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Resumo

A Internet das Coisas (IoT) e as Cidades Inteligentes são hoje uma grande tendência,

mas com a rápida evolução destes sistemas são vários os desafios que põem em causa a

sua aceitação por parte das populações, maioritariamente devido a problemas ambientais

e de sustentabilidade. Esta Tese introduz um novo sistema composto por nós de IoT

inteligentes que são auto-configuráveis e sustentáveis suportados por de aprendizagem

automática, e o trabalho de investigação e desenvolvimento para se obter uma solução

inovadora que considera a análise de dados, comunicações sem fios e o desenvolvimento do

hardware e software. Para todos estes, os conceitos chave são introduzidos, as metodolo-

gias de investigação, testes e resultados são apresentados e discutidos, bem como todo

o desenvolvimento e implementação. Através do trabalho desenvolvido mostra-se que

as Árvores Aleatórias são a melhor escolha para análise de dados em termos da auto-

configuração do hardware e sistema de comunicações e que a computação nos nós tem

uma vantagem em termos de eficiência energética e latência. O sistema de configuração

autónoma de comunicações foi capaz de criar um nós 65% mais sustentável, em termos en-

ergéticos, comprometendo apenas em 13% a qualidade do serviço. A solução modular do

nó inteligente apresentou vantagens na integração, escalabilidade e implementação de pro-

jectos para Cidades Inteligentes quando comparado com soluções tradicionais, reduzindo

em 45% o consumo energético e 60% a troca de mensagens, sem comprometer a qualidade

do sistema. A implementação deste novo sistema irá ajudar as cidades inteligentes, em

todo o mundo, a diminuir os seus problemas ambientais e a cumprir com as normas e

regulamentos para reduzir as emissões de CO2.

Palavras-Chave: Internet das Coisas, Aprendizagem Automática, Cidades Inteligentes,

Comunicações Sem Fios, Sustentabilidade.

iii





Abstract

The Internet of Things (IoT) and Smart Cities are nowadays a big trend, but with

the proliferation of these systems several challenges start to appear and put in jeopardy

the acceptance by the population, mainly in terms of sustainability and environmental

issues. This Thesis introduces a new system composed by a modular IoT smart node that

is self-configurable and sustainable with the support of machine learning techniques, as

well as the research and development to achieve a innovative solution considering data

analysis, wireless communications and hardware and software development. For all these,

concepts are introduced, research methodologies, tests and results are presented and dis-

cussed as well as the development and implementation. The developed research and

methodology shows that Random Forest was the best choice for the data analysis in the

self-configuration of the hardware and communication systems and that Edge Computing

has an advantage in terms of energy e�ciency and latency. The autonomous commu-

nication system was able to create a 65% more sustainable node, in terms of energy

consumption, with only a 13% decrease in quality of service. The modular approach for

the smart node presented advantages in the integration, scalability and implementation

of smart cities projects when facing traditional implementations, reducing up to 45% the

energy consumption of the overall system and 60% of messages exchanged, without com-

promising the system performance. The deployment of this new system will help Smart

Cities, in a worldwide fashion, to decrease their environmental issues and comply with

rules and regulations to reduce CO2 emission.

Keywords: Internet of Things, Machine Learning, Smart Cities, Wireless Communi-

cations, Sustainability.
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CHAPTER 1

Introduction

As S. Routray and P. Sharmila [1] said “Green technologies and energy e�cient process

in Internet of Things (IoT) are well researched areas in which optimization of resources

takes the central position”. IoT is impacting the world by creating new markets and

innovation, as it connects a wide range of networks in both economy and society, requiring

innovation in information, communications and regulations [2].

In a world where natural resources, such as water, are starting to vanish and material

goods prices, like energy, are at all time highs, the need to create more e�cient processes

is a must in order to improve sustainability. To achieve this, innovations on a large scale

are required and IoT can take a major role. Combining IoT, sustainability and Machine

Learning (ML) algorithms is possible to achieve a disruptive innovation capable of saving

energy, decreasing CO2 production, minimizing costs, fewer fuels, waste reduction and

time saving.

These technologies are a↵ecting the way we live, work and play, and one of the op-

portunities that is rising is the concept of Smart Cities (SC), where thousands of sensors

are being deployed and generating massive amounts of data that is analysed to enable

city services to be more responsive to the needs of the citizens [3]. Nowadays, cities face

a variety of challenges, from job creation, economic growth, social resilience, but mainly

environmental sustainability. With cities representing 2% of the Earth’s surface and over

50% of the Earth population residing in urban areas, with an expected growth to over

60% by 2050, [4, 5, 6] urbanization has become a major characteristics of economics

and social development. Not only will this contribute for a consumption of about three-

quarter of city resources [7, 5], it will also contribute to the release of more than 80% of

CO2 emissions [6]. All of these means that managing urban areas has become one of the

most critical challenges our society faces today.

“Green Tech” appears as a need to reduce the carbon footprint, waste and to create

a more e�cient energy consumption in business and day-by-day procedures, in order to

improve sustainability [2, 8]. To achieve this, hardware and software need to embrace this

new requires where, in hardware, devices must consume less energy without compromising
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Chapter 1 Introduction

their e↵ectiveness and e�ciency, as in software, more e�cient algorithms must take into

consideration using the minimum resources required to achieve the goal while consuming

less energy [9].

Sustainability is nowadays directly linked to innovation since all around the world

people are becoming more concerned with climate changes, water shortage, clean energies

and other challenges that require the development of new products, business and services

that can lead to advances not only in environmental dimensions but also in social and

economics. New technologies such as IoT are impacting the world, with a huge research

being done in the areas of sustainability, where a wide innovation is being seen in the

approach of sustainability challenges [2]. Creating sustainability using rising technologies

allows devices, objects and processes to be more reliable, tough, autonomous and smart.

On the other hand, the proliferation of these technologies and services are creating a

new set of challenges and questions that are a↵ecting the sustainability and the security

of cities, mainly:

• Where is the data coming from and can it be trusted?

• With so many manufacturers, what are the standards for these solutions?

• Are the autonomous learning and decision systems doing the right thing?

• Is our privacy and security at risk?

• How to power all these devices?

• Are these solutions scalable?

• Where is all this data being stored?

• Is the amount of new devices and communications a↵ecting our life’s?

• What is the environmental impact of these solutions?

These problems, that come from the rapid proliferation of IoT and Smart Cities, are

still creating some resistance and mistrust in these technologies, leading to some part of

the population avoiding their acceptance.

