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Spatial Clustering Method for Geographic Data 
 

Toshihiro OSARAGI 

 

Abstract:  In the process of visualizing quantitative spatial data, it is necessary to 

classify attribute values into some class divisions.  In a previous paper, the author 

proposed a classification method for minimizing the loss of information contained in 

original data.  This method can be considered as a kind of smoothing method that 

neglects the characteristics of spatial distribution.  In order to understand the 

spatial structure of data, it is also necessary to construct another smoothing method 

considering the characteristics of the distribution of the spatial data.  In this paper, 

a spatial clustering method based on Akaike’s Information Criterion is proposed.  

Furthermore, numerical examples of its application are shown using actual spatial 

data for the Tokyo Metropolitan area. 

 

Keywords: spatial data, space cluster, Quadtree, AIC (Akaike’s Information 

Criterion), information loss, visualization, classification 

 

1. Introduction 

 

When spatial data are visualized, the attribute values defined numerically have to be classified into 

some class divisions.  In this process, there exists the risk of leading us to miss-judgment or biased 

understanding, since much information of the original data may be lost, according to the 

classification method adopted.  Therefore, in a previous paper, Osaragi (2001) examined the 

classification method of spatial data from the viewpoint of information-statistics, and proposed a new 

classification method based on minimization of information loss.  This method is a sort of 

smoothing technique neglecting the characteristics of spatial data distribution.  However, it is 

necessary to consider the spatial distribution of attributes, to adequately visualize data accompanied 

with information of "spatial distribution".   

 

In the field of remote sensing, many studies on local smoothing have been carried out.  Gilmour 

(1987) proposed a method that assists in the determination of the optimal neighbourhood size, and Li 

(1996) proposed a method to integrate GIS so that the shape information, which is frequently used in 

visual interpretation, can easily be employed to improve the performance of classification. On the 

other hand, Liebetrau et al. (1977) discussed a classification of spatial distribution based on several 

cell sizes from the point of view of hypothesis testing.  Furthermore, Margules et al. (1985) 
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presented a numerical method for classifying geographic data in order to incorporate geographic 

location as an external constraint.  Once the matrix of similarity values has been generated and the 

adjacency coded, a hierarchical agglomerative fusion strategy can be used to construct hierarchical 

relationships between the objects (Margules et al. 1985).  Conversely, Batty (1974, 1976, 1978) 

discussed the zonal aggregation problem according to a spatial entropy scaled for zone size, and 

decomposed the information gain into a within-set and a between-set component. 

 

Furthermore, Fotheringham and Wong (1991) has suggested that the sensitivity of analytical results 

to the definition of units for which data are collected.  This stubborn problem related to the use of 

areal data is commonly referred to as the modifiable areal unit problem (MAUP), which is clearly 

illustrated through the works of Openshaw and Taylor (1979).  Although any specific statistical 

analysis is usually not employed in the process of visualizing spatial data, the results are likely to 

vary with the level of aggregation and with the configuration of the zoning system.  Then we have to 

consider appropriate areal units in this process. 

 

In this paper, we discuss a spatial clustering method considering the characteristics of the local spatial 

distribution of attributes.  Namely, we discuss the question "Which places should be unified as a 

spatial unit in the sense of a statistical model?"  In the following, such a spatial unit is called 

"space-cluster".  Tamagawa (1987) and Higuchi et al. (1988) have proposed a method for deciding 

the optimum cell-size in which the values of AIC (Akaike’s Information Criterion; Akaike 1972, 

1974), obtained thorough variously changing the observed range of data, are compared.  

Furthermore, Nakaya (2000) has also proposed a methodology to select appropriate areal units using 

AIC and search methods for an informative geographical aggregation in map construction.  In this 

paper, combining these ideas with our spatial classifying and visualizing method, a new spatial 

clustering method for geographical data is proposed. 

 

 

2. Definition of Space-cluster 

 

When asking for the appropriate space-cluster, we have two options.  The first is to make each 

space-cluster a uniform size.  The second is to change the size of every space-cluster if needed.  In 

this paper, the way of the latter, with higher flexibility than the former, is attempted.  That is, we 

examine how to represent the entire space by a set of space-clusters of various sizes.  The 

fundamental idea is as follows. 

 

First, when the distribution of features is not homogeneous in the study area, it is necessary to divide 
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the area into some smaller sub-areas.  Furthermore, checking the homogeneity of feature 

distribution in the sub-areas, further division within each sub-area will be done anew, if necessary.  

