481 research outputs found

    A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    Get PDF
    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW. © 2011 by the authors.This work was supported by the I + D + i program of the Generalitat Valenciana, R&D Project GV05/043, and the Vicerecorate of Investigation, Development and Innovation of Universidad Politecnica de Valencia PAID-06-06-002-61 and PAID-10-11.Lajara Vizcaino, JR.; Alberola, J.; Pelegrí Sebastiá, J. (2011). A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems. Sensors. 11:329-340. doi:10.3390/s110100329S3293401

    Autonomous Irrigation Management in Decision Agriculture

    Get PDF
    In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. Finally, the chapter concludes with comprehensive discussion of adaptive control systems, software, and visualization system design

    Sustainable modular IoT solution for smart cities applications supported by machine learning algorithms

    Get PDF
    The Internet of Things (IoT) and Smart Cities are nowadays a big trend, but with the proliferation of these systems several challenges start to appear and put in jeopardy the acceptance by the population, mainly in terms of sustainability and environmental issues. This Thesis introduces a new system composed by a modular IoT smart node that is self-configurable and sustainable with the support of machine learning techniques, as well as the research and development to achieve a innovative solution considering data analysis, wireless communications and hardware and software development. For all these, concepts are introduced, research methodologies, tests and results are presented and discussed as well as the development and implementation. The developed research and methodology shows that Random Forest was the best choice for the data analysis in the self-configuration of the hardware and communication systems and that Edge Computing has an advantage in terms of energy efficiency and latency. The autonomous communication system was able to create a 65% more sustainable node, in terms of energy consumption, with only a 13% decrease in quality of service. The modular approach for the smart node presented advantages in the integration, scalability and implementation of smart cities projects when facing traditional implementations, reducing up to 45% the energy consumption of the overall system and 60% of messages exchanged, without compromising the system performance. The deployment of this new system will help Smart Cities, in a worldwide fashion, to decrease their environmental issues and comply with rules and regulations to reduce CO2 emission.A Internet das Coisas (IoT) e as Cidades Inteligentes são hoje uma grande tendência, mas com a rápida evolução destes sistemas são vários os desafios que põem em causa a sua aceitação por parte das populações, maioritariamente devido a problemas ambientais e de sustentabilidade. Esta Tese introduz um novo sistema composto por nós de IoT inteligentes que são auto-configuáveis e sustentáveis suportados por de aprendizagem automática, e o trabalho de investigação e desenvolvimento para se obter uma solução inovadora que considera a análise de dados, comunicações sem fios e o desenvolvimento do hardware e software. Para todos estes, os conceitos chave são introduzidos, as metodologias de investigação, testes e resultados são apresentados e discutidos, bem como todo o desenvolvimento e implementação. Através do trabalho desenvolvido mostra-se que as Árvores Aleatórias são a melhor escolha para análise de dados em termos da autoconfiguração do hardware e sistema de comunicações e que a computação nos nós tem uma vantagem em termos de eficiência energética e latência. O sistema de configuração autónoma de comunicações foi capaz de criar um nós 65% mais sustentável, em termos en- ergéticos, comprometendo apenas em 13% a qualidade do servi ̧co. A solução modular do nó inteligente apresentou vantagens na integração, escalabilidade e implementação de projectos para Cidades Inteligentes quando comparado com soluções tradicionais, reduzindo em 45% o consumo energético e 60% a troca de mensagens, sem comprometer a qualidade do sistema. A implementação deste novo sistema irá ajudar as cidades inteligentes, em todo o mundo, a diminuir os seus problemas ambientais e a cumprir com as normas e regulamentos para reduzir as emissões de CO2

    Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments

    Full text link
    [ES] La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de recursos y aumentar la producción de los cultivos. Además, la calidad del agua de regadío se puede monitorizar para asegurar la seguridad de los productos para el consumo humano. Sin embargo, la localización remota de la mayoría de los campos presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y actuadores desplegados en los campos y los canales de agua para regadío. El trabajo presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica entre los dispositivos electrónicos desplegados para la monitorización de la calidad del agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos. La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en profundidad del estado del arte respecto a los sensores para la monitorización del agua, el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la descripción y los algoritmos de operación de los nodos sensores contemplados para cada área son proporcionados. El siguiente capítulo detalla el protocolo de comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. Adicionalmente, se presenta una nueva topología de árbol para redes híbridas LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos de agregación de datos para la topología propuesta, un esquema de las amenazas de seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. Después, los resultados de las simulaciones para las soluciones propuestas anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue de los nodos empleados, el consumo energético y la función de cuantificación de fruta. Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación heterogéneos que se han propuesto.[CA] La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No obstant això, la localització remota de la majoria dels camps presenta un problema per a proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense fils més emprades en PA. S'aborden les tendències actuals i els reptes dels sistemes d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on s'inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de drons per a adquisició de dades. Després, es presenten els resultats de les simulacions per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals per al protocol heterogeni dissenyat. A més s'expliquen les diferents estratègies de desplegament dels nodes empleats, el consum energètic, així com, la funció de quantificació de fruita. Els resultats d'aquetes proves demostren la validesa de l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi.[EN] The introduction of technological solutions in agriculture allows reducing the use of resources and increasing the production of the crops. Furthermore, the quality of the water for irrigation can be monitored to ensure the safety of the produce for human consumption. However, the remote location of most fields presents a problem for providing wireless coverage to the sensing nodes and actuators deployed on the fields and the irrigation water canals. The work presented in this thesis addresses the problem of enabling wireless communication among the electronic devices deployed for water quality and field monitoring through a heterogeneous communication protocol and architecture. The first part of the dissertation introduces Precision Agriculture (PA) systems and the importance of water quality and field monitoring. In addition, the technologies that enable wireless communication in PA systems and the use of alternative solutions such as Internet of Underground Things (IoUT) and Unmanned Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of the art regarding the sensors for water, field and meteorology monitoring and the most utilized wireless technologies in PA is performed. Furthermore, the current trends and challenges for Internet of Things (IoT) irrigation systems, including the alternate solutions previously introduced, have been discussed in detail. Then, the architecture for the proposed system is presented, which includes the areas of interest for the monitoring activities comprised of the canal and field areas. Moreover, the description and operation algorithms of the sensor nodes contemplated for each area is provided. The next chapter details the proposed heterogeneous communication protocol including the messages and alerts of the system. Additionally, a new tree topology for hybrid LoRa/WiFi multi-hop networks is presented. The specific additional functionalities intended for the proposed architecture are described in the following chapter. It includes data aggregation algorithms for the proposed topology, an overview on the security threats of PA systems, energy-saving and fault-tolerance algorithms, underground communication for IoUT, and the use of drones for data acquisition. Then, the simulation results for the solutions previously proposed are presented. Finally, the tests performed in real environments for the presented heterogeneous protocol, the different deployment strategies for the utilized nodes, the energy consumption, and a functionality for fruit quantification are discussed. These tests demonstrate the validity of the proposed heterogeneous architecture and communication protocol.García García, L. (2021). Architecture and communication protocol to monitor and control water quality and irrigation in agricultural environments [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/17422

    Study of the development of an Io T-based sensor platform for e-agriculture

    Get PDF
    E-agriculture, sometimes reffered as 'ICT in agriculture' (Information and Communication technologies) or simply "smart agriculture", is a relatively recent and emerging field focused on the enhacement on agricultural and rural development through improved information and communication processes. This concept, involves the design, development, evaluation and application of innovative ways to use IoT technologies in the rural domain, with a primary focus on agriculture, in order to achieve better ways of growing food for the masses with sustainability. In IoT-based agriculture, platforms are built for monitoring the crop field with the help of sensors (light, humidity, temperature, soil moisture, etc.) and automating the irrigation system. The farmers can monitor the field conditions from anywhere and highly more efficient compared to conventional approaches

    Design and analysis of photovoltaic powered battery - operated computer vision - based multi - purpose smart farming robot

