221 1 2 H3(z1'z2) = + b12iz2  + b .z 1=1 	1 b11 . + b21iz1 	
221 1 2 

(4.13) 

The cut-off boundaries of a filter designed by this technique are far 

from circular and there is no guarantee that the design will result 

in a stable filter. 

4.4.3 	Costa and Venetsanopoulos modification 

A valuable modification to the technique of Shanks was 

proposed by Costa and VenatsanopoulosE433 , who attempted a design 

of a near-circular symmetric filter by cascading a number of 'Shanks' 

s' - 1 	1 + z/  

1 - z 
2 
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filters having different angles of rotation. By this means it was 

possible to construct a polygonal approximation to a circular cut-

off boundary so long as it was possible to rotate the original 

filter by a total of 180°  (since each filter contributes two 

opposite sides to the polygon). 

A stability criterion was developed which showed that 

angles of rotation of the designed filter from 0 to -90°  resulted 

in stable filters. Thus the design technique could not achieve the 

required total angular span and the cut-off boundary was inevitably 

far from circular. 

4.4.4 	McClellan Transformation 

The McClellan transformation :9,44] is a direct application 

of a spectral transformation to two-dimensional design techniques. 

The Z--transform of a one-dimensional finite impulse 

response filter H(z) will have a frequency response H(eiu). For a 

useful class of such zero-phase filters, the frequency response may 

be written in the form: 

N  

H(eju) = h(0) + 	(ejuu  + e-j ) (4.14a) 

 

n=1 

  

    

= h(0) + 
	

2h(n)cos nu 	(4.14b) 

n=1 

In the case of two-dimensional filters, the transfer 

function of a class of zero-phase filters may be written 
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jn, 	jun  
11(e 	e `) = a(m ,m2

)cos miurcos m2u2  (4.15) 

m1"2=  

One-dimensional filters of the form (4.14b) may be converted 

to two-dimensional filters of the form (4.15) via the McClellan 

transformation 

cos U = 

K2 

t(pl,p2)cos plurcos p2u2  

0 
1)2=  

(4.16) 

The technique may be most simply illustrated by consider-

ation of the lowest order McClellan transformation, in which 

K1 = K2 = 

cos u = t00 t10 cos u1 	t01cos u2 t11cos u1 cos u2 (4.17) 

In order to apply the transformation of (4.17) to the transfer 

function (4.14b), this latter must be written as a power series in 

cos u rather than as a function of the cosines of multiple angles. 

We may achieve this using Chebyshev polynomials to give 

11( e iU) 	b(n)(cos u)n 
	

(4.18) 

n=0 

Equation (4.17) is now substituted into (4.18) to give the required 

transfer function. 

In this particular simple form of the McClellan transform-

ation we now require to determine the four coefficients t..ij  to fit 

the required contour specification. 

One constraint on a transformation from one-dimensional 

low pass to two-dimensional low pass is that the origin in one 
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dimension must transform to the origin in the two-dimensional 

domain. 

The remaining three parameters are determined by constraining 

the cut-off boundary to have, say, circular symmetry; this 

requires that, at the cut-off frequency, 

u2 
	

u2
2 

= It 1 

The problem is now one of constrained optimization and usually results 

in a non-linear minimization of an error function expressed in closed 

analytic form. 

For higher orders of transformation than that given by 

equation (4.17), it is not generally possible to specify an error 

function in closed form and thus any solution becomes virtually 

impossible without the use of unwarranted computational facilities. 

A suboptimal approach has been proposed for this problem 

which will guarantee a solution by minimization of a false error 

function. 

It should be noted that in the above form the McClellan 
\hro 

transformation may only be applied to non-recursiveAdimensional 

filters. 

4.4.5 	Bernabo Design Technique  

Bernabo, Emiliani and Cappelini D7:jhave extended the 

McClellan technique to the design of two-dimensional recursive 

digital filters. 
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Figure 4.3. 	Bernabo designed filter. Prototype: fourth order 

Chebyshev filter; wo  = 0.6n, b = 1%. [23] 
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The frequency transfer function of a zero-phase recursive 

digital filter may be written in the form 

M1  M2 

:Lp(m1,m2
)cos m1u1

.cos m2u2 
m2=0 

N1 
N
2  

Lq(
m1,m2)cos miul.cos m2u2  

m1=0 me 

The transformation equation (4.16) or, with less generality, equation 

(4.17), may be directly applied to the one-dimensional recursive 

zero-phase transfer function 

E a(n) cos nu 

1.4(eju) 	n=0  
DS 

b(n) cos nu 

n=0 

N 

at(n)(cos u)n 

n=0  

b'(n)(cos u)n 
n=0 

(4.20) 

(4.21.) 

Now the designed filter has zero-phase property and is therefore 

inevitably unstable [y] . Since it is a zero-phase function, the 

Pistor stabilization technique may be applied [m] . In this the 

denominator polynomial is factorized into four one-quadrant 

recursive functions which recurse in the four cardinal directions. 

An example of a filter designed by the Bernabo technique is shown 

in Fig. 4.3 	. There is no fundamental reason why the Bernabo 

technique may not be extended to more than two dimensions but the 

computation would be very tedious. 

f 	ill2N m1= 
, e 	) - (4.19) 



:1 + bs1s2 

a
1
s
1 

4-  a
2
s
2 _ 	

 
(4.22) 
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4.4.6 	The Ahmadi Transformation 

A navel transformation has been proposed by Ahmadi et al 

[..18,19] . The relationship proposed is a simple first order two-

dimensional reactance function 

used to transform a one-dimensional low pass continuous filter function 

to a two-dimensional continuous low pass function. This transform-

ation will realize a guaranteed stable first quadrant function with 

cut-off frequencies along the two frequency axes determined by the 

prototype filter characteristics and the parameters a1  and a2. In 

fact there is no loss in generality except in a frequency scaling 

factor along the two axes if we set a1  = a, = 1. The parameter b 

controls the shape of the cut-off boundary. 

In order to obtain a characteristic which has symmetry 

with respect to the two frequency axes and zero-phase, it is 

necessary to cascade four single quadrant filters to give the 

overall transfer function 

H(z z ) = P(z z .F(z z-11.F(z-1  z .F(z-1 ' 7,-1\ l' 2 	1' 211 	l' 2 / 	1 ' 2
I
/ 	1 	2 1  

(4.23) 

where F(z1,z2) is the two-dimensional function obtained by applic-

ation of equation (4.22) to a one-dimensional low pass filter. 

This cascade of four one-dimensional filters gives a cut-off 

profile which is vaguely diamond-shaped, depending on the specified 

cut-off frequency. 

The mapping of the extreme angular frequencies, w = 0 and 

IC in the one-dimensional plane shows that the one-dimensional 
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(a) Isometric plot. 

(b) Contour plot. 

Figure 4.4. Ahmadi filter. Prototype: third order 
Butterworth analogue filter; w = 1.1584. 
Transformation; al  =a2  = 1 ,b 2 0.2. 



(b) Contour plot. 

Ahmadi filter. Prototype: third order Butterworth 
analogue filter; w = 1.1584. Transformation; , 
a1 =a2 

= 1 , b = 0?6. 

Figure 4.5. 

(a) Isometric plot. 

81. 
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origin maps into the points (0,0) and (IL,1T) and the one-dimensional 

frequency 11:maps into the points (0,TL) and (TE,0). From this it may 

be seen that in addition to the low pass region around the origin 

there is also a second pass region located around (TLITL). 

The response of a two-dimensional filter designed thus from 

a 3rd order low-pass Butterworth prototype for two values of the 

parameter b are shown in Figs. 4.4 and 4.5 designed to a cut-off 

boundary at we  = TL/2. The additional pass band around (IL,TL)  may 

be removed by the simple expedient of cascading the Ahmadi filter 

with a guard filter, possibly a separable low order two-dimensional 

filter. This modifies the characteristic to the more desirable 

shape shown in Fig. 4.6. 

The main advantages of this technique are that stability 

of the filter is assured without recourse to the decomposition 

technique of Pistor, and also that the design procedure is extremely 

simple. Unfortunately as only three design parameters are available 

in the transformation function it is not possible to approximate 

very closely to the idealized circular cut-off boundary; this is 

seen from a comparison of Figs. 4.4 and 4.5. 

It may be shown that any attempt to design a transformation 

function closely approximating circular is impossible in the general 

case using the Ahmadi transformation. One technique for approxim-

ating a contour to a circle would be a direct minimization of error 

with respect to b, the only free parameter available in the 

transformation function. This would be cumbersome, particularly in 

view of the fact that the designed filter is formed from the 

concatenation of four single-quadrant filters. A simpler technique 
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Figure 4.6. Ahmadi filter with separable low-pass guard 
filter. Specification as in Fig.4.4. 
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is to note that as the amplitude functions have polar symmetry, we 

need only consider the first and second quadrant functions and that 

the amplitude may be obtained from the square of the product of 

these two functions. We thus design the filter to have desired cut-

off frequen,ies along the two axes, w
1 
= 0, w

2 
= 0 and along the 

diagonal wl  = w2; this will give a suboptimal solution to the 

design of a given cut-off uuundary. 

Consider a design in which an approximation to circular 

symmetry is desired and the cut-off frequency in the two-dimensional 

discrete frequency plane is specified as v
c
. Thus at the three 

W we 
points (wc,0), (0,

-w) and 	e --) the amplitude of the response must 
17 V2 

have the required cut-off magnitude. 

V W 

At the point 
/ 	C

) on the principal diagonal the 
V-ffieff 

amplitude is the product of that due to the first quadrant function, 

which is dependent upon the prototype chosen and that of the second 

quadrant function which is unity along the whole of the line s
1 
= s

2 

since it has the value of the prototype at s = 0. 

At the points (wc,0) and (0,wc) the amplitude is the 

product of two functions, both of which are dependent on the fall-off 

rate of the prototype filter. 

Thus we must design the transformation of equation (4.22) 

such that (wc,0) and (0,wc) map into the frequency c in the 

analogue and (wcA/T, vcA5D maps into Qc. Where the prototype 

filter is of Chebyshev form, the cut-off frequency of a cascade of 

two identical filters is the same as that of the single filter and 
o 

c? = c?c. However, for Butterworth filters Qc and Sec are 

related by 
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1 n ? t o  _ 	_lin 
Jec — 	S C — It  c 

where n is the order of Butterworth filter. (When n = 3, k = 0.86). 

The design criteria for a two-dimensional filter having a 

pseudo-circular cut-off contour is that i;he prototype must have a 

cut-off frequency De  given by 

k Q e  = tan we/2 
	 (4.24) 

and the transformation coefficients a1 = a2 = 
1 and 

ozN 

b _ 
tan(we/2)- 2k tan(we/21/2) 

(4.25) 
tan(we/2)tan2(we/2/fl 

Since the transformation (4.22) must represent a stable 

function, b> 0; this imposes a constraint on the value of w
e 
for 

which a positive solution to (4.25) exists. For a third order 

Butterworth filter Iv'c 
must be greater than about 0.6111 ; higher 

order Butterworth filters tend to the limits given for a Chebyshev 

prototype, for which we  >0.70IT. 

Fig. 4.7 shows the transfer function and contour plot of a 

two-dimensional filter designed to a cut-off boundary of 0.72 TU. It 

is confirmed that a circular cut-off boundary may be obtained using 

the Ahmadi tramsformation provided the cut-off frequency is within 

certain bounds. This transfer function may be compared with those 

in Figs. 4.4 and 4.5 which were designed for cut-off boundaries 

lying outside this permitted range and for which circular profiles 

were not obtainable. 

