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Abstract  

Seamless mobility is a challenging issue in the area of research of vehicular networks that are 

supportive of various applications dealing with the intelligent transportation system (ITS). The 

conventional mobility management plans for the Internet and the mobile ad hoc network 

(MANET) is unable to address the needs of the vehicular network and there is severe 

performance degradation because of the vehicular networks’ unique characters such as high 

mobility. Thus, vehicular networks require seamless mobility designs that especially developed 

for them. This research provides an intelligent algorithm in providing seamless mobility using 

the media independent handover, MIH (IEEE 802.21), over heterogeneous networks with 

different access technologies such as Worldwide Interoperability for Microwave Access 

(WiMAX), Wireless Fidelity (Wi-Fi), as well as the Universal Mobile Telecommunications 

System (UMTS) for improving the quality of service (QoS) of the mobile services in the 

vehicular networks. The proposed algorithm is a hybrid model which merges the biogeography-

based optimization or BBO with the Markov chain. The findings of this research show that our 

method within the given scenario can meet the requirements of the application as well as the 

preferences of the users.  

Keywords: Heterogeneous Networks, IEEE 802.21, Vertical Handover, Markov chain, 

Biogeography-based optimization, Vehicular Network (VN) 
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I. Introduction  

Based on the idea of Internet of Things (IoT) [1-4], different kinds of vehicles and 

devices would be able to communicate with each other through various communication 

technologies. Therefore, current vehicle equipped with mobile routers or nodes can have 

multiple interfaces and access to various wireless networks such as WiFi, WiMAX, and 

3G. Heterogeneous networks used for seamless mobility will face prominent problems in 

mobile IP networks in the future. This is because there are different factors, which would 

significantly affect the optimized handover among the various technologies used for 

accessing the network, such as the vertical handover (VHO). Some of these factors are 

congestion, load, strength of the signals, bandwidth, connection stability, battery life, as 

well as other factors that are temporal and spatial. A mobile user in the heterogeneous 

wireless networks might have to carry out handovers over various domains of network to 

sustain the connection of data and the QoS. The VHO process includes 3 stages 

including the information gathering, decision-making, as well as the handover execution. 

The information that is acquired is utilized to identify the present and most suitable 

networks for the specific application in the following stage known as the stage of 

handover decision-making. 

A vehicle within the vehicular networks (VNs) is regarded as a network node that is 

equipped with many interfaces offering access to various technologies including Wi-Fi, 

GPS, WiMAX, Long-Term Evolution (LTE), and UMTS. The vehicles involved can 

communicate with each other and with the point of attachment (PoA) including the base 

stations (BSs) or the access points (APs) using the infrastructure or the ad hoc modes 

[5,6], accordingly. The contexts of the vehicular systems based on a wireless 

communication perspective is highly robust and vehicles should be equipped to manage 

the heterogeneity using capabilities of awareness of context and VHO. To establish the 

awareness of context, the vehicles, as well as the other networking components such as 

the APs or the BSs, must provide beneficial information regarding the network status, 

geo-locations, and the assets of the network provider including their specifications. In 

addition, besides providing information regarding the capabilities of the technologies, the 

vehicles should also offer suitable information about the preferences of the users. About 

the VHO, the network’s components should be able to combine the standard primitives 
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of IEEE 802.21 [7] to allow the features of the protocol of the MIH function to offer a 

homogeneous handover interface that is seamless within the various heterogeneous 

wireless networks such as WiMAX, Wi-Fi, LTE, and UMTS. Moreover, it is important 

to perform a decision-making process to select the most appropriate correspondent node 

(CN) based on the set of heterogeneous wireless access networks that are available. This 

should be done by taking into account the various contextual factors and the ways in 

which the various networks perform. It is imperative that this procedure is precise and 

quick in order to prevent affecting the QoE or the connectivity negatively.  

Several challenges are present in the multi-hop networks that are wireless [8 –11] as well 

as in the decision stage of the vertical handover while the procedure for handover is 

going on. The main problem in providing seamless vertical handover (VHO) is 

maintaining the required mobile Quality of Service (mQoS) across different access 

networks with multiple resources in neighboring heterogeneous networks. The 

challenges related to the handover process such as packet loss, high latency, and 

signaling cost (typical in horizontal handovers), are further complicated given the 

complexity and delay across different access network technologies. Thus, there is a need 

to develop an effective algorithm for vertical handover decision-making (VHD) that 

would be able to choose the best-optimized access network for the handover process 

while maintaining the stability of this connection throughout the session. This would 

entail complex calculations in measuring the VHD algorithms from a multitude of 

parameters. One method to accomplish this requirement is using intelligent algorithms 

that can adapt and optimized the VHD problem effectively and provide the most optimal 

network selection. Hence, the research question of this study may be stated as follows: 

” How might an adaptive algorithm be developed to support effective and seamless 

vertical handovers for heterogeneous networks without incurring high costs in 

complexity?” 

Towards this end, this study proposes a novel hybrid algorithm for vertical handover 

decision or VHD using two major approaches namely the bio-geographical based 

optimization or BBO method and the Markov chain method for vehicular networks based 

on the category of the infrastructure mode (i.e., communications based on AP instead of 

the conventional ad hoc approach or the vehicular ad hoc networks or VANETs). The 
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experiment investigates the effect of migration model on BBO performance using the 

Markov chain model. In M-BBO, each state describes how many individuals at each 

point of the search-space are there in the population. Probability Pij is the probability that 

the population transitions from the ith population distribution to the jth population 

distribution in one generation. M-BBO considers the immigration of each solution 

feature as separate probabilistic trials. Recall that evolutionary algorithms (EAs) use 

fitness values to perform the basis of selection. However, the probability distribution 

instead of fitness values for selection has been used in our proposed Markov chain-based 

selection uses. Our idea is incorporated in population proportion-based selection by 

approximating the probability distribution of the population sizes and then performing 

selection based on approximate distribution. This idea would merge the advantages of 

(EAs) with the advantages of probability distribution based selection. The proposed 

VHD uses the commission of the standard of IEEE 802.21. Figure 1 demonstrates the 

specific journey of the vehicular network in an urban setting along with a heterogeneous 

wireless access coverage with various corresponding ranges.  

 

Figure 1. Heterogeneous wireless networks. 

This study is organized into several sections namely: Related literature review is carried 

out in Section 2 while the following section explains the network model. VHO as the 

optimization problem is formulated in Section 4 while Section 5 provides the developed 
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solution. Section 6 discusses the outcomes of the simulation while Section 7 presents the 

conclusion of this research. 

