1,403 research outputs found

    Boost Matrix Converters in Clean Energy Systems

    Get PDF
    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid.Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Advanced and robust control of grid connected converters

    Get PDF

    A new class of hybrid AC/AC direct power converters

    Get PDF
    Variable voltage and variable frequency conversion of electrical energy from an AC source to an AC load is done in traditional power converters via a DC-link where an energy storage element (electrolytic capacitors) is situated. Despite its well-known benefits, it has the disadvantage of being bulky and to limit the converter lifetime. On the other hand, Direct Power Conversion (DPC) is an attractive concept, which doesn’t need an energy storage buffer, but has two main disadvantages: reduced voltage transfer ratio (<0.86) and low immunity to voltage supply disturbances. This paper proposes a new approach to perform the power conversion by mixing various standard topologies of well-known power converters in order to improve their performance/behavior. Simulation and experimental results prove that the hybrid structures are able to boost the output voltage capability (some above unity) and/or to fully compensate unbalanced voltage supply

    A new class of hybrid AC/AC direct power converters

    Get PDF
    Variable voltage and variable frequency conversion of electrical energy from an AC source to an AC load is done in traditional power converters via a DC-link where an energy storage element (electrolytic capacitors) is situated. Despite its well-known benefits, it has the disadvantage of being bulky and to limit the converter lifetime. On the other hand, Direct Power Conversion (DPC) is an attractive concept, which doesn’t need an energy storage buffer, but has two main disadvantages: reduced voltage transfer ratio (<0.86) and low immunity to voltage supply disturbances. This paper proposes a new approach to perform the power conversion by mixing various standard topologies of well-known power converters in order to improve their performance/behavior. Simulation and experimental results prove that the hybrid structures are able to boost the output voltage capability (some above unity) and/or to fully compensate unbalanced voltage supply

    Passivity-based harmonic control through series/parallel damping of an H-bridge rectifier

    Get PDF
    Nowadays the H-bridge is one of the preferred solutions to connect DC loads or distributed sources to the single-phase grid. The control aims are: sinusoidal grid current with unity power factor and optimal DC voltage regulation capability. These objectives should be satisfied, regardless the conditions of the grid, the DC load/source and the converter nonlinearities. In this paper a passivity-based approach is thoroughly investigated proposing a damping-based solution for the error dynamics. Practical experiments with a real converter validate the analysis.

    Analysis, Design and Control of a Modular Full-Si Converter Concept for Electric Vehicle Ultra-Fast Charging

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A hybrid indirect matrix converter immune to unbalanced voltage supply, with reduced switching losses and improved voltage transfer ratio

    Get PDF
    Achieving a compact and efficient design of power electronic converters is not a straightforward procedure: minimizing the size of the filter requires a higher switching frequency that causes additional switching losses that will require a larger heatsink and therefore will increase the equipment size. A matrix converter (MC) is known to have smaller switching losses than a Voltage Source Inverter (VSI) and therefore a greater potential for size reduction but has higher conduction losses. A two-stage Indirect MC (IMC) behaves similar to a MC but its losses follow a profile similar to a VSI. The two-stage hybrid IMC which is the latest development, offers a significant improvement in the voltage transfer ratio and immunity against unbalanced voltage supply but due to the additional intermediary stage, has even higher conduction losses than indirect MCs. This paper proposes a new control strategy for a hybrid IMC that will improve both the voltage transfer ratio and the efficiency of the converter at maximum output voltage by modulating the DC-link voltage across the inverter stage in order to eliminate the zero-voltage states and their corresponding commutations
    • …
    corecore