The position is exacerbated by the fact that in the designs 

considered, we have only cascaded two single quadrant functions, 
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(a) Isometric plot. 

2 

It 

(b) Contour plot. 

Figure 4.7. Ahmadi filter. Prototype: third order Butterworth 
analogue filter; to = 0.72n. Transformation; 
al = a2 = 1, b = 0c216. 
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whcrcas to obtain a zero-pliase function all four quadrants need to 

be cascaded. 

An improvement on the above design technique has been 

proposed by All and Constantinidesp7:]who show that the spurious 

pass bands around (±1T , ±11 ) may be eliminated if b = 0. This 

is, of course, true and the transformation then degenerates to the 

simple form 

s = a
1
s
1 
 + a

2
s
2 
	 (4.26) 

This does, however, introduce the added disadvantage that a filter 

having pseudo-circular symmetry is now constrained by equation (4.25) 

to be one in which 

tan(wc/2) = 2k tan(wci2M 
	

(4.27) 

and thus design for a pseudo-circular cut-off boundary is only 

possible for one specific value of design cut-off frequency. For a 

Chebyshev filter equation (4.27) is satisfied only at we  = 0.70IT 

and hence for certain specifications of cut-off frequency, the 

boundaries may deviate appreciably. 

It may thus be seen that the Ahmadi transformation may be 

used to design two-dimensional near-circular filters with cut-off 

frequencies greater than a given bound or below that bound with cut-

off profiles deviating more from circular but with the disadvantage 

of requiring a guard filter to remove certain high frequency pass 

bands. The modification of Ali and Constantinides ensures that 

these pass bands do not exist, but also completely precludes the 

possibility of the design of filters having suboptimally designed 

circular cut-off profiles except in trivial cases. 



z = G(zz
2
) _ 	

1 1 + 
Ct2z1 

+ a1z21  + aoz
1:1z21 

a  -Ea1 
zit + aoz-1 + z-lz-1 

U 2 	1 2 
(4.28) 
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4.4.7 	All-Pass Transformation 

In Section 4.3 we have stated that Prendergrass has used 

a two-dimensional all-pass transfer function to modify the frequency 

response of a designed low pass two-dimensional digital filter. 

Kap E-0.3 has used the same transformation, but applied it 
to a low pass one-dimensional digital filter to generate a two-

dimensional low pass filter with near-circular cut-off contour. The 

transformation from one dimension to two is given by 

The conditions that G(z1,z2) represents a stable transfer function 

are [10] 

lad <1,  

a01 < 	a21 
	 (4.29) 

- aol < I1 - a21 

A further consideration here is that the transformation gives 

low pass one-dimensional to low pass two-dimensional along both axes 

and also along any radius through the origin. This may he ensured 

by requiring that equation (4.28) maps w = 0 in one dimension into 

(wi,w2) = (0,0) in two dimensions and also w =TI into (wl,w2) = 

(0, TL ), (TE,O) and (TL, TL) simultaneously. The first three 

conditions are satisfied by any function of the form of equation 

(4.28) but the last demands the additional constraint that 

a1 + CC2 = 1 + 
	 (4.30) 
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This apparently violates the stability constraint given by the third 

of equations (4.29); nevertheless it may be seen that at the point 

(w1,142) = (TE,TI), corresponding to (z1,z2) = (-1,-1), both the 

numerator and denominator of G(z1'z2)  tend to zero and thus the 

function dc2s not show instability at this point as the pole and 

zero cancel one another [283 . This is a non-essential singularity 

of the second kind. 

The above constraints reduce the number of design para-

meters to two; if,- in addition, we require a symmetrical transfer 

function along the two axes we must set 

a1  = a2 
	 (4.31) 

This leaves us with a single design parameter ao  to which al  and 

a2 are related by 

(4.32) 

and the stability constraints of (4.29) reduce to the single condition 

I aol < 1 
	

(11.33) 

The design to an approximately circularly cut-off contour 

may be approached in the same manner as in the Ahmadi filter. The 

most obvious approach is by a direct optimization of the error 

between the designed filter and the specified circular profile. 

This results in undue computational complexity and a simpler sub-

optimal solution may be obtained by constraining the profile to 

have a fixed radius from the origin along the coordinate axes and 

along 1,71  = w2. 

1+ a 
- a2 - 	2 

0 



and 
. 1 - a 

o  tan (w /2) tan(100/2) - 1 + 	+ 2al  ( 4 .35) 

The design equations for such a filter are 

1 - Cto  
tan(w0/2) = _ 4. 

 a 
 tan (we/2(T) 
o  

90. 

(4.34) 

where wo is the cut-off angular frequency of the one-dimensional 

prototype digital filter and w/ is the cut-off frequency of two 

cascaded filters. In addition 

tan(w1/2) = k tan (w /2) 
	

(4.36) 

where k is given by equation (4.23). We may see from equations (4.34) 

and (4.35) that a solution is possible when constrained by (4.32) for 

only one unique value of we  given by 

tan(we/2) = 2tan(we/2(-fl 
	

(4.37) 

A filter designed close to this specification is shown in 

Fig. 4.8 with ao  = 0 and wo  = TC/2. 

It is thus apparent that this design technique suffers from 

the same disadvantage as that proposed by All et al [57] and only 

approximations can be made to circularly symmetric filters except 

perhaps for one specific value of w
c. 

This suggests that in order to obtain greater freedom in 

design, it might be worthwhile relaxing the constraints of equation 

(4.32). This will most certainly result in the reintroduction of 

the undesired pass bands which were also present in the Ahmadi 

transformation. 

The stability constraints of equations (4.29) together 



(a) Isometric plot. 

All-pass transformed filter. Prototype: third 
order Butterworth digital filter; w = n/2. 
Transformation: (X.13  = 0, d1  d,  = 2 = 0.3. 

Figure 4.8. 

(b) Contour plot. 



Fig.4.9 Stability region for all-pass transformation. 

92 . 
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with the condition a
1 = a 

may be represented diagrammatically 

as shown in Fig. 4.9. The all-pass transformation is stable for all 

o'  a1
) within the shaded triangle. The constraint of equation 

(4.30) permits values only on the oblique boundaries of this 

region. With this constraint removed, 'operation is permissible at 

all points within the region. 

Considering design of a Chebyshev filter in which wo = wt 

equations (4.34) 

1 

which represents 

frequency, 

and (4.35) lead to 

1 - 	
tan(wc/2/7) 

_ ( 4.39) 

(4.39) 

Thus 

+ 1 

any 

we, which 

atan(w /2) 

)/ 	 I 
the line AX having gradient 

filter with design circular profile cut-off 

satisfies 

< 	namely 0 < y < 2 2 

will be capable of design by such a transformation. 

This limitation is similar to that which is imposed on the 

design of filters using the Ahmadi technique and restricts the 

transformation to design cut-off frequencies greater than 

approximately 2.2 radians/sec. A filter designed using this 

method is shown in Fig. 4.10. 

4.4.8 	Comparison of Two-Dimensional Transformations 

It is apparent that attempts to obtain two-dimensional 

recursive filters having transfer functions whose cut-off boundaries 

closely approximate to a circle over a range of design frequencies ' 
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(a) Isometric plot. 

(b) Contour plot. 
Figure 4.10. All-pass tansformed filter. Prototype: third order 

Butterworth digital filter; wo 
= 0.5764. Transformation; 

= 0.5
' 
o6
1 
=et

2 
= 0.4417. 

Alternatively; two  = 1.726, .Y = 0,061  = 	= 0.2957. 
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are singulaily unsuccessful. The McClellan technique is only 

applicable to non-recursive systems and thus results in filters of 

high complexity. The Bernabo technique resolves this problem but 

substitutes for this shortcoming a considerable increase in 

complexity of the design procedure; the technique is, however, 

capable of generating filters whose cut-off profile is closely 

circularly with no restrictions on the range of cut-off frequency. 

The Ahmadi transformation is considerably simpler but 

demands the inclusion of a guard filter and cannot approximate 

circular profiles except over a limited cut-off frequency range. 

The all-pass transformation removes the spurious high-pass bands 

from the response and thus the need for a guard filter, but the 

transformation is restricted to the design of .good circular profile 

filters at only one single cut-off frequency. The same comment 

applies to the modification to the Ahmadi transformation proposed 

by Ali et al. 

The simplest technique is the separable product transform-

ation which gives the poorest approximation to circular symmetry. 

However, subjective tests have shown that in processing certain 

images very little difference is observable, whichever of the various 

design techniques is used, and the insistent demand for circular 

cut-off profiles is probably misplaced. 

4.5 	ONE DIMENSION TO MULTIDIMENSION TRANSFORMATION 

Although the application of digital filters of higher 

order than three appears remote, the design of the general case 

may easily be included in any extension of the one to two 
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dimensional transformations. One of the most likely cut-off profiles 

which might be specified would be that having multidimensional 

spherical boundaries. We shall therefore consider three techniques 

whereby this may be achieved. 

To illustrate the amplitude responses of the designed 

multidimensional filters graphically would be difficult and so all 

examples are restricted to three dimensions. In three dimensions it 

is possible to present the response of the filter visually as a 

plot of the cut-off isometric boundary surface. All the filters 

will be designed with low pass characteristics, namely having full 

transmission at the origin and the cut-off boundary plotted will 

correspond to the "3 dB" surface, namely a value of 0.7. As all 

the filters will be symmetrical in all eight primary sectors, the 

profile will be plotted for positive values of w
3 
and both polarities 

of wi  and w2. 

4.5.1 	Separable Product Technique 

The two-dimensional separable product technique discussed 

in Section 4.4.1 may be extended to any number of dimensions in a 

relatively trivial manner. The cut-off boundary surface will 

approximate to a multidimensional rectangular parallelipiped. 

The profile of the cut-off isometric surface of a three-

dimensional separable product filter is shown in Fig. 4.11. The 

design is extremely simple; the resulting filter may be made 

symmetric about all axes by simple transformation and stability is 

ensured. The designed filter is, of course, not zero-phase. To 

achieve this, one would need to cascade two identical sets of 

filters recursing in opposite directions. 
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Figure 4.11. Cut-off surface of three-dimensional separable 
product filter. Prototype: third order Butterworth 
digital filter; wo  = n/2. 



P1 

cos u = 	•.• 
p1=0 	n=0 

(pi,...,pn)cos p1u1  ... cos pnun  

(4.41)  
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0 Multidimensional McClellan Transformation 

The McClellan transformation [9,44:1  discussed in Section 

4.4.4 may be easily extended to many dimensions D83  . 

A class of N-dimensional zero-onase FIR filters may be 

shown to have a frequency response which is of the form 

jul 
	Jun) 

n) = 

Ml 	Mn 

a(m1n)cosm
1u1...cosmnun 

mn=0 (4.40) 

 

The transformation, by analogy with the two-dimensional case, takes 

the form 

This transformation may be applied to the one-dimensional transfer 

.function 

H(cju) = 	h(n) cos nu 

n=0 

(4.42) 

which may be alternatively written, using the Chebyshev polynomial 

functions, as 

= 	b(n) (cos u)n 

n=0 

the resultant multidimensional transfer function is 

ju 
H(e 1 

Pn 

b(n) [ > 	> t(ppn)cos p1u1 ..
n=0 	p1=0 	pn=0 

• ..cos pnunin 

(4.43) 
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Again by application of chebyshev polynomials this may be rewritten 

in the form of equation (4.40). 