 

II. Related Work 

Mobility management, which originates from the cellular networks, is a critical and 

problematic area in the support of a seamless communication. The location management 

and handoff management encompass the issue of mobility management. The location 

management includes the tasks of tracking and updating the present location of a mobile 

node (MN), while the handoff management is directed at maintaining the active 

connections when the MN shifts from its attachment point [12]. 

Mobility management is significant in offering a high-speed and seamless service for 

vehicular network as the MNs tends to shift their attachment points often,  

and the network topology can be abruptly shifted as well. Given the variations of the 

communications of V2I and V2V, their schemes for mobility management is developed 

in a different manner to reach an optimized performance. As the communication of the 

V21 requires Internet-based data exchange, for the purpose of interoperability and 

compatibility, many of the solutions for mobility management for communication of the 

V21 are developed using the Internet protocols for mobility management such as the 

Mobile IPv6. Mobility management for the communication of V2V largely emphasizes 

the discovery of the route, maintenance, as well as recovery, not unlike that found in the 

MANETs [13]. 

New findings were made by Petrut et al. [14], who found out that by utilizing measured 

cell quality value (RSRQ) as a handover parameter in heterogeneous networks, it is 

possible to gain improvements in achieved throughput and to reduce user equipment 

(UE) power consumption through lowered transmit power requirements.  

In a dynamic scenario, a problem closely related to user association is the handover 

problem. Deciding on when to trigger a re-association is an equally important problem, 

and understandably has gained significant attention [15]. In the past decade as well, 

vehicular communication has been enhanced to include communication devices of short 

and long distances, the GPS, as well as vehicle sensing systems. The capabilities in 

communication utilize an extremely robust vehicular environment. Using GPS 



6 
 

information to enhance the process of handover and the selection of network, within the 

parameter of a single wireless network, has been studied widely [16].  

Information on geolocation could also be used to improve the process of decision-

making for handover across heterogeneous networks. The study by Ylianttila et al. [17] 

established the first method of utilizing the GPS to manage the mobile device’s present 

location. The proposal in this study took into consideration the scenario of the handover 

under the WiFi as well as the UMTS cells. The researchers considered the CN’s received 

signal strength (RSS) in the process of decision making. The information from the GPS 

such as the coordinates, direction, and speed had been used by several researchers to 

improve the prediction of mobility and to enhance the VHO process through the path 

prediction and using it to find out the following most likely PoA in that path [18]. The 

authors of [19] take the mobility classes into account, but they do not differentiate 

between local and global HO problems and consider only the global HO parameters. The 

study by Wang et al. [20] proposed a VHO approach, which utilized certain factors 

including the data rate, RSS, the trend of movement, and the bit error rate (BER) that 

enabled the selection of the best-suited network along with the parameter of the 

prioritized decisions. The decision tree is utilized in this approach according to the 

selected parameter at each node of decision-making process, where it could stop or 

continue at that point accordingly. Moreover, this approach takes into consideration the 

underlying connecting different technologies such as IEEE 802.11p, 3G, or WiMAX. 

Nevertheless, the IEEE 802.21 is not considered as being a part of the VHO framework 

by this solution and deploys a solution that is customized to communicate with various 

network interfaces and entities. The research by Wang et al. [21] regarded the WiMAX 

and WiFi as one of the components of the underlying connection. They consider the 

specifics of the controlling protocols including the awake time, the sleep mode, as well 

as the protocol units of data to proceed with the process of decision making. During the 

time when this method was proposed, the IEEE 802.21 had not been established as yet. 

Thus, they measured with this type of a flexible tool when managing the heterogeneous 

networks. 

To date, studies have revealed various methods that emphasize the process of decision 

making by depending on the fuzzy logic [22], [23], or the techniques of multi-attributes 
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decision-making [24]- [28], while accounting for certain aspects such as the mobility, 

data rates, RSS, speed, geolocation, and the distance among the APs. In [27], handover 

parameters optimization method is proposed based on ant colony algorithm. Simulations 

show that the proposed scheme outperforms the fixed parameters strategy. 

The proposed study [29] hybrids a non-homogenous biogeography-based optimization 

(NHBBO) with a parallel fuzzy system (PFS). The PFSs are utilized to discover the 

probability of RAT selection, which acts as an input to the NHBBO procedure. Pacheco-

Paramo et al. [30] offered a VHO approach, which presented joint structures for 

admission control and access technology selection with vertical handoffs improve their 

capacity of radio resources in heterogeneous networks. Carvalho et al. [31] proposed 

optimal joint-call admission control (JCAC) for RAT selection in co-located wireless 

networks that can be apply on both non-real-time services and real-time services. El 

Helou et al. [32] suggested a hybrid method for RAT selection in heterogeneous wireless 

networks. They considered on access technology selection and formulate hybrid decision 

framework to combine user preferences and operator objectives dynamically [33]. 

However, these types of researches only concentrated on the process of decision-making 

and did not consider the standard IEEE 802.21 to carry out the decision-making as well 

as the supportive procedures including the collection and update of information, the 

VHO framework, and the management of data flowing among the interfaces of the 

networks. 

To boost information distribution for IP-based vehicles, many developing mobile IP 

protocols can be utilized, which are completely under Internet Engineering Task Force 

(IETF). Also, IETF has developed MIPv6 to keep networking mobility (NEMO), named 

as the NEMO basic support protocol [34], where mobile network nodes (MNNs) can 

only be accessed through mobile router (MR). Obviously, there still are many problems 

for Mobile IP and NEMO, especially in highly dynamic traffic situations, such as end-to-

end transmission delay due to tunneling burden between home agent (HA) and MR, 

proper location for the HA, etc. To address these problems, some techniques for route 

optimization have been suggested [34]. Chen et al. [35] offered a new NEMO 

management structure where some neighboring vehicles with similar moving pattern are 

regarded as a virtual bus and all mobile routers can join to each other. In this way, the 
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front mobile router can make the pre-handover process to reduce the handoff delay of the 

last mobile router.  

 

III. Network model 

This study’s approach on the selection of the best network could be enhanced by 

utilizing the IEEE 802.21 standard of Media Independent Handover (MIH). This 

approach requires information regarding the access networks about the MN in order to 

make the right decision. The MIH standard is used to acquire several of the algorithm’s 

decision inputs. This protocol helps the progression of the signaling message interchange 

between the handover decision unit and the different technologies for access. Thus, the 

MIH benefits from getting the significant information regarding the network and its 

users. Services are gained without any interruption by utilizing the qualifications and this 

standard’s features with service qualities that meet the requirements of the users.  

