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ABSTRACT

The thesis consists of a survey of the classical methods
of two-dimensional digital filter design in the space domain and

their extension to multidimensional systems,

Design techniques in the frequency domain are studied
with particular reference to techniques involving spectral
transformation methods between one and many dimensions. Some of
the more recent methods are extended to n dimensions and the
limitations of the transformations studied. Specific numerical
design examples are given for three-dimensional filter specific-

ations having approximately spherical symmetry.

New design techniques are proposed for the realization
of two-dimensional fan filters of recursive form having guaranteed
stability. The techniques are shown to be extendable to three-
dimensional systeﬁs, in which two dimensions are linear and one is

temporal,

A critical comparison is made of the several techniques

proposed.
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CHAPTER ONE

INTRODUCTION

For just as a man cannot see without
eyes, so a scholar would be blind
unless he learnt from books.

"Piers the Ploughman"
William Langland



INTRODUCTION

1.1 PREAMBLE

One of the significant problems in commnication is the
processing of signals which have been passed through a system which
has résulted in a deterioration in their quality. The need for such
processing resulted, in the early days, from the distoriion produced
in teléshone links over relatively long distances. The whole theory
of analogue signal processing developed from this need and led to the

classical Zobel filters and other passive network designs and later

developed into the more modern aspects of active network synthesis.

More recently, digital signal processing has beeg introduced
fof the treatment either of analogue signals which have been sampled
" periodically to produce a set of discrete pulses or of signals which
from transmission to reception are in discrete form. Such signéls may
be considered to be represented by a sequence of numbers representing
the value of the signal at successive instants of time. Once this
conceptual approach to time sequences has been accepted it may be
realized that digital signal processing may be considered in the simpler
manner as a means whereby an array of numbers may be modified according
 to some selected laws to generate an output array; these arrays may be
of one or more dimensions., In one dimension the moét common variable
is time; in multidimensional systems the variables may be spatial,
temporal or any other desired parameter. The discrete data processor
usually operates on the input array sequentially; when the data is
spatially or otherwise distributed, it will need to be scanned in time
before processing. This may be accomplished in real time or,

alternatively, the data may be stored and processed at leisure by a
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relatively slower system. Occasionally a parallel processor may be

used but this is generally unecconomical for large systems.

It is now shown that the data available for processing may
vary in two or more dimensions, FExamples of two-dimensional arrays are
found in facsimile and other visual images, electron micrographs, X-ray
images, isotope scanning images where the two dimensions are both
spatiaf. Othér two-~dimensional arrays occur in the field of seismic
exploration where the output array is displayed in the two dimensions

of linear space and time.

Such arrays need to be processed in order to remove anomalous
signals and also to eﬁhance certain aspects of the data. For example
in medicine, X-ray films may be processed to remove low spatial
frequency variations, thereby enhancing the sudden variations of
abnormal conditions. Tn the case of scanned isotope detection the
processor may be required to remove the striations on the image
produced by the finite width of the scanning lines and other distortion
wvhich occurs as a result of the finite resolution of the gamma ray

’scanner[:f] « 1In electron microscopy the purpose may be to reduce the
low frequency background noise which is iﬁherent in such processes,

In the field of geophysical prospecting echoes from boundaries of
geological strata of a detonation are detected by a linear array of
detectors placed in line with the source. Desired echoes will be
received by the detectors from various changes in geological strata,
whereas undesired echoes may occur from mltiple reflections, and

random signals may also be generated by wind noise [?,j] o

It is conceptually simple to appreciate that arrays are now

no longer restricted to two dimensions but may be extended to any



11.

number of dimensions. An example of o three-dimensional erray might
be the output from a rectangular grid of detectors placed near to a
detonation, the three coordinate axes being the two spatial dimensions
of the grid and the time of reception of reflection at each detector.
Again the processing of images obtained by tomographic scanning of the
human body in detecting tumours will also result ia a three-dimensional
array. A television picture is another example of a three-dimensional

-

signal with two spatial and one temporal dimension.

Although practical examples of higher order arrays are not
available at present, it is convenient to consider multidimensional

processes as opposed to the restricted two-dimensional arrays.

The processing of such multidimensional arrays poses certain
problems which do not apply to one-dimensional arrays. In principle
it is possible to consider a "parallel" process whereby the output
for every point of an array is produced at the same instant of time
by a very large number of identical processors connected to the
appropriate input array data. This conceptual approach is the one
most frequently adopted in the development of any theoretical work.
However, the design of a system based on this concept would be absurd
as each of the parallel processors would be identical. It is
therefore customary to carry out the processing on each group of
input data, giving one element in the output data, in a sequential

manner in time using a single processor.

This idea of time scanning of space data introduces a
fundamental difference between time and space series. In any two sets
of time series representing cause and response, the response r(to) at

a certain time to can only be dependent on values of the cause c(t) at
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values of t éto. This is kmown as the principle of causality. In
spatial arrays ~such a distinction does not exist and the response
r(xo) for a one-dimensional array may depend on all values of the
cause c(x) for - w<x < ®© or more rigorously for A <<x <<B where
A and B define the physiéal bounds of the input array. This
distinction results in the inability of a time-scanned processor
effectively to implement all the requirements of a digital filter
operating on spatial data in one single run of a time scanner in ome

direction. This will be considered in greater detail in Section 1.2,

1.2 REPRESENTATION OF MULTIDIMENSIONAL SIGNALS

A multidimensional array may be represented by,

o
T

{h(my,eem )t = {n(w} (1.1)

{hml,...,mn = {_hg} (1.2)

where {g} is defined as the multiple {ml,...,mn}and h is assumed to

be zero for all subscript multiples {'g} which do not belong to the
definition set of h. The definition set of h usually corresponds to
the set bounded by the physical limitations of the given array. Such

an array is in general defined for positive and negative values of

the elements of the subscript sets.

In the particular case in which hm = 0 for all subscript

sets {g} in which any m. << 0 the array is known as a first quadrant

array and represented by a superscript 1 as

v g P o

m llm
1'°° Ty

. hon- n
having, zero values only for () m, > 0.

i=1
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P = {th} (1.4)

may be defined which are non-zero only when some or all of the elements
of the muitiple {E} are negative. There are thus o™ single quadrant
arrays possible in any n-dimensional system. The definition of a first
quadrant array given by equaiion (1.3), when considered in one
dimension; is identical with the definition of a causal array in time
and thus mltidimensional arrays having this property are sometimes

termed causal. Since causality is meaningless outside the time

dimension, I shall retain the term 'first quadrant array!'.

A digital array may alternatively be represented by its

Z-transform, defined as

H(Zl,...,zn) = H(E)
0
> ) e
ee h A ceeqa
= Wygeseym 1
m,=-=co m ==
1 n
1.3 CLASSIFICATION AND REPRESENTATION OF

MULTIDIMENSIONAL DIGITAL FILTERS

Digital filters may be subdivided into two classes, linear
and non-linear. A typical example of a one-dimensional non-linear
filter is the adaptive or automatic equalizer in digital communication
systems. In two dimensions we may quote contrast enhancement of images

as a typical example.

- Most digital filters at present are linear systems; for

example, those used in the cqualization of fixed digital communication
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channels, filters used in the synthesis of speech and similar applic-
ations. This thesis will be entirely concerned with finite linear

digital filters.

Linear filters may be divided into two classes. First are
non-recursive filters in which the output array is a function of the
input array only; such filters will have a response to an input
impulse which is bounded in duration in any dimension; it is thus
termed a finite impulse response (FIR) filter. Second, recursive
filters are those in which the output array is dependent, not only upon
the input array, but also upon neighbouring values of the output array;
such filters usually have unbounded duration of their impulse response
arrays in all dimensions and are thus known as infinite impulse

response (IIR) filters.

A
The output array {rm mE of a non-recursive filter- is
1,.-., n

related [F,i] to the input array {c g by the convolutional

Ty geeeyfy
equation
1 : Mn
T = E E a.
ml,ll-’mn 0 .]1,-00,3 1 Jl,.'l,m J
1~ In™
Similarly recursive filters may be represented by
M1 Mn
Tr = s e a. .
Mgeea,m Jyoeess] oC ; Y
1 n j1=0 jn=0 1 N my-Jygeee,m —j
AY
1 Mn
E E b. oo Th s m -3
=0 o Jyrecesdy Tymdyseces®—l, -
© Yn
P

“

gy =i O
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In the one-dimensional case where the variable is time, the neighbouring
values of the output must always be previous values, whereas in spatial
systems they may be to the right or left, above or below, etc. Thus
any scanning system in time, used to recursively process spatially
distributed data will be limited to generating output functions which

are constrained in only one 'quadrant' of multidimensional space.

"The above digital filters may alternatively be represented
by the Z-transform relationships from which the Z-transfer functions

may be obtained,

For the non-recursive filter, the Z-transfer function is

u

1 . .
1 Jn

HZ eeeal - a. . oZ esceeaZ
( 1’ ? n) ZE; Jpreeeady 1 n

For the recursive filter

A(zl,...,z )

H(zl"”’zn) = B(zl,...,z)
M () .
DI I S
. 2«2 .-...Z
J seeesdy 1 n
..O ::0 ! . n
M1 Mn . .
E 31 dn
- .zl Qoo..zn
J ,.l.,J
':0 '= 1 n
1.3.1 Zero Phase Filters
‘jul j“n
The spectrum of a filter H(e yeesse ) may be determined

from the Z-transform of the transfer function by setting z, = e .
A zero phase filter is one in which

oy -
Arg H(e “,...5e ) = 0 for all values of u..
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Ju -ju, J J
IH(e 1,...,8 n)l —-IH lse 2,...,8 n)l
juy; -ju ju
=|H(e ",e 2,...,e n)l = ease
...J'u

namely that the magnitude spectrum is symmetrical about all frequency

axes.,

1.4 HISTORICAL BACKGROUND

The earliest work on digital filters was performed on FIR
filters using direct convolution of the filter coefficients and the
input sequence. This was computationally inefficient and rendered

design difficult since it needed to be carried out in the time domain.

Fourier transform methods allowed simpler design techniques
to be evolved, as the only requirement was the specification of a set
of weighting coefficients in the frequency domain. The advent of the
Fast Fourier Transform [ 6 ] (FFT) enabled computer efficiency to be
spectacularly improved. It suffered, however, from the restriction
that it was limited to relatively small arrays of data if computer
storage were not to become excessive; this limitation is of even

greater significance when processing multidimensional arrays.

Many of the applications of two-dimensional filters require
that the point spread functions in the space domain should be
circularly symmetric, as any distortion is equally likely to occur in
any radial direction. This results in a frequency response classific-

istic which is circularly symmetric about the origin. Very similar
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requirements are likely to he demanded in multidimensional systems,

in particular where all the 'spatial'! dimensions are of the same nature.

Other situations arise in which the distortion of the desired
signal has not been produced by a homogeneous medium and therefore any
filter designed will similarly need to have a different response along
each of the coordinate axes. An example mighp be the removal, or
reduction; of scﬁn lines in facsimile or television pictures. This
results in frequency responses which are also not identical along the
varioﬁs axes. Another situation where this may occur is that in which
the various axes do not represent the same type of variable, for
example, in processing a television image, two axes are spatial and one
temporal. In the processing of geophysical data frequently one (or
two) axes are spatial and the third temporal; a classic example is

the "fan filter" [2,24] .

Most of the earliest work was on the design of circularly
symmetric filters (or those closely approximating that ideal). One
of the earliest papers was by Darby and Davies[:i]'who used the two-
dimensional Fourier transform to generate the impulse response of a
filter specified in the frequency domain and then to process this by
convolution techniques. Huang Eﬁ] extended this by investigating the

use of windowing techniques of two-dimensional arrays.

McLellan [}i] initiated the concept of using a one dimension
to two dimensions transformation to generate a two-dimensional filter

from a one-dimensional prototype.

An alternative approach was used by Merserau and Dudgeon [4 ]
who proposed a method for the representation of two-dimensional

arrays as one-dimensional sequences, in which a two-dimensional pass
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or stop band filter was transformed into a multiple pass band one-

dimensional design. The resulting designs have not been very encouraging.

The desire, in the one-dimensional case, to process data in
real time and with small computers led to attempts to reduce the
complexity of implementation by recourse to the use of recursive
filters. A great deal of work has been published on the design of
recursive‘filteré in both the spatial and frequency domains, In the
field of space domain synthesis we may mention the work of Kalman in
1958 [34] ; Steiglitz and McBridie, 1965 [35_] ; Shanks, 1967 [38] ;
Bordner, 1974 [207] ; Bertram, 1975 [39] , and Lal, 1975 [41] . The
earliest of these techniques was the separable product techmique
suggested by Hall in 1970 [15] . This was followed by the design of
Shanks et al, in 1972 [}i] in which one-dimensional filters were rotated
to give an approximation to a desired cut-off boundary. Costa and
Venetsanopoulos, 1974, furthér improved this technique E16:] . More
recently Bernabo et al, in 1975, modified the transformation of

McClellan to apply to recursive two-dimensional filters [ﬁf] .

One of the greatest problems in the design of a recursive
filter is the assessment of the stability of the filter and the

modifications to be applied to the transfer function to rectify any

observed instability.

The determination of the stability of a two-dimensional digital
filter was first studied in 1972 by Shanks [5 ] and Huang [(10] who
independently published effectively equivalent tests for the stability
of two-dimensional recursive digital systems. Anderson and Jury [:11]

and Maria and Fahmy [ﬁﬁ] further contributed to the work although the

computational effort is still considerable.
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Methods of correcting unstable transfer characteristics have
been proposed for two-dimensional systems by Shanks [ji] » who based
his method on an unproved conjecture which has since been shown to be
invalid. Reid and Treitel [53] put forward an alternative technique
based on the well-known properties of the Hilbert transform. Unfort-
unately neither of these methods has been found to work in all cases
and it is still a matter of conjecture whether this is due to a
fundamental theoretical limitation or is due té approximations made in

the computational implementation of the methods.

A technique propoged by Pistor Eij:] and expanded by Ekstrom
[?4:]not only detects the stability or otherwise of a filter, but at
the same time effects a stabilizing routine where needed. It has been
suggested by Pistor that the technique, which works well with zero-
phase functions, may also be applied in general. This has not been
justified and examples have again provided inconclusive evidence as to
the reasons for apparent failure of the technique in such cases. For
zero-phase networks, the partitioning into single quadrant stable
‘functions can be carried out in all cases if sufficient accuracy in

computation is demanded.

1.5 OUTLINE OF THE THESIS

The thesis will first review the problem of stability and
stabilization of multidimensional digital filters. It will then
congider the problem of the design of miltidimensional filters, part-—
icularly those whose responses approximate circular symmetry in the
space domain., This will be followed by a review of frequency domain

design techniques, introducing an extension of the Ahmadi EQQ] method
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to n dimensions and also referring to a new method by Kap [?j] which

may also be extended to multidimensional systems.

Subsequent work refers to the design of two-dimensional
filters with fan-shaped cut-off boundaries, giving particular emphasis
to a transformation techmique from one-dimensional low pass filters to
two-dimensional fan filters., This method is compared with earlier

techniques for fan filter design and examples designed by the technique

are presented.,



CHAPTER TWO

STABILITY AND STABILIZATION

To gain sagacity our mind must be
trained on the very problems that
other men have already solved, and
it must methodically examine even
the most trivial of human devices,
but especially those which manifest
or imply an orderly arrangement.

"Regulae ad directionem ingenii"

Descartes
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STABILITY AND STABILIZATTON

2.1 DEFINITIONS OF STABILITY

The most commonly used definition of stability is bounded
input, bounded output (BIBO) stability; a cystem is defined as being
BIBO stable if the output is bounded in response to a bounded input.
This has been studied in considerable detail in continuous and one-
dimensional systems and has more recently been extended to two- and

miltidimensional systems.

Consider the multidimensional input array {c 1.
myyeee Mo

This is an absolutely bounded array if

cml!-.-smnl < P<w (2-1)

and the array is absolutely summable if

M) Mo
E < o]
Z e e ‘cml’...’mn‘\ Q < (202)
m. =0 m =0
1 n

where P and Q@ are positive real numbers,

We may develop the conditions for an n-dimensional system to

be BIBO stable as follows. The output array, {rm %, is given
n

1""?“5}, with the impulse
. 1. Namely
1’0..,Jn

M

1,...,!“

by the convolution of the input array, {cm

responsc array of the filter, {aj

M
I'm m =
1°°*°2"h Z

I1
J1=0 =

pu

a

(2.3)

. . .c - -
Jyseeesdy ™Mp=Jdysecesm =)

<

Application of Schwarz's inequality leads to
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Ml M
4 — Iajl,.--,jnl.Icml—jlf"”mn—jnl (2.4)

rml,...,nll < the
. n 0 D
J i

1

and utilising the bounded nature of the input given by (2.1) results in

M M
_ 1 n .
< -
Irml,...’mnl\ P E LY E Iajl,...,jnl (2 5)
j1:0 jn:O

Comparison of (2.5) with (2.2), for a BIBO stable system, shows that

faj 3 } nust be an absolutely summable array. We have, above,
1’...’n

shown that this is a necessary condition for BIBO stability. It has

also been shown by Farmer and Bedner to he a sufficient condition [?5:].

Thus a necessary and sufficient condition for a network to be

BIBO stable is that its impulse response shall be absolutely summable.

An alternative, but less familiar, form of stability is that
in which wve require the output sequence to be absolutely summable if
the input sequence is absolutely summable (SISO stability). By a
similar application of Schwarz's inequality to the convolution equation
(2.3) it may be shown that a necessary but not always sufficient
condition is that the impulse response of the system shall be absolutely

summable,

Although the above conditions are basic to the definition
of stability, they are of little value in assessing the stability of
a gpecified network or system, For this it is simpler to operate in
the frequency or z domain. The stability of a non-recursive filter,
howvever, can only be specified in terms of the absolute summability of
the coefficients of its Z-transform, which is a direct application of

the above criterion EQG] .
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P SHANKS® STABILITY THEOREM

N
N

For a recursive filter it has been showvn by Shanks [5,26]
that the stability of a system is controlled entirely by the properties
of the denominator of the transfer function. The conditions imposed on
the denominator function B(Zl""’zn) in order to be assured of

stability are that

B(Zl""’zn) £ 0 ¥ (Zi’ i=1,...,n) € D (2.6)
where D = {(z, i=1,...,n) : ﬁ|zi| <1}
i=1

Application of this theorem in one dimension is relatively straight-
forward since the fundamental theorem of algebra states that every real
polynomial in a single variable may be factorized into real linear and
quadratic factors and thus the location of the roots of the denominator
may be obtained, if necessary in high-order systems, to any desired

accuracy, by a computer algorithm,

In two or more dimensions the fundamental theorem does not
hold. 1In fact it may be shown that in the general case, it is not
possible to factorize a multivariable polynomial into first and second
order factors. The stability problem thus devolves into a determination
of the continuum of values of ZysZgssees By for which B(Zl""’zn) =0

and checking whether they lie within the domain D.

Shanks! approach was to define an infinite impulse response

s having a Z-transform
n

convolution filter, g,
l,lio’m

G(zl’..,,zn) = l/B(zl,...,zn)

He then showed that the stability condition
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B(zl,...,zn) £0 V‘(zi, i=l,...5n) E D

is identical to the condition that G(Zl’ ...,zn) shall be convolutionally
stable, i.e. that there exists a stable filter, g, such that convolution

of g with b shall yield the multidimensional impulsc, O thus

g*b =0 (2.7)

2,2.1 Alternative Stahility Formlation

Anderson and Jury EQ?] have proposed an alternative formul-
ation of the stability criterion of equation (2.6). This states that

a system is stable if and only if (iff)

B(z1,0,...,0) £ 0 ¥ [z <1

B(2) 4%g9,04,0) # 0 Av lz] =10z, <1
' (2.8)

n-1
B(ZI’ZQ"’Zn) £ 0 V(i(]llzi

1) Nz | <1

This test may be formalized and applied by using the technique of

Anderson and Jury [:11,27:] .