The original prototype transfer function is specified by 

the parameters h(n), which determine b(n), and are responsible for 

the shape of the amplitude response in the pass, stop and transition 

regions. The parameters t(pl,.,.,pn) control the mapping of a single 

frequency in one dimension into a region in the multidimensional 

frequency domain and thus are responsible for determining the shape 

of the cut-off profile. 

The most pertinent profile in our case is that in which the 

cut-off profile is of the form of a hypersphere having a pass band 

edge determined by 

u2 . 	R
2 

1=1 

The simplest transformation to consider is that in which P1 
 =P2 - • 

= Pn = 1 in equation (4.41). This provides 2
n 
parameters 

t(pi,...,pn) which may be used to control the shape of the cut-off 

profile. One constraint imposed in the usual ease of a low pass to 

low pass transformation is that the one-dimensional origin is 

yapped into the n--dimensional origin, requiring 

t(P1, Pn) = 

The remaining 2n-1 parameters may be determined by solving equation 

(4.41) for one of the frequency variables, say un, in terms of the 

other parameters and the design cut-off frequency; the error 

between this value and the desired value is then minimized on the 
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assumption that the required profile is a perfect hypersphere. In 

the multidimensional case this task is usually too formidable. A 

suboptimal approach is frequently used which assumes that if the 

mapping were exact, the value of the function would be constant on 

the desired hypersphere; the error between the calculated value 

of the function.on the hypersphere and its ideal value may be 

minimized to give a solution. 

4.5.3 	Multidimensional 3ernabo Design Technique  

The extension of the application of the McClellan 

transformation to recursive filters given by Bernabo et al 1:17]to 

n-dimensions has been given by Ahmadi :183 . It follows the 

general procedure for two dimensions, of transforming the magnitude 

square of a one-dimensional amplitude response to n dimensions; 

this is followed by the n-dimensional decomposition technique :223 

to obtain a set of stable one-quadrant filters. 

A zero-phase recursive filter transfer function may be 

written 

H(e 	11) = 	
Ll  

p(m1n
)cosm

1
u1...eosmn

un 

L 

•

Jul 

 In 	m = mil=0 
(t0.44) 

n
)cos 1u1  ...cos2n

un (se 

Consider a one-dimensional recursive filter with response function 

N 

E a(n) cos nu 

H(eju) - n=0 
	

(4.45) 

E b(m) cos mu 

m=0 
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which may altcrnativ,Hy be written as 

E a/(n)(cos u)n  

H(eju) n=0 
rs - 

 

(4.46) 

 

b'(m)(cos u)m  

m.0 

Let this be transformed to an n-dimensional filter via 

P
1  

 

P
n 

   

cos U = 	 • • • 
	 t(pi,...,pn)cos plug  ... cos pnun  (4.47) 

p = 
1  

p
n
=0 

resulting in 

N 
	P

1 

Ea,  (n)[ 	(pl . • ,pn)cosp1111 
• • .co sp

n
u
ni 

Sul  jun 	n=0 1=0 p =0 
H(e 5..e 	) = 

(m)[ 1 t(p/  , . . • ,pn) cospiui  • ..cospnun  

m=0P 	=0 l=  (4.40 

This may be rearranged using the recurrence formulae of Chebyshev 

polynomials to give an expression of the form of equation (4.44). 

The approximation to a desired boundary condition may be 

obtained by an optimization technique similar to that used in the 

two-dimensional case, after first having designed the one-dimensional 

prototype filter to give the desired frequency response in the pass, 

stop and transition bands. The final step in the design technique 

is to stabilize the resultant filter. As the procedure inevitably 

results in a zero-phase filter, the decomposition technique of 

Ahmadi and King [22] must be used to generate a set of single 

quadrant stable recursive filters. 
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4.5.4 	Multidimensional Ahmadi Technique 

The obvious extension of the Ahmadi technique to n-

dimensions would be to use the general n-dimensional first-degree 

reactance function 

F(s 'sn) - 
i=1 	1=1 j=i k=j 
n n 	n n 

)71..s.. ij 1s  j 	)--  	
bi 	

sss s +.. jkk ijki 
i=1 j=i 	i=1 j=i k=j Z=k 

(4.49) 

n E a.s. + 
2 1 

However, this general form of function is not stable. This may be 

seen from a consideration of the stability conditions for a multi-

dimensional system, which may be formulated 

Re Ell(s1'...'s2)J>0 	
i=1,...,n :n ote(s.)> 

i=1 

Superficial inspection of expression (4.49) shows that this cannot 

hold for unconstrained values of the coefficients in any but the 

most trivial cases. We shall therefore restrict our studies to the 

three-dimensional case and show how we may obtain necessary and 

sufficient conditions for the stability of a multidimensional 

function generated from lower dimensional functions. It will not, 

of course, be possible to obtain closed form expressions for the 

stability conditions as functions of the coefficient parameters. 

Consider the first degree three-dimensional reactance 

function 

(4.49a) 

It may be noted that this function in general does not satisfy the 

stability conditions. However, we may derive a set of necessary and 
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sufficient conditions for (4.49a) Lo represent a three-dimensional 

reactance function. 

Let us make the one- to two-dimensional transformation of 

equation ('i.22) as 

Ctllsi 	CX.21s2  
s = G11  

(s9,s9) - 
	

(4.50) 
2  1 -I-s'si 1 1 2 

One or both of these variables, sl, s, may be transformed 

by similar a7pressions to give a three- or four-dimensional function. 

Considering the three-dimensional situation we make the substitution 

sl = G9(s.) = s 
2 	1 

2 
12s222

s
3 

= G
2
(s s_) _ 

1+ 	
25253 

(4.51) 

Concatenation of these two substitutions results in an expression 

representing a third order reactance function of the form of 

equation (4.49a) but with the added constraints that 

a3b2  = a2b3  

(4.52) 
and 
	

aibi  

Now the necessary and sufficient conditions for (4.22) to 

represent a reactance J:nnction are 

0, a. 
2 
> 0 arid b > O. 

-These may be applied directly to (4.50) and (4.51). So long as 

these conditions are 	we are able, by choice of the 	
ij 

Ni  to generate the complete set of all three-dimensional reactance 

functions, since 
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where a 	Gv (Ind 	,-) 4 tiv,,  real reactance functions. 
-1,  2 	-2 

This approach may be used to generate a transformation from 

one dimension to many dimensions in a series of steps each increasing 

the dimensionality of the function by at least one. For higher 

order filters two or more transformations may be simultaneously 

applied.) 

Considering the three-dimensional case, we note that in 

practice only five design parameters are available since no loss of 

generality ensues by setting CL12  = 1. We then have three parameters 

defining the cut-off frequencies along the three coordinate axes 

and -Ivo other parameters which may be used to control the shape of 

the boundary surface at two intermediate points. 

The shape of the profile is probably most simply determined 

by constraining it to pass through five points mapped by (4.50) and 

(4.51) in the three-dimensional space. For convenience these may be 
w w M" w  c chosen as (w

c
,0,0), (0,w

C
,0), (0,0,w

c
), 	c 	c, 0) and (0, ---, c) 

1g 	VE 
for a pseudo-spherical cut-off boundary. The response at 
W

c  
0, ---) will depend upon the order in which the transformations 

(4.50) and (4.51) are executed; in the example considered it will be 
w w 

identical with that at (-2,, c, 0). An alternative would be to force 
V V 	w w w 

the cut-off profile to pass through c c c  
V7T vr'T 

An example of a filter having spherical profile designed 

from a Butterworth third order filter with cut-off frequency of 

0.5TE is shown in Fig. 4.12. The cut-off surface is a close 

approximation to spherical shape although the parameters chosen for 

the design are outside the range where it is possible to satisfy the 

constraints for pseudo-spherical boundary accurately. 
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Figure 4.12. Cut-off surface of three-dimensional Ahmadi filter. 
Prototype: third order Butterworth analogue filter; 
w = n/2. Transformation in both planes; a = a2  = 11  
b

o 
 0.2. 	 1 	2  
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It should be observed that four three-dimensional filters 

need to be cascaded (eight for zero-phase functions) and hence the 

cut-off frequencies along the axes (w1,0,0), (0,w2,0), (0,0,w3) 

will be the result of the superposition of four filters; at points 

such as (w„w
2' 
 0) only two low pass filters will be cascaded; and 

N at points such as (-+ w1' 
+ 
-w

2' 
-w

3
) only one filter. When using a 

Butterworth prototype filter this will modify the design equations 

at three sets of points. 

It may be seen that an approximately spherical filter is 

obtained but spurious high frequency pass bands will be present 

unless an appropriate guard filter is provided to eliminate them 

as was done on the example shown in Fig. 4.12. 

4.5.5 	Multidimensional All-Pass Transformation 

The all pass transformation function may be used to 

transform to a multidimensional filter. The general n-dimensional 

all pass function of first degree is 

   

n 

z
1 
	z

n
(1 + 

 

a.z. -1 -1 z + ...) j 	 lj 1  

   

G(7 	z ) 
'1' 	n 

   

i=1 j=i 
n n 

 

 

n 

  

-1 - 
1 + 	Ct.1  z1 	

1=1 j=i 

+ 	13 . z . z .
1 
 + . . . 

1 
1=1 	 (4.53) 

Before such a transformation function can be applied to a one-

dimensional digital filter, it is necessary to establish conditions 

for its stability. This may be done numerically for any given 

function by one of the methods discussed in Chapter 2. However, no 

closed form conditions have been established in the general case. 
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It is, however, possible to generate a limited class of 

multidimensional first order all pass functions by successive 

application of the one- to two-dimensional transformation. Thus 

the transformation 

1 + alizt + C121z2 	0101z1z2 
z = 

followed by 

zl = z
l  

1 	CX12z2  + a22z3  + (102z2z3  
z 	

"A 
) - rs, 	 
` 	32 

	
CX  22z2 Ct12z3 	z2z3 

cc2izi 
(4.54) 

(4.55) 

will realize the overall transformation 

z 
	1 + a

l
z
l 
+ a

2
z
2 
+

3 
 + blz2z3  + b2z3z1  + b3z1z2  + cz1z2z3 

c + b
l
z
l 
+ b

2
z
2 
+ b

3
z
3 
+ alz2z3 + a2z3z1 + a3z1z2 + z1z2z3 

(4.56) 

It will be noticed that there are seven parameters in 

equation (4.56) which may be equated with the six parameters of 

equation (4.54) and (4.55). Thus the most general form of all pass 

third order network cannot be generated in this manner. However, it 

is not difficult to show that the third (and higher) order functions 

so constructed will be stable if and only if the individual two-

dimensional transformations are stable. The necessary and sufficient 

conditions for these transformations to represent stable network 

functions are 

lcI < 1 

iali 	a0i < 1 + a2i ) 
	

(4.57) 
' all aOi l < 11 - a2i. 
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for all i - 1 

 

n• where n is the dimensionality of the filter. 

 

A relatively direct procedure is now indicated for the 

design of a multidimensional filter having approximately hyper-

spherical band edge boundary. It is, of course, true in the multi-

dimensional design, as in the two-dimensional design, that an 

accurate pseudo-hyperspherical pass band boundary can only be 

achieved at one frequency of approximately 2.2 rads/sec. However, 

filters closely approximating hyperspheres may be generated at a 

wide range of frequencies around this value. 

The design is achieved in a number of steps. Starting 

with the specified design cut-off boundary,wcn' 
 a filter of one 

dimension lower is specified having cut-off boundary, wc(n-1)' 

given by 

tan 
w n-1) 	

1 a 	
tan On 	wen  

2 	1 + a On  + 2  ain 	2 
(4.50 

where n is the order of dimensionality of the filter and assuming 

aln =  a
2n
. This procedure will also permit design of the parameters 

0On 
and aln ensuring that they are constrained to lie within the 

stability triangle given in Fig. 4.9. 