Various settings that establish the handover signaling in an integrated network such as 

the WiMAX, WiFi, as well as the UMTS are demonstrated in this study. The first 

signaling setting demonstrates the situation where a MN is located in an area that is 

overlapped and is able to choose a better connection by utilizing the ABC concept. 

Figure 1 depicts the MN using the overlapped areas of WiFi and WiMAX. The second 

setting demonstrates the signaling situation where a user is required to utilize the 

handover since the present connection would be lost due to the movement from a 

WiMAX network to the UMTS. These scenarios explain the way in which the MIH 

framework is able to provide a continuous service to a user including the approaches 

used to achieve the procedures.   

The Point of Attachment as well as the Point of Service presented in the following is 

described based on the MIH outline. The network using MIHF that communicates 

directly with the MN’s MIHF acts as the Point of Service of the specific mobile network. 

The information from the MIH is exchanged by the MN with the MIH’s Point of Service 

via the L3 conduit if the Point of Service is present in the similar network to the Point of 

Attachment network. Point of Attachment is the network portion of a layer 2 link 

including the MN as the other end point. Thus, the MIH outline is supportive of the 

movements from the L2 as well as L3 in the exchange of information in the MIH. Two 
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issues are considered during the decision-making process of a handover. First, the MN 

should aim to utilize a high bandwidth with an access network that is of low cost. 

Second, the count of irrelevant handovers should be lowered to prevent the degradation 

of the QoS of the present communication as well as to prevent network overload from 

the signaling traffic. 

Several vertical handovers are involved in each mobile connection during the process of 

connecting. The mobile terminal is projected to get information from the collocating 

networks within the receiving frequency range. The information that is advertised in each 

network has the available bandwidth and the average delay, which is measured with the 

performance process IETF IP metrics. During every time interval, the MN establishes if 

the link should utilize the current network that is selected or redirected to other networks 

with better performance levels with lower costs, and higher guarantees of service quality. 

Redirection of the connection from one network to another includes a complex process 

that enhances the processing and signaling load of the network. Thus, the exchange takes 

place between the connection’s QoS, the process as well as the signaling load [27]. 

 
IV. Formulate VHO decision making as optimization problem 

A significant challenge is the optimization of the process of vertical handover since a 

weak performance of optimizing could cause a drop or loss in the network signaling and 

power loss in the mobile device while advancing the QoS of the network. This study has 

designed an adaptive heuristic model aimed at achieving an optimized network during 

the decision-making stage of the vertical handover as well as a mobiles terminal that 

randomly moves along the heterogeneous wireless networks. The QoS parameter values 

are used to identify each network. The optimization issue deals with the attempt of 

aligning the weights of the QoS to determine the optimal network out of the available 

networks. The study demonstrates the benefits of the heuristic model in reaching an 

optimal solution that improves the performance offered by previous similar methods and 

algorithms [28]. 

An effective adjusting feature of the weights of the QoS that establishes beneficial 

network out of the available ones in the wireless network setting is essential. The 

benefits of each network that is available must be known to determine the best network. 
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A metric or function must be designed to achieve this capability, which is able to acquire 

the benefits of the network. Firstly, each QoS parameter is assigned a set of weights to 

calculate the network’s quality, which is based on the features of the network and the 

preferences of the user. An overall profile of the QoS parameter could be assigned a 

weight that ranges 0 to 1. A specific function is responsible for this measure called the 

cost function. The evaluation of this function takes place in the phase of the VH 

decision-making. Thus, the optimization issue includes looking for the most beneficial 

solution with the lowest cost when applied to the networks and this would be chosen as 

the best solution for the VH decision-making phase. 

The component of the BBO [36] allocates a relevant weight (ݓଵ, ݓଶ, ..., ݓ௜) for every 

initial decision based on the function objective identified by the operator in terms of 

importance and sensitivity to the selection criteria of the access network to various 

features of the wireless heterogeneous setting [37]. If ܵ = ,ଵݏ } ,,ଶݏ ,ଷݏ … , {ேݏ  is 

considered as a set of candidate networks and Q = ,ଵݍ } ,,ଶݍ ,ଷݍ … ,  ே} as a set of qualityݍ

of service factors  where M is the number of quality of service factors and N is the 

number of candidate networks. Additionally, each factor of QoS is considered to have its 

own weight that demonstrates the effect of the factor on the network or user. 

Consequently, We calculate cost function for each network based on Eq. (1) where ேܹ is 

calculated using the analytic hierarchy process (AHP) [38]. This process is selected 

because of its ability to change its weighting between each factor based on network 

conditions and user preferences. 

 

ேܥ      = ݂݁ܿܽݎ݁ݐ݊ܫܹ ×  ∑ ݍ
݆ 

ܯ
݆=1 ×  ܹ݆            (1) 

With the above definitions, the AHP method can be described as follows: The relative 

scores among the QoS scores set are calculated and then Relative scores between any 

two scores are calculated using Eq. (2) where ܴ௤೔௤ೕ
 is the relative score between 

parameters ݍ௜ and ݍ௝, and ܵ௤೔
 and ܵ௤ೕ

are their respective scores.  
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ۓ ܴ௤೔௤ೕ

= ቆ1 −  
ௌ೜೔
ௌ೜ೕ

ቇ × 10;      ݆ > ݅

 ܴ௤ೕ௤೔
=

ଵ

ோ೜೔೜ೕ
;                           ݆ < ݅

  ܴ௤೔௤ೕ
= 1;                                  ݅ = ݆

                               (2) 

ܺ = ൛ܺ௜௝ൟ is ܯ × ܯ  matrix which ܺ௜௝  represents the priority scores of each factor is 

initialized as follows Eq. (3): 

ܺ =  

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1 ܴ௤ଵ௤ଶ ܴ௤ଵ௤ଷ ܴ௤ଵ௤ସ ܴ௤ଵ௤ହ … ܴ௤ଵ௤ே
ଵ

ோ೜భ೜మ
1 ܴ௤ଶ௤ଷ ܴ௤ଶ௤ସ ܴ௤ଶ௤ହ … ܴ௤ଶ௤ே

ଵ

ோ೜భ೜య

ଵ

ோ೜మ೜య
1 ܴ௤ଷ௤ସ ܴ௤ଷ௤ହ … ܴ௤ଷ௤ே

ଵ

ோ೜భ೜ర

ଵ

ோ೜మ೜ర

ଵ

ோ೜య೜ర
1 ܴ௤ସ௤ହ … ܴ௤ସ௤ே

ଵ

ோ೜భ೜ఱ

ଵ

ோ೜మ೜ఱ

ଵ

ோ೜య೜ఱ

ଵ

ோ೜ర೜ఱ
1 … ܴ௤ହ௤ே

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
ଵ

ோ೜భ೜ಿ

ଵ

ோ೜మ೜ಿ

ଵ

ோ೜య೜ಿ

ଵ

ோ೜ర೜ಿ

ଵ

ோ೜ఱ೜ಿ
… 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

               (3) 

Then when each element of the matrix X is divided by the sum of its column Eq. (4), the 

normalized relative weight is obtained.  