1.1. Problem Statement

This doctoral programme consists, as its main goal, to introduce a new way of creating

generalized Wireless Sensor Network (WSN) capable of performing in distinct fields, such

as houses, pools, and agriculture, without the need to major hardware and software

changes and also adaptable without human intervention, using Artificial Intelligence (AI)

algorithms, to achieve a better e�ciency in process that can lead to savings for the final
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Chapter 1 Introduction

user, not only monetary but also in natural resources, such as water and energy, leading

to a more sustainable environment.

In order to deliver this, an adaptable IoT node will be developed, capable of perform-

ing in almost every specification or environment, including an autonomous communication

scheme, auto-sustainable and modular in terms of sensors and actuators. Also, a cross

platform dashboard will be developed to serve as a gateway between the client and the

network. This platform will gather information acquired by the WSN, storing the infor-

mation on a cloud-based server, analyzing and processing it and then create more e�cient

processes. By recurring to AI algorithms, the network will be able to adapt itself, in an

autonomous way, to create better decisions, not only in the nodes features, but also in the

action to perform facing the sensor data. For example, in an irrigation system, determine

the correct amount of water to use taking into consideration the soil moisture, type of

plants, overall weather forecast and other important input parameters, to obtain the best

automatized and sustainable (economic, social and environment) decision. By joining

these presented solutions, it will be possible to create an innovative service and a product

that can improve not only the consumption of natural and material goods but also the

user life. When compared with traditional methods, the research and development to be

considered in this doctoral program intends to obtain an a↵ordable and e�cient solution

that can be transferred to the market.

Our research, not being able to tackle every issue presented, will focus mainly on the

heterogeneous solutions for the Smart City context, sustainability, battery life and easy

scalability, as well as the development of new learning systems.

Hence, this research project was divided into three modules, that when integrated and

synchronized create a system capable of fulfilling the proposed goals. The modules are as

follows:

(1) The development of a fully modular and adaptable Wireless Sensor Network,

composed of a set of smart nodes that can adapt to any specification without

needing human intervention, in either software or hardware. This will tackle the

heterogeneous problem as a one-fits-all solution, instead of the current situation,

where new hardware is developed for each specification. Also, the scalability and

battery capacity will be tackled, as with, an adaptable network, the deployment

of new solution will be simplified and done in a more sustainable way;
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(2) The development of an autonomous configuration system for communications,

capable of tackling both device-to-device and device-to-server communication,

that will allow our WSN to be more adaptable, as it can use the best protocol

available in the installation site, improving the interoperability and availability

regardless of geography. This will not only improve our adaptability, since the

nodes will be able to communicate with the best solution every time, even if

condition change over time, but also will improve battery life of our devices and

scalability, as the installation and configuration is done autonomously;

(3) The development of the learning system, using Machine Learning algorithms, in

order to analyze, in real time, the data collected by the WSN and support all

the previous modules, improving, automatically, the system to be more e↵ective,

e�cient and reliable.

1.2. Thesis Structure and Contribution of Research

In this introductory section, we provide an overview of the problem addressed in this

thesis, as well as the thesis structure and scientific publications produced over the past

three years. Other research contributions are also presented.

In Chapter 2, we review the current state of the art in the field of IoT, Smart Cities

and how the proliferation of these is causing problems in the sustainability and general

public awareness and acceptance of these new systems. This chapter is divided into four

main sections: an introduction to IoT and Smart Cities and how they evolved in the last

few years; the enabling technologies associated with them, from devices to communication

and computing techniques; the main problems rising from this rapid proliferation; and

how the environment is being a↵ected and how more sustainable systems can help improve

that.

In Chapter 3, we presented the methodology for the learning systems that will control

the entire solution, from data analysis to the node self-configuration, based on Machine

Learning techniques. For that, after an overview of the field of Machine Learning and an

introduction to all the necessary concepts, a study was performed to understand which

were the best algorithms to implement on our solution. A training methodology was

created and tested in several applications, in order to understand if there was an overall

best technique or if for di↵erent scenarios, di↵erent approaches were needed. After that,

a comparison between cloud and edge computing was performed to understand how this
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can improve the system e↵ectiveness, e�ciency, latency and energy consumption, in terms

of data analysis. The work presented in Chapter 3 resulted in the following publications:

• A. Glória and P. Sebastião, “Comparison of Edge Computing and Cloud Com-

puting for Data Analysis in Sustainable Smart Nodes supported by Machine

Learning”, IEEE Access, 2021 (under review)

• A. Glória, M. I. Pires, J. Cardoso, J. Alves Coelho, and P. Sebastião “Drought

Prediction for Landscape Sustainable Irrigation Using Random Forest,” IEEE

10th International Conference on Intelligent Systems (IS20), 2020, pp. 10-15

• A. Glória, J. Cardoso, and P. Sebastião, “Improve Energy E�ciency of Irrigation

Systems using Smartgrid and Random Forest,” 2020 5th South-East Europe De-

sign Automation, Computer Engineering, Computer Networks and Social Media

Conference (SEEDA-CECNSM), 2020, pp. 1-6

• A. Glória and P. Sebastião, “Temperature Distribution Analyses with Wireless

Sensor Networks and Machine Learning” 2019 International Conference on Sens-

ing and Instrumentation in IoT Era (ISSI), 2019, pp. 1-6

In Chapter 4 we applied our learning system methodology to create an autonomous

communication configuration system based on Machine Learning, capable of self-configuring

IoT smart nodes with the best communication protocol based on location and available

protocols. For that, the chapter starts with an introduction to wireless communications in

IoT systems, followed by a practical study on which is the best protocol to communicate

between end devices, based on implementation environment, line of sight, distance and

transmission power. Knowing how each protocol behaves in di↵erent scenarios, it was

possible to create and test a methodology for the autonomous configuration system for

point-to-point communications, based on a Machine Learning approach. Also a method-

ology for an autonomous configuration system for cloud communications was developed

and tested. The work presented in Chapter 4 resulted in the following publications:

• A. Glória and P. Sebastião, “Autonomous Configuration of Communication Sys-

tems for IoT Smart Nodes supported by Machine Learning”, in IEEE Access,

vol. 9, pp. 75021-75034, 2021

• A. Glória, C. Diońısio, G. Simões and P. Sebastião, “LoRa Parameters Self Con-

figuration for Low Power End Devices” 2019 22nd International Symposium on

Wireless Personal Multimedia Communications (WPMC), 2019, pp. 1-6
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In Chapter 5 the development and implementation of the sustainable modular IoT

node is described, alongside with all the necessary hardware and software needed to

create the node and implement the edge computing self-configuration. Several hardware

approaches were tested, to understand which was the best computing core for the node,

as well as the modularity, in order to assess if it has advantages over a single purpose

approach. For the self-configuration, multiple Machine Learning models were developed

and tested, to create a system capable of identifying the attached modules and necessary

features. Also, the implementation of the smart nodes, its costs, power consumption and

dashboard are presented.