This successive reduction of the dimensionality of the 

filter is continued until a one-dimensional filter is obtained which 

may then be designed according to the specified requirements in the 

pass, stop and transition bands of the filter. 

The choice of parameters Ct
On 

and aln in equation (4.58) 

may be made either using the Kap restricted form of transformation 

or the more general form. In the Kap form a
On 

and aln are related 

by 
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(a) Isometric plot of cutoff surface. 

(b) Contour plot of cut-off surface. 

Figure 4.13: Cut-off'surface for three-dimensional filter via 
all-pass transformation. Prototype: third order 
Butterworth digital filter: w = n/2. Transformations 
in both planes; d

b 
= 0, u.

1 =062 = 0.5. 
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7 + rt
On 

= Or? 
"ln 
	 fk m9) 

and a low pass (n-1 )th  dimension filter is transformed into a low 

pass nth  dimension filter. Using the more general form, added 

freedom is available in design but one suffers from the disadvantage 

of having the extra undesirable pass bands at high frequencies. 

A three-dimensional filter was designed using i,his 

procedure based on a Butterworth low pass prototype digital filter. 

The profile of the 3 dB isometric surface is shown in Fig. 4.13(a), 

from which one may subjectively observe satisfactory spherical 

symmetry. Fig. 4.13(b) shows contours of Fig. 4.13(a) from which 

it may be seen that good spherical symmetry of this particular pass 

band boundary is maintained throughout the three-dimensional space. 

Comments on Multidimensional Transformation 

Of the several transformation techniques studied, the 

Bernabo design gives good results but requires stabilization 

techniques for satisfactory implementation. Of the other circular 

symmetric designs, the all pass transformation gives more closely 

spherical boundaries, although similar results may be obtained by 

use of the Ahmadi technique followed by a guard filter. 

In all probability, however, it will be shown that the 

separable product technique, although giving cut off profiles which 

deviate greatly from spherical, performs in a great many practical 

situations as satisfactorily as the techniques giving better spherical 

profiles. It also has the outstanding merit that it is very much 

simpler to design and to implement. 



4 .6 	APPLICATION  or TWO-DIMENSIONAL CIRCULAR PROFILE  FIi,TER 

In the preceding sections we have outlined a number of 

procedures for designing two-dimensional filters having cut-off 

profiles which approximate to a circle as it is intuitively felt 

that such a filter will be most likely to counteract the effects 

of isotropic distortion introduced between the object and the image. 

To add conviction to this argument and to assess the 

value of the various design techniques, it would be valuable to make 

a subjective assessment of the improvement in image quality after 

processing by filters designed by different techniques. In addition 

the effect of the order of the prototype filter may also be 

considered. The results given below are mainly due to Kap E23] . 

The original recorded image is shown in Fig. 4.14 and represents an 

X-ray picture taken of a diseased human liver; the vertical axis 

represents the intensity of the picture elements and the horizontal 

axes the linear dimensions in a lateral plane through the body. 

It may be observed that the image is corrupted by considerable high 

frequency noise and an improvement in picture quality for 

diagnostic purposes may be obtained by the use of a two-dimensional 

low pass filter. 

A number of filter structures were designed and used to 

process this image. 

Fig. 4.15 shows the effect of using a Bernabo designed 

filter based on a fourth order Chebyshev prototype with we  = 0.611 

and passband ripple of 1%; the filter has been decomposed using 

the Pistor technique into four stable single quadrant filters, 

each having a denominator function truncated to an 8 x 8 array. 
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Figure 4.14. Original X-ray image of diseased liver. 

Figure 4.15. Image of Fig. 4.14 processed by a fourth order 
Bernabo designed filter. 
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Figure 4.16. Image of Fig. 4.14 processed using a fourth order 
Ahmadi designed filter. 

Figure 4.17. Image of Fig-4.14 processed using a fourth order 
all-pass transformation designed filter. 
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Figure 4.18(a) Image of Fig 4.14 processed by a second order 
separable product filter. 

Figure 4.18(b). Image of Fig 4.14 processed by a fourth order 
separable product filter. 
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Figure 4.18(c). Image of Fig. 4.14 processed by an eighth 
order separable product filter. 
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Tn Fig. 4.16 the effect of using an Abmadi filter is seen. 

This filter has again been designed from the same fourth order 

Chebyshev prototype using transformation coefficients a1  = a2  = 1, 

b = 0.5. It is cascaded with a third order Butterworth separable 

guard filter. 

In Fig. 4.17 the response using a filter designed using 

the modified all—pass transformation of Hap; the prototype is the 

same Chebyshev filter as above. 

Finally in Fig. 4.18 the use of a single separable product 

filter is investigated. The three plots show the effect of varying 

the order of the prototype Chebyshev filter. The ripple is 

maintained at 1% in the passband and the :order of the filter 

progressively increased. In Fig. 4.18(a) a second order prototype 

is used; in 4.18(b) a fourth order, and in 4.18(c) an eighth order. 

Comparison of these responses shows very little difference 

between the filtered images resulting from the use of any of the 

filters designed using a fourth order prototype; Further, the 

increase in complexity from fourth order to eighth order seems 

hardly justified by subjective comparison of Figs. 4.18(b) and (c), 

although the increase from second to fourth order is clearly 

significant. 

From the above very limited subjective assessment it would 

appear that a rectangular cut—off profile is as satisfactory as a 

circular one and that there appears no justification for resort to 

the more complicated design techniques for circular profile filters. 

Such deductions must, of course, be treated with reserve as this may 

only be fortuitous and a result of the properties of the distorting 

noise in the original signal. 



CHAPTER FIVE 

FAN FILTERS 

The wise see knowledge and action as one: 
They see truly. 
Take either path 
And tread it to the end: 
The end is the same. 
There the followers of action 
Meet the seekers after knowledge 
In equal. freedom. 

"Bhagavad Gita" 

The Yoga of Renunciation 
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FAN FILTER DESIGN 

5.1 	INTRODUCTION 

Most of the design techniques considered so far have been 

for filter, having cut-off boundaries which are approximately 

circular or hyperspherical. In this chapter we shall consider a 

different type of profile, one having a fan or wedge shape. The 

practical significance of such filters originates in the field of 

geological survey. 

One technique used in geophysical prospecting is to 

detonate an explosive charge near the surface of the ground and to 

detect the impulses which have been reflected by interfaces between 

geological strata and other discontinuities by a set of seismographs 

situated some distance away. The sequence of echoes received on the 

array of detectors constitutes a two-dimensional received array in 

which one dimension is time and the other dimension is linear 

displacement between the elementary seismographs forming the 

detection array. It is customary for the detectors to form a linear 

spatial set, frequently placed vertically in a borehole some distance 

from the primary detonation. The filtering problem is one in which 

it is desirable to segregate the echoes into two groups, one which 

is travelling upwards from low strata and the others which are 

travelling downwards, probably as the result of echoes from the 

surface or other higher discontinuities; this would minimize the 

spurious responses obtained by multiple echoes from several strata 

discontinuities. 

In other situations the detectors may be placed along a 

horizontal line on the surface of the ground. A similar filtering 
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problem applies in this case. In more complex situations the array 

of detectors may be arranged as a two-dimensional array and hence 

the output from such a set of detectors will form a three-dimensional 

output array, one dimension of which is time and the other two 

dimensions being the spatial distribution of the detector elements. 

The foregoing indicates that two- and three-dimensional 

digital filters would be appropriate devices for processing the 

output data from a set of seismic detectors. The two-dimensional 

problem has been studied for a considerable time; the earliest 

solution was given by a simple convolution filter D5,46] . Since 

then a number of improvements have been made, including the use of 

recursive filters. Some of these solutions will be discussed later. 

5.2 	FORMULATION OF DESIGN PROBLEM 

A filter is required which will select those signals which 

are travelling with an apparent velocity whose magnitude lies within 

a certain bound. This demands a transfer function Y(wl,w2), given 

by [2J 

1w1I 
<Ng < N11 

V 	V 

= 
	 (5.1) 

0, otherwise 

where w1 is the angular frequency of the time varying signal at each 

detector and w2 is the spatial angular frequency along the array of 

detectors. 

Such a filter frequency contour is shown in Fig. 5.1. 
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Fig.5·1 Ideal fan filter characteristic. 



121. 

In practice the temporal frequency response is band limited 

by the need to eliminate high frequency noise introduced by wind and 

other extraneous sources. The spatial frequency response is limited 

by the finite interval between adjacent detectors, This consider-

ation leads to an appreciation of the suitability of digital filters 

to this signal processing problem. 

The earliest attempt at solving this problem was carried 

out by Embree et al [46] who obtained the inverse Fourier transform 

of Y(w1,w2) defined in equation (5.1) as 

w1N w2N 

y(t,x) = 

	

	S Y(w1'w2)e 

w1N -14  2N 

j(vit-w2x )  
dw1  dw2  (5.2) 

where 	w2NV = 	. 

This integral was evaluated directly by Embree who thereby obtained 

a time-space array which could be convolved with the two-dimensional 

input sequence to give an output sequence which enhanced the echoes 

travelling upwards (or, alternatively, downwards depending on the 

location of pass and stop zones) and eliminated directly-transmitted 

waves. 

Treitel et al [2] improved on the algorithm given by 

albree, considerably reducing the computational complexity involved, 

by taking advantage of certain symmetries of the space-time impulse 

response array. They also introduced a technique whereby a 

convolution filter could be similarly designed to give a fan band 

rejection filter. 

Subsequent work by McClellan et al [59] offered a solution 

to the problem working directly in the frequency domain, transforming 
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a one-dimensional filter to a two-dimensional one by the well-known 

McClellan transformation discussed in Section 4.4.4. 	This technique 

is shown to permit an approximation to Chebyshev characteristics to 

be maintained in two dimensions as an attempt at a realization of 

a minimum ripple approximation in two diensions. 

Subsequent work by Sengbush et al concentrated on the 

design of optimum velocity filters based on a Wiener optimization 

process. They designed both band pass and band reject filters by 

the process by which they were able to reduce the noise in the 

output data E60,61] . 

5.3 	FAN FILTER SPECTRAL TRANSFORMATION 

The transformation techniques studied in Chapter 4 have, 

in the main, been constrained by the conditions suggested by 

Prendergrass 012] in which he considers only those transformations 

which result in stable filters and also that generate real two-

dimensional network functions from real one-dimensional functions. 

We have seen that some transformations, for example that 

of Bernabo et al, do not, per se, result in stable two-dimensional 

systems but that application of one of the well-documented 

stabilization techniques may be used to render the system stable 

without materially affecting its performance. 

We will now consider a transformation which represents a 

complex function of the two-dimensional variables and show that the 

limitation imposed by Prendergrass on useful transformation functions 

is by no means mandatory. We shall now apply such a complex 
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Fig. 5.3 Prototype low-pass analogue filter 
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Fig. 5.2 Analogue low-pass filter transformed 
to analogue fan filter. 
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transformation to a one-dimensional iow pass filter to generate a 

low pass fan filter. 

5.3.1 	Derivation of the fan transformation 

An ideal fan filter, ignoring for the moment the band 

limitations necessary in a practical situation, may be illustrated 

on the two-dimensional continuous frequency domain by Fig. 5.2, 

which is a graphical representation of equation (5.1). 