     ܺ௜௝ =
௑೔ೕ

∑ ௑೔ೕ
ಾ
೔సభ

                   (4) 

The normalized matrix X is called  ݓ௡௢௥௠  which is shown in Eq. (5). 

௡௢௥௠ݓ =  

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

ଵଵݓ ଵଶݓ ଵଷݓ ଵସݓ ଵହݓ … 1ܰݓ
ଶଵݓ ଶଶݓ ଶଷݓ ଶସݓ ଶହݓ … 2ܰݓ
ଷଵݓ ଷଶݓ ଷଷݓ ଷସݓ ଷହݓ … 3ܰݓ
ସଵݓ ସଶݓ ସଷݓ ସସݓ ସହݓ … 4ܰݓ
ହଵݓ ହଶݓ ହଷݓ ହସݓ ହହݓ … 5ܰݓ

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮
1ܰݓ 2ܰݓ 3ܰݓ 4ܰݓ 5ܰݓ … ےܰܰݓ

ۑ
ۑ
ۑ
ۑ
ۑ
ې

                  (5) 

 

Next, the average values of each row are calculated to give the priorities for each factor 

by Eq. (6) which is shown in Eq. (7).  

పതതതതݓ                =
௪೔భା௪೔మା௪೔యା௪೔రା௪೔ఱା⋯ା௪೔ಿ

௡
                  (6) 

The normalized vector Eq. (7) is called the priority vector. Since it is normalized, the 

sum of all the elements in priority vector is 1. The priority vector shows relative weights 
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among them. 

               ேܹ =

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
ଵതതതതݓ
ଶതതതതݓ
ଷതതതതݓ
ସതതതതݓ
ହതതതതݓ
⋮

ے୒തതതതݓ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                            (7) 

The AHP [38] is used to structure the problem and give the weights of selected criteria.  

There are studies in the literature that use the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) method [39] and grey relational analysis (GRA) 

[40]. But differently from other studies, M-BBO method is proposed for facility network 

selection and the results are compared in this study. Hwang and Yoon [39] was the first 

work that proposed TOPSIS. The proposed method was based upon the concept that 

selected alternative must have the farthest distance from negative ideal solution and the 

distance from the positive ideal solution should be the shortest. Positive ideal solution 

minimizes cost criteria and maximizes the benefit criteria while negative ideal solution 

minimizes the benefit criteria and maximizes the cost criteria and [39]. 

In continue, the module of the distance collision probability (DCP) is utilized to measure 

the border cell of the QoS, which ensures the QoS until a certain distance along the path. 

The module for the DCP calculates the conditions of the packet loss in order to achieve 

this; it is linked to the various networks at various distances from the vehicle and the 

Point of Attachment. AHP is used to calculate the initial weights and then DCP 

calculates maximum weights and then normalize weights to get the final weights. 

This study has designed certain new algorithm proposals entrenched in intelligent 

computing which is able to overcome the issue of optimization in order to identify the 

best combination of quality of service parameters weights for a mobile terminal’s 

heterogeneous wireless networks. Several parameters are assessed during the process of 

decision making to select the best candidate for a network. These parameters are derived 

from the processes carried out by the DCP module. The M-BBO takes into consideration 

the best suited CN to switch to as well as tries to choose the right timing to leave the 

prior Point of Attachment to attach itself to a new Point of Attachment. The estimation of 

model utilized here is selected based on the features of the applied underlying networks. 
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A few models have been explained in the past literature [27–30]. In addition, models are 

measured by utilizing the geolocation and the status of the information network as 

calculated by the vehicles and stored in the database of the MIIS. According to the 

required DCP, the M-BBO ascertains if the CN can fulfill this type of requirements. 

Networks that have a lower DCP compared to the required minimum are not chosen. 

 

Table 1 illustrates the probability of the collision [55] as the function of distance 

according to the interpolation of the curve fitting for the three networks’ performance. 

The DCP’s chosen threshold is 30%. In relation to the weight value calibration ωi, this 

study has adopted the BBO process to measure each parameter’s most suitable values for 

the various profiles of the users.  

Table 1. Distance Collision Probability [55] 
DCP Distance Collision probability 

 
Wi-Fi 

d ≤ 100 1 
100 < d ≤ 210 0.5 + 0.01. d - 0.001. d2 + 2.8e-07.d3 

210 < d ≤ 250 165.4 − 2.03. d + 0.00833 · d2 − 1.159e−05 · d3 

d > 250 0 
 

WiMAX 
d ≤ 150 1 
150 < d ≤ 375 0.4+0.007.d − 3.485e-05.d2 + 4.258e-08.d3 

375 < d ≤ 500 −44.908 + 0.333 · d − 0.000798 ·d2+ 6.2e-05.d3 

d > 500 0 
 

UMTS 
d ≤ 200 1 
200 < d ≤ 310 0.62+ 0.005.d − 5.95e-05.d2 + 4.258e-08.d3 
310 < d ≤ 550 −10.908 + 0.8 · d − 0.09 ·d2+ 9.2e-05.d3 
d > 550 0 

 
 

V. Hybrid Markov chain and Biogeography-based optimization  

The subsequent sections will describe the methods used to design the decision problem 

of the vertical handoff as the process of a Markov chain [41]. The vehicular establishes 

the course of action when it has passed the time duration. As the vehicular velocity has 

physical property constraints and speed in the future is not influenced by the past one, 

this study has adopted the Markov chain model suggested by [41] to define the mobility 

model. Shadow fading as well as the mobility of the vehicular might result in the signal 

attenuation in the wireless environment. 
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A process that is random with a distinctive group of potential state values ݏ௜ (i = 1, . . . , 

T) is known as the Markov chain. The state of the system at time t can be described by a 

pair of random variables, (ݐ)ݏ௜ and (ݐ)ݏ௝ , specifying the number of calls present at a 

time t for the serving network and the selected network during vertical handover process. 