In Chapter 6 the developed system was integrated and tested in two Smart Cities use

cases, in order to assess the e↵ectiveness and e�ciency of our new methodology facing

the traditional methods as well as the use of our modular approach facing a standard IoT

system. For that, our system was implemented alongside the traditional method and the

standard IoT solution and the results obtained from all the approaches were compared in

terms of e↵ectiveness, e�ciency, energy consumption, installation and maintenance. The

work presented in Chapter 6 resulted in the following publications:

• A. Glória, J. Cardoso and P. Sebastião, “Sustainable Irrigation System for Farm-

ing Supported by Machine Learning and Real-Time Sensor Data”, in Sensors,

vol. 21, no. 9, p. 3079, Apr. 2021

• J. Alves Coelho, A. Glória and P. Sebastião, “Precise Water Leak Detection

using Machine Learning and Real-Time Sensor Data”, in IoT, vol. 1, no. 2, pp.

474–493, Dec. 2020

• A. Glória, C. Dionisio, G. Simões, J. Cardoso and P. Sebastião, “Water Manage-

ment for Sustainable Irrigation Systems using Internet of Things”, in Sensors,

vol. 20, no. 5, p. 1402, Mar. 2020

In Chapter 7, we conclude the thesis and discuss future directions of research.

All experiments presented in this thesis were validated using real designed hardware.

1.3. Other Scientific Contributions

During our research, we have supervised a total of seven master thesis not directly

related to the topic of this thesis. These studies are related to the use of traditional IoT

systems to create more sustainable tasks or processes. These contributions have resulted

in the following publications:
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• B. Dias, A. Glória and P. Sebastião, “Prediction of Link Quality for IoT Cloud

Communications supported by Machine Learning”, IEEEWorld AI IoT Congress,

2021

• F. Raimundo, A. Glória and P. Sebastião, “Prediction of Weather Forecast for

Smart Agriculture supported by Machine Learning, in IEEE World AI IoT Con-

gress, 2021

• J. Cardoso, A. Glória and P. Sebastião, “Improve Irrigation Timing Decision for

Agriculture using Real Time Data and Machine Learning”, 2020 International

Conference on Data Analytics for Business and Industry: Way Towards a Sus-

tainable Economy (ICDABI), 2020, pp. 1-5

• J. Cardoso, A. Glória, and P. Sebastião, “A Methodology for Sustainable Farming

Irrigation using WSN, NB-IoT and Machine Learning,” 2020 5th South-East

Europe Design Automation, Computer Engineering, Computer Networks and

Social Media Conference (SEEDA-CECNSM), 2020, pp. 1-6

• A. Glória, C. Diońısio, G. Simões, P. Sebastião, and N. Souto, “WSN Application

for Sustainable Water Management in Irrigation Systems,” 2019 IEEE 5th World

Forum on Internet of Things (WF-IoT), 2019, pp. 833-836

• C. Diońısio, G. Simões, A. Glória, P. Sebastião, and N. Souto, “Distributed

Sensing Solution for Home E�ciency Tracking,” 2019 IEEE 5th World Forum on

Internet of Things (WF-IoT), 2019, pp. 825-828

• G. Simões, C. Diońısio, A. Glória, P. Sebastião, and N. Souto, “Smart System

for Monitoring and Control of Swimming Pools,” 2019 IEEE 5th World Forum

on Internet of Things (WF-IoT), 2019, pp. 829-832

Besides the publications, during our research over the last three years we were invited

to share our research results as invited speakers in the following events:

• “Sustainable Irrigation System for Farming Supported by Machine Learning and

Real-Time Sensor Data”, in 2nd Smart Farm COLAB International Wednesday

Meeting, Torres Vedras, Portugal, June 2021

• “Tackling Sustainability Problems using IoT: An Academic and Industry Overview”,

in Webinar on Emerging Trends in ICT for Entrepreneurship and Innovation,

Beirut Arab University, Lebanon, December 2020
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• “An Approach on Sustainability using Internet-of-Things and Machine Learn-

ing”, in Workshop on Communications, Public Safety and Innovative Applica-

tions, ConfTele 2019, Lisbon, Portugal, June 2019
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CHAPTER 2

State of Art

This chapter presents a state of the art knowledge of the sustainability challenges

created with the Smart Cities proliferation by focusing on how this new reality is creating

new research challenges and how it needs to be improved in order to be fully deployed on

a worldwide level. It starts with a review on the proliferation of IoT and Smart Cities

and the technologies that composed them, including sensing, communication and data

analysis. Based on these concepts and technologies, the main research questions and

challenges are detailed and analysed, including an identification of the most important

challenges to focus on and how they can be solved. Also, some related work on sustainable

solutions already developed are described, in order to create a basis for our research and

development. Finally, a remarks section closes this chapter with a brief discussion and

conclusion taken.

2.1. The Proliferation of IoT and Smart Cities

This century is defined by the increase in urbanization throughout the world, with

more than 55% of the world’s population living in urban areas and an expected increase to

68% by 2050. Another trend that has proliferated in the last decades was the digitalization

of services, technologies and products, with an exponential growth leading the Information

and Communication Technologies (ICT) to be one of the critical aspects that enable the

daily life of millions [10].

These changes lead to the vast proliferation of IoT and Smart City projects, with tens

of billions of sensors and actuators being deployed around the world’s urban areas. As

these tend to grow exponentially, residents can interact and experience cities in a new

way, transforming communities and creating new opportunities on the economic, social,

security and sustainability aspect of those cities [10].

With these rapid proliferation, and due to the characteristics of these projects and

technologies, some challenges also appear that can put at risk the advantages and imple-

mentation of Smart Cities, being important to understand how they work and the best

way to implement them.
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2.1.1. Internet of Things

Intended to play a fundamental role in our daily lives, IoT is nowadays being more

and more incorporated into every service or product, as it increases our quality of life

[11]. Everywhere from Smart Homes, where users can control their thermostats or lights

with a Smartphone, to mail shipping, where real time sensors can tell the condition of

the package, IoT is improving the e�ciency and overall satisfaction of process that until

a few years back were done manually or not even considered [12, 13]. IoT research and

implementation has been growing in the last years, connecting real world elements and

adding intelligence and communications for smart process and autonomous decisions. IoT

is enabling di↵erent types of beneficial applications and services that can sustain our day-

by-day in ways that we never expected before [14]. For this IoT monitors and automates

through the use of sensors and actuators networks and intelligent processing units, that

share information between devices and allows them to work together to improve user

experience.