The entire study area is divided by repeating this procedure.  Thus, if it becomes unnecessary to 

divide sub-areas any further, i.e., if each sub-area can be statistically considered homogeneous, it can 

be considered that the objective area is filled with appropriate space-clusters at this time.  Even if the 

sub-areas are divided into smaller sub-areas further, we can get only a little information from the data, 

and the data size will be getting large.  That is, we should pay attention to the trade-off relationship 

between amount of information and amount of data itself. 

 

According to the above discussion, the space-cluster is obtained by a dividing process.  However, it 

is also possible to constitute a space-cluster by unifying smaller sub-areas (see figure 1).  According 

to the author’s experience, the latter option is able to constitute a finer space-cluster than the former 

one.  The concrete reason for this will be shown later. 
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Figure 1: Quadtree data structure and two ways of constructing space-clusters 
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Margules et al. (1985) tested four agglomerative hierarchical fusion strategies with the adjacency 

constraint.  The choice of classification strategy, which should depend on the type and amount of 

data and objective of the classification, is an important decision that applies equally to constrained or 

unconstrained classification.  In this research, the Quadtree data structure is used for the process of 

finding the optimal space-cluster.  The applications discussed here are limited to the Quadtree data 

structure.  However, the following method can be applied to any other fusion strategies or data 

structures.  Figure 1 shows an example in which an appropriate space-cluster is expressed using the 

Quadtree structure.  Assuming the top level is the entire study area, the low rank can be considered 

sub-areas.  Furthermore, each leaf can be considered the smallest sub-area, i.e., a space-cluster.  

That is, an adequate space-cluster can be obtained by traversing the tree using an evaluation function.   

 

 

3. Space-cluster based on AIC 

 

3.1 Definition of AIC 

 

Tamagawa (1987) and Higuchi et al. (1988) proposed a method based on AIC in order to determine 

the optimum cell-size.  A function of AIC was formulated as follows, transforming the whole area 

into uniform cell-size (see figure 2).  The attribute value of a unit cell is denoted by x (i), (i=1, 2,…, 

n), and the sum of values in the entire area is denoted by X ( ∑
=

=
n

i
ix

1
)( ).  Furthermore, horizontal 

width and vertical height are represented by a and b respectively when changing cell-size.  

Furthermore, an attribute value of an axb-cell is denoted by d(j),(j=1, 2, ..., N).  As for the data with 

which the attribute value is defined as a discrete value like point sampling data, the value of AIC can 

be described as follows: 

)1(2)(log)(2AIC
1

−+⋅−= ∑
=

N
abX

jdjd
N

j
,    (1) 

where 0)(log)( =⋅
abX

jdjd  when d(j)=0. 
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Figure 2: Cell-size and attribute values 

 

Furthermore, in the case of data with which attribute values are defined as a continuous value like a 

ratio, the value of AIC is defined as follows: 

)1(2ˆlog2logAIC 2 ++++= Nnnn σπ ,    (2) 

where 







−= ∑∑

==

N

j

n

i ab
jdix

n 1

2

1

22 )()(1σ̂ . 

The cell-size that gives the minimum value of AIC can be regarded as optimal, in a sense of the 

trade-off relationship between amount of information and amount of data.  However, this method is 

based on the idea of covering the entire area by the same-sized cells. 

 

The author proposes a method for obtaining the optimal space-cluster using the evaluation function 

of AIC.  The fundamental procedure is shown in figure 3.  By unifying four sub-areas belonging to 

the same tree, whose size is 2k, the new sub-area whose size is 2k+1 is formed.  Here, the attribute 

values of smaller sub-areas are expressed as c1-c4, and that of larger sub-areas is expressed as C, for 

convenience.  If the larger sub-area, whose size is 2k+1, can be considered as one space-cluster by 

referring to equation (1), the value of AIC (i.e., the value of AIC0) can be expressed as follows: 

)11(2
2

log2AIC )1(20 −+⋅−= + C
CC k

,    (3) 

where the attribute value in this case is a discrete value. 
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Figure 3: Algorithm for obtaining optimal space-cluster using AIC 

 

On the other hand, if the four smaller sub-areas (c1-c4), whose size is 2k, are considered independent, 

the value of AIC (i.e., the value of AIC1) can be expressed as follows: 



   

 9

)14(2
2

log2AIC
4

1
21 −+⋅−= ∑

=l
k
l

l C
cc     (4) 