The system’s transition probability from state ݏ௜ to ݏ௝  is defined by the probability  ݌௜௝  or 

the probability of transition. The T × T matrix P = [݌௜௝] is known as the matrix of 

transition. The chain is considered regular if it can shift from any state to another and it 

need not be in a single step. The normal Markov chains’ fundamental limitation theorem 

claims that when P is normal, the following equation Eq.(8) is possible:  

 
lim

௡→ஶ
ܲ௡ = ௦ܲ௦                (8) 

 
Whereby every row ݌௦௦ of ௦ܲ௦  is similar. The ith component of ݌௦௦  represents the 

probability of the Markov chain in state ݏ௜  using transitions that are infinitive. ݌௦௦ is not 

dependent on the initial state. A Markov state in the BBO represents a BBO distribution 

of population. The probability ݌௜௝  is the probability of the transitions of the population 

from the ݏ௜ distribution to the ݏ௝ distribution following a single generation. Should the 

rate of mutation be non-zero, the probability is considered higher than zero, denoting a 

regular transition matrix. It means a distinctive non-zero limiting probability is present 

for every potential population distribution as the number of generation reaches infinity. 

If the BBO is not inclusive of mutations, then it is possible to converge into a uniformed 

population, as in a population with identical individuals; this form of Markov chain is 

also known as being absorbing. The probability of the convergence of the population can 

be measured in every state as well as the projected convergence time. P(v) represents the 

N × n matrix that includes the probability of getting each n possible individuals at every 

N trial, and here only the migration is taken into consideration. ܲ(ଶ)(v) includes the 

probability of the migration as well as the mutation. In this scenario, the probability of 

transitioning from population vector v to u after one generation is symbolized by the 

following equation Eq.(9): 

 

∏ =(ݒ|ݑ)(ଶ)ݎܲ ∏ [ ௞ܲ௜
ଶ ௃ೖ೔௡[(ݒ)

௜ୀଵ
ே
௞ୀଵ    (9) 
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where Eq. (9) is utilized to look for the matrix of transition for the BBO with the 

mutation and migration. Biogeography refers to the study of geographical distribution of 

species over geological time frames. There is extensive literature on biological subjects. 

In 2008, Simon [36] first utilized the biogeography analogy to the concept of engineering 

optimization and introduced the BBO approach. This is a population-based method that 

works with a set of candidate solutions across generations. It examines the combined big 

solution spaces using a stochastic method as used by most other evolutionary algorithms 

[36]. It copies the species’ geographic distribution to present the problem and the 

solution candidates in the search location, utilizing the specific mutation and migration 

process to re-distribute the solution instances over the search location in search of the 

solutions that are almost optimal globally. BBO is different because BBO has been 

examined in different combinations and constrained/unconstrained optimization 

challenges [42] involving such as the Traveling Salesman Problem [43], [44], 

classification of satellite image [45], as well as sensor selection [46] among others.  

Nevertheless, since 2012, research using BBO as a technique for choosing genes for data 

analysis of microarray gene expression has not been reported. There is an ecosystem or 

population in the BBO that possesses some of the island habitats. Every habitat contains 

the index of habitat suitability that is the same as the fitness function which relies on 

most of the island’s traits or attributes. When a value is given to every trait, then habitat 

H’s HSI is these values’ function. These variables that collectively characterize the 

suitability of the habitat formulate the suitability index variables (SIVs).  

In terms of the issues related to the selection of genes, a habitat’s SIVs (solution 

candidate) are the chosen subset of the genes derived from the grouping of the entire 

genes. Therefore, the ecosystem is a randomized group of gene candidate subsets. A 

proper solution is analogous to a proper HSI and vice versa. Proper solutions of HSI are 

likely to share the SIVs with weak solutions of HSI. This type of sharing, which is 

known as migration, is governed by the habitats’ rates of immigration and emigration. 

The model has been purposefully maintained uncomplicated and followed the original 

simple linear migration model as demonstrated in Figure 2. 
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Whereby E and I represent the maximum rates of emigration as well as immigration, 

which are normally fixed at 1. Individual rates of immigration as well as emigration (λ 

and µ, accordingly) are measured using a similar formula as the simple linear model 

suggested by [36].  

This section covers the proposed algorithm for the M-BBO according to the algorithm of 

the BBO. BBO [36] contains two main stages namely migration as well as mutation. A 

mechanism for mutation in the proposed M-BBO is engaged in improving the capability 

of investigating in the search location. The detailed algorithm for the BBO can be 

retrieved from [36]. The subsequent sub-sections report the proposed algorithm of the 

MD-PBBO for optimization of the weight coefficients for choosing the best RAT in the 

networks that are heterogeneous. 

 

 
Figure. 2. Rate of Migration versus Number of Species [36] 

 
In general, studies normally apply different ideas to generate a feasible solution by 

managing the quantity of diversity. The process of mutation in the BBO improves the 

population diversity. It should be realized that the rate of the mutation changes the SIV 

of the habitat in a randomized approach according to the rate of mutation.  In addition, 

the rate of mutation is inverse in proportion to the species count probability. Therefore, 

in a fundamental BBO, if a solution is chosen for mutation, it will be replaces using a 

random method to develop a new set of solution. Thus, this randomized mutation 

influences the investigation of the basic BBO capability. The process of mutation is 

modified to enhance the investigating ability of the BBO to refine the habitat and to 
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reach an optimal solution using a better method. For the BBO algorithm, a short 

introduction is provided; then, then, a pseudo code is used to explain the operation. 

The species selection (Ps) probability changes from a specific time to another as shown 

in Eq. [9] in this paper. Changes are not performed in the migration portion of the 

proposed M-BBO algorithm, to sustain the ability to exploit. The modification performed 

in the mutation section with the M improved the capability for investigation. Therefore, 

the proposed M-BBO leads to a balanced investigation and the ability to exploit the 

algorithm. The proposed M-BBO algorithm’s pseudocode is presented in Figure 3. 

Pseudo code for proposed M-BBO algorithm. 