Studies from J. A. Stankovic [15] shows that IoT research and implementation main

topic focus on Transportation, Smart Houses, Smart Cities, Lifestyle, Retail, Agriculture,

Smart Factories, Supply Chain, Emergency, User Interaction, Healthcare, Culture and

Tourism. This, allied with the business layer of IoT, proves the array of possibilities that

can reach new markets in upcoming years. But for these to become reality, there is a need

to be able to connect objects, or “things”, in an easy and reliable way that can adapt to

any situation.

The literature shows a variety of ways in which IoT is composed. In 2015, A. Al-

Fuqaha et al. [16] explained that IoT can be divided into six elements [16] that help us

understand its true meaning and functionality. These are, identification, how the sensors

and actuators are identified; sensing, the ability to gather data from the environment;

communication, how devices are connected; computation, how data is analyzed; services

and semantics, how the knowledge is collected and actions are created. More recent works

divide IoT in just three or four components. M. Nasiri et al. [2], as shown in Figure 2.1,

described that IoT is divided only in things-oriented (sensors), everything that creates a

connection between a device in IoT; internet-oriented (middleware), everything connected

to the network; and semantic-oriented (knowledge), everything linked with management,

such as storage, search and data processing [11, 17].
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Figure 2.1. IoT Elements (stated by M. Nasiri et al. [2])

M. Albreem et al. [9] and R. Reddy et al. [18] state that IoT is divided in four main el-

ements: Hardware, sensors, tags and others, that collect data, actuators and transceivers,

that provide the ability to connect to the “things”; Communication, a way to transmit the

data collected and actuators functions, from the “things” to the servers, either by Internet

or other Wireless communication protocols; Middleware, for data storage and analyses,

in order to collect knowledge from the “things”; and Visualization, a way to present data

to the users, control the “things” and others via an application or dashboard.

IoT had major advances over the last years, with new compositions appearing as new

architectures, hardware, software or functionalities are included. It is safe to say that IoT

is a dynamic environment in constant change and evolution but that will always include

four major components, as shown in Figure 2.2, that are interconnected to create an IoT

system capable of having a positive impact on the site were it is implemented.

(1) Sensing: The ability to collect data from the devices;

(2) Actuation & Visualization: The ability to perform upon the environment or

interact with the users;

(3) Communication: The ability to interconnect devices with other devices or the

user;

(4) Data Analysis: The ability to gain knowledge from the collected data.
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Figure 2.2. IoT Components

2.1.2. Smart Cities

For years, cities and companies have collected large amounts of data about cities, but

those were often ruled out due to its small number of variables, low continuity in time

and limited access [6, 19]. With the advances in IoT in the last few years, with current

technologies and communication methods, this is no longer an issue, contributing to the

boost of Smart Cities (SC). Nowadays “smart” is not only having data available but

the process of closing the loop, with sensing, communicating, analyzing and actuating,

as shown in Figure 2.3 [4]. Smart Cities tend to be more and more implemented due

to urbanization of cities and the need for constant monitorization to not only prevent

certain events, but also improve citizens’ lives. For this, Smart Cities uses all the available

resources to monitor conditions, gather data through sensors and manage infrastructures.

Then uses all of the above to o↵er citizens better conditions [20].

In 2010 IBM stated [21] that SC are “the use of information and communication tech-

nology to sense, analyze and integrate the key information of core systems in running

cities”. Since then, several SC denominations appear in the literature: in 2011 K. Su et al

[22] and A. Cocchia, in 2014 [23], stated that SC is more than a digital city, when com-

bined with IoT, because SC intends to improve citizens lives through the development of

new services that impact the economic, social and political progress as well as the protec-

tion of the environment. Mitchell, et al. defines SC as a city that works in a sustainable

and smart way, integrating all its infrastructures and services into a unified process, us-

ing intelligent devices for monitoring and control, ensuring sustainability and e�ciency
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Figure 2.3. Infrastructure for Smart Cities [4]

[5]. Gartner, Inc., defines SC as ”an urbanized area where multiple sectors cooperate to

achieve sustainable outcomes through the analysis of contextual, real-time information

shared among sector-specific information and operational technology systems.” [24].

Besides all definitions, from various points of view, none was formally accepted, but all

agree that Smart Cities final aim should be to make better use of public resources while

increasing the quality of services and reducing waste, in both resources and monetary, in

order to create better environments for the citizens. Smart City must be defined as the

next big thing in the process of urbanization and digital development, with factors such

as capital, civic engagement, government and environmental issues becoming the biggest

drivers for the success of Smart Cities [5].

This emerging concept aims to disruptively enhance the e�ciency, sustainability, and

safety of urban communities, with integrated infrastructure and services, that allows

monitoring and management using intelligent devices and systems [7, 4].

The core of Smart Cities relies on a network of data collection based on IoT [25,

16], with an accurate, distributed and real time sensing platforms and high performance

communications structures, that are attached to the infrastructures of current cities. This

allows municipalities to monitor and respond to changing conditions within the community

in real-time, creating intelligent decisions and statistical correlations [26, 7].

According to [5] a Smart City can be divided into three core categories that together

create valuable solutions. The first, and the most significant, is technology, both hardware
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and software infrastructures that are the key feature in Smart City solutions, since the

correct use of ICT can lead to the enhancement of life and work as well as sustainability

within cities and their citizens. Second it is the Humans, the ones that identify the needs

for a Smart City and those who developed said solutions. Those are the end users of

Smart Cities and those who Smart Cities aim to help, so an e↵ort to involve people to use

Smart Cities solutions and take full advantage of them is critical. Lastly, there are the

Institutions or Government, since most of the Smart Cities projects will need approval

or will be supported by the city government, a set of rules and policies is fundamental to

design and implement Smart Cities projects. Another look at this division done by Zanella

et al. [27] divides the Smart Cities components into smart people, smart governance,

smart mobility, smart environment and smart living. All of these are contributing for

many city governments [24] to embrace the concept of Smart Cities in order to increase

operational e↵ectiveness and to satisfy the needs of their citizens and businesses.

Smart Cities are now more practical and productive in terms of implementation, but

there are still many areas that need more research. As H. Habibzaleb described [26]

almost none of the Smart Cities applications are static, they need to be integrated and

complement the existing infrastructures in order to function properly as a system. Data

acquisition and validation, system deployment and sustainability and privacy are some of

the main areas that need to be investigated.