This may be achieved by a digital filter which will have 

the form of Fig. 5.1 and may be obtained from the transfer function 

represented by Fig. 5.2 by use of the bilinear transformations 

z1 - 1 
s1 	z1 + 1 

z
2 
- 1 

s
2 - z

2 
+ 1 

where s1, s2 
are the continuous variables and for real frequencies 

si  = jc?1, s2  jc?2  and z 	z2 
are the discrete variables which for 

S int 	w2
t  

real frequencies are given by z1  = e 	, z2  = e 

A cross section across the filter parallel to the  

axis may have a transfer function magnitude which is of any of the 

classical forms, for example, Butterworth, Chebyshev, elliptic, 

etc. of the form of Fig. 5.3. 

Reference to Fig. 5.4 suggests that we may transform the 

prototype filter H(w) to 11(Si1,R2) by the relationship 

Q N arc tan Q2/Q1 
	 (5.3) 

arsi  is 	wormo-hzit15 cop,sk-cunfr. 

This will not cause the cross-section AA7  (Fig. 5.2) to have the 

given one-dimensional characteristic but rather the arc of a circle 
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Fig. 5-4 Digital low-pass filter transformation 
to analogue fan filter. 

w2 

It 

-7 

Fig. 5.5 Boundary values of low-pass digital fan filter. 
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such as BB1 . It is further seen that the range of ? is bounded 

between -TL/2 and TL/2 for the complete range of transfer function 

covering both pass and stop bands, which suggests that a transform-

ation from the discrete one-dimensional frequency variable w to the 

two-dimensional continuous variables c?V 2  g would be the more 

obvious choice. 

We shall thus consider the transformation 

w = wN  arc tan g2/g1 
	 (5.4) 

Making the substitution z = exp jwT, and sl  = jwi, s2  = iw2, 

leads to 

z = exp Lj wN T arc tan s2/sj 	(5.5) 

Now we may note that the extreme values of w/w
N 
from (5.4) are +IT/2 

and thus our prototype digital filter for which wT ranges between 

-IL and TL imposes the constraint that wN  = 2/T. 

Further manipulation of (5.5) using the identity 

exp(2jn arc tan xi/x2) - k 
(xx2 
2 	1/\ 

 
- j 

jxx111 
	

(5.6) 

leads to the simplified transformation function 

and in this form of a rational function it is more amenable to • 

algebraic manipulation. It should be noted that this is a complex 

transformation and will therefore generate a two-dimensional 

function F(ss2) which has complex coefficients. We may note that 

the fan filter which we are attempting to generate is symmetrical 

about the w1 axis and hence a transformation 
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Z = Si 	js2 

Si + js2 
(5.8) 

applied to the same prototype will produce another complex function 

F(s1' -s2
) which will have an identical amplitude characteristic. 

Moreover it is obvious that 

F(s1' -s2) = P(s1's2) 
	

(5.9) 

and hence we may cascade two filters, one using the transformation 

(5.7) and the other the transformation (5.8). An alternative method 

would be to use the single transformation (5.7) applied to the 
A 

product of two prototype functions P(z).F(z ), resulting, of course, 

in an identical two-dimensional filter function 

H(ss2) = 1  ).F(z11) 

Z = 
sl-js2  

s1+js2 

  

The ultimate two-dimensional digital filter may be derived from this 

analogue filter function by means of the bilinear transformation 

applied to the two variables s1  and s2. 

We may study the mapping from the one-dimensional discrete 

frequency domain w, to the two-dimensional discrete frequency plane 

wi,v2  with reference to Fig. 5.5. The lines w1  = ±TE and w2  = 0 

map into the point w = 0; the lines wl  = 0 and w2  = ±1T map into 

= TL/T; the principal diagonals w1  = ±w2 map into w = TC/2T. 

It may be noted that these boundary transformations create discont- 

inuities at the points (0,0), 	±Tt ) at which the transfer 

function will be unspecified. These singular points may be defined 

as desired, either in the pass or stop band.. The transformation is 

thus symmetrical about both axes, as could also be observed from 
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Fig.5·6 Cut-off boundaries of fan filter. 
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equations (5.7) and (5.0; this shows that the resulting function 

H(ss2) will be even in both s1 
 and s2. 

5.3.2 	The Contour Approximation  

The basic transformation given by equation (5.7) maps the 

diagonal w1  = w2  into the prototype digital filter frequency TL/2T. 

Let us consider a prototype low pass digital filter having cut-off 
, 	. 

frequency kli/T; then the cut-off boundary in the c21, C22  

continuous plane will lie along the lines c?
2 
= - 1 

tan k1T/2 and 

we apparently have design freedom in choice of the angle of the 

cut-off boundary (corresponding to velocity in the geophysical 

problem). However, in transforming to the digital frequency plane 

we observe that the continuous frequencies 21  = C22  = m) will always 

transform into w1  = w2  = Tc, the discrete frequencies. This will 

result in a distortion of the filter cut-off contour for any 

prototype filter for which the cut-off boundary does not coincide 

with half the sampling frequency. This is illustrated in Pig. 5.6. 

It may be noted that in the vicinity of the origin in the w1,w2  

plane, the cut-off profile is tangential to the lines w2 = - w1 tan kl-
C/2 

and is thus similar to that in the continuous domain. 

Since, in the application in which this design technique 

is most important, namely geophysical prospecting, the variables 

in the two directions are of differing nature, it is always possible 

to scale one of the variables, or its sampling rate, so that the 

prototype may be designed to a cut-off frequency of TL/2. In some 

other applications it may not be possible to do this and so the 

need for filters whose cut-off profiles do not lie along the 45° 
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line may arise. In such cases it will only be possible to approxim-

ate the required cut—off contour. However, since in all digital 

filter designs of this nature a guard filter is required to remove 

high frequency inversions of the basic filter profile, it may be 

possible to design the guard filter to -remove as much of the outer 

part of the curved profile B (Fig. 5.6c) as is necessary to 

approximate the desired filter characteristic. Such a guard filter 

need only have a stop band cut—off boundary along the w1 
axis where 

it affects the pass band. Along the w
2 
axis it is only necessary 

for the removal of the higher frequency bands and so a lower order 

guard filter may be adequate. 

	

5.3.3 	Stability and Stabilization  

Although the transformation function (5.7) is complex, 

this does not, of itself, give any indication of the stability of 

the resulting transformed network. However, it was noted in 

Section 5.3.1 that the network function H(zz2
) is even in both 

zi  and z2. Moreover, since it is obtained by transforming a 

function derived from the cascade of F(z) with F(z—l) it must be 

a zero phase function and by definition unstable. As it is a zero 

phase function we may stabilize it using the technique of Pistor 

[13J ; thus the final procedure before implementation must be the 

decomposition of the filter function into four single quadrant 

functions, each recursing in a different direction. 

	

5.3.4 	Design Examples 

A number of fan filter designs were implemented to show 

the significance of the preceding transformation. Where quoted, 
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(b) Contour plot. 

Figure 5.7. Low-pass fan filter. Prototype: third order 
Butterworth low-pass digital filter; (Do  = 11/2. 



NUMERATOR 

1.7776 10.6667 26.6667 35.5556 26.6667 10.6667 1.7776 

-10.6667 -64.o00o -160.0000 -213.3333 -160.0000 -64.0000 -10.6667 

26.6667 160.0000 400.0000 533.3333 400.0000 160.0000 26.6667 

-35.5556 -213.3333 -533.3333 -711.1111 -533.3333 -213.3333 -35.5556 

26.6667 160.0000 400.0000 533.3333 400.0000 160.0000 26.6667 

-10.6667 -64.0000 -160.0000 -213.3333 -160.0000 -64.0000 -10.6667 

1.7776 10.6667 26.6667 35.5556 26.6667 10.6667 1.7776 

DENOMINATOR 

3.5556 0. 53.3333 0. 53.3333 0. 3.5556 

o. -128.0000 o. -426.6667 o. -123.0000 0. 

53.3333 0. 800.0000 o. 800.0000' o. 53.3333 

o. -426.6667 0. -1422.2222 0. -426.6667 0. 

53.3333 0. 800.0000 0. 800.0000 0. 53.3333 

0. -128.0000 o. -426.6667 o. -128.0000 0. 

3.5556 0. 53.3333 o. 53.3333 0. 3.5556 

Table 5.1. 	Coefficients of transfer function of fan filter of Fig. 5.7; 

prototype, Butterworth,w 0  = 7/2. 
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(a) Isometric plot. 

(b) Contour plot. 

Figure 5.8. Low-pass fan filter. Prototype: third order 
Chebyshev low-pass digital filter; wo = 7:/2, 
6 = 1%. 



NUMERATOR 

3.4917 20.9504 52.3760 69.8347 52.3760 20.5904 3.4917 

-20.9504 -125.7025 -314.2562 -419.0083 -314.2562 -125.7025 -20.9504 

52.3760 314.2562 785.6405 1047.5207 785.6405 314.2562 52.3760 

-69.8347 -419.0083 -1047.5207 -1396.6943 -1047.5207 -419.0083 -69.8347 

52.3760 314.2562 785.6405 1047.5207 785.6405 314.2562 52.3760 

-20.9504 -125.7025 -314.2562 -419.0083 -314.2562 -125.7025 -20.9504 

3.4917 20.9504 52.3760 69.8347 52.3760 20.5904 3.4917 

DENOMINATOR 

3.5614 18.8185 70.4558 37.7997 70.4558 18.8185 3.5614 

-18.8185 -162.2803 -207.4913 -563.6463 -207.4913 -162.2803 -18.8185 

70.4558 207.4913 1039.8029 716.5663 1039.8029 207.4913 70.4558 

-37.7997 -563.6463 -716.5663 -1833.3970 -716.5663 -563.6463 -37.7997 

70.4558 2o7.4913 1039.8029 716.5663 1039.8029 207.4913 70.4558 

-18.8185 -162.2803 -207.4913 -563.6463 -207.4913 -162.2803 -18.8185 

3.5614 18.8185 70.4558 37.7997 70.4558 18.8185 3.5614 

Table 5.2. Coefficients of transfer function of fan filter of Fig. 5.8; 
prototype: Chebyshev, wo  = n/2. 



(a) Isometric plot 

(b) Contour plot. 

Figure 5.9. Low-pass fan filter. Prototype: third order 
Chebyshev low-pass digital filter; wo 

= 0.207n, 
= 1%. 



NUMERATOR 

0.1690 1.0138 2.5344 3.3793 2.5344 1.0138 0.1690 

-1.0138 -6.0827 -15.2067 -20.2756 -15.2067 -6.0827 -1.0138 

2.5344 15.2067 38.0167 50.6889 38.0167 15.2067 2.5344 

-3-3793 -20.2756 -50.6889 -67.5852 -50.6889 -20.2756 -3-3793 

2.5344 15.2067 38.0167 50.6889 38.0167 15.2067 2.5344 

-1.0138 _6.0827 -15.2067 -20.2756 -15.2067 -6.0827 -1.0138 

0.1690 1.0138 2.5344 3-3793 2.5344 1.0138 0.1690 

DENOMINATOR 

8.4205 _58.2435 168.1705 -225.8815 168.1705 _58.2435 8.4205 

58.2435 -386.8641 968.8619 -1345.3643 968.8619 -386.8641 58.2435 

168.1705 -968.8619 2480.6951 -3197.8030 2480.6951 -968.8619 168.1705 

225.8815 -1345.3643 3197.8030 -4372.9131 3197.8030 -1345.3643 225.8815 

168.1705 -968.8619 2480.6951 -3197.8030 2480.6951 -968.8619 168.1705 

58.2435 -386.8641 968.8619 -1345.3643 968.8619 -386.8641 58.2435 

8.4205 _58.2435 168.1705 -225.8815 168.1705 -58.2435 8.4205 

Table 5.3. Coefficients of transfer function(of fan filter of Fig. 5.9; 

prototype; Chebyshev, wo  = 0.207n. 
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(b) Contour plot. 