2,2.2 Modification of Shanks! Theorem

It hag recently been shown by Goodman EQS] that the necessity
of Shanks! theorem fails vader certain conditions in which the transfer
function numerator as well as denominator are multivariable polynomials.
He has shown this for two-variable functions but the limitation is also

relevant to multidimensional systems.
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A two-dimensional polynomial, although not factorizabie into
first and second order factors, may be factorized into a set of unique
irreducibl:z%olynomials. ' There may be a number
of points, (Zl,ZQ), at which the demominator polynomial, B(Z1’Z2)’ is
zero and it is these which control the stalility. In the majority of
cases the numerator, A(zl,z2) # 0, and the point (zi,zz) is termed a

pole., However, in some cases A(z 2) = 0 also; such a point is then

1’?
termed a non-essential singularity of the second kind. The existence
of such points modifies Shanks! theorem and may show a function to be

stable despite the existence of points at which the denominator poly-

nomial vanishes.

A modified function F(zl,z2) will represent a stable system
if P(z),2,) has no poles in Dy, = {(24,2,): [z7] < 1N |z,) < 1} and
no essential singularities of the second kind, except possibly in

Ry, = {(zl,z2): [zil =1 (\|z21 = 1}.

-l 1 -— .

When B(ZI’ZQ) £ 0 in Di2 = {(zi,zg). lz1[<: 10) ,22|<: 1}
but F(Zi’z2) has a non-essential singularity of the second kind in R12,
it appears that I may or may not be stable. Examples in which either

situation may occur have been given by Goodman.

This may be summarized by saying that Shanks' stability
theorem is both necessary and sufficient except when essential
singularities occur in the domain R12. An extension to n dimensions
would suggest that the necessity of Shanks® condition might fail if

n
essential singularities occur on the domain R_ = {(z yeeesZ )2 (ﬁ)lz.l=13.
n 1 n j=1 1
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2.3 HUANG'S STABILITY THESY

Shanks'! theorem ﬁas proved to be difficult to apply in
practice and thus alternative techniques have been proposed for its
implementation, Huang E}Q] put forward a technique which is relatively
simple for two-dimensional systems and although it might, in principle,
be extended to multiple dimensions the application would be incredibly

tedious.

He states that a two-dimensional function

A(Z1’zg)

H(leZQ) = W (2.9)

is stable iff

1) the map of Rl = (zl: lzll = 1) in the z, plane according

2

to the transformation B(zl,z2) = 0 lies outside the domain

D, = (ZQ:IZQI < 1), and
2) no point in D1 = (z1: [zllig 1) maps into the point
7o = 0 by the relation B(zl,zg) = 0.

To apply this the unit circle R, is mapped into the Zg plane

1

and checked to see whether it intersects the unit circle in the 22
plane. In addition the equation B(zi,zg) = 0 must be solved to check

whether the magnitude of any root is less than unity.

Despite the simplification, bLhe required couputation is still

laborious since it involves testing at an infinitc number of poinis.

Huang showed that the test could be simplified by reduction
following a technicue due to Ansell [?Q:}which would result in a finite

number of steps.
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2.4 ANSELL'S STABILITY TEST

Ansell's theorem [?9:]effective1y transforms the filter function

H(zi,z2) from the z-domain to the s-domain via the two bilinear

transformations
1 -2
1T Tag
. 1- 2, (2.10)
2 7 14 Zg
1(31,32)

N
to give H =
0 give (Si’ 82) E-(TSQ)-

The stability criteria may now be transformed into the s-domain as

follows.,

A filter H(zi,z2) is stable iff

1) in all real finite uy, the complex polymomial in s2,
ﬁ(jul, 32), has no zeroes in Re(sQ) = 0, and
2) the real polynomial in Sy ﬁ(sl, 1), has no zeroes in

Re(si) 2 0.

Condition (2)_of Ansell'!s test is relatively simple to apply
using existing one-dimensional stability techniques. Condition (1) is,
however, more difficult since it involves a study of the roots of a
complex polynomial of a complex variable. It may be put into an
alternative form by considering the polynomial B(jul,jug). This may
be written as a complex polynomial in u, whose coefficients are real

2

and imaginary functions of uy. A matrix function of u, may now be

1

constructed in which the elements are functions of the above complex

polynomial.
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The first stability condition of Ansell is now satisfied if
all the principal minors of this matrix are positive for all real uy.
The technique, albeit tedious, at least comprises a finite number of

steps.

It is also apparent that the same téchnique may be applied
to nmultidimensional polynomials by successive branching techniques, each
set of matrices having one variable eliminated. The computational
labour precludes the use of such a technique at present for anything
more complex than the most trivial examples for which the stability

could almost be assessed by inspection.

2.5 ANDERSON AND JURY STABILITY TEST

Anderson and Jury again tackled the significant problem .of
attempting to bring the stability testing procedure to a simpler form
which would facilitate computation., Their technique originates from

the formulation of the stability conditions of equation (2.8).

The first of these is relatively simple since it is a
function of only one variable and there are a number of tests for
determining whether the roots of such a polynomial will lie within
unit circle. One such method is by use of the Schur-Cohn Eﬁi:]matrix;
The second is based on the Jury table [3ﬁ] + The former involves setting
up a matrix formed from the coefficients of the function %o be tested.
In the Schur-Cohn test the positivity of all the eigen values of the

constructed matrix is assessed.

In the Jury test a sequence of polynomials is derived from

the original polynomial using a simple recurrence equation. The values
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of these polynomials at 7z = O are computed and their product obtained.
The positivity of this quantity is a necessary and sufficient
condition for the original polynomial to have all its zeroes outside

the unit circle [55] .

The second and subsequent members of equation (2.8) are

more difficult to establish.

Considering the second such polynomial which is a function

of two variables, =z

11%0s ihe test may be carried out in two parts.

Pirst, a Schur-Cohn matrix is constructed considering z, as

2
the variable paramcter; +the elements of the matrix will now be
functions of Zq e Tor stability the Schur-Cohn matrix must be negative

definite for all z, such that ]zll = 1. This i$ now a problem

1
involving seclf inverse polynomials. The procedure is protracted but

will ultimately lead to the required assessment.

For third and higher dimensional filters, the same branching
technique may be used, but for anything greater than second order
filters the size of the matrices becomes so great that they may only
be manipulated with great difficulty and by using inordinate computer

time. The technique has been well documented for two-dimensional filters.

2.6 MARIA AND TAMMY METIIOD

The second and suhsequent elements of equation (2.8) have

been tested by a teclinique developed by Maria and Fahmy'[ﬁgj .

They evolved an extended form of the Jury table which is
obtained from the coef{ficients of the original polynomial by the

relatively simple terhnique of computing a succession of 2 x 2



determinants. The series of initial elements of the Jury table must

all be non-negative (except the first, which must be non-positive).

For two-dimensional systems all these coefficients will be
functions of the variable Zy however, much simplification is
achieved since the multiplying coefficients are all real and as the

test is applied on the boundury of the unit circle where lzll =1,

-1
1 .

we may write ZT = gz
For nmltidimensional systems the branching process outlined
in the case of the Anderson and Jury test may be applied, but as no

determinants of higher order than 2 need to be determined, the

computational effort involved is minimized.

2.7 COMPARISON OF STABILITY TESTS

The Ansell stability test suffers from the difficulty of
applying the bilinear transformation before application of relatively
simple tests for roots of a function in a bounded space. Certain
techniques have been evolved for mechanising the application of the
bilinear transformation E32,Sj] which simplify the computational effort

of this method,

The Anderson and Jury test removes this drawback, but the
formation of the Schur-Cohn matrix for higher orders is tedious
since the order of the matrix is equal to the degrce of the denominator

of the transfer function.

The Maria and Falmy method may perhaps be complimented
on being the least tedious to implement since all the matrices

involved are of second order only.
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2.8 STABILIZATION TECHNIQUES

Having obtained a solution to a two-dimensional design
problem and determined a multivariable transfer function which
satisfies the desired specification, it is naturally a disappointment
to the designer to complete a long and tedious stability assessment

only to find that his carefully designed filter is unstable.

To overcome this difficulty a number of techniques have been
put forward which may be used to process a transfer function in order
to obtain a new and stable function which has approximately the same
amplitude response. This will naturally involve a modification to the

phase response.

Three techniques will be considered here. Two of them rely
on varying the phase of a filter without affecting its amplitude. The
third technique is mainly applicable to zero-phase functions, a class
of functions which cannot be stabilized by either of the two carlier

methods.

2.8 SHANKS! STABILIZATTON METHOD

The basis of this method is a conjecture which was put
forward by Sﬁanks [}7]‘which is a direct extension to two dimensions of
an eétablished property in one dimension E}S] . It is regrettable that
Genin and Kamp EﬁQ,ﬁQ] subscguently showed that the conjecture was
false in the gencral case by guoting a counter—example. Further

counter-cxamples have since been studied by Tola [51] .

We shall start by staling a few basic definitions.
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. . .« . C~ 7Y . ae s
A one—dimensional minimam phase seyuence, { b %, is one wiich
has no zeroes inside the z-plane unit circle, namely the z-transform

B(z) is such that B(z) £ 0 ¥V |z| << 1.

ru} , is defined

A two-~dimensional minimum phase array, {bm
: 1772

as an array for which the Z-transform B(Zl’zg) has the following

properties:

(i) B(zl,zg) evaluated at any %1 such that |%ll = 1 has no

zerocs inside the unit circle |z2| = 1, namely that

B(2,,7,) £0 V[%] =10]z,[< 1, and

1

(ii) B(z;,%,) L0 ¥ ]zllé 1O|%2| = 1.

¥rom these definitions we may deduce that a necessary and sufficient

condition for an array {bm E to be minimum phase is that

1™

B(zi,zg) L0 ¥ [z1|<\i 1N |z2|< 1 (2.11)

A multidimensional mininum phase array {b - nlk may
geces
similarly be defined as any array whose Z-transform B(Z,,.e..% )
1°°°°?"n

satisfies the necessary and sufficient condition that

B(zysee zn) £ 0 V(zi, i=l,...,n)E D (2.12)
n
where D = {(zi, i=l,4..,m)8 (ﬁ)lzilsg 1}.
i=1
Consider. now & multidimensional recursive filter having

a Z-transform transfer function

A(zl,...,zn)

F L :Il Tt e
<Zl’ ’ n) B(Zl,...,zn)

We may restate the stahility condition df equation (2.6) in the form
that F(z],,..,zn) represents a stable system if B(zl,...,zn) is the

Z—transforu of a minimum phase array.
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An unstable network with transfer funclion F\zl,...,zn) will
have a denominator function B(zl,...,zn) which represents a non-minimum

phase array {bm n g. We way now define an array {pm
b
n

12" 1,..-,77111},

whose size in any dimension m, is arbitrary and unrelated to that of b,
having the idealized property that the convolution of p with b is
exactly equal to the multidimensional impulse array O. Such an array

p will be termed the planar least squaresg inverse (PLSI) of b,

In general it will not be possible to obtain an array of
arbitrary size which will exactly satisfy this equality. It is
therefore necessary to define the PLSI as that array p which satisfies

the convolution equation

P*¥bL = g

where p is chosen so that g approximates O in the mean square sense.,

————

D)
The mean square error 7 between g and O is

— ! Rr.l
2 2 2
Q° = (1 - £0.0 0) + cen g . (2.13)
] g0y . . - 31’000 Jn
31:1 Jn:l
where R, = M, + N, -1,
i i i
and Mi and Ni are the sizes of the arrays b and p respectively

in +the dimension mi.

It will be seen that this error function is a quadratic
function of the variables gj 3 and hence its minimization will
‘1’Oll’ n

result in a set of lincar ecquations which may be solved in a

relatively simple manner.

Thus for any given nuitidimensional array, an infinite-
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mumber of PLSI may be generated, each of a different size in one or

nore dimension,

The significance of the planar least squares inverse arises
from the conjecture of Shanks applied to tvu-dimensional arrays,

Shanks conjecture may be stated as follows:-

The planar least squares inverse of any two-dimensional

array bm n is always minimum phase,
1’72

The conjecture is an extension of a well-established property
of one-dimensional arrays which has been shown to hold for a grcat many
two-dimensional systems. However, as noted above, the technique is not
infallible and it has now been shown that the conjecture is fundamentally
false. Despite this, it still does provide a useful technique for

stabilizing, or at the worst reducing the instability of, an unstable

filter [51] .

The stabilization technique proposed by Shanks involved
determining the PLSI, p, of the denominator array, b, of an unstable
filter and then obtaining a second PLSI, b, of the array, p.
According to Shanks' conjecture the array b will be minimum phase and
hence a filter designed using the original numerator function and a
denominator function derived from b should be stable, Furthermore it
may be surmised that the magnitude function of the original and the
stabilized function should be approximately the same since one is a
double planar least square inverse of the original., The accuracy of
this approximation to the magnitude depends upon the closeness to
which the array g approximates the unit impulse function O in the

process of obtaining the PLST.



-

360.

It scems likely, theretore, that the greater the size of the
PLSI array chosen, the more likely is the resultant function to have a
magnitude closely approximating the original magnitude function. This
fairly obvious assumption has been justified by simulation studies. It
has also been shown that in situations where the technique fails to
stabilize an unstable two-dimensional filter function, successful
stabilization way be achieved by increcasing the size of the inter-
mediate PLSI array. It is likely that these two phenomena may be

related.

No work has as yet been attempted én the application of the
Shanks'! technique to systems having more than two dimensions. Apart
from the complexity involved in any increase in the number of dimensions,
the failure of the technique in certain two-dimensional systems does

not encourage expansion of the idea.

At the present, after application of Shanks' stabilization
technique, doubt will always remain about the success of the operation
and a check on stability will need to be carried out. This again

increases the computation involved in the solution of any problem.

2.8.2 Reid and Treitel Stabilization Technique

It is a well known fact that the real and imaginary parts of

a minimum phase network function are related by the Hilbert transform.

In one dimension the real and imaginary parts Fr(eJUJ),
Fi(eJLU) of the Fourier transform of a causal sequence f(m) are related

by:
T

Fi(ejw) = -2—11T —‘]IE Fr(e‘ﬂ\ )cot.(7\ ;(U )d)\ (2.14)
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If the sequence {{m) is, In addition, minimwu pirase, then the iogarithm
: : : Jw) ted
of its amplitude spectrum and its phase spectrum ﬂ(e are relate

by the Hilbert transform
iw 1 jA A-w
gy = §ﬁ;-£_c1nlp(e )| cot (B52)ah (2.15)

This technique was used by Reid and Treitel.E53:| to modify the
denominator function of an unstable network, which was therefore a non-
minirmm phase network, to become a minimum phase network. Using this
in place of the original denominator function resulted in a stable

network function.

In order to adapt equation (2.15) to evaluation on a digital
computer it is necessary to utilize the discrete Hilbert transform

instead of the continuous Hilbert transform of equation (2.15). This

is represented in one dimension by

N-1
B(m) = %Zln[F(i)l 1-(-1)’“'1] cot I—E-%-'il (2.16)
1=0

where F(i) is defined over the discrete range of values i = 0,1,...N-1.
This procedure may be viewed alternatively as an evaluation of the
integral in equation (2.15) by a trapezoidal approximation. It is
thus likely that any procedure based on this technique may not be

satisfactory in all cases,

The technique proposed by Reid and Treitel E5j] is.based on
the definition of a.causal array given in Chapter 1. For an

n—-dimensional system, a causal array b(ml,... mn) ig defined as

n . .
b(my.eum ) = 0 ‘v“iL_)O m, Z>M./2 (2.17)
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. . A g . 1 Y .
where m. varies over the discrete set {0,1,...4 M, Tor all 1 = 1,.40,7.
1 b4 i-1 LN

The even and odd parts of such a sequence, be and bo, are

defined as:

b {myseeeym ) = 5 [olmy,eeesm ) + dOM-my,een,M —n ]
(2.18)

bo(mlg .0 ,Illn) = %‘ rb(ml [ ,mn) - b(Ml—ml, se0 ’Mn—mrﬂ

Using these two definitions and that for causality, we may write the
relationship between the even and odd parts of a minimum phase

miltidimensional sequence as

bo(m11 R ’mn) = Esgn(mla oo ’mn)+de(m1’ veo Imn)] be(mly v $mn)

(2.19)
vwhere the multidimensional signum function is defined as:
B n
1 for () (0 <m, < M,/2)
i=1 ot
n
sgn(ml,...,mﬁ) ==1-1 for {:} (Mi/2‘<:mi<: Mi) (2.20)
| 0 otherwise

and the boundary function needed to make adjustments at the boundaries

is defined as:

n
1 for 1(-}1 (mi:O) O (o <Imj <Mj/2)
i#j
13
bdy(ml,...,mn) =--1 for {;a (mi=0) ()(Mj/2‘<:mj<: Mj) (2.21)
it}
| 0 otherwise

The sequence b(ml,... ,mn) may be obtained from the even and odd parts:

b(ml,..,mn) = be(ml,...,mn) + bo(ml"' .,mn) (2.22).
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Now the recal and imaginary parts Br(ml,.. . ,mn) and Bi(ml"" ,mn) of
the discrete Tourier transform of an n-dimensional array b(ml,.. . ’mn)

are related to the discrete Fourier transforms of the even and odd

parts by

Br(ml"' ,,mn) = DPFT Ebe(ml,... ,mn)]
(2.23)
Bi(ml,...,mn) = -j DFT [:bo(ml,...,mn)]

Substituting equations (2. 23) into (2.19) we obtain:

. Bi(ml’ oo ,mn) = -3 DFT E{sgn(ml gees ,mn)+bdy(m1, ves ,mn)}.

.IDF'I‘{Br(ml yous ,mn)}j | (2.24)

which defines the multidimensional discrete Hilbert transform.

This may be applied to the denominator magnitude spectral
array IB(ml,...,mn)l of an unstable transfer function to give the

phase array, ﬁ(ml,...,mn), by

ﬁ(ml, eee ,.mn) = —jDFT E{ sgn(ml, ooe ,mn)+bdy(m1 yeoo ,mn)j .

.Inm{log[B(ml,...,mn)l}] (2.25)

The procedure has been applied by Reid and Treitel ESB:] to two-
dimensional sequences and shown to give satisfactory results in many
cases. However, a number of situations in which it fails have been
shown to exist ES&] . The cause of this may be the result of the
finite truncation of the infinite array Qf(ml,... ,mn) or the approxim-
ation of the integral by a finite sequence. TIn addition, although a
uniqueness theorem has been proved in one dimension, such a theorem

has not yet been discovered in two or morc dimensions [:56] .
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It is again seen that after application of the technique in
any situation, a stability check must be carried out to verify that

the stabilization procedure has been satisfactory.

2.8.3 Pigtor Stabilization Technique

The techniques studied so far may be considered as true
stabilization techniques in that they cause a modification of the
transfer function of the network in such a manner that the amplitude
response is kept approximately unchanged, while the phase response is
adjusted to ensure stability of the modified transfer function. Such
procedures are thus not applicable to zero-phase functions which do
not permit phase modification in any manner which would improve the

stability.

In one dimension zero-phase functions can only represent,
apart from a trivial case, non-causal sequences. It has been shown
that such functions may be realized by processing data, first in the
positive sense along the axis and cascading tﬁis with a processor
working in the negative sense, As non-causal seguences do not exist
in the time domain, this presents no problem; if the data is
distributed in a single spatial dimensjon it may be stored and
processed recursively (or non-recursively if required) in any manner

demanded,

With this in mind, the approach used by Pistor [ﬁj] in two
dimensions is to decompose the array representing the impulse response
of the filter into four single quadrant arrays, lf, 2f, 3f, Af, each

recursing in a different direction. The ohtput array for an arbitrary
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input array may be obitained by convolving the input successively with
the four quadrant arrays in the appropriate directions of recursion as

shown in Fig. 2.1,

The technique may be applied to any unstable filter function
but in its simplest form, and probably most useful application, it is
used with zero-phase functions. The essence of the problem is the
determination of 4 sequences which represent stable transfer functions
whose product is equal to the given unstable function and which recurse

in the four cardinal directions shown in Fig. 2.1.