2.2. Enabling Technologies

A complete service in the Smart Cities context, or a normal IoT product, is composed

of a set of modules that, when connected, create an end-to-end package. In order to

collect information from the environment and be able to act upon the same, a process

that includes gathering, transporting and analysing this information must take place.

The overall framework for intelligence in Smart Cities usually includes three levels:

Smart City and IoT infrastructure, fog computing, and cloud computing, as can be seen

in Figure 2.4. The lowest level, the IoT infrastructure, is where the sensors and devices

perceive the environment, retrieve data and send them to the fog level, since this layer

does not typically have a direct connection to the Cloud. In the fog computing level, the

transceiver receives the raw data sent from the sensors and transmits them to the cloud

computing level. Also in this level, some computation can be done, to reduce the amount

of data sent, from noise, redundant or useless information. At the cloud level, complex

and large-scale machine learning algorithms are employed to extract information from the
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data collected and learned in order to provide knowledge and improvement to the Smart

City infrastructures.

Figure 2.4. Levels of Intelligence in Smart Cities [25]

Since these are all di↵erent research areas, from Hardware, Electronics, Wireless Com-

munications to Software and Data Science, it is common to divide the projects within these

fields, with individual groups, and combine all the research at the end, in order to create

the best possible service.

2.2.1. Sensing

Ever since hardware products exist, sensor networks can be found in order to retrieve

critical information. But for decades these networks were closed or only locally accessible,

which means that data was only available when someone collects them. With the rise

of wireless communications, also the sensor networks become wireless being the perfect

solution for distributed sensing solutions that interconnect several sensors and then use

the existing communication network, such as Internet or cellular, to send data to the

servers or users, thus creating the founding basis for IoT.

IoT depends on the ability to collect, send and process data, so the need for sensor

networks is critical. These type of networks, as shown in Figure 2.5, are composed by

a number of nodes that communicate in a multi-hop way, being these nodes any device

equipped with sensors, such as smart-phones or cars or even amateur micro controllers,

as Arduino or Raspberry Pi. These must be scalable, reliable and robust. Scalable due

the high number of nodes that this network can have, reliable because in some cases these

networks can send warnings in case something is wrong and robust because sensor nodes

can be exposed to failures or bad environmental conditions [11].
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Figure 2.5. WSN Architecture

In a Smart Cities context, two categories of sensors can be defined [26, 28]. Hard

sensing is a paradigm where sensors are tailored to precisely meet the application require-

ments, meaning that sensing station are placed in specific location to measure certain

predefined parameters, with a specific architecture composed of sensors, processing, pub-

lishing and control, as shown in Figure 2.6, and that are owned by the administrator of

the service. In a more decentralized basis, soft sensors are composed of non-dedicated

sensing solutions, such as mobile phones or smart cars from the citizens or other mobile

sensors, that ensure a more veracity and e�cient sensing solution, making soft sensing

an essential component for Smart Cities. Due to miniaturization of navigation systems,

camera, accelerometer, gyroscope and microphones being the most used soft sensors, and

as mobile devices are equipped with this type of sensors, by the end of 2018 soft sensors

exceed half of the world population [29].

Figure 2.6. Components of a Smart City [26]

As shown in Figure 2.5, there are two types of nodes inside a WSN [30]:
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• Edge Devices, low power, low resource devices containing sensors or actuators,

with a single purpose of collecting data from the environment and reporting them

to the gateway;

• Gateway Devices, responsible for connecting the edge devices with the Internet,

aggregating the data sent from them and routing it to the needed service, and

vice-versa.

Since WSN are a big part of the Smart Cities context and with the amount of devices

deployed into Smart Cities projects, expected to be more than 100 billions by 2030 [9],

e↵orts to make them more “green”, mainly in terms of power and storage, is an e↵ort

with a tremendous importance.

2.2.2. Communication

IoT gains its strength from the connection with the network and with the internet

expanding further every day, with a potential 100 billions connected devices in the future,

communications are a big part of every project. New protocols are appearing and old

ones are adapting to this new reality. IoT communication can be divided in three major

components [18]:

(1) Device to Device (D2D), used within the sensor network in order to exchange data

between nodes, mainly by Wireless Communication protocols such as Bluetooth,

ZigBee, Long Range (LoRa), ESPNow, among many others. Also, some Wired

Communication protocols are still in use, as I2C, RS232/485, SPI or CAN-bus;

(2) Device to Server (D2S), used to send the gathered data from the network to the

servers, based on Internet connected services such as Wireless Fidelity (Wi-Fi),

with Message Queuing Telemetry Transport (MQTT), REST, CoAP and others,

but also Ethernet or cellular communications, such as NarrowBand IoT (NB-IoT)

or 5G;

(3) Server to Server (S2S), used to exchange data from storage to processing, for

example.

To achieve a network capable of adapting in almost every scenario a conjunction of all 3

types is necessary. The main focus is always in D2D communications, since most projects

have a central node that is connected to the Internet using MQTT as D2S, and all of the

end nodes, that can be in long range of that node, use wireless protocols to send data

to it. One of the biggest problems is the lack of coverage or reliability of communication

protocols in certain environments, mainly when comparing indoor and outdoor projects
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or city versus rural environments. In the literature, regarding WSN projects, it is possible

to see that throughout the years the preferred standards, mainly in communication, have

changed. From 2014 up to 2016, ZigBee was the chosen communication protocol for

almost every WSN project, but as stated in [31, 32], ZigBee cannot keep up with current

expectations in cost, range and power, being Low-Power Wide-Area Network (LPWAN)

protocols such as LoRa or SigFox the main successors in more current projects. Also

cellular protocols, such as NB-IoT or 5G, are being applied in solutions that eliminate the

central node, as they can send data directly to servers. WiFi and Bluetooth Low Energy

(BLE), are some of the technologies that are adapting to this new reality and are still

important features in such projects.

2.2.3. Data Analyses

Computation is one of the major components of every IoT and Smart Cities project,

as it is how everything is controlled and where decisions are made. The key role of

computation is to analyse all the information that is collected by the system and create

knowledge from them in order to understand changes in the environment.

With the recent evolution of IoT and big data analytics, Smart Cities are more and

more a reality, as more data and intelligence are easily achieved. Due to the recently

massive application of WSN projects, that attracts attention due to its amount of data

and need of self-adaption, resilience and cost-e↵ectiveness, features that can be achieved

with a proper analysis of that data, more knowledge and intelligence can be applied to

those projects. Monitoring and control systems achieve their prediction by manipulating

captured data and feeding them into machine learning algorithms.

As described, one of the major problems with the proliferation of IoT and Smart Cities

solutions is the amount of data that is being generated every minute, becoming impossible

to analyze the data manually and therefore necessary to have technologies with the ability

to interpret and process this data without human intervention, and this is how Machine

Learning arises.