− ℎܽ݅݊ܿ ݒ݋݇ݎܽܯ ࢔࢕࢏࢚ࢉ࢔࢛ࡲ  ( ) ܱܤܤ
 (݊݋݅ݐ݈ܽݑ݌݋݌) ࢟࢒࢓࢕ࢊ࢔ࢇ࢘_ࢋࢠ࢏࢒ࢇ࢏࢚࢏࢔ࡵ
 by Eq. (9) ………………………//   ( ) ࢚࢙࢕ࢉ_ࢋ࢚ࢇ࢒࢛࢒ࢇ࡯
 (݊݋݅ݐ݈ܽݑ݌݋݌) ࢚࢙࢘࢕࢝_࢕࢚_࢚࢙ࢋ࢈_ࢉ࢙ࢇ_࢚࢘࢕ࡿ
 (ݏݐܽݐܾ݅ܽܪ ݈݈ܽ ݎ݋݂) ࢚࢟࢏࢒࢏࢈ࢇ࢈࢕࢘ࡼ_࢚࢔࢛࢕࡯
If      termination criteria is not achieved      then 
[ ] ݉ݏ݅ݐ݈݅ܧݎݎܽ            ←   ݏ′ܪ  ݐݏܾ݁ ℎ݁ݐ ݁ݒܽܵ 
 ݐܽݐܾ݅ܽܪ ݈݈ܽ ݎ݋݂ (ܫܵܪ) ݔ݁݀݊݅ ܪ  ݂݋ ݕݐ݈ܾ݅݅ܽݐ݅ݑݏ ݌ܽܯ          
         Perform ࢔࢕࢏࢚ࢇ࢘ࢍ࢏ࡹ 
         perform ࢔࢕࢏࢚ࢇ࢚࢛ࡹ //……………………………by DCP in Table 1 
 ( ) ࢚࢙࢕ࢉ_ࢋ࢚ࢇ࢒࢛࢒ࢇ࡯         
 (݊݋݅ݐ݈ܽݑ݌݋݌) ࢚࢙࢘࢕࢝_࢕࢚_࢚࢙ࢋ࢈_ࢉ࢙ࢇ_࢚࢘࢕ࡿ        
 ݀݊ݑ݋݂ ݎ݁ݒ݁ ݊݋݅ݐݑ݈݋ݏ  ݐݏܾ݁ ݁ݐܽ݀݌ܷ        
endif 
ݐݏ݋ܥݐݏ݁ܤ =   (ݏݐݏ݋ܥ ݐݏ݁ܤ) ࢋ࢙࢕࢕ࢎ࡯ 

end 

  
Standard Pseudo Code for Migration 

for    i = 1   to    NP    do 
 Select ݅ܪ with probability based on ݅ߣ 

If    ܪ௜  is selected   then  

     for   j=1   to   NP   do 
         Select ܪ௝ with probability based on ߤ௝  
         If  ܪ௝ is selected   then 
                  Randomly select a ܵ(ݏ)ܸܫ from ܪ௝ 
                  Copy them ܵ(ݏ)ܸܫ in ܪ௝ 
         end if 
     end for 
end if 

end for 
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Standard Pseudo Code for Mutation 

for   i = 1   to   NP   do 
            Use ߣ௜  and  ߤ௜    to compute the probability ௜ܲ …. according to the DCP in Table 1. 
             Select ܵܪ ܸܫ௜(݆)  with probability  ∝   ௜ܲ  

             If    ܪ௜(݆)  is selected   then  

                      Replace ܪ௜(݆)  with a randomly generated ܸܵܫ 
            end if 
end for 

 
Figure 3.  Pseudo code for proposed M-BBO algorithm 

 
The proposed M-BBO algorithm is used in this study to perform the optimization of 

weight in an algorithm with a multi-point decision making and to choose the best RAT 

for the considered networks that are heterogeneous 

Let us consider having a group of candidate solutions for specific challenges. Specific 

characteristics are used to identify each candidate solution. The probability of the shared 

characteristics of the solutions according to the fitness of the value solutions is 

represented by the BBO. The s feature is said to have emigrated from the x solution and 

immigrated to the y solution in the BBO when a copy of the s replaces a feature in the y.  

The probability of the x-solution sharing its characteristics with other individuals in the 

population is in proportion to the x fitness. The probability of the y solution accepting a 

feature from the individuals in the population reduces with the fitness of y. These 

probabilities of migration depend on the curves, as demonstrated in Figure 2. To 

simplify, it is assumed that all the solutions have similar migration curves. Figure 2 

denotes two solutions in the BBO. S1 denotes a poor solution, while S2 denotes a better-

fit solution. The probability of immigration for S1 will, in turn, be higher compared to 

the probability of immigration for S2. The probability of emigration for S1 would be 

lesser compared to the probability of emigration for S2. 

For every feature in each solution in this approach, it is probabilistically determined if 

immigration should be carried out. If a particular feature immigrates, then the solution 

that is emigrating is chosen based on the probability of the fitness by utilizing the 

roulette wheel selection. Figure 3 demonstrates this algorithm as the explanation of one 

generation of the BBO. Migration and mutation of the whole population occurs prior to 

replacing any of the solutions in the population that needs the utilization of the 
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temporary population z in the algorithm. The entire modeling process is shown in Figure 

4. 

 

VI. Performance Evaluation  

The computational results are obtained by developing M-BBO and BBO in MATLAB. 

Also, to implement the framework, OMNeT++ has been utilized as an efficient, flexible 

and a discrete network simulator (OMNeT++ User Manual). Table 2 shows the 

performance of the proposed optimization search strategies, M-BBO and BBO, using 

simulations. 

Standard BBO and M-BBO have been compared to each other based on a set of real-

world benchmarks to demonstrate the improvement of performance. Regarding BBO, 

linear migration curves [36], maximum immigration and emigration rates of 1 and a 

mutation probability of 0 have been used. A population size of 50 has been used for each 

algorithm with a fitness function evaluation limit of 100 000 and elitism size of 2. The 

difference between M-BB) and standard BBO can be considered as using fitness-based 

selection by standard BBO while probability distribution of the population sizes for 

selection is used by M-BBO. The data in Table 2 for standard BBO is taken from [52]. 

The computational time for both standard BBO and M-BBO is the same because the 

algorithms execute identically; however, in fitness based selection and probability-based 

selection, it would be different. 

Wilcoxon method has been used to test for statistical significance [53]. Table 2 presents 

the Wilcoxon test results. According to the table, if the difference between the pair of 

algorithms is statistically noteworthy, the pair is marked. In order to to compare BBO 

with M-BBO, real-world optimization problems from the 2011 IEEE Congress on 

Evolutionary Computation (CEC) [54] has been used. We used some functions such as 

Ackley function, unimodal one-max problem, multimodal problem and deceptive 

problem with 20 dimensions to confirm the difference between M-BBO and BBO. The 

results in Table 2 are divided the BBO versus M-BBO group. For each pair of 

algorithms, B/S/W scores have been calculated, where “W” denotes the number of times 

that the left algorithm performs worse than the right one, “B” shows the number of times 
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that the right algorithm performs better than the left one and “S” presents the number of 

times that the left algorithm performs statistically the same as the right, and.  