Figure 5.10., Low-pass fan filter. Prototype: third order 
Chebyshev low-pass digital filter; wo  = 0.75n, 
6 = 1%. 



NUMERATOR 

8.6329 

-51.7976 

129.4939 

51.7976 

-310.7854 

776.9635 

129.4939 

-776.9635 

1942.4087 

172.6586 

-1035.9513 

2589.8783 

129.4939 

-776.9635 

1942.4087 

51.7976 

-310.7854 

776.9635 

8.6329 

-51.7976 

129./39 

-172.6586 -1035.9513 -2589.8783 -3453.1710 -2589.8783 -1035.9513 -172.6586 

129.4939 776.9635 1942.4087 2589.8783 1942.4087 776.9635 129.4939 

-51.7976 -310.7854 -776.9635 -1035.9513 -776.9635 -310.7854 -51.7976 

8.6329 51.7976 129.4939 172.6586 129.4939 51.7976 8.6329 

DENOMINATOR 

8.7476 53.3798 133.3187 161.6153 133.3187 53.3798 8.7476 

-53.3798 -319.1229 _751.7447 -1066.5494 -751.7447 -319.1229 -53.3798 

133.3187 751.7447 1997.6754 2522.1330 1997.6754 751.7447 133.3187 

-161.6153 -1066.5494 -2522.1330 -3549.5519 -2522.1330 -1066.5494 -161.6153 

133.3187 751.7447 1997.6754 2522.1330 1997.6754 751.7447 133.3187 

-53.3798 -319.1229 _751.7447 -1066.5494 -751.7447 -319.1339 -53.3798 

8.7476 53.3798 133.3187 161.6153 133.3187 53.3798 8.7476 

Table 5.4. Coefficients of transfer function of fan filter of Fig. 5.10; 

prototype: Chebyshev, wo  = 0.75n. 
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the transfer functions, 11(zz2
), will be represented by numerator 

and denominator matrices A and B, thus 

Z1 A  z2  
H(z1  z2) Z1 B Z2 

- -4 - -63 
where 	Z

1 is the row vector El z 
1-1 	zi

3  z1  zi5   z1  

-2 - -4 	-63 
and 	Z2  is the row vector El 

z21  z2  z23 z2}  z25 z2 

Fig. 5.7 shows the amplitude response and isometric 

amplitude contours of a fan filter derived from a third order 

Butterworth filter prototype with discrete cut-off frequency at 

w0  = TC/2. The transfer function matrices of this filter are 

given in Table 5.1. 

A similar response of a fan filter derived from a third 

order Chebyshev filter prototype with 1 dB pass band ripple and 

discrete cut-off frequency at w0  = TL/2 is shown in Fig. 5.8. The 

transfer function matrices are given in Table 5.2. 

Figs. 5.9 and 5.10 show the predicted effect of variation 

of the cut-off frequency from the ideal value of w = TL/2. Both 

are designed to the Chebyshev specification with 1 dB pass band 

ripple. Fig. 5.9 has a prototype with w0  = 0.207Tt. Fig. 5.10 is 

based on a prototype with w0  = 0.7511. The transfer function 

matrices are given in Tables 5.3 and 5.4. 

One may observe from these that, as expected, the pass 

band edge lies almost exactly along the diagonals for w0  = 0.51T; 

the Chebyshev filter shows about 2% ripple in the pass band as a 

result of cascading two similar filters and a considerably steeper 

transition band. 
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(a) Isometric plot. 

(b) Contour plot. 

Figure 5.11. Low-pass fan filter. As in Fig. 5.8 
cascaded with a sixth order separable 
guard filter. 



(a) Isometric plot. 

(b) Contour plot. 
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Figure 5.12. Low-pass fan filter. As in Fig. 5.9 with 
guard filter having wo  = 0.207n. 



4.250 0.5157 -0.5435 -0.02542 -0.08840 -0.003895 -0.02907 

-0.5157 -5.195 -0.1713 _0.1602 -0.01168 (.0.02557 -0.003535 

-0.5435 0.1713 1.495 -0.001834 0.1447 -0.0006941 0.04754 

0.02542 0.1602 -0.001834 0.01514 0.002249 0.008339 0.0006964 

-0.08840 0.01168 0.1447 -0.002249 0.01006 0.00004112 0.003474 

0.003895 0.02557 0.0006941 0.008339 -0.00004112 0.002285 0.00006407 

-0.02907 0.003535 0.04754 -0.0006964 0.003474 -0.0000E407 0.001121 

Table 5.5. Coefficients of denominator of the first quadrant function after 

decomposition of the denominator of Table 5.2 by the Pistor 

technique. 
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(b) Contour plot. 
Figure 5.13. Low-pass filter. As in Fig. 5.8, after 

stabilization using the Pistor technique. 
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The effect of deviations of prototype cut-off frequency 

from wo  = IT/2 are more pronounced with Chebyshev prototypes than 

with Butterworth type filters. It may be observed that a fan 

filter having other than a ± TL/4 angle would be realized by 

cascading one such filter with a high order guard filter. This is 

shown in Fig. 5.11 for a fan filter derived from a Chebyshev third 

order prototype cascaded with a sixth order Chebyshev guard filter. 

The effect of a guard filter on a fan filter designed from 

a prototype with cut-off frequency less than TL/2 is shown in Fig. 

5.12, from which it may be seen that a close approximation to linear 

fan filter specification is obtained over a limited band of 

frequencies. 

As noted in Section 5.3.3 any designed filter requires 

stabilization. This may be achieved using the Pistor technique. 

This procedure has been applied to the transfer function given in 

Table 5.2 using a 32 point Jii' algorithm; the final decomposed 

denominator transfer function was truncated to a 7 x 7 array. 

The first quadrant decomposed denominator array of the 

transfer function is given in Table 5.5. The frequency response 

of the transfer function obtained by cascading four single quadrant 

filters and the original numerator function is shown in Fig. 5.13. 

It is seen from this that considerable ripples are introduced in 

.the reconstituted response; these may be caused partly by the 

truncation of the infinite array which forms the denominator poly-

nomial, but also by the limitations of a fast Fourier transform 

based on a finite number of discrete frequencies. An increase in 

the number of elements used in the FFT algorithm has been shown 
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to reduce the ripple. An extension of the size of the denominator 

array will also usually improve the approximation, but this involves 

an increase in complexity of the transfer function realization. 

5.4 	HIGH PASS AND MULTIPLE PASS MND FILTERS  

The design of high pass fan filters by the proposed 

technique is almost trivial as it may be effected by direct inter-

change of the two variables z1  and z2. This is, of course, 

identical to designing a high pass prototype from the low pass 

prototype by the classical substitution z = 

The design of band pass and band stop filters may be - 

performed in a similar manner by conversion of the prototype filter 

into the desired form by one of the standard one dimension 

substitutions. 

An alternative approach to this design problem may be 

obtained by a direct transformation from a one-dimensional low pass 

filter. If we wish to obtain a band stop filter we must map w = 0 of 

the one-dimensional low pass prototype filter response into the w.2 
 = 0 

the w1 
= 0 axes of the two-dimensional filter response and w = TL 

into the diagonal line n = 	for for example. The cut off frequency 

of the one-dimensional filter at, say, liTI/2, will no longer map 

into the principal diagonal in the two-dimensional filter. 

The form of transformation required to achieve this is 

obtained by reference to equation (5.4) which may be modified to 

satisfy the above boundary constraints to give 

w = 2w
N 

arc tan c?2/c?1 
	 (5.10) 
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(b) Contour plot. 

Figure 5.14. Band-stop filter. Prototype: third order 
Chebyshev low-pass digital filter; co = n/2, 
6 = 1%. 	
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(a) Xsometric plot. 
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(b) Contour plot. 

Figure 5.15. Band-Stop filter. As in Fig. 5.13 cascaded 
with a sixth order guard filter. 



(a) Isometric plot. 

(b) Contour plot. 

Figure 5.16. Multiple-band fan filter. Prototype: third 
order Chebyshev low-pass digital filter; 
w
o 

= 71/2, 5 = 1%. 



Using identity (5.6) this leads to 

s 	,Js z 	(  1 	- 2)2 
81 - j'2 
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(5.11) 

If this is used as a transformation applied to a one-

dimensional low pass prototype it will give a double fan filter 

with pass bands along both axes and stop band along the region of 

the principal diagonals. This is illustrated by the frequency 

response plot shown in Fig. 5.14. A realization approximating more 

closely to a band stop filter may be obtained by cascading the 

previous filter with a guard filter as shown in Fig. 5.15; the 

ripples in the pass band are, of course, considerably accentuated 

as a result of the superposition of a number of Chebyshev-type 

responses in this region. 

Multiple pass band fan filters may be obtained using 

higher degree transformation functions of the form 

s1 js 
z = ( 	. 2)n 

sl Js2 
(5.12) 

but they would be of limited utility; furthermore, it is obvious 

that both the pass and stop band regions are uniformly distributed 

angularly around the origin since only a single low pass prototype 

is used. If such filters are required they would be better designed 

by the use of the simple transformation of equation (5.7) applied to 

a more gener ally designed one-dimensional multiband filter. A 

filter using a third degree transformation is shown in Fig. 5.16. 

One application of the transformation which does, however, 

appear useful, is the generation of a band pass filter by using the 

second order transformation (5.11) on a high pass prototype filter. 
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(a) Isometric plot. 
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(b) Contour plot. • 
Figure 5.17. Band-pass fan filter. Prototype: third order 

Chebyshev high-pass digital filter; wo = n/2; 
6 = 1%. 
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(a) Isometric plot. 

(b) Contour plot. 

Figure 5.18. Band-pass fan filter. As in Fig. 5.16, 
cascaded with a sixth order low-pass 
guard filter. 
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(a) Isometric plot. 

(b) Contour plot. 

Figure 5.19. Band-pass fan filter. Prototype: third 
order Chebyshev high-pass filter; w = 0.207n, 
5 = 1%; cascaded with a low-pass guard filter; 
w
o 

= n/2, 6 = 1%. 
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This is illustrated in Fig. 5.17 using as prototype a high pass 

filter with cut-off frequency w0  = 0.511; it maybe noted that 

the pass band lies along the diagonals w1  = 7.172. This would permit 

the design of a filter for geophysical prospecting which selected 

waves which were travelling with apparent velocities lying within 

a band V1  < I C/l< V2. 

In order to achieve an approximation to fan design with 

linear cut-off boundaries, we need to cascade this filter with a 

low pass guard filter. The effect of this is shown in Fig. 5.18. 

A better response would be obtained using a higher order guard 

filter, although if this is based on a Chebyshev prototype it would 

introduce additional ripple in the pass band. 

A narrower band pass fan filter is shown in Fig. 5.19 

based on a Chebyshev high pass prototype with cut-off frequency at 

0.811 ; the guard filter is the same as in the previous example 

with w0  = 0.51T. 