This problem has been solved in two dimensions by Pistor E}j]

Juy  ju
who transforms the denominator of the given network function B(e l,e 2)
. A ju1 ju2

in the spectral domain into the function B(e ! ) in the cepstrum

donain by
j j ju ju
%(e , e ) = In{D(e 1, e 2)} (2.26)

The technique has been extended to n dimensions by Ahmadi and
Kingl:18,22:lwho show how an n-dimensional zero-phase filter may be
designed as the cascade of o™ stable recursive filters, each recursing
in a different direction. The decomposition'is done in the n-dimensional

cepstrum domain in an identical manner to that given by Pistor.

The procedure may be outlined with application to an unstable

zero-phase n-dimensional filter having a transfer function

A(ryyeeorz,)

F(zl,-oc’zn) = B(Zl,...’zn) (2’27)
in which
Ml Mn . ,
B(Zlg...,zn) = Z oo me ’..-,m .le.....znn (2128)
m,=0 m=o "
n
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Fig.2-1 Pistor’'s decomposed single-quadrant
filters convolved recursively with an
input array.



43,

i

The spectrum of B may be evaluated on rW[ziI =1 as

i=1
M M
. . 1 n .
_Jll : "’Ju —J(u1+.no+un)
B(e 1,...,6 n)= E see E bm moe
1,..., n
m, =0 m =0 (2.29)
The cepstrum ﬁ'may now be evaluated directly as
M1 Mn
A —Ju —jun A —j(u1+..,+un)
B(e geeey® )= se 0 b 2
Myseesyll
m, =0 m =0
1 n

The cepstrum array {ﬁm is now decomposed into 2" single quadrant

1,-.0’mn3
arrays. No optimum procedure has been obtained for this decomposition.

One satisfactory technique is to decompose b symmetrically so that for

the kth’quadrant filter

- Jea 2~
. (bm m =g bm -
1,..., n 1,"', n
n
where g = 1/2n for () On. = 0},
i=1
g = 1/2n—1 for all values of m along coordinate one-dimensional

axes common to quadrant k and any other quadrant,

g = 1/2n—p for all p-dimensional coordinate planes common

to quadrant k and any other quadrant,
g=1 otherwise,

The next step in the design is to transform the single quadrant array
&

I . . e e s
iﬁbm m.g' This is achieved by initially determining the valuc
1,--0, n

n m-g in the cepstrum domain to the frequency domain array
1,.90’ n

at the origin from

]
Cbo,o",o

exp(*D,

9-..,0)'
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and then deriving the remaining values by the recursion formula

ml m

i "n P
1 .
kbm m = §-~"' "'E (Ei)'{ﬁp D 'kbm -p m_-p
1’...,1]_ 0 i 19...,11 1 1,0-.’ n n
pi=< =

p4=0 P
1 ™ for all i = 1,...,n and m £ 0

This infinite array now requires truncation to a finite length before
the single quadrant denominator function kB(zl,...,zn) may be

generated.

The advantage of the Pistor technique is that, in theory,
the overall transfer function of the cascade of single quadrant filters
should be identical with that of the given transfer function; this
is not achieved in practice since the single-quadrant filters are, of
necessity, truncated approximations to the infinite length filters
designed by the technique., Furthermore, the te;hnique involves the
determination of multidimensional Fourier tranéforms, and these can

only be performed to a limited accuracy by computational techniques.

The teclmique will always give stable single quadrant
filters and it has been shown that the accuracy of the approximation
to the specified impulse response is improved by using larger arrays
for the intermediate Fourier transforms [}3,1{j . The truncation of
these arrays is liable to introduce undesirable poles in the transfer
function. Fkstrom and Woods E}{] have proposed the introduction of
weighting functions in the two-dimensional case to remove these
possible poles from the unstable region. It has been shown that
the same technique using multidimensional weightiﬁg sequences may

improve the design procedure in these problems,
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2.8.4 Review of Stabilization Techniques

Shanks! méthod has been found to be highly satisfactory in
many cases, is simple to implement, but is based on an erroneous
assumption which invalidates its applicaticn in some situations., It

is not suitable to multidimensional systems or to zefo—phase functions.

Read and Treitel'!s method is also not capable of guarant-—
eeing the stabilization of even non-miniwmm phase networks. The
failure appears to be due to a theoretical error rather than comput-
ational approximations although it does give satisfactory results in

many cases.

Pistor's technuque may be applied to all types of zero-phase
filter of any dimensionality and although stability of the resulting
decomposed filters cannot be guaranteed, an increase in the size of

the intermediate arrays will always lead to a stable result.
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SPATIAL DESIGN TECHNIQUES

3.0 INTRODUCTION

Although the theme of this thesis is the application of
transformations in the spectral domain to the problem of the design of
miltidimensional digital filters, it is desirable to look briefly at
other design methods in order to appreciate the advantages of the

spectral transformation methods.

Probably the most obvious technique which may be adopted to
design a filter to process a given multidimensional input array is a
direct optimization routine. This consists of designing a filter to
give an output approximating the desired output and then to modify the
filter coefficients in such a manner as to minimize some functioﬁ of

the error between the output and the specified output.

The main drawback to this approach is that there is no direct
means of ensuring stability of the output array when the true error is
used as the criterion and that techniques for stabilization of a filter

in the space domain are not available.

However, some of the techniques available are of considerable

interest and will be reviewed here.

3.1 KATMAN TECHNIQUE

In 1958 Kalma=x E3§] proposed a technique for the design of
one-dimensional recursive filters which was later extended to two

dimensions,

The Kalman technique is outlined in this section in a form
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applicable to'multidimensional systems as derived in a direct extension

from two dimensions by Wowrouzian et al E36,37] .

Suppose that the desired impulse response of an n-dimensional

m’; for all m € Sg» where

1000y n

system is {d
m,

n
¢ = ((ms i=1,2...,0): 1(21 0<m, < K } (3.1)

Then the desired filter transfer function is

5 %

D(zl,...,zn) = Z...Z dml’_“,mn.zl:l.....z:n (3.2)

m 1=0 mn=0

Let the approximating n—-dimensional recursive filter be

A(2Z; 500092 ) :
1’ “n
F(Zl,...,zn) = B(El,...’zn)’ (3'3)
0 0 m, m ' '
B e fml"cl!m .zl ..'..znn (3.4)
m1:=0: m_=0 n
n .
Nl Nn
n
Let A(z19-¢o,zn) = LI Zaml’.-.’m Ozl asesZ (3'5)
m1=0 m =0 n
n
Ml Mn n a
and B(zljnuo,zn) = seoee E bml,.'.,m vzi ""'znn (3'6)
m,=0 m =0 n
1 n

where b = 1 without loss of generality.
0,0,...40

The Z-transform of the n-dimensional unit impulse array

{6m1"”’mn} is defined as X(zl,...,zn).

We now wish to choose coefficients a ’

b
ml,...,mn ml’...’mn

of A(zl,...,zn) and B(zl,...,zn) such that the coefficients of the
following true, finite error E are minimized in a least mean squares

sense,
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— A(219°'°92n) )
E(Zl"°"zn) = B(zl,...,zn) X(Zl”"’zn) - D(zl”°"zn
Kl Kn
oy ™
= Z s Z eml,..-,mn.zl .....Zn (3‘7)
=0 mn=0

This is a highly nonlinear optimization problem and is thus not amenable
to simple computational procedures. However, an iterative solution may
be formulated whereby the minimization may be carried out by a succession

of linear processes.

This design technique is relatively simple and results in a
good approximation to the desired impulse response specified. A
solution to the problem is always guaranteed. Unfortunately, there is

no assurance that the filter so designed will be stable.

3.2 SHANKS!' METHOD

Shanks E}Sj proposed a solution to the design problem by
minimizing a false error function in order to obtain a recursive filter

structure. This has been extended to n-dimensions by Nowrouzian et al

[36,37,18] .

Consider the approximating filter function given by equation

(3.3). This may be written in the form

A(Zlyu-o,zn) = B(Zl,...,Zn\).F(zl,...,Zn)

Transforming this into the space domain expresses the numerator sequence
in terms of the convolution of the denominator sequence and the impulse

response of the filter. Thus



Ml Mn
= LR b. Y cf - )
amlycntymn .: 5 .: 5 Jl"..’Jn ml—Jlgoo.’mn—Jn
J1= In=
for all m ESN
= 0 for all m €§N (3.8)

where

and SN
and SN

)=
I

the vector {ml, sse ,mn}

nat SN

{(m,1_1 2,.00,n) ¢ ﬂ 0<m<N}
i=1

w> n

Noting that b , = 1 we may write equation (3.8) as
0,0,00440

Ml Mn
t = - E E b. . .
Mygeceym, le---vJ y=Jyseer® ~Jdy
O =0
n In -
f)J 370 ¥ m €5
We may now choose the coefficients b, . such that £
Jl,..,’Jn mlyo-:,mn
closely approximates the desired impulse response d _ We
1,-0. H n
may write
1 Mn
d =~ E b, . od 3.
ml’lco’mn O Jl,ooo,Jn I—Jlgoos’m —J ( 9)
n
() i; 0
i=1 i
| ¥ m € (5 Osp)
where SK is defined in (3.1).
Now we may again define a finite error, e , which is

1 ’ LA N ’mn
not a true error since it is only defined over a limited range of the

given impulse response, by

M1 Mn

d = E b,
ml’ouc’mn ,olo,mn J ,l..,J 1 Jl’l--,m J
. leo

an
() ;#0

i=1 i
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Thus M1 M
n

b, N . (3.11)
Z ZO Jl,..o,Jn ml-Jl,...,mn—Jn

J=0  Jj =

1 Vo €5 Osp)

The error is now minimized with respect to the
m—lyoo”m

coefficients of B, This may be carried out relatively simply since the

e m
ml’icu’ n

optimization may be effected by setting the partial derivatives of E2

with respect to the bj j to zero, and these form a set of linear
1’0.., n

similtaneous equations in the denominator coefficients.

Having computed the denominator coefficients, we may obtain the
numerator coefficients by minimizing the mean square difference between
the coefficients of F(zl,...,zn) and the coefficients of the desired
Tesponse D(zl,...,zn). Thus the numerator coefficients are chosen such

that the mean square error

—— 1 K .
2 _ z 2
e -d .12
Jlsu-sJ 319-“ij (3 )
=0 =O
is minimized with respect to the coefficients a, . » This is,

Jyrec2dy
in fact, a Wiener filtering problem in n-dimensions and it again results

in a set of linear simultaneous equations which are, in principle,

directly soluble.

An alternative method for determination of the numerator
polynomial, albeit of lower accuracy, is to compute the coefficients
a m from the convolution of b ‘ m and dm derived

1°°°**"n Mysecerty 17°° My
from

A(zl,...,zn) = B(zl,...,zn).D(zl,...,zn) (3.13)
V' mn€ s



52.
The Shanks method appears to provide a good solution since it
depends only on the solution of linear simultaneous equations. It also
does guarantee a solution to the problem. However, the procedure
involves minimization of a false, though finite, error and results in a

filter which is not necessarily stable.

3.3 BORDNER SYNTHESIS TECHNIQUE

Bordner>E?q3 proposed a synthesis technique which involves
augmenting the given finite length impulse response array by a "tail"
array to convert it into an infinite array and then minimizing the error
between the filter impulse response and the augmented desired impulse

response,

This procedure may be extended to n-dimensions in the

following manner [ 36,37,187] .

Let us assume that a hypothetical sequence {Hj i } is
- - 1,."’

given for i Esw where S, is the set of integers defined by

n
= {Greeng) = DO <4< 3

An n-dimensional recursive digital filter is to be designed
with transfer function F(zl,...,zn) such that the true, infinite, mean

square error

Zm_ ZOEJI,...,J'; fjl,,,,,jn]2 (3.14)

J 1=0
is minimized,

It has been shown that with appropriate choice of dJ j
1,00',

minimization[:édj of equation (3.1&) results in a stable recursive

filter.
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Now consider the specified impulse response sequence

{a

; } defined for all j_E:SK and let us define
n

jlgo-o,
d. ., = d, . Vo
Jl"”"]n Jl"""]n 'J'ESK
= fgl""’jn 7 3 € (5.0 8, ) (3.15)

The technique originates from the simple argument that if the specified
sequence were, in fact, infinite, rather than of finite length, the
least mean square minimization solution would of necessity lead to

a stable recursive filter. It is intuitively obvious that the

augmenting sequence should be the most natural extension of the given

sequence d . and which is square summable over S ,. This

Jl,...’Jn
ensures stability of the designed filter.

Thus the sequence ft . must have exactly the same
Jlg-o.,Jn -
functional form as fj i Its n—dimensional Z-transform is given by
1°°°*?dn

1
A—(Zl,..-,zn)
B'(Zl,...,zn)

J J '
= i.-. if" . o2 lqoo-oz - (3"16)
_ . dpreeeriy 1 n

Fr(zl’uno’zn) =

31=0 Jﬂ_O
ZNl hn j j
1 n
t — ]
Where A (Zl,...’zn) = s0 e ajl,...,jn.zl -voa,zn (3!17)
,]1=0 ano
M1 Mn .
and B'(z z ) = bt zjl ’n (3 18)
170 n’ = so e jI,-..,jn. 1 ....;zn .
Jl=0 Jn=0

The problem may now be formumlated as the minimization of the

mean square error defined by



5k.

— - 2
e2 = .;- coe E [d. . "‘f. -
Jl,--o,‘]n ‘]1,-00,‘]

i€

2
+ e e [f'. . _f. .
z z Jprecesdy ..]1,---v.]nl

i€8e

_Zé‘:.Z[f‘!jl“”’jn_fjp---,jnjg | (3.19)
1% sg |

with the only constraint that F'(zl,...,zn) mst represent the transfer
function of a stable recursive filter. (This constraint is identical

with the requirement for square summability already mentioned.)

This minimization may be performed iteratively by first
selecting a stable n-dimensional sequence which has a Z-transform,

F'(zl,...,zn) and then solving the minimization of equation (3.19) to

obtain fj j.° These may now be used as a fresh approximation to
1,...’ n
the "tail' sequence f& j_* The optimization is repeated until
1,...’ n
the error f, = . 1is equal to the n-dimensional zero

Jpseeerdy Jpoeeerdy
sequence.

The minimization of equation (3.19) involves the least mean
square approximation for absolutely summable infinite multidimensional
sequences. This has been solved for one and two dimensions [ﬁd] and
the solution is amenable to extension to n dimensions. A solution is
guaranteed which minimizes the true error and which ensures that the
designed filter is stable. Unfortunately the solution does not
necessarily converge on a global minimum, The computational labour
is very great and finally the initial choice of an appropriate n-

dimensional "tail" array is arbitrary but the choice of a natural
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extension array to the given impulse response array is vital to the

reduction of complexity of solution.

3.4 BERTRAM'S DESIGN TECHNIQUE

A two-dimensional design technique proposed by Bertram [:39:]
has been extended to n-dimensional systems as outlined below E37,36:| .
The method proposed is essentially an iterative one which starts from
an arbitrary initial set of numerator and denominator coefficients
and attemp{,s to improve on these values to give a closer approximation

to the desired impulse response.

At the (p—l)th iteration assume that we have obtained a-set
of coefficients (A(p—l), B(p—l)) = C(p—l) for both numerator and

denominator. Then we wish to improve this set by minimizing the mean

square error

nN

Z: [ Myeee,m fml,...,mn_-_l i (3.20)

Now we may approximate this error by means of a truncated n-dimensional

B
1l
o

Taylor series

_ Kl Kn
2
e = LI ] d - f
£ § [ml,...,mn Mygeoeym C_C(p—l)
m1=0 mn=0 ' -
Nl Nn of
nLl'ao:,m
+ o080 a
oa, : Jyaeeesd
j;=0  §_=0 Jyreeesdy c=C(P'1) 1 n
Nl Nn Bfml o o
ge0sy
- E =5 = Abj J',.:l (3.21)
- L] - . ,...,
Jl=0 'jn=0 Jl”"!Jn C___c(p"l) 1
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where Da. . o= a(.p) . - a(-p-l) . (3.22)
Jl,...’Jn Jl’ala’Jn Jl’..."]n

and Av, - ) ool (3.23)
Jyreeesdy Jyreeerdy Jl’ff'fJn

The partial derivatives in equation (3.21) may be computed by
means of a recursion formula and the problem now reduces to minimization

of e2 with respect to Aa, ., and Ob. . and since this is a
f Jysecsrdy Jyeecesdy,

quadratic function of the variables, a global minimum is assured.

Values of the coefficients may now be determined from equations (73.22)

and (3.23) and the iteration continued until the error is less than a

prescribed minimum value.

The convergence of this algorithm is assured and a solution
to the n-dimensional problem is guaranteed., The computational labour
may be shown to be relatively simple, However, the main disadvanfage'
is that the initial values need to be chosen so that they do not
deviate too far from the final value, Furthermore, the mean squa;e‘

error given by the Taylor series is a poor approximation to the true

error and once again the designed filter is not necessarily stable.

3.5 IAL'S DESIGN TECHNIQUE

lal's [}1:]technique is an extension of Shanks'! method.
Instead of attempting to obtain a transfer function which approximates
to the complete specified impulse response and hence optimized to a
very high order transfe:r function, Lal partitioned the desired impulse
response into a number of smaller arrays. Using a two-dimensional
system as an example, the whole desired impulse array of magnitude

L1 x L2 may be subdivided into Nl’NQ subgroups each of size kl x k

2
(where Nki = L,) as follows.



57.

INPUT Z2 Z2

-k .73 I, —
Zo Z2
Y
TH21 H22 H23 H2n
. T T N
| v
l I
|
]
' 2.
z
Y Z_2k2 Z_2k2 o AOUTF’UT
Hm1 Hm2 Hm3 l"lmn
R U U ¢

Fig.31 Lal’'s partitioned filter.
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g Lyl T, ey sk, g k), 2k, ; Ly 5Ly
2,52 =15 ,0 1,0 veses | B0
1 b -1 1’ "1 7edy 1772

i1 ilﬂ 1o ' ile_kl”
2 2 2 . 2 2=L 2—1{24- 1

Each of these groups may be approximated to a relatively close degree
by the basic 2-dimensional transfer function

859 + 340%1 * 899%g t 299%97%9

H (2zy42,) =
nln2 1’72 b11 + b12z1 + b21z2 + b22zlz2

in which simple constraints on the denominator will ensure stability.

The realization takes the form shown in Fig. 3.1.

3.6 CRITICISM OF DESIGN TECHNIQUES IN THE SPACE DOMAIN

The techniques have been discussed in turn at the conclusion
of the relevant sections. It may be seen that the Bordner technique
appears most desirable in that it is guaranteed to be stable whereas
the other techniques require a concluding stability test. Such a’test
on @ multidimensional transfer function may well involve as much
computational time as is saved by one of the other techniques. It does,
however, suffer the disadvantage that a global optimum cannot be
guaranteed and hence one of the earlier techniques may give rise to a

thetter' solution with smaller error.

One other factor in any design process of this nature is the
choice of the degree of both numerator and denominator of the transfer
function. 1In general, the. higher degree transfer function chosen, the
more likely one is to obtain a good approximation to the desired
sequence. Inevitably such a course of action brings with it the

concommitant increase in complexity of the design algorithm,
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Normally the order of numerator and denominator polynomials is kept
small compared with the size of the specified impulse response, If
this condition is not observed it would probably be more economical

to design the filter in non-recursive form.