            

Figure 4. Flow chart of the M-BBO model 
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The pairs are marked as follows when the difference between the algorithms is statically 

considerable, “O-X” shows that the right algorithm is better than the left one, “X-O” 

demonstrates that the left algorithm is better than the right one, the B/S/W row at the 

bottom shows the total scores. Comparing BBO versus M-BBO, Table 2 shows that, the 

B/S/W score is 1/2/8, which indicates that BBO outperforms M-BBO one time, BBO is 

statistically the same as M-BBO two times, and M-BBO outperforms BBO 8 times. 

In addition, the OMNET++ is used to evaluate the performance of the network. The M-

BBO parameter algorithm is demonstrated in Tables 3 and 4. Average time is set at 15s 

for the successive decision epochs [47]. 16 kb/s is set as the bandwidth unit, while 2.5 ms 

is the jitter unit, and 0.5 erl is the traffic unit. 1 and 5 units are set as the highest and 

lowest velocities as used by [48], [49]. The size of the area of the cell is 3 times bigger 

compared to the WLAN while the size of the spatial density of the mobile network 

within the network of the cell is 8 times bigger compared to the WLAN. The WiMax 

DL’s peaking data rates include 75 Mbps UL: 25 Mbps, and DL: 100 to 324.6 Mbps UL: 

50 to 86.4 Mbps in the UMTS. The VHO algorithm that is offered in this study is 

assessed with the Order of Preference Technique by Similarity to Ideal Solutions [36] 

based on the average handoffs amount, bandwidth that is available, and so on. 

 

Table 2. Wilcoxon Test Results for Algorithms Comparisons. 

Function BBO vs M-BBO 

Ackley function O-X 

Unimodal one-max problem O-X 

Multimodal problem - 

Deceptive problem O-X 

Large Scale Transmission Pricing Problem X-O 

Hydrothermal Scheduling Problem O-X 

Circular Antenna Array Design Problem O-X 

Transmission Network Expansion Planning (TNEP) Problem O-X 

Bifunctional Catalyst Blend Optimal Control Problem O-X 

Lennard-Jones Potential Problem - 

Static Economic Load Dispatch (ELD) Problems O-X 

B/S/W 1/2/8 
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The MIIS provides information about the networks that are available and the respective 

PoAs encompassed in the simulated area. Table 2 denotes the key configuration 

determined for the experiments. One UMTS, five WiFi, and a single WiMAX Point of 

Attachment encompass the different location with different data rates. Moreover, each 

network in this scenario is configured based on various performance parameters. Various 

alternatives are designed for the assessment of the CNs using this approach.   

This scheme is found to be a suitable compromise between the technology description 

accuracy and the high level of abstraction, which allows short simulations, for testing 

and comparing the efficacy of the various network selection algorithms. OMNeT++ has a 

structural component, denoted by the composed modules with hierarchical structures 

having any number of levels, and a behavioural feature, denoted by simple modules, as 

defined in C++. Messages are utilized to realize the communication between modules. 

The OMNeT++ includes a tool for debugging and visualization, randomized number 

generators, statistics collection, etc. 

All the simulations in Figure 5 were run at 100000 seconds simulation time while for 

every file length, there were 10 different runs, where these results of the values are the 

average of the 10 runs. The IP packets contain a length of 1000 bytes in simulations, so 

that it is compatible with [50, 51]. 

 

 
Figure 5. Simulated scenario in OMNET++ 
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In addition, several tests were performed with various MN speeds. Initially in the 

simulation, the amount of the vehicular are not much however at the time of the 

simulation, the researchers try increasing the vehicular slowly to examine the functioning 

of the model that is proposed in an environment with high traffic. A GPS add-on module 

has also been implemented for the OMNET++ that handles the GPS coordinates, maps, 

and routes, to choose the itinerary to travel from the present geolocation to any other 

destination. The GPS module also interprets the coordinates of the geolocation into 

traveling time, thus allowing the algorithm of the M-BBO to recognize the place where 

the vehicle is anticipated to be at a given time in the future. Figure 5 shows the itinerary 

covering a distance of 6.50 km in a 4.50 ݇݉ଶ  area. The GPS module manages the 

itinerary’s entire coordinates. In addition, the MIIS informs about the networks and their 

respective Points of Attachment that are available in the simulated location as 

demonstrated in Figure 6. One UMTS, five WiFi, and one WiMAX PoA that cover 

various areas with distinctly offered data rates are observed. It is critical to note that the 

UMTS encompasses the whole setting, which means that the UMTS technology is 

always the backup connection technology for this group of trials. 

 

 
Figure 6. Coverage scenario 

The parameters of the networks are shown in Table 4. The least requirement needed for 

the video session using the network that is chosen in the simulation is presented in Table 
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5. Since the function of the video session is expected to be the main function in the 

increase of the future demands in mobile applications, the video streaming traffic has 

been emphasized. 

Table 3. M-BBO Elements 

Elements WiFi WiMAX UMTS 

Access Points 5 1 1 

Data rates (Mbps) 28.5 17.3 3.5 

VHO latency (ms) 1080 2665 - 

Coverage(m) 500 1000 5000 

Advertisement interval 100 5000 - 

 

Average time is set at 15s [43] for the continuous decision timing. 16 kb/s is set as the 

bandwidth unit, while 2.5 ms is the jitter unit, and 0.5 erl is the traffic unit. 1 and 5 units 

are set as the highest and lowest velocities as used by [43]. The size of the area of the cell 

is 3 times bigger compared to the WLAN while the size of the spatial density of the 

mobile network within the network of the cell is 8 times bigger compared to the WLAN. 

Figures 6-10 represent the network performance of the handoff setting.  