Machine Learning is a perfect fit in a Smart Cities context due to the amount of data

that is created and the inability for humans to process all of it in real time. Since a

Smart City is a dynamic environment where a continuous learning mechanism is needed

for applications that are not fixed, instead evolves over time, and due to the amount of

noise and uncertainty that comes from mass data environments, the necessity to adapt,
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in real time, in order to learn and improve the analysis by itself from previous experiences

is a requirement [25].

Machine Learning gives the system the capability of learning from previous experi-

ences, being able to predict future events and create decisions based solely on data, with-

out human intervention. As more and more data or experience is available to machine

learning a more e�cient and better performance decision can be achieved [33].

As such, with the rise of Smart Cities, the data gathered by the deployed sensors

can be used, alongside advanced technologies and data analytics to improve the e�ciency

of city services and residents’ quality of life [34]. With these technological advances,

the combination of smart devices with data analytics provides Smart Cities the capacity

to interconnect all of its services, creating smarter homes, infrastructures and services,

improving their e�ciency, privacy, security and quality of live/work [35]. The application

of data analysis can be found in transportation, power and water distribution, tra�c

management, healthcare, environment and even agriculture.

2.2.4. Actuation & Visualization

With the ability of collecting, transmitting and analysing data, IoT not only is capable

of understanding what is happening but can also provide a platform for interaction with

the environment.

As IoT and Smart Cities solutions are widely growing, the need to provide an easy

way to check all the collected data, for both information systems and final users, was

necessary. With the interconnectivity of IoT systems and cloud services, with just a

simple smartphone it is possible to connect to an entire network of sensors of a Smart

City and visualize all the data and even make modifications and configurations in real

time. With web or mobile applications, and cloud services such as Amazon Web Ser-

vices, Microsoft Azure or IBM Watson providing the middleware between the network

and the visualization platform, nowadays every IoT system is not completed without an

application.

These types of visualization platforms provide access to a set of features associated

with the system, including the visualization of real time and historical data, receive alerts

and notifications about the system conditions and even perform remote modifications to

the system. Besides visualization and system configuration, it also allows for the control

of system actuators.
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With the uprising of more complex IoT projects, a new type of networks start to

appear, making use of an extra type of nodes. The Wireless Sensor and Actor Network

(WSAN) is composed by an addition of an Actor Node, a more resourceful and rich node,

equipped with better processing capabilities and higher transmission power [36]. Designed

to act upon the environment, they are usually coupled with motors, lights, or any other

actuator that can be controlled by the node.

With the visualization platforms it is possible to turn ON or OFF these actuators

in a remote way, but with the integration of data analysis, and to create autonomous

system capable of adjusting its configuration to reach a goal, it is possible to control the

actuators based on the sensor data that is collected, for example turning ON a Heating,

Ventilation and Air Conditioning (HVAC) system when the temperature rises above a

threshold value.

With the introduction of visualization platforms and actuators into IoT projects Smart

Cities are able to be a true autonomous system capable of being controlled remotely and

to adapt themselves to face any situation.

2.3. Main Issues

Smart cities are more and more part of our world, but for the complete proliferation of

these technologies and in order to make them more appealing to the average users, some

issues still need to be solved, since Smart Cities applications are not static, they need to

be integrated with other applications. New IoT solutions appear every day, but most of

the research done in these areas are not on how to create new solutions or projects but how

to approach the existing challenges. With the rapid advance in sensing, communication,

storage, embedded systems and processing power on IoT systems, and the deployment of

these solutions to millions of peoples, new challenges emerge that can potentially put in

risk the benefits of Smart Cities.

The literature [18, 9] shows that the main issues facing IoT and Smart Cities are as

follow:

• Data Provenance & Trust [37, 38, 39, 40]

• Lack of heterogeneous protocols & standards [41, 42]

• Learning Systems

• Privacy & Security [43, 44]

• Power Devices & Battery life [45, 46, 47]

• Storage
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• Amount of devices/communication

All these problems, as will be described, create concerns about the environment and

health, opening research areas in the need to create technology in green renewable ways.

2.3.1. Data Provenance & Trust

With the amount of new solutions that appear each day, with the proliferation of

inexpensive sensors, and due to the lack of structures and tags, by 2020 more than half

of the stored data will be non-useful information. So, to create better data quality,

acquisition must be complemented with structuring and tagging [26].

New data acquisition techniques are needed to ensure high-quality data, thereby in-

creasing the veracity of soft sensor data. Valuation of data and proportional incentives

(to convince users to o↵er their non-dedicated resources for use) also need to be inves-

tigated. Guaranteeing the quality of the collected data is a big issue on IoT projects.

With scarcity and irregularity of data, being some of the issues to take into account when

discussing about Smart Cities data, now the big challenge becomes the ability to process

huge amount of data, that are filled with useless or redundant sources, and extract real

useful information [6]. The heterogeneity of the current devices and sensing platform

creates a need to think in the veracity and trustworthiness of sensed data, with a need to

detect fraud and misinformation, malfunctioning sensors and misuse of devices, that can

a↵ect the data analysis as H. Habibzadeh et al. thoroughly described in [26].

2.3.2. Lack of heterogeneous protocols & standard

With the number of IoT solutions and devices increasing exponentially in the most

recent years, also the number of proprietary protocols and cloud services grows, creating

an interoperability between devices and impossibility to share data between services [48].

This “vertically services”, a closed and/or proprietary systems dedicated for a particular

task, which can be combined easily with third party components, are a big challenge

for Smart Cities, as it when an investment is made in one of these services the city is

locked into that particular vendor’s system [48]. For Smart Cities to work, open data

needs to be a reality, global data collection needs to include data from every government,

industry and general public [48]. To create new solutions, datasets need to be available

and right now, due to the lack of standardization and open data, there is a shortage of

real-world datasets to train new models and test new solutions, in order to confirm the

results obtained with simulated data [25].
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2.3.3. Learning Systems

With the amount of real time data that IoT and Smart Cities solutions generate,

preparing and processing these are critical, not only because of the lack of protocols, as

said before, and as di↵erent sensors give data in di↵erent formats, a quick and e�cient

analysis is critical [18]. Also due to integration, easy scalability and security violation in

data, this is a major challenge.

With many of the Smart City applications requiring real-time analytics, new frame-

works that support this combined with fast streaming data analytics are required [25].

But also some lightweight analyses, done directly on the end devices, is necessary and can

help improve security and privacy, since data is not transferred to the cloud [25].