Although the particular filters designed in this manner 

are symmetrical about the principal diagonal, it may be desirable 

to design band pass fan filters having arbitrary angular orientation 

of the band edges. These may be closely approximated in the 

following manner. We may cascade two filters; the first is obtained 

by a third degree transformation applied to a low pass filter and has 

the frequency response shown in Fig. 5.16; the second is a simple 

high pass filter such as that shown in Fig. 5.8 with the w1  and w2  

axes interchanged. This cascade of filters will give rise to a 

frequency response as shown in Fig. 5.20; this particular character-

istic is designed throughout using a one-dimensional Chebyshev 
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.(a) 	Isometric plot. 
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(b) Contour plot. 
Band-pass fan filter. Cascade 
with high-pass filter obtained 
axes of filter of Fig 5.8. 
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Figure 5.20. 
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prototype with cut-off frequency at TC/2. A guard filter will then 

permit isolation of those parts where the cut-off boundary is 

adequately linear. 

It may be seen that a very wide range of filters may be 

obtained by this technique, giving great freedom to the designer to 

obtain special profile filters of basically fan form. 

5.5 	MULTIDIMENSIONAL FAN FILTERS 

The use of the one-dimensional to fan transformation (5.7) 

applied twice in succession along different dimensional axes will 

generate a class of filters having cut-off profiles which, at 

present, appear to have little practical utility. They will 

therefore not be considered. 

However, we have noted in Section 5.1 that it is possible 

for the array of seismographic detectors used in geophysical 

prospecting to be two- or even three-dimensional. We may therefore 

need to generate a fan filter which filters out all signals, the 

magnitude of whose apparent velocity is less than some given value 

V in any angular direction. This suggests that we start with a 

two-dimensional filter with a circular cut-off boundary and transform 

this into a three-dimensional filter by the transformation (5.7). 

Ideally this should produce a filter with a conical cut-off boundary 

as shown in Fig. 5.21(a) derived from the two-dimensional filter 

shown in Fig. 5.21(b). 

The prototype in Fig. 5.21(b) has been drawn with a 

circular cut-off boundary corresponding to a radius TC/2 as we have 

observed in using the one- to two-dimensional Ian transformation 



Fig. 5.21(a) Ideal boundary of three-dimensional fan filter. 
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Fig.5-21(b) Cut-off profile for prototype 2-dimensional low-pass filter 
to design ideal 3-dimensional fan filter. 
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that this will ensure the cut-off boundary of the filter is linear 

along the diagonal. Such a prototype in this case will ensure 

that the point (±7/2, 0) on the (q, Ny plane maps into all 

points along the line wl  = ±w2, w3  = 0 and (0, ±1T/2) maps into 

the straigU line w1  = w3, w2  = 0. 

The nature of the transformation from the NO2' 3 wi plane 

to the w1, w2' w3 space is 

s - s2  
zi - 
2 	s1 + js2 

(5.13) 

Z1  = 
3 

si  - js3  

si  + js3  

followed by the bilinear transformation applied to si, s 2' 53' 

It is unfortunate that such a transformation will also 

map the point (TENT, WW2-) into the corner point (TC,7,11). 

This implies that any shape of cut-off profile of two-dimensional 

prototype filter will map into the boundary square in three-

dimensional space on the planes w1 = 

5.5.1 	Circular Cone Filters 

The ideal 3-dimensional fan filters based on a two-

dimensional prototype discussed in the last section may be termed 

cone filters from the shape of their cut-off boundaries. We may 

attempt a design of such a filter using the all-pass transformation 

to give a two-dimensional prototype filter having cut-off boundary 

along the two axes at (wi, 	= (0, 7/2) and (TT/2, 0). This will 

ensure that these points map into the straight lines w2 
= 0, w1  = -

3 

and 	= 0, w1 
 = - 17

2
. The boundary along the major diagonal passing 

-  
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Figure 5.22. Three-dimensional fan filter derived from an all-
pass transformed two dimensional digital filter. 
Prototype: third order Butterworth low-pass digital 
filter;. wo  = n/2. 
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through (TE,TC,TC) is, however, concave and only in the vicinity 

of the origin will this boundary lie along a generator of the desired 

conical surface. A design using this specification is shown in 

Fig. 5.22. Observations of the sections perpendicular to the vl-axis 

show that the boundaries are near-circular close to the origin 

becoming almost square towards wl  = TU. 

An alternative specification would be to demand that the 

profile have linear generators along w1  = w, = w3  by choosing a 

prototype based on a cut-off frequency 0.58 TL. This will force 

the boundaries along the coordinate planes, w2  = 0 and w3  = 0, to 

be convex. 

It appears that the nearest approximation to a truly 

conical filter would be one designed using a prototype filter with 

quasi-circular cut-off boundary midway between these at 0.541.L 

approximately. 

5.5.2 	Rectangular Pyramid Filters 

As an alternative solution to this problem, we may 

abandon any attempt at obtaining a quasi-conical filter and settle 

for a much simpler square pyramidal filter based on the use of 

transformations (5.13) on a prototype two-dimensional separable 

filter, having cut-off boundary at (TL/2, 0) and (0,TC/2). Such a 

-filter will have an approximately square cross-section at all values 

of wl. A "pyramid" filter is shown in Fig. 5.23. 

It would be interesting to make a subjective comparison of 

the results of filtering data from a two-dimensional set of 

geophysical data by "cone" and "pyramid" filters. Judging by 
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Figure 5.23. Three-dimensional fan filter derived from a 
separable product two-dimensional filter. 
Prototype: third order Butterworth low-pass 
digital filter; w

o 	
TV2. 



comparative assessments on the two-dimensional prototypes, it is 

likely that the simpler pyramid will be as satisfactory as the 

quasi one. 

5.6 	DISCUSSION OF FAN FILTERS  

The transformation proposed leads to a family of fan 

filters. Only in very special cases do these have truly linear 

cut-off boundaries. 

In the majority of cases considered, the cut-off boundary 

may be made adequately linear by limiting the upper bound on the 

frequency response of the filter. 

Techniques for the design of filters having narrow bands 

with specified upper and lower cut-off frequencies are also 

illustrated. 

The versatility of the transformation technique is seen 

in the ability to design a range of filters which otherwise have 

not been capable of realization. 

The extension to systems in which two variables are 

spatial and one temporal has been demonstrated leading to the 

design of conical and pyramidal filters. 
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REVIEW, CRITICISM AND CONCLUSIONS  

6.0 	REVIEW 

Although this thesis is, according to its title, concerned 

with the design of multidimensional digital filters via spectral 

transformations, it is desirable to consider the purpose of designing 

multidimensional filters at all, and further the desirability of 

designing them by the proposed technique. 

As outlined in the introduction, the purpose of filters 

is to process images to modify their properties or to remove 

undesirable distortion or noise which may have contaminated them 

so that they only bear a vague resemblance to the object from which 

they originated. It is therefore apparent that the use of the 

filter must define the specification of the filter. The specification 

may be made, in the simplest way, by specifying the point spread 

function which gives the response of the filter to a unit impulse 

at the spatial origin. In an alternative representation, the 

filter specification may be defined in the multidimensional frequency 

domain. The two specifications are directly linked by the Fourier 

transform. 

However, in any physical system the data is always 

presented as a function of multidimensional space; a comparison 

may be made with a one—dimensional temporal system -where the data 

is a function of time. Thus in using a multidimensional signal 

processing device it is always necessary to consider the input and 

output data as spatial functions and this affects the manner in 

which the input data is processed and also, as a consequence, the 

form of design of the filter. 
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The earliest signal processors in one dimension consisted 

of a filter sequence which was convolved in time with the input 

sequence to give an output sequence; the so-called transversal 

filters. Such filters in general were termed convolution filters 

and were obviously of finite length and had a finite impulse 

response. 

A second approach to the problem was via the discrete 

Fourier transform (DFT) whereby a DFT of the input sequence was 

determined; this was multiplied at each frequency by the response 

function of the filter to give the frequency spectrum of the output 

sequence and finally an inverse DFP gave the desired output. 

Depending on the nature of the filter function, the output sequence 

might be of finite length or of infinite duration in response to a 

finite input sequence. 

Either of these techniques can easily be extended to 

multiple dimension for processing image signals. One of the short-

comings of these processes lay in the considerable volume of 

computation required. In using convolution filters it was found 

that filter sequences of thirty or forty elements might be needed 

to produce adequate filtering in a given situation or to 

approximate a required transfer characteristic to a desired 

accuracy. Increase of the dimensions of the system from one to 

many increases the complexity exponentially. Attempts were made 

by a number of techniques, including truncation, windowing and, 

more recently, phase correction to reduce the length of the filter 

without seriously impairing the response characteristic. 

Considerable progress has been achieved in this respect although 

large point spread function arrays are still common. 
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The second approach to this problem was again hindered 

by the difficulty of obtaining Fourier transforms of functions by 

computational techniques. The advent of the Fast Fourier Transform 

algorithm [6,62] with its many modifications and sophistications 

went far to overcoming this difficulty. However, in order to 

obtain accurate results it is necessary to use a large number of 

points in obtaining the Fourier transform and, although not so 

seriously, the problem of computational complexity returns. 

It is apparent that a convolution filter may process a 

signal"in real time"; namely, the output value of each element is 

obtained sequentially and is available a finite time after the 

corresponding element is read. When the signal is processed via 

the Fourier transform, it is necessary first to read and store all 

the input data, then process it as outlined above, whereupon the 

whole of the output data becomes simultaneously available; thus 

real time processing is not possible. This also shows that the 

computer requires sufficient storage for all the input data in 

addition to that required during the processing algorithm. In one 

dimension this presents little problem; however, in two and more 

particularly in three and more dimensions computer storage limits 

the size of the array which may be handled and thus forces 

quantization of the image into undesirably large picture elements 

(pixels). It is, of course, possible to handle large numbers of 

elements but this involves technical problems in the organization 

of the computer to store such large arrays and a concomitant 

increase in the time required for each complete image to be processed. 

If one of the dimensions of the image is time, the duration of the 

computational process may completely preclude the use of this 

technique for filtering anything other than slowly changing images. 
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For these reasons a third technique of image processing 

was developed based on the finite difference equations of a 

recursive filter. By taking the Z-transform of these equations 

one may derive a recursive transfer function. However, the 

processing is implemented by a direct application of the finite 

difference equations as outlined for two dimensions by Shanks [0] . 

It immediately became apparent that the length of the filter, as 

defined by the number of coefficients in numerator and denominator 

to approximate to a given filter response, could be drastically 

reduced below that required for a comparable convolution filter. 

Furthermore, it may also be appreciated that each output pixel may 

be generated sequentially from the input pixels after a finite 

delay. There is no need for the large storage requirements demanded 

by the Fourier transform processing technique. This reduction in 

complexity is extended to multidimensional systems and has 

stimulated considerable research to be carried out in the design 

of recursive filters, both one- and multidimensional. 

This thesis discusses two of the principal methods by 

which recursive multidimensional filters may be designed. The first 

basic class is those which work directly in the space domain; the 

second class carries out the design exclusively in the frequency 

domain. Since all recursive filters are essentially feedback 

systems, the possibility of an unstable design being obtained is 

always present. It is thus essential for completeness that a 

survey of the stability tests on systems is undertaken. 
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6.1 	STABILITY 

The basic definition of the stability of a system in terms 

of the absolute summability of the multivariable spatial array is 

shown to lead to the classical conditions derived by Shanks [5,26] 

in the Z-domain. Goodman [28:1 has shown that under certain 

circumstances these conditions are no longer necessary although 

always sufficient; an example of such a function appears in 

Chapter 5. 

Many attempts have been made to obtain closed form 

expressions for the stability of multidimensional recursive filters. 