CHAPTER FOUR

SPECTRAL TRANSFORMATIONS

It is vain to do with more
what can be done with less.

William of Occam
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SPECTRAL TRANSFORMATIONS

4,1 INTRODUCTION

Having considered a number of methods for designing multi-
dimensional digital filters in the space domain, a study of the
techniques for design in the frequency domain is the obvious sequel
since the performance of a system in one of these domains is
directly correlated with its performance in the other domain by the

mltidimensional Fourier transform,

The obvious approach to frequency design would be to

follow that in the space domain and attempt an approximation to a
frequéncy response characteristic at a discrete number of frequencies
and use an optimization technique to minimize the error between the
desired multidimensional frequency response and the specified response,
Such an approach is of no practical value since it can only minimize
the error at a finite number of discrete frequencies and no control
can be exercised over the bchaviour of the function between these
discrete frequeﬂcies. There isy, in general, an infinite set of
nctwork transfer functions which can be used to approximate at a
set of discrete frequencics. The space domain response obtained by
taking the inverse multidimensional Tourier transform of any such

Tuanckicn
transferAmay well result in an impulse response which has highly
undesirable characteristics. If the realization is attempted using

a recursive filter structure, a design technique based on the above

may easily result in an unstable filter,

An alternative technique would invol%e generation of an
analytic function of the multivariable frequency argument WysesesW

which would "fit" the desircd specification at an arbitrary number
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of discrete points. This effectively is the approach used in one-
dimensional analogue filter design when obtaining Butterworth,
Chebyshev, elliptic, etc. approximations to a given specification.
In this one~dimensional case it is possible to obtain the required
analytic function in closed form with the assurance that the

function will give rise to a stable filter.

A similar approach has been investigated by McClellan
for desipn of a two-dimensional filter frequency response function
to fit a given specification in a Chebyshev sensel:2§] . There are
two reasons why this is not possible. First, it is impossible for
any set of functions defined on a two- or smultidimensional domain
to satisfy the Haar condition[j{]'; thus the alternation theorem
applics in a wecaker form, Sccond, there is no possibility of ordering
the external frequencies as in the one-dimensional case, wherc
progress along the ordered sequence guarantees that the error changes

sign from one point to the next.

It is therefore impossible to extend the design techniques
used in one dimension of transforming a known stable one-dimensional
analogue filter into a one-dimensional digital filter using an
appropriate transformation function between the s plane variable and

the z plane variable,

One further difference between one-dimensional and mmlti-
dimensional filters lies in the response characteristics. In one
dimension it is only necessary o specify the shape, either as
amplitude, phase, group delay, etc. as a function of frequency,
giving such parameters as pass band range, stop band range,

transition band attenuation gradient, pass band ripple, minimum
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pass band attenuation ete. In two- or multidimensional systems
these parameters need to be defined in one or more dimensions,
resulting in a specification in which the cut-off frequency is
replaced by a cut-off contour in two dimensions or a cut-off
hyper-surfeore in multiple dimensions. Most of the examples used

as illustrations in this thesis will be restricted to two dimensions
in order to facilitate graphical representation; however, to
demonstrate the versatility of the technique some three-dimensional

filters will be studied.

One other important difference between one- and multi~
dimensional systems lies in the analytic properties of multivariable
polynomials, In a single variable the "fundamental theorem of
algebra" states that any polynomial may be factorized into the
product of a number of -first and second order factors with real
coefficients. This permits the designer to factorize the given
specified transfer function in either the continuous s-domain or
the discrete z-domain into a number of first 6r second ordef
functions which may be cascaded to give the required specification.
No theorem corresponding to this exists for multivariable polynomials
and hence such simple desigﬁ techniques are not possible (this may
easily be verified by a simple counter example). Thus the designer
is forced to use techniques which involve the direct design of high

order systems.

It is for this reason that a number of techniques have
been evol&ed for transforming stable one-dimensional filters into
two— or miltidimensional filters whose cut-off boundaries have
prescribed shape and whose amplitude spectrum in some given cross-

sections is determined from the prototype filter.
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Besides these transformations for generating higher
dimensional systems from one-dimensional systems,_certain other
transformations have been proposed which relate two-dimensional
filters having some given properties with new two-dimensional
filters having different frequency characteristics; for example,
transformation from two-dimensional low pass to two-dimensional band
pass. These transformations are entirely analogous to the similar

transformations in one-dimensional analogue and digital filters.

We may review the field of spectral transformations by

considering the following categories:

1, One-dimensional to one-dimensional. This will include

z to s, s to z, s to s' and z to z',

2, One-dimensional to two-dimensional (or multidimensional)

transformations to include z to S48 s to ZysZgsess H

.
2,-.» 3

s to s z to %q:%

1’82,013 ; 2.00

3. Two-dimensional to two-dimensional transformations,

namely, S48 to si,s‘ 3 ZqsZorecs to zi,zé,...

2’0-- 2,-.0

Further extensions to these may be envisaged but so far
no work has appeared on the subject and it appears a rather sterile

field.

4.2 ONE DIMENSION TO ONE DIMENSION TRANSFORMATIONS

One of the earliest uses of spectral transformations was
in analogue filters to transform between low pass, high pass, band
pass, band stop and other more complex multiple band filters using

transformation of the form
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v= 1/w Low pass to high pass

W= wo/w - w/w0 Low pass to band pass

Their use permits a prototype low pass filter design to be trans—
formed {to a high pass, band pass or band stop filter having similar

pass band, transition band and stop band characteristics.

Another transformation of this form is the bilinear

transformation

- L1-z )
s = T (&.1)

which is the most commonly used of a whole range of transformations
designed to generate the transfer function of a digital filter from
that of an analogue filter having a similar nature of frequency

response.

Other transformations may be derived to gencrate more
complex filters, such as high pass, band pass, etc. from low pass

prototypes. Tor example

1+ 2
s = .].—-—-Zg (11.2)

will give a high pass from a low pass prototype.

In addition to these, there exist digital to digital trans-
formations which change say a low pass filter Fl(z) into a high pass

Tilter FQ(Z') via the transformation

Z = 1zt (4'3)
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4.3 TWO DIMPNSION TO TWO DIMENSION TRANSFORMA'TTONS

A similar concept, outlining two-dimensional to two-—
dimensional digital transformations, has been summarized by
Prendecrgrass [}2] . These transformations may be applied, for
example, to a two-dimensional low pass digital filter having a
cutoff boundary of approximately circular shape,to generate filters
having a variety of combinations of low pass, high pass, band pass,
band stop characteristics in the two fregquency dimensions, retaining
approximately the original shape of the cut-off boundary contour
when transformed. This cut off boundary is rather poorly transformed
in the case of low pass to high pass or transformations which covertly

incorporate such a relationship.

In his consideration he has deliberétely restricted himzelf

to transformations which have the following properties:

1. First quadrant stable transfer functions generate

first quadrant stable transfer functions.
2. Real functions transform to real functions.

3. Some important characteristic of the amplitude

response is maintained after the transformation.,

Although these are his self-dictated terms of reference it
may be appreciated that the third one is the only requirement of
fundamental significance and with some of the stabilizing techniques
at present available neither of the first two conditions need be
imposed in order to obtain usable transformation functions. The
significance of the removal of the first two constraints will hecome

apparcnt subsequently where a wide range of useful transformations



will be proposed which do not cenferm tec these
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The class of transformations which he considers are all

of the form of two-dimensional all pass transfer functions.

general form is

Their

(4.4)

zi = Gl(zl’ZQ)
. Mk Nk
K r Mk k ( a -i —j
1 Zo ij 1”2
o _< i=0 j=0
- M N
=1 L.
i3
E 855 %1 %2
0 350
and zé = GQ(zl’ZQ)

which has the same functional form as equation (4.4) but with

different constants aij'

It has becen shown that if and only if the functions

Gi(z ,z2) and GQ(gl,zg) represent stable two-dimensional transfer

functions and that they are used as transformations on a stable

two~dimensional transfer function H(zl,z2), then the resultant

transfer function H{Gl(zl’ZQ)’ G2(z1,z2)} will also be stable.

Initially be shows that transformationswhich involve only

one variable, i.c. zi = Gl(zi)’ zé = G2(z2) result in the generation

of a useful class of two-dimensional filters.

a-+ z

R |
1 - 1+az1
b+ =z
P -

2 71 +b22

The simplest of these

(4.5)
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results in a transformation from low pass to band pass or from

low pass to a lowv pass filter with changed cut-off characteristics

along each frequency dimension. The type of transformation depends

on the values chosen for the parameter a. Second degree transformations
of this form introduce band pass or band stop characteristics in the

appropriate dimension,

Another class of transformations studied by Prendergrass is

those of the form of a second order all pass function

a. + b,z, + ¢.Z2, + Z,%Z
1 i1

. i”2 172 .
2i ¥ T+ c.z, + b,z + a,z,2 i=1,2 (4.6)
i71 i2 i"172

The stability of this function must be considered and this imposes
constraints on the coefficients ass bi’ c,e This transformation is
particularly useful.in controlling the shape of the amplitude
contours in the vicinity of the principal diagonal on the frequency

plane.

bob ONE DIMENSION TO TWO DIMENSION TRANSFORMATION

The preceding transformations are of great value when an
initial design has been achieved of, say, a low pass}two—dimensional
filter with appropriate cut-off boundary. However, this itself is
one of the more difficult problems to solve, and the techniques of
Prendergrass do not allow much modification of the boundary shape,
since the limited number of parameters available in the transformation
permits constraints on the transformed function at a limited number
of points only.

One of the most significant problems is that of designing

a two-dimensional low pass or high pass filter having a cut-off



69.

boundary approximating to circular. Tt is obvious that the contours
corresponding to other values of the magnitude contour must deviate
from circular to a greater or lesser degree since the outermost
contour must coincide with the sampling limits of the digital filter

at Wy = iTE y Wy = i]t which is essentially rectangular,
A few of the attempts at this circular boundary approxim-—

ation will be swmarized below.

b.h,1 Separable Product

One of the earliest attempts at a solution to this problem
was put forward by Hall [ﬁj] in 1970, He suggested that a two-
dimensional filter could be made from the cascade of two filters,

each of which varied in one dimension only. Thus

H(zl,zg) = Fl(zl)'FQ(ZQ) (5.7)

The justification for inclusion of the separable product filter in
the class of filters obtained by spectral transformation is that a
twvo-dimensional filter H(zl,zg) may be made by cascading the two
two-dimensional filters Fl(zl) and F2(z2); these are generated
from prototype one-dimensional filters Fl(z) and F2(z) by the

spectral transformations Zy = 2 and Zg = 2y respectively.

The cut—off boundaries of the Fl(zl) filter are parallel

to the z_ axis, and of the F2(z2) filter, parallel to the z. axis.

2 1

Thus, the cut-off contour of H(ZI’ZQ) will be approximately
rectangular with rounded corners, The only parameters available in
the design are those of the prototype one-dimensional filters Fl(z),

F2(z) and hence no control on cut-off boundary shape is possible.



An oxample of 2 degign using this {teochnigue applied to a
Brd order Butterworth prototype digital filter, having cut-off
frequency at w = T{/2, is shown in Fig. 4.1; the frequency response
is shown by the isometric projection of Fig, %.1(a) and the contour
plot of lines of equal amplitudé of respunse in Fig. 4.1(b). A
similar design using a Chebyshev filter having the same cut-off
frequency in the prototype is illustrated in Fig. %4.2. +Tne only
difference between the two is in the expected sharper cut-off of the
Chebyshev response and the ripple in both frequency directions in
the pass band. All subsequent designs will be carried out using a
3rd order Butterworth prototype unless any significant variations

are apparent by using a Chebyshev filter.

4.4,2 Shanks?! Rotated Filters

Shanics ES:' proposed a technique which also originated from
'a one-dimensional low pass filter, in this case designed in the
continuous frequency domain, Such a filter function may be
represented by the product of first order numerator and denominator

factors as
m n
0 - 1T o/ Ty (1)
i=1 i=1

Transformation into a function of two dimensions may be achieved by
setting sy =8 and leaving So unspecified., The result is a two-

dimensional transfer function

having cut-off boundary parallel to the S axis, This filter may

nov be rotated anti-clockwise through an angle 0 by the transformation



=

. .
(b) Contour plot.

Figure 4.1. Separable product filter. Prototype: third order
Butterworth digital filter; 0 = n/2.
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(a) Isometric plot.

|4
|
(b) Contour plot.

Figure 4.2. Separable product filter. Prototype: third order
Chebyshev digital filter; w_ =n/2, & = 1%.
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o — alenceD L ool aind
51 < ..,].Cv.,., HQSL.“,
(4.10)
= —algji ..;. 1
52 = 9151119 SQCOSQ

generating a two-dimensional continuous filter having a transfer

function
' m
1 (sécosg - sisin@ - qi)
n,(si,sy) = = (&.11)
1! (sécosg - sising - pi)

The analoguc transfer function of equation (4.11) may be
converted to a discrete form by means of the bilinear transformation

(normalized to T = 1),

' 1 - zq
SI=T+7
1
(x.12)
' 1 - Zg
So T Txz,
2
to give a discrete transfer function of the form
l I 111 T 91371 * 105”0 * B093%1 %9
H3(Z1’22) = T b D (4.13)

1i 01371 * P1p3%p + Pooi%1%g

The cut-off boundarics of a filter designedvby this technique are far
from circular and there is no guarantee that the design will result

in a stable filter.

4L,4.3 Costa and Venetsanopoulos modification

A valuable modification to the technique of Shanks was
proposcd by Costa and Venatsanopoulos [}j] » who attempted a design

of a near-circular symmetric filter by cascading a number of !'Shanks!



filters having different angles of rotation. By this means it was
possible to construct a polygonal approximation to a circular cut-
off Loundary so long as it was possible to rotate the original
filter by a total of 180° (since each filter contributes two

opposite sides to the polygon).

A stability criterion was developed which showed that
angles of rotation of the designed filter from 0 to -90° resulted
in stable filters., Thus the design technique could not achieve the
required total angular span and the éut—off boundary was inevitably

far from circular.

L. L4 McClellan Transformation

The MeClellan transformation [9,44:]15 a direct application

of a speetral transformation to two-dimensional design techniques.

The Z-transform of a one-dimensional finite impulse
response filter H(z) will have a frequency response H(eau). For a
useful class of such zero-phase filters, the frequency response may

be written in the form:

N

A(e) = n(0) + Z h(n) (3™ 4 790 (4.14a)

n=1

N

n(0) + ZE: 2h(n)cos nu (h.i&b)

n=1

In the case of two-dimensional filters, the transfer

function of a class of zero-phase filters may be written
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Ju, u,
H(e *, e “) E E a(ml,m2)cos m U, cos myu, (&.15)
m1=0 m2=0

Onc-dimensional filters of the form (%.14b) may be converted -
to two-dimensional filters of the form (4.15) via the McClellan

transformacion

Kl K2
cos u = 2 t(pl,pg)cos PyU;-€0S Py, (4.16)
plzo 'p2:0

The technique may be most simply illustrated by consider-

ation of the lowest order McClellan transformation, in which

cos u = tOO + tlocos u; + t01cos u, + tllcos u; cos u, (4.17)

In order to apply the transformation of (4.17) to the transfer
function (4.14b), this latter must be written as a power series in
cos u rather than as a function of the cosines of multiple angles.

We may achieve this using Chebyshev polynomials to give

N .
Ju) :E: b(n)(cos u)n (4.18)
n=0 : -

Equation (%4.17) is now substituted into (4.18) to give the required

transfer function.

In this particular simple form of the McClellan transform-
ation we now require to determine the four coefficients tij to fit

the required contour specification.

One constraint on a transformation from one-dimensional

low pass to two-dimensional low pass is that the origin in one
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dimension mist transform to the origin in the two-dimensional

domain,

The remaining three parameters are determined by constraining
the cut-off boundary to have, say, circular symmetry; this

requires that, at the cut-off frequency,

The problem is now one of constrained optimization and usually results
in a non-linear minimization of an error function expressed in closed

analytic form.

For higher orders of transformation than that given by
equation (4.17), it is not generally possible to specify an error
function in clesed form and thus any solution becomes virtually

impossible without the use of unwarranted computational facilities.

A suboptimal approach has been proposed for this problem
which will guarantee a solution by minimization of a false error
function,

It should be noted that in the above form the McClellan

Ewo-

transformation may only be applied to non—recursiveAgimensional

filters,

k4,5 Bernabo Design Technique

Bernabo, EFmiliani and Cappelini [ﬁ?:]have extended the
McClellan technique to the design of two-dimensional recursive

digital filters.
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6 = 1%. [23]



78.

The frequency transfer function of a zero-phase recursive

digital filter may be written in the form

Ml M2
E_ E p(ml,mg)cos mlul.cos m2u2
ju ju m,=0 m =0 .
H(e ', o 2) = ——2c (4.19)
1 2
E E q(ml,mg)cos mlul.cos m2u2
m1=0 m2=0

The transformation equation (h.16) or, with less generality, equation
(4.17), may be dircctly applied to the one-dimensional recursive

zero-phase transfer function

N
Z a(n) cos nu
(%) e (%.20)
Z b(n) cos nu
n=0
N
Z at(n)(cos u)™
= = (4.21)
Z bt(n)(cos u)™ |

n=0

Now the designed filter has zero-phase property and is therefore
inevitably unstable [ﬁl{] . Since it is a zero-phase function, the
Pistor stabilization technique may be applied E;j] . TIn this, the
denominator polynomial is factorized into four one-guadrant
recursive functions which recurse in the four cardinal directions.
An example of a filter designed by the Bernabo technique is shown
in Fig. 4.3 E?jj . There is no fundamental reason why the Bernabo
technique may not be extended to more than two dimensions but the

computation would be very tedious.



hh.h The Ahmadi Transformaticn

A novel transformation has been proposed by Ahmadi et al

[18,19] . The relationship proposed is a simple first order two-
dimensional reactance function

a sy + 88,

= e—— (4.22)
1 + b5152

used to transform a one-dimensional low pass continuous filter function
to a two-dimensional continuous low pass function., This transform-
ation will realize a guaranteed stable first quadrant function with
cut-off frequencies along the two frequency axes determined by the

and a,. 1In

prototype filter characteristics and the parameters ay o

fact there is no loss in generality except in a frequency scaling

factor along the two axes if we set ay = a5 = 1. The parameter b

2

controls the shape of the cut-off boundary, -

In order to obtain a characteristic which has symmetry
with respect to the two frequency axes and zero-phase, it is
necessary to cascade four single quadrant filters to give the

overall transfer function
H(z,,2.) = T(z,,2,).F(z z—l) F(7~1 z.) F‘(z-1 7_1) (4.23)
1’727 ~ 1272773717 %g /R AT 9% 0T 109 o

where F(zi,ZQ) is the two-dimensional function obtained by applic-—
ation of equation (4.22) to a one-dimensional low pass filter,

fhis cascade of four one-dimensional filters gives a cut-off
profile which is vaguely diamond-shaped, depending on the specified

cut-off frequency.

The mapping of the extreme angular frequencies, w = 0 and

TC in the one-dimensional plane shows that the one-dimensional
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(b) Contour plot.

Figure 4.4. Ahmadi filter. Prototype: third order
Butterworth analogue filter; w_ = 1.158h4.

Transformation; ay =a, = 1,b=0.2.
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(v) Contour plot.

©  Figure 4.5. Ahmadi filter. rrototype: third order Butterworth

analogue filter; w_ = 1.1584. Transformation;

o
a; =ay =1, b = 0.6.
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origin maps into the points (0,0) and (7T, T) and the one-dimensional
frequency Tl maps into the points (O,TE) and (TL,O). From this it may
be seen that in addition to the low pass region around the origin

there is also a second pass region located around (TE,TE).