Another approach needed in the learning systems is how to prevent false data to be

used to attack the Smart Cities. Validity and trustworthiness of data driven machine

learning approaches can easily be put down with the injection of false data [25], either

by replacing the sensors with false ones or by jamming the communications and replacing

the data. Learning systems need to understand if the reading received from the sensors

are real or if they are somehow tempered with.

2.3.4. Privacy & Security

If there is a number one challenge in Smart Cities it has to be privacy and security of

the data collected and how they be directly linked to the citizens, since the larger amount

of data in a Smart City environment comes from individuals who may not like to see their

data publicly available [25].

IoT systems present vulnerabilities due to its network architecture, where physical

devices collect information and transmit them via wireless connections to be processed

and stored. This provide a perfect scenario for man-in-the-middle and denial-of-service

attacks, where data is retrieved, changed or misplaced to a↵ect the solution, impacting

the security and privacy of Smart Cities [49]. Besides the wireless communication, that

are prone to jamming and/or other attacks that replace information and send false data,

also physical tampering is an issue, since the physical devices are spread outdoors and

can be easily manipulated to create false data.

The battery powered devices usually used in the IoT and Smart Cities context are

typically inexpensive and limited in terms of resources, not allowing the deployment with

advanced security features, and since Smart Cities use a dynamic networks of devices, a

centralized security network is impossible to implement [50].
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As the data flow inside a Smart City has a high level of interaction, between people,

devices and sensors, all of these components must be able to protect their data and assess

and respond to external threats, using authentication, access control, confidentiality, trust

and secure middleware. This way, not only is possible to create a secure information

system but also to provide privacy, confidentiality, integrity and availability to Smart

Cities and their users [49].

The di↵erent types and growing number of devices, applications, methods of commu-

nication, types of data and others, implies a huge amount of challenges associated with

security within IoT projects [30].

2.3.5. Power Devices & Battery life

With the rise of devices and end nodes being deployed into the growing network of

Smart Cities, one of the main concerns relies on how to power all these devices in a green

way. Energy consumption need to achieve a green reliability and a world implementation,

so IoT should be designed to be energy e�cient and reduce greenhouse e↵ects and carbon

dioxide emissions of sensors, devices, applications and services, with a lifecycle as described

in Figure 2.7 [9, 51].

Figure 2.7. Life Cycle of a Green IoT Device [9]

Changes on how to transmit and process data also are being implemented in order to

reduce the power consumption of end devices, since these are the ones that exist in higher

numbers and whose batteries need to create a concern. As described by X. Fafoutis et

al. [52] any data that is wrongly gathered, transferred, stored or processed is a potential

waste of energy.
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An IoT device must have the ability to power themselves over extended years with-

out the need to changes or recharge the batteries [53] and since battery life is limited

additional intelligence must be included to manage energy use [4], otherwise they cannot

be considered as a green device. However, transmitting data is one of the more power

hungry operations done by these devices, mainly if done over large distances, with a

need for continuous power source or frequent charging [54], thus the ability to maintain

power e�ciency while transmitting data over long distances will be an important factor

in IoT devices [55]. This also allows to reduce power by sending data to be processed in

the cloud, instead of in-device analysis, which reduces the processing power done by the

devices reducing the power consumption.

Other solutions have been presented from energy-e�cient sensing [56], duty-cycling

low power networks [57], energy-e�cient security [58] and low power operating systems

[59].

A solution for this problem can be achieved with di↵erent techniques [9] that can be

taken into consideration when developing new systems:

• Harvest the energy from the activity, avoiding additional external power sources;

• Put the nodes into idle or sleep mode when not in use;

• Use renewable energy for charging;

• Optimize the software and hardware to be energy-e�cient;

• Reduce data size, and when possible retrieval circles, to reduce the amount of

data stored.

2.3.6. Storage

In an IoT architecture, previously collected data is used to create future decisions,

based on machine learning algorithms, so storing all the collected data is essential. But

this comes with the problems that a simple IoT solution collects tons of data. With

the global spread of these solutions, storage needs to be adapted to this new reality.

Since keeping track of all sensor data for future use is imperative, addressing storage

challenges while data is growing is a must [26]. With each Smart City application needing

huge storage capabilities, although storage prices are decreasing, keeping all these data in

physical locations is not a good policy [60], as the energy cost of data transfer and storage

is about 7 kWh per terabyte per year, that corresponds to the emission of 20 kilograms

of CO2.
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Data compression into single equations can be a solution to store more data using less

space, since most of these data is produced periodically over time, making it possible to

create a regression that can represent all the data collected as well as predict future data

[60] Another solution is to have end nodes, with some computational power, with methods

such as duty-cycling or verification that can be coupled with optimization models, in order

to do some filtering to detect duplicated, irrelevant or redundant information before it

arrives at the back-end [26].

2.3.7. Amount of devices/communications

IoT and Smart Cities need devices to work as intended, with new solutions appearing

every day and replacing the previous solutions. This growing number of devices, that is

expected to reach 100 billion connected by 2030 [9], will lead to an even growing number of

malfunctions and discarded devices. Due to the lower costs of these devices and solutions,

many of them will consist of impulse buys that will end up being discarded, due to the

inability of installation or usage, connectivity or battery problems, or will be misused,

with over communication, power consumption and creation of unusable data.

This rise in the number of devices not only will increase drastically the amount of data

exchanges, with 10000 times more in 2030 than in 2010, creating more congestion on the

communication networks, but will also take a big impact on the carbon emissions into

the environment [9]. The fast scalability of Smart Cities and its devices will have some

critical issues in terms of environmental impact, with an exceptional amount of carbon

emissions into the environment, with an expected 345 million tons of CO2 already created

until 2020, just for the communication and data exchange [9, 61, 62].

2.4. Environmental Impact & Challenges

In order to be deployed in a worldwide fashion, Smart Cities need to decrease this

environmental and health issue, as cities nowadays are faced with rules and regulations

to reduce CO2 emission or fines if they do not comply.

As described in the previous issues, with the rapid proliferation of Smart Cities, it

is expected that the rise of short-term use devices and lack of compatibility between

manufactures will create a massive amount of device disposals; and that the massive use

of these devices, as well as the need to store the massive amount of data, that increase

the need for communications, infrastructure and maintenance, will generate tons of CO2

being release into the atmosphere every minute.
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In 2015, all the United Nations Member States approved the 2030 Agenda for Sustain-

able Development, providing ”a shared blueprint for peace and prosperity for people and

the planet, now and into the future” [63]. To achieve this they created 17 Sustainable

Development Goals (SDGs), each focusing on an urgent call for action, from poverty,

education, economic growth and the environment, with a set of strategies to improve or

mitigate the problems associated with each of these.

