34 research outputs found

    Intelligent Technique for Seamless Vertical Handover in Vehicular Networks

    Get PDF
    Seamless mobility is a challenging issue in the area of research of vehicular networks that are supportive of various applications dealing with the intelligent transportation system (ITS). The conventional mobility management plans for the Internet and the mobile ad hoc network (MANET) is unable to address the needs of the vehicular network and there is severe performance degradation because of the vehicular networks’ unique characters such as high mobility. Thus, vehicular networks require seamless mobility designs that especially developed for them. This research provides an intelligent algorithm in providing seamless mobility using the media independent handover, MIH (IEEE 802.21), over heterogeneous networks with different access technologies such as Worldwide Interoperability for Microwave Access (WiMAX), Wireless Fidelity (Wi-Fi), as well as the Universal Mobile Telecommunications System (UMTS) for improving the quality of service (QoS) of the mobile services in the vehicular networks. The proposed algorithm is a hybrid model which merges the biogeography-based optimization or BBO with the Markov chain. The findings of this research show that our method within the given scenario can meet the requirements of the application as well as the preferences of the users

    SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS

    Full text link
    A finales de los años noventa, y al comienzo del nuevo milenio, las redes inalåmbricas han evolucionado bastante, pasando de ser sólo una tecnología prometedora para convertirse en un requisito para las actividades cotidianas en las sociedades desarrolladas. La infraestructura de transporte también ha evolucionado, ofreciendo comunicación a bordo para mejorar la seguridad vial y el acceso a contenidos de información y entretenimiento. Los requisitos de los usuarios finales se han hecho dependientes de la tecnología, lo que significa que sus necesidades de conectividad han aumentado debido a los diversos requisitos de las aplicaciones que se ejecutan en sus dispositivos móviles, tales como tabletas, teléfonos inteligentes, ordenadores portåtiles o incluso ordenadores de abordo (On-Board Units (OBUs)) dentro de los vehículos. Para cumplir con dichos requisitos de conectividad, y teniendo en cuenta las diferentes redes inalåmbricas disponibles, es necesario adoptar técnicas de Vertical Handover (VHO) para cambiar de red de forma transparente y sin necesidad de intervención del usuario. El objetivo de esta tesis es desarrollar algoritmos de decisión (Vertical Handover Decision Algorithms (VHDAs)) eficientes y escalables, optimizados para el contexto de las redes vehiculares. En ese sentido se ha propuesto, desarrollado y probado diferentes algoritmos de decisión basados en la infraestructura disponible en las actuales, y probablemente en las futuras, redes inalåmbricas y redes vehiculares. Para ello se han combinado diferentes técnicas, métodos computacionales y modelos matemåticos, con el fin de garantizar una conectividad apropiada, y realizando el handover hacia las redes mås adecuadas de manera a cumplir tanto con los requisitos de los usuarios como los requisitos de las aplicaciones. Con el fin de evaluar el contexto, se han utilizado diferentes herramientas para obtener información variada, como la disponibilidad de la red, el estado de la red, la geolocalizaciónMårquez Barja, JM. (2012). SCALABLE AND EFFICIENT VERTICAL HANDOVER DECISION ALGORITHMS IN VEHICULAR NETWORK CONTEXTS [Tesis doctoral no publicada]. Universitat PolitÚcnica de ValÚncia. https://doi.org/10.4995/Thesis/10251/17869Palanci

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    Learning and Reasoning Strategies for User Association in Ultra-dense Small Cell Vehicular Networks

    Get PDF
    Recent vehicular ad hoc networks research has been focusing on providing intelligent transportation services by employing information and communication technologies on road transport. It has been understood that advanced demands such as reliable connectivity, high user throughput, and ultra-low latency required by these services cannot be met using traditional communication technologies. Consequently, this thesis reports on the application of artificial intelligence to user association as a technology enabler in ultra-dense small cell vehicular networks. In particular, the work focuses on mitigating mobility-related concerns and networking issues at different mobility levels by employing diverse heuristic as well as reinforcement learning (RL) methods. Firstly, driven by rapid fluctuations in the network topology and the radio environment, a conventional, three-step sequence user association policy is designed to highlight and explore the impact of vehicle speed and different performance indicators on network quality of service (QoS) and user experience. Secondly, inspired by control-theoretic models and dynamic programming, a real-time controlled feedback user association approach is proposed. The algorithm adapts to the changing vehicular environment by employing derived network performance information as a heuristic, resulting in improved network performance. Thirdly, a sequence of novel RL based user association algorithms are developed that employ variable learning rate, variable rewards function and adaptation of the control feedback framework to improve the initial and steady-state learning performance. Furthermore, to accelerate the learning process and enhance the adaptability and robustness of the developed RL algorithms, heuristically accelerated RL and case-based transfer learning methods are employed. A comprehensive, two-tier, event-based, system level simulator which is an integration of a dynamic vehicular network, a highway, and an ultra-dense small cell network is developed. The model has enabled the analysis of user mobility effects on the network performance across different mobility levels as well as served as a firm foundation for the evaluation of the empirical properties of the investigated approaches