For a number of simple cases this has been achieved D0,63] but no 

general formulation has been obtained. As a consequence of this, 

a number of computational algorithms have been proposed. These are 

mainly based on the extension of Shanks theorem to an assessment of 

the stability of a number of polynomials (equal to the dimensionality 

of the system) at all points within unit circle considered as a 

function of one variable. This has been discussed in considerable 

detail by Jury DIC and doubt has been cast on its validity. 

Of the techniques for carrying out the assessment of 

stability, that proposed by Maria and Fahmy is probably the simplest 

to use and the most economical in computer time. No comprehensive 

assessment of the relative efficiencies of the various techniques 

for high dimension filters has been carried out. 

The immediate sequel to a check on the stability of a 

system is the derivation of techniques for stabilization. Two 

techniques are available for stabilization of non-zero phase 
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functions; Shanks [47]approach is based on a conjecture that the 

planar least squares inverse of a filter is stable and that the 

double planar least squares inverse will have a magnitude spectral 

function that closely approximates that of the original function; 

Read and Ti-eitel D3] base their procedure on an extension of the 

well known one-dimensional property of the Hilbert transform linking 

the logarithm of the magnitude and the phase of a minimum phase 

function. 

Unfortunately neither of these techniques is infallible. 

It has been proven by a number of counterexamples [47,51] 

that the Shanks conjecture is false even in two dimensions and 

therefore is unreliable as a stabilization technique in any multi-

dimensional system. The Read and Treitel approach appears more 

hopeful in that the failure to achieve stabilization has been 

attributed to the necessity to truncate the generated minimum phase 

array to a finite size before use as the denominator coefficients 

of a recursive filter transfer function. Bose [56] has also shown 

that the Hilbert transform is not, in general, applicable to 

multidimensional systems because of the inability to obtain an 

appropriate boundary corresponding to the one-dimensional boundary. 

Despite these shortcomings, a number of test cases have 

shown that both these techniques under certain conditions can 

yield a stable transfer function having a magnitude response 

closely approximating that of a given unstable filter. It appears 

that both techniques are fairly satisfactory when the system is 

grossly unstable but tend to fail in situations where the system 

is only marginally unstable. 
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For zero phase systems neither of these techniques is 

applicable. Pistor [13] proposed a method applicable to two 

dimensions and Ahmadi and Ring E18,22.] extended it to multiple 

dimensions which partitions a zero phase filter into a cascade of 

stable siLale quadrant recursive filters. The technique is in 

principle exact and should result in a set of perfectly stable 

- filters, each of which may be implemented by recursion in the 

appropriate direction; if infinite precision computational 

facilities were available this would be true. Unfortunately the 

technique relies on transformation from the spatial to the frequency 

domain and this may be achieved only by a computational algorithm 

which evaluates the Fourier transform or its inverse at a finite 

number of frequencies and to a finite accuracy. Examples have 

shown that considerable improvement in the accuracy of the 

procedure may be achieved by increasing the size of the array used 

for the Fourier transform, which justifies the above argument. 

One other limitation of the procedure is that the 

algorithm decomposes the denominator of the transfer function into 

a set of single quadrant functions (for a two-dimensional system, 

four such functions). These single quadrant functions are infinite 

multidimensional polynomials which for practical purposes require 

truncation to a finite length; if the decomposed polynomials are 

fast converging functions this truncation is unlikely to introduce 

serious error, but in cases in which they are only slowly converging 

considerable errors may be introduced. 

It is likely that the truncation of the decomposed 

polynomials is responsible for the failure of the Pistor technique 

to realize a set of stable filters in certain cases, whereas the 
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finite size of the Fourier transform array may cause the consider-

able errors which are noticed between the magnitude response of 

some stabilized filter functions and that of the original functions; 

considerable errors may be noticed in the fan filter in Chapter 5 

which was stabilized using this technique, implemented using an 

intermediate transform array of dimensions 32 x 32, which is too 

small to take account of the sharp cut—off profile effectively. 

An extension of the technique proposed by Ekstrom and 

Woods D4 removes some of the errors produced in the amplitude 

response function by using certain weighting functions on the 

decomposed sequences. Another improvement has been proposed co] 
which uses an optimization procedure to modify the numerator of the 

transfer function to compensate for the errors introduced by the 

denominator. Yet another proposal has been made by Rousogiannakis 

[66] in which the phase correction algorithm LK' may be used to 
modify the truncated demoninator arrays to give better approximations 

to the desired magnitude response without affecting the frequency 

response; this has shown promise of only minor improvement. 

However, modification of the numerator polynomial by the phase 

correction technique to compensate for the errors due to truncation 

of the partitioned denominator shows greater potential. 

6.2 	SPATIAL DESIGN TECHNIQUES  

Initially a survey was made of the presently available 

techniques for design in the space domain of a recursive filter 

having a given multidimensional spread function. No constraints 

were placed on the functional form of the specification; 
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however, designs could only be achieved if the point spread function 

was causal and absolutely summable. The principal disadvantage of 

most of these techniques is that the designed filter may not 

necessarily be stable, since the filter transfer function is always 

derived as an approximation to the spedified stable point spread 

function. It is therefore imperative to apply one of the stability 

tests discussed in Chapter 2; in those cases in which the filter 

is shown to be unstable, one of the stabilization techniques 

(either Shanks or Read and Treitel) must be used. It has been 

remarked that the original design is, at best, an approximation 

to the desired point spread function. Moreover it is well known 

that both these stabilization techniques inevitably distort the 

amplitude response function as discussed in Section 6.1, and that 

they do not guarantee that the resulting filter will be stable; 

thus a final stability check needs to be carried out on the designed 

transfer function. 

As an alternative stabilization method, we could 

consider that of Pistor. However, the specifications in all the 

spatial design techniques are of single quadrant filters and 

although there is no evidence that the Pistor stabilization method 

is unsatisfactory in such cases, no evidence is available showing 

the conditions, if any, under which the technique may be used for 

non-zero phase systems. 

The only spatial design technique which guarantees a 

stable filter is that proposed by Bordner. Unfortunately, it 

suffers from the other drawbacks, the principal of which is that 

the solution does not converge on a global minimum. It also relies 
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on the choice of an "extension array" to the given finite size 

point spread array which is a "natural extension". The choice of 

this "tail array" is critical in reducing the complexity of 

computation. 

It is thus seen that of the spatial design techniques 

considered, only that of Bordner may really be considered as a 

viable technique and even here the computational problems may well 

be very great. 

The above deductions are based on designs in two 

dimensions. Attempts at three- and higher dimensional systems do 

not appear to have been attempted although the theory has been 

established E36,373 . However, for such higher-dimensional systems 

the preceding criticisms will carry even greater weight. 

6.3 	FREQUENCY TRANSFORMATION TECHNIQUES 

A number of•frequency transformation techniques have been 

considered with particular reference to transfer functions having 

cut-off boundaries which approximate to a hypersphere (or, in the 

two-dimensional case, to a circle). 

The earliest of these was proposed by McClellan, who 

used a one- to two-dimensional transformation applied to a non- 

. recursive filter to obtain a circularly symmetric two-dimensional 

filter. The technique has been extended by Bernabo et al to 

recursive filters and results in a filter which can be made to 

have a very good circular cut-off boundary but without any 

guarantee of Stability of the designed filter; in fact, since the 
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designed filter is zero phase it will of necessity be unstable and 

in order to obtain a practical implementation it is necessary to 

decompose it by the Pistor technique. The criticism of the method 

lies in the large amount of computation time required, although 

the designed filter has the best circular symmetry of any of the 

considered techniques. 

The Ahmadi procedure provides a transformation from one 

to two dimensions via a simple two-dimensional reactance function. 

It ensures a stable filter with cut-off profile approximating 

circular, in particular for higher values of cut-off frequency. 

It is unfortunabathat spurious pass bands exist when this trans-

formation is used, but these may be removed by a low order low pass 

separable guard filter. The method has the advantage that it is 

relatively simple to extend the technique to systems of any number 

of dimensions. A simplified form of the Ahmadi transformation 

postulated by Ali eliminates the spurious pass bands but is even 

more restrictive in the generation of cut-off boundaries of 

approximate hyperspherical form. 

The all-pass transformation postulated has the advantage 

over the Ahmadi transformation that better cut-off boundary shape 

may be achieved, but similar constraints hold on the frequency 

ranges over which this is satisfactorily obtained. Spurious pass 

bands exist when using the general form of the transformation, 

which may be removed by a guard filter; the special form of the 

transformation put forward by Kap eliminates these but restricts 

the cut=off frequency range for circular symmetry. The all-pass 

transformation may also be very simply extended to multidimensional 

systems, either in its general or more restrictive form. 
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In contrast to these transformations we may consider the 

simplest and earliest transformation, namely that obtained from 

multiplying together two filter functions, each of which is 

dependent upon only one frequency variable and which may therefore 

be trivially generated from a one-dimensional filter. Although in 

two dimensions the cut-off profile is almost rectangular, this 

defect appears to be of little significance in many low pass 

filtering problems. The technique has the overriding advantage that 

the design procedure is simpler than any of the other transformations 

and very little increase in complexity accrues when it is extended to 

any number of dimensions. 

The design of fan filters has also been attacked using 

a new spectral transformation. In the simple situation where the 

two axes are time and distance, fan filters with accurately linear 

cut-off profiles may be designed having the steepness of the cut-

off boundary defined in a simple manner by the order of the 

prototype low pass filter from which it was generated. Such 

filters have superior characteristics to any of those designed by 

presently available techniques. 

More complex fan filters may also be designed by the 

same technique but, except in trivial cases, the cut-off 

boundaries are curved; approximation to linearity may be achieved 

by limiting the frequency range of the filter in both directions 

by means of a low pass guard filter. Superposition of two types 

of fan filter has been shown to produce the equivalent of a fan 

band pass filter; this technique opens up many multiple band 

possibilities. 
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A final application of the fan transformation is shown 

in a three-dimensional application which could have value in 

geophysical prospecting where two-dimensional spatial arrays of 

geophones are used. 

6.4 	FUTURE FIELDS OF WORK 

Circular cut-off filters have been the subject of much 

of this thesis and the methods of designing to a pseudo-circular 

cut-off boundary have in general consisted of ensuring a fit at 

three points. Such a technique will not necessarily ensure an 

approximation in a mean square error sense and it is open to 

investigation whether a better design method could be derived 

based on a minimization of some error function. The subjective 

assessments obtained using separable filters suggest that it is 

unlikely that this will yield filters which have superior 

properties in any practical applications. 

In the use of both the Ahmadi and the all-pass trans-

formations, frequency bands have been given, outside which quasi-

circular filters may not be designed. It would be of interest to 

determine what deviation from circular symmetry results when the 

design of filters having cut-off frequencies below this limit is 

attempted. It is conjectured that these frequency limits are not 

rigid but that the parameters of the transformation will enable a 

choice of filter to be made to optimize the cut-off boundary. In 

the restricted forms of either of these transformations in which 

spurious pass bands are eliminated this becomes of considerable 

significance. 
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Similar investigations into the linearity of boundaries 

of fan filters may also show preference for certain forms of 

transformation function and prototype filter. 

With the wide range of spectral transformations now 

available it would be interesting to compare the various filters 

for factors such as ease of implementation, quantization errors, etc. 

6.5 	CONCLUSION 

A very brief survey of the application of some circular 

symmetry filters in the processing of one particular image has 

shown that by a crude subjective assessment of the results, the 

more complex filters have little advantage over the simpler ones, 

once again justifying the words of William of Occam. 
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