The response of a two-dimensional filter designed thus from
a 3rd order low-pass Butterworth prototype for two values of the
parameter b are shown in Pigs, 4.4 and 4.5 designed to a cut-off
boundary at W, = TL/2. The additional pass band around (T{,TT) may
be removed by the simple expedient of'cascading the Ahmadi filter
with a guard filter, possibly a separable low order two-dimensional
filter. This modifies the characteristic to the more desirable

shape shown in Fig. 4.6,

The main advantages of this technique are that stability
of the filter is assured with?ut recourse to the decomposition
-technique of Pistor, and also that the design procedure is extremely
simple. Unfortunately as only three design parameters are available
in the transformation function it is not possible to approximate
very closely to the idealized circular cut-off boundary; this is

seen from a comparison of Figs, 4.4 and 4.5.

It may be shown that any attempt to design a transformation
function closely approximating circular is impossible in the general
case using the Ahmadi transformation. One technique for approxim-
ating a contour to a circle would be a direct minimization of error
with respect to b, the only free parameter available in the
transformation function. This would be cumbersome, particularly in
-view of the fact that the designed filter is formed from the

concatenation of four single-gquadrant filters. A simpler technique
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Figure 4.6. Ahmadi filter with separable low-pass guard
' filter. Specification as in Fig.lh.h.
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is to note that as the amplitude functions have polar symmetry, we
need only consider the first and second quadrant functions and that
the amplitude may be obtained from the square of the product of
these two functions. We thus design the filter to have desired cut-
of f frequencies along the two axes, Wy o= 0, Vo = 0 and along the
diagonal Wi = Vgj this will give a suboptimal solution to the

design of a given cut-off woundary.

Consider a design in which an approximation to circular
symmetry is desired and the cut-off frequency in the two-dimensional
discrete frequency plane is specified as W Thus at the three

W w
points (wc,O), (O,Wb) and ( —fi,-ii) the amplitude of the response must

Ve 2
have the required cut-off magnitude.

v W
At the point (—E,—E) on the principal diagonal the
J2YE
amplitude is the product of that due to the first quadrant function,
which is dependent upon the prototype chosen and that of the second

quadrant function which is unity along the whole of the line $) = Sq

since it has the value of the prototype at s = 0.

At the points (wc,O) and (O,wc) the amplitude is the
product of two functions, both of which are dependent on the fall-off

rate of the prototype filter.

Thus we must design the transformation of equation (4.22)
|
such thet (wc,O) and (O,Wc) map into the freqguency S?o in the
analogue and (wcAfE, wcA/E) maps into S?c. Where the prototype
filter is of Chebyshev form, the cut-off frequency of a cascade of
two identical filters is the same as that of the single filter and
’ [ ]

g?c = S?c‘ However, for Butterworth filters g?c and S?c are

related by
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[ 1 1\2 1-
Qe = (217 - 1y Qe = K, (.23)

vhere n is the order of Butterworth filter. (When n = 3, k = 0.86).
The design criteria for a two-dimensional filter having a

pseudo-circular cut-off contour is that tne prototype must have a

cut-off frequency S?c given by

k() . = tan wc/2 (4.24)
and the transformation coefficients ay = a2'= 1 and
tan(w /2) - 2k tan(wc/.?fg)
b = 2 (%.25)

tan(wc/Q)tanQ(wc/2/§)

Since the transformation (h.22) must represent a stable
function, b >> 0; this imposes a constraint on the value of W, for
which a positive solution to (h.25) exists, TFor a third order
Butterworth filter v, must be greater than about 0.61TT ; higher

'order Butterworth filters tend to the limits given for a Chebyshev

prototype, for which LA > 0.70 TL.

Fig. 4.7 shows the transfer function and contour plot of a
two-dimensional filter designed to a cut-off boundary of 0.72 L. Tt
is confirmed that a circular cut-off boundary may be obtained using
the Ahmadi tramsformation provided the cut-off frequency is within
certain bounds. This transfer function may be compared with those
in Figs. 4.4 and 4.5 which were designed for cut—off boundaries
&ying outside this permitted range and for which circular profiles

were not obtainable.

The position is exacerbated by the fact that in the designs

considered, we have only cascaded two single quadrant functions,
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Contour plot.

(v)

Ahmadi filter. Prototype: third order Butterworth .

o= 0.72n. Transformation; _

ay = a5 = 1, b = 0;16.

analogue filter; w

'Figure L.7.



be cascaded.

An improvement on the above design technique has been
proposed by Ali and Constantinides [ﬁ?:]who show that the spurious
pass bands around (iTI , ITT ) may be eliminated if b = 0. This
is, of course, true and the transformation then degenerates to the

simple form

s = a;s;+ 8,8, (%.26)

This does, however, introduce the added disadvantage that a filter
having pseudo-circular symmetry is now constrained by equation (4.25)

to be one in which

tan(wc/Q) = 2k tan(wc/Q/ED (k.27)

and thus design for a pscudo-circular cut-off boundary is only

.possible for one specific value of design cut-off frequency. TFor a
Chebyshev filter equation (4.27) is satisfied only at v, = 0.70TC
and hence for certain specifications of cut-off frequency, the

boundaries may deviate appreciably,

It way thus be seen that the Ahmadi transformation may be
used to design two—dimengional near-circular fillers with cut-off
frequencies greater than a given bound or below that bound with cut-
off profiles deviating more from circular but with the disadvantage
of requiring a guard filter to remove certain high frequency pass
bands. The modification of Ali and Constantinides ensures that
these pass bands do not exist, bul also completely precludes the
possibility of the design of filters having subopiimally designed

circular cut-off profiles excepl in trivial cases.
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L. 4.7 All-Pags Transformation

In Section 4.3 we have stated that Prendergrass has used
a two~dimensional all-pass transfer function to modify the frequency

response of a designed low pass two-dimensional digital filter.

Kap [:23:' has used the same transformation, but applied it
to a low pass one-dimensional digital filter to generate a two-
dimensional low pass filter with near-circular cut-off contour. The

transformation from one dimension to two is given by

oo t 21 Zg

-1 -1 -1 -1
1+ (ngl + CXlz2 + Otoz1 zZ4

-1
ao +Olel + Az

zZ = G(zl,zg) = (4.28)

The conditions that G(zl,zg) represents a stable transfer function

are [10)

o] <1,
o+ af < |1+ ay (1.29)
1% -0 <]t - X

A further consideration here is that the transformation gives
low pass one-dimensional to low pass two-dimensional along both axes
and also along any radius through the origin. This may be ensured
by requiring that equation (4.28) maps w = 0 in one dimension into
(wl,wz) = (0,0) in two dimensions and also w =7 into (wl,wg) =
(0, TC ), (TC,O) and (TC,TC) similtaneously. The first three
conditions are satisfied by any function of the form of equation

(%.28) but the last demands the additional constraint that

OLl + 0.2 = 1+ & (4.30)
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This apparently violates the stability constraint given by the third
of equations (4.29); nevertheless it may be seen that at the point
(W1’w2) = (1T, TT), corresponding to (zi;z2) = (-1,-1), both the
mumerator and denominator of G(z1,22) tend to zero and thus the
function dees not show instability at this point as the pole and
zero cancel one another E?g] . This is a non-essential singularity

of the second kind.

The above constraints reduce the number of design para-
meters to two; if, in addition, we réquire a symmetrical transfer

function along the two axes we must set
a, = O (%.31)

This leaves us with a single design parameter (lo to which (Xl and

(12 are rclated by

o, = Qa = —0 (1£.32)
and the stability constraints of (4.29) reduce to the single condition
lo,| <1 (%.33)

The design to an approximately circularly cut-off contour
may be approached in the same manner as in the Ahmadi filter., The
most obvious approach is by a direct optimization of the error
between the designed filter and the specified circular profile.
This results in undue computational complexity and a simpler sub-
optimal solution may be obtained by constraining the profile to
have a fixed radius from the origin along the coordinate axes and

along Wi = Vo
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The design equations for such a filler are

-
i
QR

i

tan(wo/Q) —2 tan (wc/2/§) (4.34)

and

1- G

0
tan(wB/Q) T O+ 20,

tan (wc/Q) (.35)

where v, is the cut-off angular frequency of the one-dimensional
prototype digital filter and wg is the cut-off frequency of two

cascaded filters, In addition
tan(v1/2) = k tan (w/2) 0 (5.36)

where k is given by equation (4.23). We may see from equations (%.3h)
and (%.35) that a solution is possible when constrained by (4.32) for

only one unique value of Y. given by
tan(wc/Q) = Qtan(wc/Qfg) (4.37)

A filter designed close to this specification is shown in

Fig. %.8 with QU = 0 and v_ = Tt/2.

It is thus apparent that this design technique suffers from
the same disadvantage as that proposed by Ali et al Eﬁf] and only
approximations can be made to circularly symmetric filters except

perhaps for one specific value of W

This suggests that in order to obtain greater freedom in
design, it might be worthwhile relaxing the constraints of equation
(4.32). This will most certainly result in the reintroduction of
the undesired pass bands which were also present in the Ahmadi

transformation,

The stability constraints of egnations (4.29) together
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~ (b) Contour plot.

All-pass transformed filter. Prototype: third -

order Butterworth digital filter; o_ = n/2.

Transformation: . = O, of. = ¢, = 0.5,
o} 1 2

Figure 4.8.
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with the condition (11 = (12 may be represented diagrammatically

as shown in Tig. 4.9, The all-pass transformation is stable for all
(db,(ll) within the shaded triangle. The constraint of equation
(4.30) permits values only on the oblique boundaries of this

region. With this constraint removed, operation is permissible at

all points within the region.

Considering design of a Chebyshev filter in which'wo = wé
equations (4.34) and (4.35) lead to

2. tan(v_/2/2)
14 e =Y = : (4.59)
1+ 7 - taniwc72$ *

Y-t

which represents the line AX having gradient 5

Thus any filter with design circular profilé cut-off

frequency, Vs which satisfies
IX;—l-l < % 3 namely 0 <Y <2 (4.39)
will be capable of design by such a transformation.

This limitation is similar to that which is imposed on the
design of filters using the Ahmadi technique and restricts the
transformation to design cut-off frequencies greater than
approximately 2.2 radians/sec. A filter designed using this

method is shown in Fig., 4.10.

L4 8 Comparison of Two~-Dimensional Transformations

It is apparent that attempts to obtain two-dimensional
recursive filters having transfer functions whose cut-off boundaries

closely approximate to a circle over a range of design frequencies -
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L

(a) -Isometric plot.

: (b) Contour plot.
Figure 4.10. All-pass tansformed filter. Prototype: third order
Butterworth digital filter; w = 0.5764. Transformation;

% = 0.5, 0 =0, = 0.447.

. .Alternatively; W, = 1.726, O =0, = 0% = 0.2957.



- are singularly unsuccessiul. The McClellan technique is only
applicable to non-recursive systems and thus results in filters of
high complexity. The Bernabo technique resolves this problem but
substitutes for this shortcoming a considerable increase in
complexity of the aesign procedure; the technique is, however,
capable of generating filters whose cut-off profile is closely

circularly with no restrictions on the range of cut—off frequency.

The Ahmadi transformation is considerably simpler but
demands the inclusion of a guard filter and cannot approximate
circular profiles except over a limited cut-off frequency range.
The all-pass transformation removes the spurious high-pass bands
from the response and thus the need for a guard filter, but the
transformation is restricted to the design of good circular profile
filters at only one single cut-off frequency. The same comment
applies to the modification to the Ahmadi transformation proposed

by Ali et al.

The simplest technique is the separable product transform—
ation which gives the poorest approximation to circular symmetry.
However, subjective tests have shown that in processing certain
images very little difference is observable, whichever of the various
design techniques is used, and the insistent demand for circular

cut-off profiles is probably misplaced.

b5 ONE DIMENSION TO MULTIDIMENSION TRANSFORMATION

Although the application of digital filters of higher
order than three appears remote, the design of the general case

may easily be included in any extension of the one to two
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d imensional transformations, One of the most likely cut-off profiles
which might be specified would be that having multidimensional
spherical boundaries., We shall therefore consider three techniques

whereby this may be achieved.

To illustrate the amplitude responses of the designed
maltidimensional filters graphically would be difficult and so all
examples are restricted to three dimensions. In three dimensions it
is possible to present the response of the filter visually as a
plot of the cut-off isometric boundary surface., All the filters
will be designed with low pass characteristics, namely having full
transmission at the origin and the cut-off boundary plotted will
correspond to the "3 dB" surface, namely a value of 0.7. As all
the filters will be symmetrical in all eight primary sectors, the

profile will be plotted for positive values of w, and both polarities

3

of vy and w2.

4.5.1 Separable Product Technique

The two~dimensional separable product technique discussed
in Scction 4.%.1 may be extended to any number of dimensions in a
relatively trivial mammer. The cut-off boundary surface will

approximate to a multidimensional rectangular parallelipiped.

The profile of the cut~off isometric surface of a three-
"dimensional separable product filter is shown in Fig. 4.11. The
design is extremely simple; the resulting filter may be made
symmetric about all axes by simple transformation and stability is
ensured, The designed filter is, of course, not zero-phase. To
achieve this, one would need to cascade two identical sets of

filters recursing in opposite directions,
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Figure 4.11. Cut-off surface of three-dimensional separable
product filter. Prototype: third order Butterworth
digital filter; w = /2. :



L.5.2 Multidimensional {eCleliun Transformation

The McClellan transformation E9,44___| discussed in Section

L,4.4 may be easily extended to many dimensions E58] .

A class of N-dimensional zero-pnase IR filters may be

shown to have a frequency response which is of the form

M M
ju ju : Z“ |
H(e 1,...,e n)= Zo-- a(ml,...,mn)cosmlul...cosmnun
.mlz() n =0 (4'40)

The transformation, by analogy with the two-dimensional case, takes

the form
Pl Pn
cos u = E e E t(pl,...,pn)cos PyUy ++. COS D U
pp=0 =0 (%.41)

This transformation may be applied to the one-dimensional transfer

.function

H(eju) h(n) cos nu (4.42)

M=

=
11
[

which may be alternatively written, using the Chebyshev polynomial

functions, as

H(e‘ju) = b(n) (cos u)n

M=

1l
=]

I

The resultant miltidimensional transfer function is

. . N Pl Pn
juy ju,
Hle “,...,e M) = E b(n) [ E E t(pl,...,pn)cos RIS
n=0 p1=0 P =0 n
T . .cos pnun]

(&.43)
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Again by applieatio hyshey polynomials this may be rewritten

in the form of cquation (4.40).

The original prototype transfer function is specified by
the parameters h(n), which determine b(n), and are responsible for
the shape of the amplitudg response in.the pass, stop and transition
regions, The parameters t(pl,.,.,pn) control the mapping of a single
frequency in one dimension into a region in the nultidimensional
frequency domain and thus are responsible for determining the shape

of the cut-off profile.

The most pertinent profile in our case is that in which the
cut-off profile is of the form of a hypersphere having a pass band

edge determined by

i=1

The simplest transformation to consider is that in which P1 = P2 = e»
o0 = Pn = 1 in equation (%.41). This provides o™ parameters
t(pl,...,pn) which may be used to conltrol the shape of the cut-off
profile., One constraint imposed in the usual case of a low pass to
low pass transformation is that the one-dimensional origin is

mapped into the n-dimensional origin, requiring

1 1
Z e z t(l)lyctq,pn) = 1
p1=0

n =0
n

The remaining o™.1 parameters may he determined by solving equation
(4.&1) for one of the frequency variahles, say u s in terms of the
other parameters and the design cut-off frequency; +the error

between this value and the desired value is then minimized on the
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assumption that the required profile is a perfect hypersphere. In
the multidimensional case this task is usually too formidable. A
suboptimal approach is frequently used which assumes that if the
mapping were exact, the value of the function would be constant on
the desired hypersphere; the error between the calculated value
of the function .on the hypersphere and its ideal value may be

minimized to give a solution,

k.5.3 Multidimensional 3ernabo Design Technique

The extension of the application of the McClellan
transformation to recursive filters given by Bermabo et al [}7:]to
n—diménsions has been given by Ahmadi [ﬁf{] . It follows the
general procedure for two dimensions, of transforming the magnitude
" square of a one-dimensional amplitude response to n dimensionsj
this is followed by the n-dimensional decomposition technique E?Q]

to obtain a sect of stable one-guadrant filters.

A zero-phase recursive filter transfer function may be

written
Ml Mn
E‘..' p(ml,...,mn)cosmlul...cosmnun
ju ju m=0 m =0 )
H(e 1’---19 n)= L - (’*-!*l*)
L L
1 n

...ZE::q(Zl,...,En)cosglul...cosﬁnpn
H' xnzo

Consider a one~dimensional recursive filter with response function

N

Z a(n) cos nu

() = 22 (4.45)

Z b(m) cos mu

m=0

il
(=}
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Hed) = =L (1.46)

b (m)(cos u)m

Let this be transformed to an n-dimensional filter via

P1 Pn
= }E: ces EE: t(pl,...,pn)cos PyUy ee. 20S DU (&.47)
p1=0 pn:O
resulting in
n
Za' (n)[ E Zt(pl, cresD )cosplu ceeCO qpnun]
ju ju _0 P, =0
M 1 n n
Zb' (m)[ Z. ‘e E _t(pl, oo ,pn)cosplul. . .cospnun]
m=0 p.=0 p =0
! n (4.48)

This may be rearranged using the recurrence formulae of Chebyshev

polynomials to give an expression of the form of equation (&.u4),

The approximation to a desired boundary condition may be
obtained by an optimization technique similar to that used in the
two—-dimensional case, after first having designed the one-dimensional
prototype filter to give the desired frequency response in the pass,
stop and transition bands. The final step in the design technique
is to stabilize the resultant filter. As the procedure inevitably
results in a zero-phase filter, the decomposition technique of
Ahmadi and Kingljégj must be used to generate a set of single

quadrant stable recursive filters.



4.5.4h Multidimensional Ahmadi Technique

The obvious extension of the Ahmadi technique to n—
dimensions would be to use the general n-dimensional first-degree

reactance function

n n n

[as TV e

i=1 j i k—]

1+§ E 1.]1.]+> > > > 1Jkﬂsls 8, Sp Fee
i=

i=1 j=1 k=j &=k

F(sl,...,sn) =

(%.49)
However, this general form of function is not stable. This may be
seen from a consideration of the stability conditions for a multi-

dimensional system, which may be formulated
: . . n
Re[F(speenssp)]>0  Flogrdmlyenn o0 (Re(s) > 0)}

Superficial inspection of expression (4.49) shows that this cannot
hold for unconstrained values of the coefficients in any but the
most trivial cases. We shall therefore restrict our studies to the
three-dimensional case and show how we may obtain necessary and
sufficie nt conditions for the stability of a multidimensional
function generated from lower dimensional functioms. It will not,
of course, be possible to obtain closed form expressions for the

stability conditions as functions of the coefficient paramcters.

Consider the first degree three-dimensional reactance
function

a151+aS + a.,s +as

373 15253

1+ b15253 + b25351 + b s1

F(sl,sg,s ) = (4.49a)

2
It may be noted that this function in general does not satisfy the

stability conditions. However, we may derive a set of necessary and
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sufficient coundilions for {4.4%a) Lo represeul a lhree-dimensional

reactance funection,

Let us make the one- to two-dimensional transformation of
equation (4.22) as

1 1
181 2159

(%.50)
1 + Blsisé

s = G (sy,80) =

One or bolh of these variables, si, sé, may be transformed
by similar cxpressions to give a three- or four-dimensional function.