    Vehicular Networks with Infrastructure: Modeling, Simulation and Testbed

    Get PDF
    This thesis focuses on Vehicular Networks with Infrastructure. In the examined scenarios, vehicular nodes (e.g., cars, buses) can communicate with infrastructure roadside units (RSUs) providing continuous or intermittent coverage of an urban road topology. Different aspects related to the design of new applications for Vehicular Networks are investigated through modeling, simulation and testing on real field. In particular, the thesis: i) provides a feasible multi-hop routing solution for maintaining connectivity among RSUs, forming the wireless mesh infrastructure, and moving vehicles; ii) explains how to combine the UHF and the traditional 5-GHz bands to design and implement a new high-capacity high-efficiency Content Downloading using disjoint control and service channels; iii) studies new RSUs deployment strategies for Content Dissemination and Downloading in urban and suburban scenarios with different vehicles mobility models and traffic densities; iv) defines an optimization problem to minimize the average travel delay perceived by the drivers, spreading different traffic flows over the surface roads in a urban scenario; v) exploits the concept of Nash equilibrium in the game-theory approach to efficiently guide electric vehicles drivers' towards the charging stations. Moreover, the thesis emphasizes the importance of using realistic mobility models, as well as reasonable signal propagation models for vehicular networks. Simplistic assumptions drive to trivial mathematical analysis and shorter simulations, but they frequently produce misleading results. Thus, testing the proposed solutions in the real field and collecting measurements is a good way to double-check the correctness of our studie

    Contributions to Vehicular Communications Systems and Schemes

    Get PDF
    La derniĂšre dĂ©cennie a marquĂ© une grande hausse des applications vĂ©hiculaires comme une nouvelle source de revenus et un facteur de distinction dans l'industrie des vĂ©hicules. Ces applications vĂ©hiculaires sont classĂ©es en deux groupes : les applications de sĂ©curitĂ© et les applications d'info divertissement. Le premier groupe inclue le changement intelligent de voie, l'avertissement de dangers de routes et la prĂ©vention coopĂ©rative de collision qui comprend la vidĂ©o sur demande (VoD), la diffusion en direct, la diffusion de mĂ©tĂ©o et de nouvelles et les jeux interactifs. Cependant, Il est Ă  noter que d'une part, les applications vĂ©hiculaires d'info divertissement nĂ©cessitent une bande passante Ă©levĂ©e et une latence relativement faible ; D'autre part, les applications de sĂ©curitĂ© requiĂšrent exigent un dĂ©lai de bout en bout trĂšs bas et un canal de communication fiable pour la livraison des messages d'urgence. Pour satisfaire le besoin en applications efficaces, les fabricants de vĂ©hicules ainsi que la communautĂ© acadĂ©mique ont introduit plusieurs applications Ă  l’intĂ©rieur de vĂ©hicule et entre vĂ©hicule et vĂ©hicule (V2V). Sauf que, l'infrastructure du rĂ©seau sans fil n'a pas Ă©tĂ© conçue pour gĂ©rer les applications de vĂ©hicules, en raison de la haute mobilitĂ© des vĂ©hicules, de l'imprĂ©visibilitĂ© du comportement des conducteurs et des modĂšles de trafic dynamiques. La relĂšve est l'un des principaux dĂ©fis des rĂ©seaux de vĂ©hicules, car la haute mobilitĂ© exige au rĂ©seau sans fil de faire la relĂšve en un trĂšs court temps. De plus, l'imprĂ©visibilitĂ© du comportement du conducteur cause l'Ă©chec des protocoles proactifs traditionnels de relĂšve, car la prĂ©diction du prochain routeur peut changer en fonction de la dĂ©cision du conducteur. Aussi, le rĂ©seau de vĂ©hicules peut subir une mauvaise qualitĂ© de service dans les rĂ©gions de relĂšve en raison d'obstacles naturels, de vĂ©hicules de grande taille ou de mauvaises conditions mĂ©tĂ©orologiques. Cette thĂšse se concentre sur la relĂšve dans l'environnement des vĂ©hicules et son effet sur les applications vĂ©hiculaires. Nous proposons des solutions pratiques pour les rĂ©seaux actuellement dĂ©ployĂ©s, principalement les rĂ©seaux LTE, l'infrastructure vĂ©hicule Ă  vĂ©hicule (V2V) ainsi que les outils efficaces d’émulateurs de relĂšves dans les rĂ©seaux vĂ©hiculaires.----------ABSTRACT: The last decade marked the rise of vehicular applications as a new source of revenue and a key differentiator in the vehicular industry. Vehicular Applications are classified into safety and infotainment applications. The former include smart lane change, road hazard warning, and cooperative collision avoidance; however, the latter include Video on Demand (VoD), live streaming, weather and news broadcast, and interactive games. On one hand, infotainment vehicular applications require high bandwidth and relatively low latency; on the other hand, safety applications requires a very low end to end delay and a reliable communication channel to deliver emergency messages. To satisfy the thirst for practical applications, vehicle manufacturers along with research institutes introduced several in-vehicle and Vehicle to Vehicle (V2V) applications. However, the wireless network infrastructure was not designed to handle vehicular applications, due to the high mobility of vehicles, unpredictability of drivers’ behavior, and dynamic traffic patterns. Handoff is one of the main challenges of vehicular networks since the high mobility puts pressure on the wireless network to finish the handoff within a short period. Moreover, the unpredictability of driver behavior causes the traditional proactive handoff protocols to fail, since the prediction of the next router may change based on the driver’s decision. Moreover, the vehicular network may suffer from bad Quality of Service (QoS) in the regions of handoff due to natural obstacles, large vehicles, or weather conditions. This thesis focuses on the handoff on the vehicular environment and its effect on the vehicular applications. We consider practical solutions for the currently deployed networks mainly Long Term Evolution (LTE) networks, the Vehicle to Vehicle (V2V) infrastructure, and the tools that can be used effectively to emulate handoff on the vehicular networks
    corecore