10,518 research outputs found

    Object-based assessment of tree attributes of Acacia tortilis in Bou-Hedma, Tunisia

    Get PDF
    Acacia tortilis subsp. raddiana represents the most important woody species in the pre-Saharan zone. It is the only forest tree persisting on the edge of the desert. Due to tree/environment interactions, canopy sub-habitats arise, enabling an increased storage of soil water, soil nutrients and soil oxygen. Depending on their density, they can also reduce erosion and reverse desertification. Soil erosion and desertification are the main problems faced by the UNESCO Biosphere Reserve in South-Tunisia (Bou-Hedma National Park). The restoration of the original woodland cover to combat desertification (particularly) by afforestation and reforestation of Acacia tortilis goes hand in hand with a climate change in the Biosphere Reserve, also influencing rural population outside the Biosphere Reserve. In order to study the different effects of woodland restoration in Bou-Hedma, the number of Acacia trees and their attributes have to be known. High resolution satellite imagery (GeoEye-1), was used with a GEOBIA approach. Field measurement of bole diameter, crown diameter and tree height were collected at > 400 locations. After segmentation, correlations with > 200 object features and tree attributes were calculated. For crown diameter and tree height, high correlations were observed with the features area and GLCM Entropy Layer 4 (90 degrees). Relations between these features and measured tree attributes were modeled, resulting in RMSE values of resp. 1.47 m and 1.62 m for crown diameter estimation and 0.92 m for tree height. The results show that a GEOBIA working strategy is suitable for estimating tree attributes in open forests in semi-arid regions

    Spatial clustering method for geographic data

    Get PDF
    In the process of visualizing quantitative spatial data, it is necessary to classify attribute values into some class divisions. In a previous paper, the author proposed a classification method for minimizing the loss of information contained in original data. This method can be considered as a kind of smoothing method that neglects the characteristics of spatial distribution. In order to understand the spatial structure of data, it is also necessary to construct another smoothing method considering the characteristics of the distribution of the spatial data. In this paper, a spatial clustering method based on Akaike’s Information Criterion is proposed. Furthermore, numerical examples of its application are shown using actual spatial data for the Tokyo Metropolitan area

    Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification

    Full text link
    Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule

    Classification Rules for Hotspot Occurrences Using Spatial Entropy-based Decision Tree Algorithm

    Get PDF
    AbstractForest fire is a state where forest affected by fire that led to forest damage and may cause disadvantages in human life. Forest fire event can be monitored using satellite by detecting hotspots as fire indicators at certain times and locations. The purpose of this work is to develop a decision tree to predict hotspot occurrences in Bengkalis district, Riau province Indonesia using the spatial entropy-based decision tree algorithm. The data used are forest fire data in Bengkalis area. The data include city centre, river, road, income source, land cover, population, precipitation, school, temperature, and wind speed. The results of this work using the 5-fold cross validation test are decision trees with the average accuracy of 89.04% on the training set and 52.05% on the testing set. The tree has 560 nodes with the land cover layer as the root node. From the decision tree, as many 255 rules were obtained to classify hotspot occurrences

    Complex network classification using partially self-avoiding deterministic walks

    Full text link
    Complex networks have attracted increasing interest from various fields of science. It has been demonstrated that each complex network model presents specific topological structures which characterize its connectivity and dynamics. Complex network classification rely on the use of representative measurements that model topological structures. Although there are a large number of measurements, most of them are correlated. To overcome this limitation, this paper presents a new measurement for complex network classification based on partially self-avoiding walks. We validate the measurement on a data set composed by 40.000 complex networks of four well-known models. Our results indicate that the proposed measurement improves correct classification of networks compared to the traditional ones

    A Decision Tree Based on Spatial Relationships for Predicting Hotspots in Peatlands

    Get PDF
    Predicting hotspot occurrence as an indicator of forest and land fires is essential in developing an early warning system for fire prevention.  This work applied a spatial decision tree algorithm on spatial data of forest fires. The algorithm is the improvement of the conventional decision tree algorithm in which the distance and topological relationships are included to grow up spatial decision trees. Spatial data consist of a target layer and ten explanatory layers representing physical, weather, socio-economic and peatland characteristics in the study area Rokan Hilir District, Indonesia. Target objects are hotspots of 2008 and non-hotspot points.  The result is a pruned spatial decision tree with 122 leaves and the accuracy of 71.66%.  The spatial tree has produces higher accuracy than the non-spatial trees that were created using the ID3 and C4.5 algorithm. The ID3 decision tree has accuracy of 49.02% while the accuracy of C4.5 decision tree reaches 65.24%

    Characterization of complex networks: A survey of measurements

    Full text link
    Each complex network (or class of networks) presents specific topological features which characterize its connectivity and highly influence the dynamics of processes executed on the network. The analysis, discrimination, and synthesis of complex networks therefore rely on the use of measurements capable of expressing the most relevant topological features. This article presents a survey of such measurements. It includes general considerations about complex network characterization, a brief review of the principal models, and the presentation of the main existing measurements. Important related issues covered in this work comprise the representation of the evolution of complex networks in terms of trajectories in several measurement spaces, the analysis of the correlations between some of the most traditional measurements, perturbation analysis, as well as the use of multivariate statistics for feature selection and network classification. Depending on the network and the analysis task one has in mind, a specific set of features may be chosen. It is hoped that the present survey will help the proper application and interpretation of measurements.Comment: A working manuscript with 78 pages, 32 figures. Suggestions of measurements for inclusion are welcomed by the author
    • 

    corecore