    Get PDF
    Farm machinery like water sprinklers (WS) and pesticide sprayers (PS) are becoming quite popular in the agricultural sector. The WS and PS are two distinct types of machinery, mostly powered using conventional energy sources. In recent times, the battery and solar-powered WS and PS have also emerged. With the current WS and PS, the main drawback is the lack of intelligence on water and pesticide use decisions and autonomous control. This paper proposes a novel multi-purpose smart farming robot (MpSFR) that handles both water sprinkling and pesticide spraying. The MpSFR is a photovoltaic (PV) powered battery-operated internet of things (IoT) and computer vision (CV) based robot that helps in automating the watering and spraying process. Firstly, the PV-powered battery-operated autonomous MpSFR equipped with a storage tank for water and pesticide drove with a programmed pumping device is engineered. The sprinkling and spraying mechanisms are made fully automatic with a programmed pattern that utilizes IoT sensors and CV to continuously monitor the soil moisture and the plant’s health based on pests. Two servo motors accomplish the horizontal and vertical orientation of the spraying nozzle. We provided an option to remotely switch the sprayer to spray either water or pesticide using an infrared device, i.e., within a 5-m range. Secondly, the operation of the developed MpSFR is experimentally verified in the test farm. The field test’s observed results include the solar power profile, battery charging, and discharging conditions. The results show that the MpSFR operates effectively, and decisions on water use and pesticide are automated

    Sustainable irrigation system for farming supported by machine learning and real-time sensor data

    Get PDF
    Presently, saving natural resources is increasingly a concern, and water scarcity is a fact that has been occurring in more areas of the globe. One of the main strategies used to counter this trend is the use of new technologies. On this topic, the Internet of Things has been highlighted, with these solutions being characterized by offering robustness and simplicity, while being low cost. This paper presents the study and development of an automatic irrigation control system for agricultural fields. The developed solution had a wireless sensors and actuators network, a mobile application that offers the user the capability of consulting not only the data collected in real time but also their history and also act in accordance with the data it analyses. To adapt the water management, Machine Learning algorithms were studied to predict the best time of day for water administration. Of the studied algorithms (Decision Trees, Random Forest, Neural Networks, and Support Vectors Machines) the one that obtained the best results was Random Forest, presenting an accuracy of 84.6%. Besides the ML solution, a method was also developed to calculate the amount of water needed to manage the fields under analysis. Through the implementation of the system it was possible to realize that the developed solution is effective and can achieve up to 60% of water savings.info:eu-repo/semantics/publishedVersio

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Battery-Less Industrial Wireless Monitoring and Control System for Improved Operational Efficiency

    Get PDF
    An industrial wireless monitoring and control system, capable of supporting energyharvesting devices through smart sensing and network management, designed for improving electrorefinery performance by applying predictive maintenance, is presented. The system is self-powered from bus bars, and features wireless communication and easy-to-access information and alarms. With cell voltage and electrolyte temperature measurements, the system enables real-time cell performance discovery and early reaction to critical production or quality disturbances such as short-circuiting, flow blockages, or electrolyte temperature excursions. Field validation shows an increase in operational performance of 30% (reaching 97%) in the detection of short circuits, which, thanks to a neural network deployed, are detected, on average, 10.5 h earlier compared to the traditional methodology. The developed system is a sustainable IoT solution, being easy to maintain after its deployment, and providing benefits of improved control and operation, increased current efficiency, and decreased maintenance costs.The authors would like to thank the Technological Corporation of Andalusia (CTA) and Atlantic Copper S.L.U. company for funding this research under projects 19/1008 and 22/1077