Considering the three-dimensional situation we make the substitution

si = G;Z(SJ.) = Sl
Oygsg + Koos (8.51)
: 3
55 = GE(SQ’SB) - 1+ S oS
_ Basods

Concatenation of these two gubstitutions results in an expression
representing a third order reactance function of the form of

equation (/4.49a) but with the added constraints that

a. b = ab

32 273
(4.52)

and 8,1]1 1 L’.’,'_

i}

Now the neccssary and sulficient conditions for (4.22) to

represent o reactance function are

2,>0, 2,>0and b>o,

These may be applied dircetly to (%.50) and (4.51). So long as
these conditions are zatisfied, we are able, by choice of the (xij’
Bj to gencrate the complete set of all threce-dimensional reactance

functions, since

-

) = G1 EG;(SI), GE(SQ’SB)]
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This approach may be used to generate a transformation from
one dimension to many dimensions in a series of steps each increasing
the dimensionality of the function by at least one. (For higher
order filters two or more transformations may be simultaneously

applied.)

Considering the three-dimensional case, we note that in
practice only five design parameters are available since no loss of

generality ensues by setting C112 = 1., We then have three parameters

defining the cut-off frequencies along the three coordinate axes
and tvo other parameters which may be used to control the shape of

the boundary surface at two intermediate poinuts.

The shape of the profile is probably most simply determined
by constraining it to pass through five points mapped by (4.50) and

(4.51) in the three-dimensional space. TFor convenience these may be
w v

chosen as (wc,0,0), (O,wc,O), (0,0,wc), (%, é, 0) and (O, :/—: F)

for a pseudo-spherical cut-off boundary. The response at

@Ei, 0, EEQ will depend upon the order in which the transformations

62?50) and (4.51) are executed; in the example considered it will be

identical with that at (——- XS 0). An alternative would be to force

V2 Vr- W, W, W

the cut—off profile to pass through (—— -—2 —EQ

V3 V3 V3

An example of a filter having spherical profile designed
from a Bulterworth third order filter with cui-off frequency.of
0.5TC is shown in Fig. 4.12. The cut-off surface is a close
approximation to spherical shape although the parameters chosen for
the design are outside the range where it is possible to satisfy the

constraints for pseudo-spherical boundary accurately.
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Figure L4.12.

Cut-off surface of three-dimensional Ahmadi filter.
Prototype: third order Butterworth analogue filter;

w = n/2. Transformation in both planes; a, .= a_, = 1,
v°= 0.2. o2
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I1 should be observed that four three-dimensional filvers
need to be cascaded (eight for zero-phase functions) and hence the
cut-off frequencies along the axes (w 0,0), (0 ,0), (0,0,w )
will be the result of the superposition of four filters; at points

such as (w4,w 0) only two low pass filters will be cascaded; and

2!

at points such as (iwl, e iw3) only one filter., When using a

2!
Butterworth prototype filter this will modify the design equations

at three sets of points.

It may be seen that an approximately spherical filter is
obtained but spurious high frequency pass bands will be presemt
unless an appropriate guard filter is provided to eliminate them

as was done on the example shown.in Fig. 4.12.

4.5.5 Multidimensional All-Pass Transformation

The all pass transformation function may be used to
transform to a multidimensional filter., The general n-dimensional

all pass function of first degree is

n
(uzalzly_za P
. =1 j=
G(zl,...,zn) = 1n i
1+ZCL7 ZZQ —1 —.1 + e
iji
i=1 =1 (&.53)

Before such a transformation function can be applied to a one-
dimensional digital filter, it is necessary to establish conditions
for its stability. This may be done numerically for any given
function by one of the methods discussed in Chapter 2. However, no

closed form conditions have been established in the general case.
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It is, however, possible to generate a limited class of
multidimensional first order all pass functions by successive
application of the one- to two-dimensional transformation. Thus

the transformation

] 1t
L+ Q2] + Ugg25 + U %1%
z ULny + Ooqz! + Clyq2L + zl2! (4.54)
01 2171 1172 172
followed by
zi = Zl
. (5.55)
L 1 + 0(12z2+ (122z3+ OLOQZQZ3
2 g + Cgg?g + UyoZg + 2923

will realize the overall transformation

1+ a1z1 + a2z2 + a3z3 + b1z2z3 + b2z3z1 + b3z1z2 + cz1z223

c + blz1 + b2z2 + b,),z3 + a1z2z3 + a2z321 + a321z2 + 2122z3

(%.56)

It will be noticed that there are seven parameters in

Zz =

equation (4.56) which may be equated with the six parameters of
equation (4.54) and (4.55). Thus the most general'form of all pass
third order network cannot be generated in tﬁis manner. However, it
is not difficult to show that the third (and higher) order functions
so constructed will be stable if and only if the individual two-
dimensional transformations are stable. The necessary and sufficient
’conditions for these transformations to represent stable network

functions are

IOLHI < 1
oty + OLOiI < ,1 £ 0] (4.57)
Ial am' < |1 - ami
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for all i = 1.....,n: where n is the dimensionality of the filter.

A relatively direct procedure is now indicated for the
design of a multidimensional filter having approximately hyper-
spherical band edge boundary. It is, of course, true in the multi-
dimensional design, as in the two-dimensional design, that an
accurate pseudo-hyperspherical pass band boundary can only be
achieved at one frequency of approximately 2.2 rads/sec. However,
filters closely approximating hyperspheres may be generated at a

wide range of frequencies around this value.

The design is achieved in a number of steps. Starting
with the specified design cut-off boundary, Yon? & filter of one
dimension lower is specified having cut-off boundary, wc(n-l)’

given by

n'wc(n-l) 1 - CIOn Yen

ta = tan
2 1 + (Xon + 2(11n 2

(%.58)

where n is the order of dimensionality of the filter and assuming
%y, = Cign. This procedure will also permit design of the parameters

aOn and Clln ensuring that they are constrained to lie within the

stability triangle given in Fig. 4.9.

This successive reduction of the dimensionality of the
filter is continued until a one-dimensional filter is obtained which
may then be designed according to the specified requirements in the

pass, stop and transition bands of the filter.

The choice of parameters ClOn and Ciln in equation (4.58)
may be made either using the Kap restricted form of transformation

or the more general form. In the Kap form (XOn and (lln are related

by
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iy, Hnpdiviuingey

DS gydnl

(b) Contour plot of cut-off surface.

Figure L4.13. Cut-off 'surface for three-dimensional filter via
all-pass transformation. Prototype: third order
Butterworth digital filter: w_ = n/2. Transformations

. )
in both planes; db =0, di =&, = 0.5.



\ 110,

b+ C{'()n = 20’111 (%.59)

and a low pass (n—l)th dimension filter is transformed into a low
pass nth dimension filter. Using the more general form, added
freedom is available in design but one suffers from the disadvantage

of having the extra undesirable pass bands at high frequencies.

A three-dimensional filter was designed using ihis
procedure hased on a Butterworth low pass prototype digital filter.
The profile of the 3 dB isometric surface is shown in Fig. 4.13(a),
from which one may subjectively observe satisfactory spherical
symuetry. Fig. 4.13(b) shows contours of Fig. %,13(a) from which
it may be seen that good spherical symmetry of this particular pass

band boundary is maintained throughout the three-dimensional space.

4.5.6.' Comments on Multidimensional Transformation

0f the several transformation techniques siudied, the
Bernalo design gives good results but requires stabilization
techniques for satisfactory implementation. Of the other circular
symmetric designs, the all pass transformation gives more closely
spherical boundaries, although similar results may be obtained by

use of the Ahmadi technique followed by a gunard filter.

In all probability, however, it will be shown that the

~ separable product technique, although giving cut off profiles which
ﬁeviate greatly from spherical, performs in a great many practical
situations as satisfactorily as the techniques giving better spherical
profiles. Tt also has the outstanding merit that it is very much

simpler to design and to implement.
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APTLICATION OF TWO-DIMENSIONAL CIRCULAR PROFILE FILTER

=
.
[=n

In the pfeceding sections we have outlined a number of
procedures for designing two-dimensional filters having cut-off
profiles which approximate to a circle as it is intuitively felt
that such a filter will be most likely to counteract the effects

of isotropic distortion introduced between the object and the image.

To add conviction to this argument and to assess the
value of the various design techniques, it would be valuable to make
a subjective assessment of the improvement in image quality after
processing by filters designed by different techniques. In addition
the effect of the order of the prototype filter may also be
considered., The results given below are mainly due to Kap E?j] .
The original recorded image is shown in Fig. 4:14 and represents an
.X;ray picture taken of a diseased human liver; >the vertical axis
. represents the intensity of the picture elements and the horizontal
axes the linear dimensions in a lateral plane through the body.
It may be observed that the image is corrupted by considerable high
frequency noise and an improvement in picture quality for
diagnostic purposes may be obtained by the use of a two-dimensional

low pass filter.

A number of filter structures were designed and used to

process this image.

Fig. 4.15 shows the effect of using a Bernabo designed
filter based on a fourth order Chebyshev prototype with w, = 0.6TC
and passband ripple of 1%g the filter has been decomposed using
the Pistor technique into four stable single quadrant filters,

each having a denominator function truncated to an 8 x 8 array.
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In TFig. 4.16 the effect of using an Ahmadi filter is seen,
This filter has again been designed from the same fourth order
Chebyshev prototype using transformation coefficients ay = a, = 1,
b =0.5 It is cascaded with a third order Butterworth separable

guard filter.

In Fig. 4.17 the response using a filter designed using
the modified all-pass transformation of Kap; the prototype is the

same Chelbyshev filter as above.

Finally in Tig. 4.18 the use of a single separable product
filter is investigated. The three plots show the effect of varying
the order of the prototype Chebyshev filter. The ripple is
maintained at 1% in the passband and the .order of the filter
" progressively increased. 1In Fig, 4,18(a) a second order prototype

is used; in 4,18(b) a fourth order, and in %,18(c) an eighth order.

Coﬁparison of these responses shows very liltle difference
between the filtered images resulting from the use of any of the
filters designed using a fourth order prototype: 'Further, the
increase in complexity frqm fourth order to eighth order seems
hardly justified by subjective comparison of Figs. %.18(b) and (c),
although the increase from second to fourth order is clearly

significant.

From the above very limited subjective assessment it would
appear that a rectangular cut-off profile is as satisfactory as a
circular one and that there appears no justification for resort to
the more complicated design techniques for circular profile filters.
Such deductions muit, of course, be trcated with reserve as this may

only be fortuitous and a result of the properties of the distorting

noise in the original signal,



CHAPTER FIVE

FAN FILTERS

The wise see knowledge and action as one:
They see truly.

Take either path

And tread it to the end:

The end is the same.

There the followers of action

Meet the seekers after knowledge

In equal frecedom,

"Bhagavad Gita"

The Yoga of Renunciation
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FAN FILTER DESIGN

5.1  INTRODUCTION

Most of the design techniques considered so far have been
for filters having cut-off boundaries which are approximately
circular or hyperspherical. In this chapter we shall consider a
different type of profile, one having a fan or wedge shape. The
practical significance of such filters originates in the field of

geological survey.

One technique used in geophysical prospecting is to
detonate an explosive charge near the surface of the ground and to
detect the impulses which have been reflected by interfaces between
geological strata and other discontinuities by a set of seismographs
gsituated some distance away. The sequence of echoes received on the
array of detectors constitutes a two-dimensional received array in
vwhich one dimension is time and the other dimension is linear
displacement between the elementary seismographs forming the
detection array. It is customary for the detectors to form a linear
spatial set, frequently placed vertically in a bo;ehole some distance
from the primary detonation, The filtering problem is one in which
it is desirable to segregate the echoes into two groups, one which
is travelling upwards from low strata and the others which are
travelling downwards, probably as the result of echoes from the
surface or other higher discontinuities; +this would minimize the

spurious respenses obtained by multiple echoes from several strata

discontinuities,

In other situations the detectors may be placed along a

horizontal line on the surface of the ground. A similar filtering
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problem applies in this case, Tn more complex situations the array
of detectors may be arranged as a two-dimensional array and hence

the output from such a set of detectors will form a three-dimensional
output array, one dimension of which is time and the other two

dimensions being the spatial distribution of the detector elements.

The foregoing indicates that two- and three-dimensional
digital filters would be appropriate devices for processing the
output data from a set of seismic detectors. Tﬁe two-dimensional
problem has been studied for a considérable time; the earliest
solution was given by a simple convolution filter [}5,46] . Since
then a number of improvements have been made, including the use of

recursive filters, Some of these solutions will be discussed later.

5.2 FORMULATION OF DESIGN PROBLEM

A filter is required which will select those signals which
are travelling with an apparent velocity whose magnitude lies within
a certain bound. This demands a transfer function Y(wl,w2), given

by [2]

"4 |

1
1’ ‘_V-<W2<—Tf-l—
Y(wl,wg) = (5.1)

0, otherwise

where Wy is the angular frequency of the time varying signal at each
detector and Vo is the spatial angular frequency along the array of

detectors.

Such a filter frequency contour is shown in Fig. 5.1.
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Fig.51 Ideal fan filter characteristic.
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In practice the temporal frequency response is band limited
by the need to eliminate high frequency neoise introduced by wind and
other extraneous sources. The spatial frequency response is limited
by the finite interval between adjacent detectors, This consider-
ation leads to an appreciation of the suitability of digital filters

to this signal processing problem.

The earliest attempt at solving this problem was carried
out by Embree et al E}Q]'who obtained the inverse Fourier transform

of Y(wl,wz) defined in equation (5.1) as

IN Yo :
J(wlt—w2x)
y(t,x) = b[ J- Y(wl,w2)e dw1 dw2 (5.2)
IN o TVeN

where WQNV = lwlN,'

This integral was evaluated directly by Fmbree who thereby obtained
a time-space array which could be convolved with the two-dimensional
input sequence to give an output sequence which enhanced the echoes
travelling upwards (or, alternatively, downwards depending on the
location of pass and stop zones) and eliminated directly-transmitted

waves,.

Treitel et al E?] impfoved on the algorithm given by
Emnbree, considerably reducing the computational complexity involved,
by taking advantage of certain symmetries of the space-time impulse
response array. They also introduced a technique whereby a
convolution filter could be similarly designed to give a fan band

rejection filter.

Subsequent work by McClellan et al [3Qj offered a solution

to the problem working directly in the frequency domain, transforming
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a one-dimensional filter to a twe-dimensional one by the well-known
McClellan transformation discussed in Section 4.k.k4. This technique
is shown to permit an approximation to Chebyshev characteristics to
be maintained in two dimensions as an attempt at a realization of

a minimum ripple approximation in two diiiensions.

Subsequent work by Sengbush et al concentrated on the
design of optimum velocity filters based on a Wiener optimization
process, They designed both band pass and band reject filters by
the process by which they were able to reduce the noise in the

output data [60,617] .

5.3 FAN FILTER SPECTRAIL TRANSFORMATION

The transformation techniques studied in Chapter 4 have,
in the main, been constrained by the conditions suggested by
. Prendergrass Eﬁg] in which he considers only those transformations
which result in stable filters and also that generate real two-

dimensional network functions from real one-dimensional functions.

We have seen that some transformations, for example that
of Bernabo et al, do not, per se, result in stable two-dimensional
systems but that application of one of the well-documented
stabilization techniques may be used to render the system stable

without materially affecting its performance,.

We will now consider a transformation which represents a
complex function of the two-dimensional variables and show that the
limitation imposed by Prendergrass on useful transformation functions

is by no means mandatory. We shall now apply such a complex
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[PASS

Fig. 5.2 Analogue low-pass filter transformed
to analogue fan filter.

AIH(Q)I

oY

Wo

Fig 5-3 Prototype low-pass analogue filter



12!* L]

transformation to a one~dimensional low pass filter to generate a

low pass fan filter.

5.3.1 Derivation of the fan transformation

An ideal fan filter, ignoring for the moment the band
limitations necessary in a practical situation, may be illustrated
on the two-dimensional continuous frequency domain by Fig. 5.2,

which is a graphical representation of equation (5.1).

This may be achieved by a digital filter which will have
the form of Fig. 5.1 and may be obtained from the transfer function

represented by Fig. 5.2 by use of the bilinear transformations

. Zy - 1
1 Zy + 1
Zy - 1
Zg t 1
where S4s Sp are the continuous variables and for real frequencies
84 = j§21, Sy = j§?2 and Z4y 2, are the discrete variables which for
jwit jw2t
real frequencies are given by zZy = ¢ y Zp = O .
A cross section across the filter parallel to the S?Q
axis may have a transfer function magnitude which is of any of the

classical forms, for example, Butterworth, Chebyshev, elliptic,

etc, of the form of Fig. 5.3.

Reference to Fig. 5.4 sugpgests that we may transform the

prototype filter H(w) to H(ﬂ-l,QQ) by the relationship

QR = S?N arc tan S?2/§?1 ’ (5.3)

where QU TIEN horma.hz_n}j constant.
This will not cause the cross-section AA" (Fig. 5.2) to have the

given one-dimensional characteristic but rather the arc of a circle
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Fig. 55 Boundary values of low-pass digital fan filter
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such as BB'. Tt is further seen that the range of (2 is bounded
between -T0/2 and TU{/2 for the complete range of transfer function
covering both pass and stop bands, which suggests that a transform-
ation from the discrete one-dimensional frequency variable w to the
two-dimensional continuous variables 521, §22 would be the more

obvious choice.
We shall thus consider the transformation

W = W,

N are tan 522/§21 (5.4)

Making the substitution z = exp jwI, and sy = jwl, Sy = ij,

leads to

z = exp [j wy T arc tan 52/51] (5.5)

Now we may note that the extreme values of w/wN from (5.4) are + /2
and thus our prototype digital filter for which wT ranges between

~TC and TU imposes the constraint that vy = 2/T.

Further manipulation of (5;5) using the identity

)" (5.6)

Xp + jxl
exp(2jn arc tan xi/x2) = (;?-1:i§;-
-2 1

leads to the simplified transformation function

z = z—if_—% (5.7)
and in this form of a rational function it is more amenable to
algebraic manipulation. It should be noted that this is a complex
transformation and will therefore generate a two-dimensional
function F(Si,SQ) which has complex coefficients. We may note that

the fan filter which we are attempting to generate is symmectrical

about the vy axis and hence a transformation
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S, =~ 38
1 479

sy + st (5'8)

zZz =

applied to the same prototype will produce another complex function

F(sl, —92) wvhich will have an identical amplitude characteristic.
Moreover it is obvious that
F(si, —s2) = F*(si,sg) (5.9)

and hence we may cascade two filters, one using'the transformation
(5.7) and the other the transformation (5.8). An alternative method
would be to usc the single transformation (5.7) applied to the
product of two prototype functions ﬁ(z).ﬁ(z—l), resulting, of course,
in an identical two-dimensional filter function
A A -1
H(sl,sg) = F(zl).F(z1 ) .
_ $17J59
$1*+3so

The ultimate two-dimensional digital filter may be derived from this
analogue filter function by means of the bilinear transformation

applied to the two variables Sy and Sg»

We may study the mapping from the one-dimensional discrete

frequency domain w, to the two-dimensional discrete frequency plane

AP with reference to Fig. 5.5. The lines Wy o= tTI'. and Vg = 0
map into the point w = 05 the lines Wy = 0 and Wy = it map into
w = TC/T; the principal diagonals Wy = iwg map into w = TC/2T.

It may be noted that these boundary transformations create discont-
inuities at the points (0,0)‘, (X1t , £10 ) at which the transfer

function will be unspecified. These singular points may be defined
as desired, either in the pass or stop band;. The transformation is

thus symmetrical about both axes, as could also be observed from
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~(a) Prototype digital low-pass filter.
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(c) Cut-off boundaries of digital fan filter.

Fig.5-6 Cut-off boundaries of fan filter.
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equations {5.7) and {5.8); this shows that the resulting function

H(S1’52) will be even in both 84 and Spe

5.3.2 The Contour Approximation

The basic transformation given by equation (5.7) maps the

diagonal Wy =W into the prototype digital filter frequency TC/2T.