That is, by comparing equation (3) with equation (4), we can say that a model with a small value is 

adequate when considering the trade-off relationships between amount of information and amount of 

data.  If AIC0 is less than AIC1, the sub-area should form the larger sub-area whose size is 2k+1.  On 

the contrary, if AIC0 is greater than AIC1, a larger sub-area should not be formed and we should adopt 

the smaller sub-area whose size is 2k as the adequate space-cluster.  Furthermore, by referring to 

formula (2), we obtain the following equations when the attribute value is defined as a continuous 

value.  We can then evaluate space-clusters using this equation as follows: 
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However, 2ˆlogσ  in equation (6) cannot be estimated at the time of k=0 (namely, in case of the 

smallest unit cell).  Therefore, when the attribute value is defined as a continuous value, the sub-area 

formed of the four smallest unit cells can be the smallest space-cluster. 

 

 

3.2 Comparison of Methods: "Dividing" and "Unifying" 

 

The difference between the "dividing" method and the "unifying" method is examined using artificial 

spatial data.  The result of analysing the data (the number of cells is 64) using two methods is shown 

in the upper row of figure 4.  As a result of adopting a “dividing” method, an optimum is reached 

when the whole study area is made into one space-cluster, i.e., the local minimum of AIC.  We can 

confirm that the AIC0 of whole area is smaller than the AIC1 of divided sub-areas.  On the other hand, 

if the "unifying" method is applied to the same artificial data in order to form the space-cluster, we 

can avoid the above problem, i.e., a local minimum of AIC.  In addition, considering that our 

research is aimed at decreasing information loss (Roy et al. 1982), the "unifying" method is 

preferable.  That is, using the “dividing” method we risk losing vital information regarding the 

original data, as is clearly shown by this simple example.  Thus, in the following, the "unifying" 

method is adopted. 
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Figure 4: Comparison of dividing method and unifying method 

 

 

3.3 Application to Actual Spatial Data 

 

Based on the above consideration, the appropriate space-cluster is obtained using actual urban spatial 

data, and the result is shown in figure 5.  The spatial data used here is as follows.  (a) "the number of 

merchants",  (b) "the number of fishery workers",  (c) "the ratio of female workers",  (d) "nuclear 

family households".  The source of data is Digital Mesh Statistics "1991 place-of-business statistics" 

and "1990 national-census".  The cell size is about 1 km by 1 km and the number of cells is 256.  In 

addition, the distribution of the attribute values is shown for reference.  The data is sorted from the 

largest to the smallest according to the attribute value.  From figure 5, we can see the space-clusters 

are reduced by our proposed method.  For instance, for the data whose attribute value is a discrete 

value, the cell with the outstanding value is expressed as the smallest space unit, and the other cells 

are unified into the larger space-clusters.  Comparatively, if the attribute value itself has a large value, 

a small space-cluster is created (see "the number of merchants").  On the other hand, as for the data 

whose attribute value is a continuous value, the cell with the relatively large value is unified together 

with the other cells.  That is, the smallest unit cell is unified with surrounding cells, and is 

represented as a larger space-cluster that is statistically meaningful. 
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Figure 5: Optimal Space-cluster and Data Distribution 

 

 

4. Visualization of Space-Cluster 

 

Visualization of spatial data is carried out using the appropriate space-cluster examined in the 

previous section.  The classification of the unified attribute value of space clusters is achieved using 

the information loss minimization method (Osaragi 2001).  The outline of the concept of the 

information loss minimization method and the study area are shown in figure 6.  The results of 

space-cluster visualization are shown in figure 7.  The result in the case where the optimal 

space-cluster was not asked for is also shown simultaneously in figure 7.  Moreover, the ratio (L) of 
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information loss defined in figure 6 is also shown.  The figure 7 shows clearly that if we create the 

appropriate space-cluster, the space distribution characteristic of the original data can be grasped 

more easily.  The correct results are obtained both in cases where the data is defined as a continuous 

value and as a discrete value.  However, it is necessary to pay attention to the information loss 

increasing slightly. 
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Figure 6: Study area and definition of ratio of information-loss 
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Figure 7: Visualization of homogeneous space-cluster using the classification method  

of minimizing information-loss 
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5. Summery and conclusions 

 

The method of obtaining the space-cluster based on the evaluation function of AIC is proposed, with 

consideration to the distribution characteristic of spatial data.  Moreover, the appropriate 

space-cluster is visualized by the information loss minimization method.  Using the proposed 

method, the information contained in the original spatial data can be visualized, and we can grasp and 

understand the statistical characteristics of geographical data. 
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