    무선 통신 기반의 스마트 관개 모니터링 시스템

    Get PDF
    학위논문 (석사) -- 서울대학교 대학원 : 공과대학 기계공학부, 2020. 8. 안성훈.농업은 개발 도상국들의 경제적 중추임에도 불구하고 대부분의 개발 도상국에서는 자동화된 장비나 데이터 모니터링 등의 지능형 시스템이 거의 적용되지 못한 상태에서 인력에 의해 농업의 모든 과정을 수행하고 있다. 관개는 농작물의 생산성에 결정적 영향을 미치는 필수적인 농업 공정중 하나로서, 연중 강우량의 변동에 대한 대응을 위하여 대부분의 농촌지역에는 농업용수 관개 시스템의 구축을 위해 노력하고 있다. 하지만, 이러한 인력에 의한 농업 방법에서의 관개 시스템은 스마트 센서를 이용한 모니터링 및 제어 등의 기술적 요소가 적용되지 못하여 효율적인 수자원의 활용이 제한되고 이로 인해 농작물의 생산성 또한 낮은 실정이다. 본 논문에서는 개발 도상국의 농촌 지역에서 적용 가능한 무선통신(RF: Radio Frequency) 기반의 스마트 관개 모니터링 시스템 및 요금 선불 시스템을 제안한다. 본 연구는 탄자니아 아루샤(Arusha) 지역의 응구루도토(Ngurudoto) 마을을 대상으로 수행되었다. 본 연구에서 제안하는 시스템은 기상 데이터와 토양 수분 데이터를 하이브리드로 분석하여 농업 용수의 소요를 모니터링한다. 하드웨어 시스템은 기상 측정 컨트롤러, 토양 수분 센서, 수류 센서, 솔레노이드 밸브 및 요금 선불 시스템 등으로 구성된다. 시스템의 각 센서는 무선 통신을 통해 서버로 수집된 데이터를 전송하도록 구축되었는데, 이러한 무선 통신 시스템 아키텍처는 인터넷의 운용이 제한되는 네트워크 오지 지역에 적합하도록 설계되었다. 수집된 데이터에 대한 분석 및 예측은 데이터 분석 알고리즘을 통해 수행되는데, 이를 통하여 농장에 용수를 공급할 시기 및 수량과 함께 요구되는 전력량이 자동으로 판단된다. 한편, 선불시스템은 데이터 분석 결과에 기반하여 용수 사용자가 용수를 공급받기 전에 비용을 우선 지불하도록 개발되었다. 본 시스템의 모든 센서에서 수집된 정보는 실시간으로 모니터링되도록 그래픽 기반의 사용자 인터페이스를 활용하여 정보를 제공한다. 본 연구를 통하여 개발된 무선 통신 기반 스마트 관개 모니터링 시스템은 사용자 중심의 편의성과 경제적인 관개 및 모니터링 시스템을 제공하여 개발 도상국의 경제적 기반인 농업 분야의 발전에 긍정적인 영향을 미칠것으로 기대한다.Agriculture is the backbone of the economy of most developing countries. In these countries, agriculture or farming is mostly done manually with little integration of machinery, intelligent systems and data monitoring. Irrigation is an essential process that influences crop production. The fluctuating amount of rainfall per year has led to the adaption of irrigation systems in most farms. This manual type of farming has proved to yield fair results, however, due to the absence of smart sensors monitoring methods and control, it has failed to be a better type of farming and thus leading to low harvests and draining water sources. In this paper, we introduce an RF (Radio Frequency) based Smart Irrigation Meter System and a water prepayment system in rural areas of Tanzania. Specifically, Ngurudoto area in Arusha region where it will be used as a case study for data collection. The proposed system is hybrid, comprising of both weather data (evapotranspiration) and soil moisture data. The architecture of the system has on-site weather measurement controllers, soil moisture sensors buried on the ground, water flow sensors, solenoid valve, and a prepayment system. These sensors send data to the server through wireless RF based communication architecture, which is suitable for areas where the internet is not reliable and, it is interpreted and decisions and predictions are made on the data by our data analysis algorithm. The decisions made are, when to automatically irrigate a farm and the amount of water and the power needed. Then, the user has to pay first before being supplied with water. All these sensors and water usage are monitored in real time and displaying the information on a custom built graphical user interface. The RF-based smart irrigation monitoring system has both economical and social impact on the developing countries' societies by introducing a convenient and affordable means of Irrigation system and autonomous monitoring.Chapter 1. Introduction 1 Chapter 2 Background of the study and Literature review 3 1.1.Purpose of Research 17 Chapter 3. Requirements and System Design 21 3.1. Key Components 21 3.1.1. System Architecture 21 3.1.2. The Smart Irrigation Meter 22 3.1.2. Parts of Smart Irrigation Meter 23 3.1.3. The pre-paid system and the monitoring device 26 3.2. The Monitoring Application and Cloud Server. 27 Chapter 4. Experiment Setup 30 4.1. Testing Location 30 4.2. Hardware & Software Setup 31 Chapter 5 Results and Analysis 36 5.1 Optimization and anomaly detection algorithm 36 5.1.1 Dynamic Regression Model 36 5.1.2 Nave classifier algorithm for anomaly detection. 38 Chapter 6. Conclusion 44 References 46 초 록 49Maste
    corecore