2
| Let us consider a prototype low pass digital filter having cut-off
frequency kTU/T; then the cut-off boundary in the §21, §22
continmuous plane will lie along the 1ines S?Q =X §21 tan kTC/Q and
we apparently have design freedom in choice of the angle of the
cut-off boundary (corresponding to velocity in the geophysical
problem). However, in transforming to the digital frequency plane
we observe that the continuous frequencies g?l = §22 = © will always
transform into Wy =Wy = TU, the discrete frequencies. This will
result in a distortion of the filter cut-off contour for any
prototype filter for which the cut-off boundary does not coincide
with half the sampling frequency. This is illustrated in Fig. 5.6.
It may be noted that in the vicinity of the origin in the Wi9Wg

plane, the cut-off profile is tangential to the lines Wy = ¥ vy tan kTC/2

and is thus similar to that in the continuous domain,

Since, in the application in which this design technique
is most important, namely geophysical prospecting, the variables
in the two directions are of differing nature, it is always possible
to scale one of the variables, or its sampling rate, so that the
prototype may be designed to a cut-off frequency of TU/2. In some
other applications it may not be possible to do this and so the

need for filters whose cut-off profiles do not lie along the 45°
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line may arise. In such cases it will only be possible to approxim-
ate the required cut-off contour. However, since-in all digital
filter designs of this nature a guard filter is required to remove
high frequency inversions of the basic filter profile, it may be
possible to design the guard filter to remove as much of the outer
part of the curved profile B (Fig. 5.6c) as is necessary to
approximate the desired filter characteristic, Such a guard filter
need only have a stop band cut-off boundary along the Wy axis where

it affects the pass band. Along the w, axis it is only necessary

2
for the removal of the higher frequency bands and so a lower order

guard filter may be adequate,

5.3.3 Stability and Stabilization

Although the transformation function (5.7) is complex,
this does not, of itself, give any indication of the stability of
the resulting transformed network. However, it was noted in
Section 5.3.1 that the network function H(zl,z2) is even in both
z4 and Zge Moreover, since it is obtained by transforming a
function derived from the cascade of F(z) with F(z—l) it must be
a zero phase function and by definition unstable. As it is a zero
phase function we may stabilize it using the technique of Pistor
[}3:); thus the final procedure before implementation must be the
decomposition of the filter function into four single quadrant

functions, each recursing in a different direction.

563k Design Examples

A number of fan filter designs were implemented to show

the significance of the preceding transformation. Where quoted,
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NUMERATOR

1.7776 10,6667
-10.6667  -64.0000
26.6667 160.0000
-35.5556  -213.3333
26.6667 160.0000
-10.6667  -6L.0000
1.7776  10.6667
DENOMINATOR
35556 0.
0. -128.0000
53.3333 0.
0. -L426.6667
23.3353 0.
0. -128.0000
3.5556 0.
Table 5.1.

26.6667
-IQ0.0000
400.0000
-533.32333
400.0000
-160.0000

26.6667

53.2333
0.

800.0000
o.
'800.0000

O‘

53.2333

35.5556
-213.3333
533.3333
-711.1111
533.3333
-213.3333
35.5556

0.
-426.6667

0.
-1422.2222

0.
-426.6667

0.

26.6667
-160.0000
400.0000
-533. 3333
400.0000
-160.0000

26.6667

53.3333
.

800.0000 -

o.
800.0000

O.

53.33%3

prototype, Butterworth,u = /2.

10. 6667
-61+.0000
160.0000

-213.3333
160.0000
-6l:.0000

10.6667

0.
-123.0000

0.
-L426.6667

0.
-128.0000

0.

1.7776
-10.6667
26.6667
-35.5556
26.6667
-10.6667

1.7776

3.5556
0.

53.3333
0.

53.3333
.

3.5556

Coefficients of transfer function of fan filter of Fig. 5.7;

"CLT
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Isometric plot.
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. NUMERATOR

3.4917 20. 950
-20.9504  -125.7025
52.3760  314.2562
-69.8347  -419.0083
52.3760  31k.2562
-20.9504  -125.7025
3.4917 20.950l
DENOMINATOR
3.5614 18.8185-
-18.8185 -162.280%
70.4558 207.4913
-37.7997  -563.6463
70.4558 207.4913
-18.8185 -162.2803%
3.561L4 18.8185
Table 5.2.

52.3760
-314.2562
785.6405
~1047.5207
785.6L05
~31k4.2562
52.3760

70.4558
-207.4913
1039.8029
~716.5663
1039.8029
-207.4913

70.4558

69.8347
-419.0083
1047. 5207

-1396.6943
1047, 5207
-419.0083

69.8347

37.7997
-563.6463
716. 5663
-1833.3970
716.5663%
-563.6463
37.7997

prototype: Chebyshev, w, =

52.3760
-314.2562
785.6405
~1047.5207
785. 6405
-314.2562
52.3760

70.4558
-207.4913
1039.8029
-716.5663
1039.8029
-207.4913
70.4558

Coefficients of transfer function of fan
/2.

20. 5904
-125.7025
314.2562
-419.0083%
314.2562
_125.7025

20. 5904

18.8185
-162.2803
207.4913
-563.6463%
207.4913
-162.2803
18.8185

3.4917
-20.9504
52,3760
-69.8347
52.3760
-20.950k
3.4917

3. 5614
-18.8185
70.4558
-37.7997
70.4558
-18.8185
3.561h4

filter of Fig. 5.8;

“HET
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NUMERATOR
0.1690
-1.01328
245341k
-3.3793
2.534k
~1.0138

0.1690

DENOMINATOR
8.4205
58.2435
168.1705
225.8815
168.1705
58.2435
8.4205

1.0138

_6.0827
15.2067
-20.2756
15.2067
-6.0827

1.0138

-58.2435
~-386.8641
-968.8619

- -1345.3643
-968.8619
-386.8641

-58.2435

Table 5.3.

2.534k
-15.2067
38.0167
-50.6889
38.0167
-15.2067
2.5344

168.1705
968.8619
21480. 6951
3197.8030
2480. 6951
968.8619
168.1705

Coefficients of transfer function«of fan filter of Fig. 5.9;

3.3793
-20.2756
50.6889
-67.5852
50.6389
-20.2756

3.3793

-225.8815
-1345.3643
-3197.8030
-4372.9131
-3197.8030
-1345.3643

—225.8815>

2.5344
-15.2067
38.0167
-50.6889
38.0167
=15.2067
2. 53414

168.1705
968.8619
21480.6951
3197.8030
21480. 6951
968.8619
168.1705

prototype; Chebyshev, w, = 0.207n.

1.0138
-6.0827
15.2067

-20.2756

15.2067 .

-6.0827

1.0138

-58.2435
_386.86141.
~968.8619

-1345.3643

-968.8619
-386.8641
~-58.2435

0.1690
-1.0138
2.5344
~-3.3793
2. 53k
-1.0138

0.1690

8.4205
58.2435
168.1705
225.8815
168.1705
58.2435
8.4205

‘9LT
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NUMERATOR

8.6329
-51.7976
129.4939
-172.6586
129.4939
-51.7976
8.6329

DENOMINATOR

8.7476
-53.3798
133.3187

-161.6153
133.3187
-53.3798

8.7476

Table 5..4.

51.7976
-310. 785k
776.9635
-1035.9513
776.9635
~-310.7854
51.7976

53.3798
-319.1229
751. 7447
-1066. 5494
751. 7447
-319.1229

53.3798

prototype: Chebyshev, W, = 0.75n.

129.4939
'77619635
1942, 4087

-2589;8783
1942, 4087
-776.9635

129.4939

133.3187
-751. 7447
1997.6754

-2522.1330
1997.6754
-751. 7447

133.3187

172.6586
_1035.?513

2589.878%

-3453.1710
2589.8783
-1035.9513
172.6586

161.6153
-1066. 5494
2522.133%0
-3549.5519
2522.1330
-1066. 5494
161.6153

129.4939
-776.9635
1942. 4087

-2589.8783
1942. 4087
-776.9635

129.4939

133.3187
-751. 7447
1997.6754

-2522.1330
1997.6754
-751. 7447

133.3187

51.7976
-310.7854
776.9635
-1035.9513
776.9635
-310.7854
| 51.7976

53.3798
-319.1229
751. 7447
-1066. 5494
751. 7447
-219.1339
53.3798

8.6329
-51.7976
129.4939

-172.6586
129.4939
—51-?976

8.6329

8.7476
-53.3798
133.3187

-161.6153
133.3187
-53.3798

8.7476

Coefficients of transfer function of fan filter of Fig. 5.10;
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the transfer functions, H(ZI’ZQ)’ will be represented by numerator
and denominator matrices A and B, thus

7, A Z

1
H(zl, z2) =

o S8 3

Z, B1Z

1

31

1

and 22 is the row vector l__l Z

N

. -1 -2 =3 =4 -5 -
where Z_. is the row vector El Z4 1 zy z4 z4 z16]

Fig., 5.7 shows the amplitude response and isometric
amplitude contours of a fan filter derived from a third order
Butterworth filter prototype with discrete cut-off frequency at
Wy = TC/2. The transfer function matrices of this filter are

given in Table 5.1,

A similar response of a fan filter derived from a third
order Chebyshev filter prototype with 1 dB pass band ripple and
discrete cut-off frequency at Wg = Tt/2 is shown in Fig. 5.8. The

" transfer function matrices are given in Table 5.2.

Figs. 5.9 and 5.10 show the predicted effect of variation
of the cut-off frequency from the ideal value of w = TT/2. Both
are designed to the Chebyshev specification with 1 dB pass band
ripple. Fig. 5.9 has a prototype with Wy = 0.207TC. Fig. 5.10 is
based on a prototype with Wy = 0.75TC. The transfer function

matrices are given in Tables 5.3 and 5.4.

One may observe from these that, as expected, the pass

= O.STE;

band edge lies almost exactly along the diagonals for Vo
the Chebyshev filter shows about 2% ripple in the pass band as a

result of cascading two similar filters and a considerably steeper

transition band,
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AlCay 0,)!

(b) Contour plot.

Figure 5.11. Low-pass fan filter. As in Fig. 5.8
cascaded with a sixth order separable
guard filter.
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(a) Isometric plot.

(b) Contour blot.

Figure 5.12. Low-pass fan filter. As in Fig. 5.9 with
" guard filter having w = 0.207n.



L4.250
~0.5157
-0.5435

0.02542
~0.088%0

0.003895

-0.02907

0.5157 ~-0.5435 -0.02542  ~0.08840 -0.003895 ~0.02907

-5.195 ~0.1713 .0.1602  -0.01168  10.02557  -0.003535
0.1713 1.495 ~0.001834  0.1447 ~0.0006941  0.O0L75k
0.1602 -0.001834 0.01514  0.002249 0.00833%9 0.0006964
0.01168 0.15447 ~-0.002249  0.01006 0.00004112 0.003474

0.02557 0.0006941 0.008339 ~-0.00004112 0.002285 0.00006407

0.003535 0.0L4754 ~0.000696l 0.003474  -0.0000€407 0.001121

Table 5.5. Coefficients of denominator of the first quadrant function after

decomposition of the denominator of Table 5.2 by the Pistor

technique.

‘ot
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(a) Isometric plot.

" (b) Contour plot.

Figure 5.13. Low-pass filter. As in Fig. 5.8, after

stabilization using the Pistor technique.
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The effect of deviations of prototype cui-off frequency
from Wy = ]I/2 are more pronounced with Chebyshev prototypes than
with Butterworth type filters. Tt may be observed that a fan
filter having other than a & T[/% angle would be realized by
cascading one such filter with a high ocrder guard filter. This is
shown in Fig. 5.11 for a fan filter derived from a Chebyshev third

- order prototype cascaded with a sixth order Chebyshev guard filter.

The effect of a guard filter on a fén filter designed from
a prototype with cut-off frequency less than TL/2 is shown in Fig.
5.12, from which it may be seen that a close approximation to linear
fan filter specification is obtained over a limited band of

frequencies.

As noted in Section 5.3.3 any designed filter requires
stabilization. This may be achieved using the Pistor technique.
. This procedure has been applied to the transfer function given in
Table 5.2 using a 32 point FFT algorithm; +the final decomposed

denominator transfer function was truncated to a 7 x 7 array.

The first quadrant decomposed denominator array of the
transfer function is given in Table 5.5. The frequency response
of the transfer function obtained by cascading four single quadrant
filters and the original numerator function is shown in Fig. 5.13.
It is scen from this that considerable ripples are introduced in
the reconstituted response; these may be caused partly by the
truncation of the infinite array which forms the denominator poly-
nomial, but also by the limitations of a fast Fourier transform
based on a finite number of discrete frequencies. An increase in

the number of elements used in the FFT algorithm has been shown
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to reducc the ripple. Am extension of the size of the denominater
array will also usually improve the approximation, but this involves

an increase in complexity of the transfer function realization.

5.4 HIGH PASS AND MULTIPLE PASS BAND FILTERS

The design of high pass fan filters by the proposed
technique is almost trivial as it may be cffected by direct inter-
change of the two variables zq and Zge This is, of course,

identical to designing a high pass prototype from the low pass

prototype by the classical substitution z = ~z' .

The design of band pass and band stop filters may be
performed in a similar manner by conversion of the prototype filter
_into the desired form by one of the standard one dimension

substitutions.

An alternative approach to this design problem may be
obtained by a direct transformation from a one-dimensional low pass
filter. If we wish to obtain a band stop filter wc must map w = 0 of
the one-dimensional low pass prototype filter response into the wé =0
the Wy = 0 axes of the two-dimensional filter response and w = TL
into the diagonal line Wy = Vo, for example. The cut off frequency

of the one—dimensional filter at, say, kTL/2, will no longer map

into the principal diagonal in the two-dimensional filter,

The form of transformation required to achieve this is
obtained by reference to equation (5.4) which may be modified to

satisfy the above boundary constraints to give

w = 2wy arc tan §22/S?1 ’ (5.10)
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Isometric plot.

(a)
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Contour plot.

(b)
Multiple-band fan filter. Prototype:

Figure 5.16.

third

order Chebyshev low-pass digital filter;
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Using identity (5.6) this leads to

S_ + -js. ‘ .
L 22 (5.11)

2 = (2=
1 2

If this is used as a transformation applied to a one-
dimensional low pass protot&pe it will give a double fan filter
with pass bands along both axes and stop band along the region of
" the principal diagonals., This is illustrated by the frequency
response plot shown in Fig, 5.14. A realization approximating more
closely to a band stop filter may be obtained by cascading the
previous filter with a guard filter as shown in Fig. 5.15; the
-ripples in the pass band are, of course, considerably accentuated

as a result of the superposition of a number of Chebyshev-type

responses in this region,

Multiple pass band fan filters may be obtained using

higher degree transformation functions of the form

. = (D | (5.12)

1 2

but they would be of limited utility; furthermore, it is obvious
that both the pass and stop band regions are uniformly distributed
angularly around.the origin since only a single low pass prototype
is used., Tf such filters are required they would be better designed
by the use of the simple transformation of equation (5.7) applied to

a more gener ally designed one-dimensional multiband filter. A

filter using a third degree transformation is shown in Fig. 5.16.

One application of the transformation which does, however,
appear uscful, is the generation of a band pass filter by using the

second order transformation (5.11) on a high pass prototype filter.
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Figure 5.17. Band-pass fan filter. Prototype: third order

Chebyshev high-pass digital filter; w = n/2,
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P
=
(a) Isometric plot.
ii ] i
1){2’/
7
TC
I
“1

(b) Contour plot.

Figure 5.18. Band-pass fan filter. As in Fig. 5.16,
cascaded with a sixth order low-pass
guard filter.
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(b) Contour plot.

Figure 5.19. Band-pass fan filter. Prototype: third
order Chebyshev high-pass filter; w_ = 0.207n,
& = 1%; cascaded with a low-pass guard filter;
wo = Tt/2, b = l%.
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This is illustrated in Fip. 5,17 using as prototype a high pass

filter with cut-off frequency w, = 0.5T0; it may be noted that

0
the pass band lies along the diagonals Wy = l Woe This would permit
the design of a filter for geophysical prospecting which selected

waves which were travelling with apparent velocities lying within

a band V1<|O|< Ve

In order to achieve an approximation to fan design with
linear cut-off boundaries, we need to cascade.this filter with a
low pass guard filter., The effect of this is shown in Fig. 5.18,
A better response would be cobtained using a higher order guard
filter, although if this is based on a Chebyshev prototype it would

introduce additional ripple in the pass band.

A narrower band pass fan filter is shown in Fig. 5.19
based on a Chebyshev high pass prototype with cut-off frequency at
' 0.8TC ; the guard filter is the same as in the previous example

with vy = 0.5TC.

Although the particular filters designed in this manner
are symmetrical about the principal diagonal, it may be desirable
to design band pass fan filters having arbitrary angular orientation
of the band edges. These may be closely approximated in the
following manncr. We may cascade two filters; the first is obtained
by a third degree transformation applied to a low pass filter and has
the frequency response shown in Fig. 5.16; the second is a simple
high pass filter such as that shown in Pig. 5.8 with the Wy and wé
axes interchanged. This cascade of filters will give rise to a
frequency response as shown in Fig. 5.20; this particular character-

istic is designed throughout using a one-dimensional Chebyshev
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(a) Isometric plot.

F (b) Contour plot. -

Figure 5.20. Band-pass fan filter. Cascade of filter of Fig. 5.15
with high-pass filter obtained by transposition of
axes of filter of Fig 5.8.
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prototype with cut-off frequency at Ti/2. A guard filter will then
permit isolation of those parts where the cut-off boundary is

adcquately linear.

Tt may be seen that a very wide range of filters may be
obtained by this technique, giving great freedom to the designer to

obtain special profile filters of basically fan form.,

5.5 MULTIDIMENSIONAL TAN FILTERS

The use of the one-dimensional to fan transformation (5.7)
applied twice in succession along different dimensional axes will
generate a class of filters having cut-off profiles which, at
present, appear to have little practical utility. They will

therefore not be considered.

However, we have noted in Secction 5.1 that it is possible
for the array of seismographic detectors used in geophysical
prospecting to be two- or even three-dimensional. We may therefore
need to generate a fan filter which filters out all signals, the
magnitude of whose apparent velocity is less than some given value
V in any angular direction. This suggests that we start with a
two-dimensional filter with a circular cut-off boundary and transform
this into a three-dimensional filter by the transformation (5.7).
Ideally this should produce a filter with a conical cut-off boundary
as shown in Fig. 5.21(&) derived from the two-dimensional filter

shown in Fig. 5.21(b).

The prototype in Fig. 5.21(b) has been drawn with a
circular cut-off boundary correéponding to a radius T{/2 as we have

observed in using the one- to two-dimensional fan transformation
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(1T,TT,0)

Fig. 5-21(a) Ideal boundary of three-dimensional fan filter.

Aw,
(O,1T)
(0,Tt]2)
(/22 /2/2)
(1t/2,0) (TL,0)
» [}
Wy

Fig.5-21(b) Cut-off profile for prototype 2-dimensional low-pass filter
to design ideal 3-dimensional fan filter.
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that this will ensure the cut-off boundary of the filter is linear
along the diagonal. Such a prototype in this case will ensure
that the point (iTt/Q, 0) on the (wé, w%) plane maps into all

. . + + .
points along the line Wy =T Wy, W = 0 and (0, <TC/2) maps into

+

the straighv line Wy = -w3, Wy = 0.

The nature of the transformation from the w}!, wl plane

2773
to the Wis Vg w3 space 1is
Sy. = st
z 1 = e—
2 sy + J8,
. (5.13)
s, — js
sp = A 23
3 84 + 353

followved by the bilinear transformation applied to Sy So9 53.