Table 4. Summarized Network Parameters 

PoA Technology Price(MB) 
Latency 
(Packet) 

Ratio of Packet 
Loss  

Throughput 
(Mbps) 

PoA-1 WiFi 0.8 15.44 1.19 1.48 
PoA-2 WiMAX 0.15 17.59 2.74 1.18 
PoA-3 UMTS 0.9 25.22 0.76 1.42 
PoA-4 WiFi 0.8 15.40 1.09 1.40 
PoA-5 WiFi 0.8 14.48 1.15 1.45 
PoA-6 WiFi 0.8 14.34 1.10 1.38 
PoA-7  Wi-Fi 0.8 25.40 1.29 1.43 

 

Table 5. Values of weights in the cost function for preferences of users 

AP Cost Streaming Conversational 
Maximum 

performance 
Latency 0.1057680 0.4345300 0.1657905 0.0623170 
Packet Loss 0.0224017 0.1432380 0.2545390 0.3898690 
Throughput 0.3733550 0.0234577 0.3435154 0.4845670 
Price (MB) 0.4534210 0.4176509 0.2467543 0.0367890 
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Although various vertical handoff decision algorithms have been proposed in the 

literature recently, there is a lack of performance comparisons between classical TOPSIS 

and GRA methods and heuristic schemes. The number of handovers is recorded with the 

proposed scheme, (GRA) [40], as well as (TOPSIS) [39]. The rate of handoff using the 

GRA and the TOPSIS gets higher as more MNs join the network. The rate of handoff in 

the scheme that is proposed in comparison with the GRA and the TOPSIS is 

demonstrated in Figure 7(a). In this simulation, the total number of vehicular is fixed at 

100 vehicular. Among the reasons seen during the simulation is the unsuitable handover 

that is triggered because of the RSS in relation to the GRA and TOPSIS. The technique 

for the proposed handover triggering lowers the rate of handoff significantly. 

Likewise, the numbers of failed handovers are examined during the simulation. The 

number of failed handovers for GRA and TOPSIS is high due to the triggering method. 

The GRA and TOPSIS start frequent handovers that need quick switching of interfaces 

between various technologies. Hence, the MN consumes a lot of energy because of the 

interface switching. In this research, the energy usage of the MN is not taken into 

consideration. Figure 7 (b) demonstrates the comparison of the proposed scheme, GRA, 

and TOPSIS based on the failed handovers. 

 
Figure 7 (a). Analysis of rate of handover 

Similarly, the packet loss is significantly minimized in the proposed scheme. Each 

vehicle is moving over the range from 10 km/h to 100 km/h. This simulation was 

performed with a packet size of 320 bytes and packet rate of 100 packets/sec. We have 
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provided simulation results and compared the results with GRA, TOPSIS and NEMO 

[35]. The GRA and the TOPSIS have a high packet loss in comparison to the proposed 

scheme due to the regular switching of various networks. The packet loss rates of the 

GRA and TOPSIS schemes raises faster than that of the NEMO and M-BBO schemes 

due to the fact that higher vehicle speed can only tolerate low level of handover latency 

and the handover latency of the GRA and TOPSIS schemes are higher than that of the 

NEMO and M-BBO schemes and thus suffers higher packet loss rate. In general, a 

scheme with a multi-criteria decision needs a high level of handover time in comparison 

to a model with a single criteria decision. However, because of the proposed M-BBO 

method, the vehicular has additional time to scan as well as choose the optimized 

network in a network setting that is heterogeneous.  

 
Figure 7 (b). Analysis of the failed handover attempts 

Figure 7 (c) demonstrates the packet loss ratio comparison. As we can see, the packet loss 

rate of the M-BBO scheme is the lowest, followed by the NEMO, TOPSIS and GRA 

schemes. The scheme that is proposed has also enabled the computation of the 

throughput gain. The throughput relies on the loss of the packets indirectly. The GRA 

and TOPSIS possess high loss of packets and as such, they offer a low throughput gain 

due to unsuitability in the selection of the network for the handover. However, the 

proposed scheme also faces a lower packet loss due to the optimal network selection. 

The throughput relies on the delay of the handover and the needed time to redirect the 

data via a new network. The handover that is proposed offers the vehicular sufficient 
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time while the handover occurs. Thus, the data is redirected via a network that is new, 

and as such, the vehicular goes through a high level of throughput. 

 

Figure 7 (c). Packet loss during handover. 

Figure 7 (d) shows the throughput gain comparison in the proposed scheme, GRA, and 

TOPSIS decision models. At first, the vehicular has a low level of throughput, however, 

after certain duration, the throughput increases. Two reasons for this increase include i) 

the previous throughput (bytes) arriving through the present AP/BS is added to the new 

bytes arriving from the AP/BS that are new, and ii) the proposed trigger and network 

selection offer the vehicular with a suitable AP/BS that increases the throughput. 

 

Figure 7 (d). Throughput analysis. 
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Figure 7 (e) and Figure 7(f) present the handover latencies of the M-BBO, NEMO, 

TOPSIS and GRA. The handover latency of the M-BBO and NEMO methods are lower, 

followed by the TOPSIS and GRA methods. Figure 7 (e) shows the impact of vehicular 

speed to handover latency. In this simulation, the total number of vehicular is fixed at 50 

vehicular. Whenever the vehicular speed rises, the handover latency also rises. The M-

BBO and NEMO models have better performance than the TOPSIS and GRA models 

because they have high level of handover time and thus increase the handover latency.  

   

Figure 7 (e). Handover latency vs. vehicular speed 

Figure 7(f) shows the impact of various vehicular densities to handover latency. The 

number of vehicles is adjusted between (10 -100). Per vehicle is moving at a fixed speed 

(50 km/h). In place of the vehicle density rise, the handover latency also rises because 

density cause more congestions and the handover latency will be increased. The M-BBO 

and NEMO show better performance, followed by TOPSIS and GRA models.  

The scheme for the selection of a network is according to different parameters namely 

jitter, delay, BER, loss of packets, cost of communication, time to respond, and network 

loading. A comparison is made in the scheme that is proposed and the TOPSIS and GRA 

decision models in the context of failed attempts at handovers, handovers that are 

frequent, ratio of packet loss, as well as the throughput. The proposed scheme 

outperforms in the area of minimizing the rate of handoff and in maximizing the 

throughput with the decision models of the GRA and TOPSIS. 
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Figure 7 (f). Handover latency vs. vehicular densities 

 
VII. Conclusions and Future work 

This study has proposed an algorithm for the vertical handover decision-making process 

known as the M-BBO. This algorithm chooses the best network candidate, which 

addresses the issues of requirements for connectivity, by considering the preferences of 

the user in the vehicular setting. In order to achieve this, the M-BBO makes use of the 

currently available feature of the OBUs including the GPS-based geo-navigation and 

geo-location, multiple interfaces of wireless networks, as well as the strong computing 

resources. In addition, the IEEE 802.21 standard offers services that assist in 

empowering the M-BBO. It was demonstrated throughout the simulation that the M-

BBO is capable of selecting the best network candidate accurately based on the 

requirements of the connection in accordance with the preferences of the user as well as 

the requirements of the application. 

There are many directions needed to investigate to support the proposed architecture. 

The main could be a more appropriate mobility management and fog orchestration 

models that take M-BBO characteristics into account to support fog computing.  
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