It is unfortunate that such a transformation will also
map the point (7T/2/2, Tt/2/§) into the corner point (TT,TC,TC).
This implies that any shape of cut—off profile of two-dimensional
prototype filter will map into the boundary square in three-

dimensional space on the planes Wy = I

5¢5.1 Circular Cone Filters

The ideal 3—-dimensional fan filters based on a two-
dimensional prototype discussed in the last section may be termed
cone filters from the shape of their cut-off boundaries. We may
attempt a design of such a filter using the all-pass transformation
to give a two-dimensional prototype filter having cut-off boundary
along the two axes at (wi, wy) = {0, TL/2) and (TT/2, 0). This will
ensure that these points map into the straight lines Wo = 0, Wy = * w3

and w, = 0, Wy = =W

5 0° The boundary alorng the major diagonal passing
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Figure 5.22. Three-dimensional fan filter derived from an all-
pass transformed two dimensional digital filter.
Prototype: third order Butterworth low-pass digital -
filter; w_ = /2.



through (TI,TE,TE) is, however, concave and only in the vicinity

of the origin will this boundary lie along a generator of the desired
conical surface. A design using this specification is shown in

Fig. 5.22. Observations of the sections perpendicular to the wi—axis
show that the boundaries are near-circular close to the origin

becoming almost square towards w, = TC.

An alternative specification would Le to demand that the
profile have linear generators along Wy = Wp = Vg by choosing a
prototype based on a cut-off frequency 0.58TL. This will force

the boundaries along the coordinate planes, Vo = 0 and w3 = 0, to

be convex.

Tt appears that the nearest apﬁroximation to a truly
conical filter would be one designed using a prototype filter with
quasi-circular cut-off boundary midway between these at 0.54TU

. approximately.

5.5.2 Rectangular Pyramid Filters

As an alternative solution to this problem, we may
abandon any attempt at obtaining a quasi-conical filter and settle
for a much simpler square pyramidal filter based on the use of
transformations (5.13) on a prototype two-dimensional separable
filter, having cut-off boundary at (TC/2, 0) and (0,7C/2). Such a
filter will have an approximately square cross—section at all values

of Wy A "pyramid" filter is shown in Fig, 5.23.

It would be interesting to make a subjective comparison of
the results of filtering data from a two-dimensional set of

geophysical data by "cone" and "pyramid" filters. Judging by
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Figure 5.23. Three-dimensional fan filter derived from a
separable product two-dimensional filter.
Prototype: third order Butterworth low-pass
digital filter; w, = /2.



comparative assessments on the two-dimensional prototypes, it is
likely that the simpler pyramid will be as satisfactory as the

quasi one.

5.6 DISCUSSION OF FAN FILTERS

The transformation proposed leads to a family of fan
filters. Only in very special cases do these have truly linear

cut-of f bhoundaries.

In the majority of cases considered, the cut-off boundary
may be made adequately linear by limiting the upper bound on the

frequency response of the filter.

Techniques for the design of filters having narrow bands
with specified upper and lower cut-off frequencies are also

illustrated.

The versatility of the transformation technique is seen
in the ability to design a range of filters which otherwise have

not been capable of realization.

‘The extension to systems in which two variables are
spatial and one temporal has been demonstrated leading to the

design of conical and pyramidal filters.



CHAPTER SIX

REVIEW, CRITICISM AND CONCLUSIONS

Myself when young did eagerly frequent

Doctor and Saint, and heard great argument
About it and about: but evermore

Came out by the same door as in I went,

"Rubaiyat"
Omar Khayyam.
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REVIEW, CRITICISM AND CONCLUSIONS

6.0 REVIEW

Although this thesis is, according to its title, concerned
with the design of multidimensional digital filters via spectral
transformations, it is desirable to consider the purpose of designing
mltidimensional filters at all, and further the desirahility of

designing them by the proposed technique,

As outlined in the introduction, the purpose of filters
is to process images to modify their properties or to remove
undesirable distortion or noise which may have contaminated them
so that they only bear a vague resemblance to the object from which
they originated. It is therefore apparent that the use of the
filter must define the specification of the filter. The specification
may be made, in the simplest way, by specifying the point spread
- function which gives the response of the filter to a u;it impulse
at the spatial origin. In an alternative representation, the
filter specification may be defined in the miltidimensional frequency
domain. The two specifications are directly linked by the Fourier

transform.

However, in any physical system the data is always
presented as a function of multidimensional space; a comparison
may be made with a one-dimensional temporal system where the data
is a function of time. Thus in using a multidimensional signal
processing device it is always necessary to consider the input and
output data as spatial functions and this affects @he manner in
which the input data is processed and alsg, as a consequence, the

form of design of the filter.
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The earliest signal processors in one dimension consisted
of a filter sequence which was convolved in time with the input
sequence to give an output sequence; the so-called transversal
filters. 'Such filters in general were termed convolution filters
and were obviously of finite length and had a finite impulse

response,

A second approach to the problem was via the discrete
Fourier transform (DFT) whereby a DFT of the input sequence was
determined; +this was mul%iplied at each frequency by the response
function of the filter to give the frequency spectrum of the output
sequence and finally an inverse DFT gave the desired output.
Depending on the nature of the filter function, the output sequence
might be of finite length or of infinite duration in response to a

finite input sequence.

Either of these techniques can easily be extended to
mltiple dimension for processing image signals. One of the short-
comings of these processes lay in the considerable volume of
computation required. 1In using convolution filters it was found
that filter sequences of thirty or forty elements might be neecded
to produce adequate filtering in a given situation or to
approximate a required transfer characteristic to a desired
accuracy. Increase of the dimensions of the system from one to
many increases the complexity exponentially. Attempts were made
by a number of techniques, including truncation, windowing and,
more recently, phase correction to reduce the length of the filter
without seriously impairing the response characteristic.
Considerable progress has been achieved in this respect although

large point spread function arrays are still common,
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The second approach to this problem was again hindcred
by the difficulty of obtaining Fourier transforms of functions by
computational techniques. The advent of the Fast Fourier Transform
algorithm EB,GQ]'with its many modifications and sophistications
went far %o overcoming this difficulty. However, in order to
obtain accurate results it is necessary to use a large number of
- points in obtaining the Fourier transform and, although not so

seriously, the problem of computational complexity returns.

It is apparent that a convoiution filter may process a
gignal"in real time"; namely, the output value of each element is
obtained sequentially and is available a finite time after the
corresponding element is read. When the signal is processed via
the Fourier transform, it is necessary first to read and store all
the input data, then process it as outlined above, whereupon the
whole of the output data becomes simultaneously available; thus
real time processing is not possible., This also shows that the
computer requires sufficient storage for all the input data in
addition to that required during the processing algorithm., In one
dimension this presents little problem; however, in two and more
particularly in three and more dimensions computer storage limits
the size of the array which may be handled and thus forces
quantization of the image into undesirably large picture elcments
(pixels). It is, of course, possiﬁle to handle large numbers of
elements but this involves technical problems in the organization
of the coumputer to store such large arrays and a concomitant
increase in the time required for each complete image to be processed.
If one of the dimensions of the image is time, the duration of the
computational process may completely preclude the use of this

technique for filtering anything other than slowly changing images.
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Tor these reasons a third techinique of image processing
was developed based on the finite difference equations of a
recursive filter. By taking the Z-transform of these equations
onc may derive a recursive.transfer function. However, the
processing is implemented by a direct application.of the finite
difference equations as outlined for two dimensions by Shanks Eﬁj] .
- It immediaﬁely became apparent that the length of the filter, as |
defined by the number of coefficients in numeratof and denominator
to approximate to a given filter response, could be drastically
reduced below that required for a comparable convolution filter.
Farthermore, it may also be appreciated that each output pixel may
be generated sequentially from the input pixels after é finite
delay. There is no need for fhe large storage requirements demanded
by the Fourier transform processing technique. This reduction in
complexity is extended to multidimensional systems and has
stimulated considerable research to be carried out in the design

of recursive filters, both one- and multidimensional.

This thesis discusses two of the principal methods by
vhich recursive multidimensional filters may be designed., The first
basic class is those which work direetly in the space domainj; the
second class carries out the design exclusively in the frequency
domain, Since all reéursive filters are essentially feedback
system;, the possibility of an unstable design being obtained is
always present. It is thus essential for completeness that a

survey of the stability tests on systems is undertaken.
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6.1 STABILITY

The basic definition of the stability of a system in terms
of the absolute summability of the multivariable spatial array is
showvn to lead to the classical conditions derived by Shanks [3,26]
in the i—domain. Goodman E?B:]has shown that under certain
circumcstances these conditions are no longer necessary aithough
always sufficient; an examplé of such a function appears in

Chapter 5.

Many attempts have been made to obtain closed form
expressions for the stability of mmltidimensional recursive filters.
For a number of simple cases this has been achieved EﬁO,Gj]'but no
general formmlation has been obtained. As a consequence of this,

a number of computational algorithms have been proposed. These ére
mainly based on the extension of Shanks theorem to an éssessment of
the stability of a number of polynomials {equal to the dimensionality
of the system) at all points within unit circle considered as a
function of one variable. This has been discussed in considerable

detail by Jury E6I£J and doubt has been cast on its validity.

0f the techniques for carrying out.the assessment of
stability, that proposed by Maria and Fahmy is probably the simplest
to usé and the most economical in computer time. No comprehensive
assessment of the relative efficiencies of the various techniques

* for high dimension filters has been carried out.

The immediate sequel to a check on the stability of a
system is the derivation of techniques for stabilization. Two

techniques are available for stabilization of non-zero phase
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functions; Shanks Elﬂ:l approach is based on a conjecture that the
planar least squares inverse of a filter is stable and that the
double planar least squares inverse will have a magnitude spectral
function that closely approximates that of the original function;
Read and Tieitel ES'S] base their procedure on an extension of the
well known one-dimensional ﬁro?erty of the Hilbert transform linking
" the logarithm of the magnitude and the phase of a miniﬁum phase

]

function.

Unfortunately neither of these techniques is infallible.
It has been proven by a number of counterexamples E}7,5f]
that the Shanks conjecture is false even in two dimensions and
therefore is unreliable_as a stabilization technique in any mlti-
dimensional system. The Read and Treitel approach appears more
hopeful in that the failure to achieve stabilization has been
attributed to the necessity to truncate the generated minimum phase
array to a finite size before use as the denominator coefficients
of a recursive filter transfer function. Bose E56:]has also shown
that the Hilbert transform is not, in general, applicable to
multidimensional systems because of the inability to obtain an

appropriate boundary corresponding to the one-dimensional boundary.

Despite these shortcomings, a number of test cases‘have
shown that both these techniques under certain conditions can
yield a stahle_transfer function having a magnitude response
closely approximating that of a given unstable filter. It appears
that both techniques are fairly satisfactory when the system is
grossly unstable but tend to fail in situations where the system

is only marginally unstable.
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For zero phase systems neither of these techniques is
applicable, Pistor [13 ] proposed a method applicable to two
dimensions and Ahmadi and King E}B,QQ] extended it to multiple
dimensions which partitions a zero phase filter into a cascade of
stable sinele quadrant recursive filters. The technique is in
principle exact and should result in a set of perfectly stable
" filters, each of which may be implemented by recursion in the
appropriate direétion; 'if infinite precision-computational
facilities were available this would be true. Unfortunatély the
technique relies on transformation from the spatial to the frequency
domain and this may be achieved only by a computational algorithm
which evaluates the Fourier>transform or its inverse at a finite
mumber of frequencies and to a finite accuracy. Examples have
- shown fhat considerable improvement in the accuracy of the
procedure may be achieved by increasing the size of the array used

for the Fourier transform, which justifies the above argument.

One other limitation of the procedure is that the
algorithm decomposes the denominator of the transfer function into
a set of single quadrant functions (for a two-dimensional system,
four such functions). These single quadrant functions are infinite
multidimensional polynomiéls which for practical purposes require
truncation to a finite length; if the decomposed polynomials are
fast converging functions this truncation is unlikely to introduce
serious error, but in cases in which.they are only slowly converging

considerable errors may be introduced.

Tt is likely that the truncation of the decomposed
polynomials is responsible for the failure of the Pistor technique

to realize a set of stable filters in certain cases, whereas the
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finitc size of the Fourier transform array may cause the consider-
able errors which are noticed between the magnitude response of

some stabilized filter functions and that of the original functions;
considerable errors may be noticed in the fan filter in Chapter 5
which was stabilized using this technique, implemented using an
intermediate transfqrm array of dimensions 32 x 32, which is too

. small to take account of the sharp cut-off profile effectively.

An-extension of the technique proposed by Fkstrom and
Woods [}h:lremoves some of the errors produced in the amplitude
response function by using certain weighting functions on the
decomposed sequences., Aunother improvement has been proposed Eﬁj]
which uses an optimization procedure to modify the unumerator of the
transfer function to compensate for the errors introduced by the
denominator. Yet another proposal has been made by Rousogiannakis
E66j in which the phase correction algorithm E67:| may be used to
modify the truncated demoninator arrays to give better approximations
to the desired magnituqe response without affecting the frequency
response; this has shown promise of only minor improvement.
However, modification of the numerator polynomial by the phase
correction technique to compensate for the errors due to truncation

of the partitioned denominator shows greater potential.

6.2 SPATTAL DESIGN TECHNIQUES

Initially a survey was made of the presently available
techniques for design in the space domain of a recursive filter
having a given multidimensional spread function. No constraints

were placed on the functional form of the specification;
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however, designs could only be achieved if the point spread function
was causal and absolutely summable, The principal disadvantage of
most of these techniques is that the designed filter may not
necessarily be stable, since the filter transf;r function is always
derived ‘as an approximation to the specified stable point spread
function. It is therefore imperative to apply one of the stability
" tests discussed in Chapter 2; in those cases in which the filter

is shown to be unstable; one of the stabilization techniques

(either Shanks or Read and Treitel)kmust be used. It has been
remarked that the original design is, at best, an approximation

to the desired point spread function. Moreover it is well kﬁown
that both these stabilization techniques inevitably distort the
amplitude response function as discussed in Section 6.1, and that

~ they do not guarantee that the resulting filter will be sﬁable;

thus a final stability check needs to bevcarried out on the designedv

transfer function,

As an alternative stabilization method, we could
consider that of Pistor. WHowever, the specifications in all the
spatial design techniques are of single quadrant filters and
although there ié no evidence that the Pistor stabilization method
is-unsatisfactory in guch cases, no evidence is available showing
the conditions, if any, under which the technique may be used for

non-zero phase systems.

The only spatial design technique which guarantees a
stable filter is that proposed by Bordner. TUnfortunately, it
suffers from the other drawbacks, the principal of which is that

the solution does not converge on a global minimum. It also relies
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on the choice of an "extension array" to the given finite size
point spread array which is a "natural extension". The choice of
this "tail array" is critical in reducing the complexity of

computétion.

It is thus seen that of the spatial design techniques
considered, only that of Bordner may really be considered as a
viable technique and even here the computational problems may well

be very great.

The above deductions are based on designs in two
dimensions, Attempts at three- and higher dimensional systems do
not appear to have been attempted although the theory has been
established [36,3f] . However, for such higher-dimensional systems

the preceding criticisms will carry even greater weight.

6.3 FREDUENCY TRANSFORMATION TECHNIQUES

A number of frequency transformation techniques have been
considered with particular reference to transfer functions having
cut-off boundaries which approximate to a hypersphere (or, in the

two-dimensional case, to a circle).

The earliest of these was proposed by McClellan, who
used a one- to two-dimensional transformation applied to a non-
. recursive filter to obtain a circularly symmetric two-dimensional
filter. The technique has been extended by Bernabo et al to
recursive filters and results in a filter which can be made to
have a very good circular cut-off boundary but without any

guarantee of 8tability of the designed filter; in fact, since the
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designed filter is zero phase it will of necessity be unstable and
in order to obtain a practical implementation it is necessary to
decompose it by the Pistor technique. The criticism of the method
lies in the large amount of computation time fequired, although
the designed filter has the best circular symmetry of any of the

considered techniques.

The Ahmadi procedure provides a transformation from one
to two dimensions via a simple twa-dimensional feactance function,
Tt ensures a stable filter with cut—éff profile approximating
circular, in particular for higher values of cut-off frequency.

It is unfortunate that spurious pass bands exist when this trans-
formation is used, but these may be removed by a low order low pass
separable guard filter. The method has the advantage that it is
relatively simple to extend the technique to systems of any number
of dimensions. A simplified form of the Ahmadi transformation
postulated by Ali eliminates the spurious pass bands but is even
more restrictive in the generation of cut-off boundaries of

approximate hyperspherical form.

The all-pass transformation postulated has the advantage
over the Ahmadi transformation that better cut-off boundary shape
may be achieved, but similar constraints hold on the frequency
ranges over which this is sati;factorily obtained. Spurious pass
bands exist when using the general form of the transformation,
which may be removed by a guard filter; the special form of the
transformation put forward by Kap eliminates'these but restricts
the cut-off frequency range for circular symmetry. The all-pass
transformation ﬁay‘also be very simply extended to multidimensional

systems, either in its general or more restrictive form.
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In contrast to these transformations we may consider the
simplest and carliest transformation, namely that obtained from
mltiplying together two filter functions, each of which is
dependent upon only one frequency variable and>which may therefore
be trivially pgenerated from a one-dimenzional filter. Although in
two dimensions the cut-off profile is almost rectangular, this
" defect appears to be of little significance in many low pass
filtering problems. The technique has the overriding advantage that
the design procedure is simpler than any of the other transformations
and very little incrcase in complexity accrues when it is extended to

any number of dimensions.

The design of fan filters has also been attacked using
a new spectral transformation. In the simple situation where the
two axes are time and distance, fan filters with accurately linear
cut-off profiles may be designed having the steepness of the cut-
off boundary defined in a simple manner by the order of the
prototype low pass filter from which it was generated. Such
filters have superior characteristics té any of those designed by

presently available techniques.

More complex fan filters may also be designed by the
same technique but, except in trivial cases, the cut-off
boundaries are curved; approximation to linearity may be achieved
by limiting the frequency range of the filter in both directions
by means of a low pass guard filter. Superposition of two types
of fan filter has bcen shown to produce the equivalent of a fan
band pass filtér; this technique opens up many multiple band

possibilities.
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A final application of the fan transformation is shown
in a three-dimensional application which could have value in
geophysical prospecting where two-dimensional spatial arrays of

geophones are used.

6.4 FUTURE FIELDS OF WORK

Circular cut-off filters have been the subject of mmch
of this thesis and the methods of designing to a pseudo-circular
cut—-off boundary have in general consisted of ensuring a fit at
three points. Such a technique will not necessarily ensure an
approximation in a mean square error semnse and it is open to
investigation whether a better design method could be derived
based on a minimization of some error function, The subjective
assessments obtained using separable filters suggest that it is
' unlikely that this will yield filters which have superior

properties in any practical applications.

In the use 6f both the Ahmadi and the all-pass trans;
formations, frequency bands have been given, outside which quasi-
circular filters may nét be designed. It would be of interest to
déetermine what deviation from.circular symmetry results when the
design of filters having cut-off frequencies below this limit is
attempted. Tt is conjectured that these frequency limits are not
_rigid but that the parameters of the transformation will enable a
choice of filter to be made to optimize the cut-off boundary. 1In
the restricted forms of either of these transformations in which
spurious pass bands are eliminated this becomes of considerable

significance.
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Similar investigations into the linearity of boundaries
of fan filters may also show preference for certain forms of

transformation function and prototype filter.

With the wide range of spectral transformations now
available it would be interesting to compare the various filters

for factors such as ease of implementation, quantization errors, etc.

6.5 CONCLUSION

A very brief survey of the application of some circular
symnetry filters in the processing of one particular image has
shown that by a crude subjective assessment of the results, the
more complex filters have little advantage over the simpler ones,

once again justifying the words of William of Occam.
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