And the sustainability of cities and communities is focused on the 11th SDG. With the

goal of ”Making cities and human settlements inclusive, safe, resilient and sustainable”,

through the reduction of disaster risks, sustainable transport and cities [64]. To achieve

these goals, this directive supports the use of technology and smart devices, in order to

create autonomous mechanisms capable of improving the decision processes and reduce,

or at least minimize, the situations where unsustainable events might occur.

But technology can not be the answer to sustainability, if that same technology con-

tributes to the creation of unsustainable actions, for example, more CO2 emissions. As

such the challenge for new products and the deployment of these services into Smart

Cities is that, not only they need to innovate and impact the processes inside cities, but

they also must do it with the ambition or with regulations to achieve a reduction is terms

of costs, carbon emissions, water consumption, use of plastics, among many other, facing

the previous systems.
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CHAPTER 3

Learning Systems

This chapter presents the research and developed solutions for the learning systems

supported by Machine Learning. It starts with an overview on the research, containing

the related work found in the literature, followed by an explanation of some of the most

important definitions, including all the Machine Learning techniques and algorithms used

as well as an introduction to cloud and edge computing. With all the definitions intro-

duced, this chapter continues with the research done to find the best algorithm for each of

the techniques presented, detailing the methodology followed, the scenarios dataset and

tests performed and finally the obtained results and remarks. The last section of this

chapter presents a study of the feasibility of porting a cloud computing model to an edge

computing model, in order to assess not only if it is possible to run a full size model on a

microcontroller, but also how it can be done, which modifications are needed, and how it

a↵ects the quality of the model. Once again, the methodology, test scenarios and results

are presented and detailed. Finally, a remarks section closes this chapter with a brief

discussion and conclusion of the topics and results given in this chapter.

3.1. Overview

Data processing requires large amounts of data, something that WSN and Smart

Cities applications can provide, making the conjunction of those areas a very promising

field for research. With the inability of humans to process all of this data in real time,

Machine Learning can help improve, adapt and learn from the collected data. As Smart

Cities are a dynamic environment where a continuous learning mechanism is needed since

applications evolve over time, instead of being fixed, the analysis of the amount of noise

and uncertainty that comes from mass data environments can be heavily supported by

Machine Learning.

Sustainability can be largely improved by artificial intelligence algorithms, including

prediction and deep learning algorithms, as it provides a way to analyze the gathered data

in order to modify the systems behaviors to be more e�cient and reliable. For example,

see if the amount of water used by the irrigation system is enough to maintain the garden

or crops healthy and if so apply the same amount to every system with similar conditions,
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or understanding that the communication protocol used has a high packet loss rate in

the current conditions and change the used protocol for that node. With this analysis,

it is possible to give the client a system that can really adapt itself to every condition or

specification in real time.

Machine Learning is the field focused on building applications that learn from data

and improve their accuracy over time without being programmed to do so. The algorithms

are ‘trained’ to inspect data and search for patterns in order to achieve better decisions,

combining data with statistical tools to predict an output. The idea is that the systems

learn automatically, with as minimal human intervention as possible [65, 66].

Machine Learning and IoT are two fields that are more and more dependent on each

other. With several studies conducted using Machine Learning techniques, it can be ap-

plied to anything from tra�c light control, to smart farms, health care or industrial IoT.

As our research is focused on learning systems for IoT, sustainability and wireless commu-

nications, and since the main goal of this thesis is to develop a system that is completely

supported by Machine Learning algorithms, those were the focused areas when reviewing

the literature to understand which were the best techniques, models and methodologies.

3.1.1. Machine Learning Techniques

Machine Learning techniques can be divided into three major categories: supervised,

unsupervised and reinforced; each of them designed to tackle di↵erent situations and types

of data.

For supervised learning, the goal is to train the model using a known output, so a

dataset containing the the input and target values is used, being these values used to find

a mapping function that can correlate the input and output values [67].

Contrarily, unsupervised training only knows the input data, being these not labeled

or classified. The goal of the model is to find patterns, distributions of categories among

these data, usually in terms of clustering [67].

Finally, in reinforced learning the goal is to train the model based on rewards facing

the output. For each interaction, the model is rewarded and retrained based on that

reward, allowing the model to learn based on the best interactions [67].

Based on the proposed methodology for the developed system, our focus will be in

supervised learning, since our models will also work based on previous known data. Inside

supervised learning, both classifications and regressions will be used.
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3.1.1.1. Classification. In regards to classification methods, this one is known for its

goal of approximating a mapping function from the inputs given by the dataset, in order

to identify the output values. In (3.1) is shown the followed function by this method,

where f is the mapping function, x the input value and y the output value [68].

y(f : x ! y) (3.1)

To evaluate the model performance, for classification, the Accuracy metric will be

used, as it is the most common metric for classification. It measures the fraction of

predictions the model got right, using (3.2).

Accuracy [%] =
Number of correct predictions

Total predictions
(3.2)

3.1.1.2. Regression. Regression analysis is used as a technique for prediction, by search-

ing the relationship between a dependent (target) and independent variable (s). As the

training data is independently selected from the original dataset, the mean-squared error

for a predictor variable X for the class y can be estimated by (3.3) [69].

E

X,y

(y �X)2 (3.3)

To evaluate the model performance, for regression, the Mean Absolute Error (MAE)

metric will be used, as it is the most common metric for regression. It measures the

average absolute error between the real data and the estimated value, using (3.4) [70],

where P

rx

is the real value, P̂
rx

is the estimated value, and N the number of samples.

MAE =
1

N

.

NX

i=1

|P
rxi � P̂

rxi | (3.4)

The estimated data nearly matched the real data when MAE is near 0.

3.1.2. Machine Learning Algorithms

In our literature review, and following the work done by [71], that did a comprehensive

review of Machine Learning models for Smart Cities and sustainability, some techniques

were highlighted as the most used, and the ones with best results, in the supervised

learning area, for both classification and regression. Those included Linear Regression,

Decision Trees, Random Forest, Neural Networks and Support Vector Machines.
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3.1.2.1. Linear Regression. Linear Regression (LR) are the simplest methods to pre-

dict data, being adopted by Machine Learning as they came from the statistical world. It

performs the task to predict a dependent variable value (y) based on a given independent

variable (x). With this, it creates a simple linear relationship between the input and

output, that can be presented in an equation as y = A + B ⇥ x, also called a plane or

hyper-plane, as shown in Figure 3.1, being A and B the coe�cients that the regression

will define to characterize the output based on the input [66]. Besides being marked as

ine�cient and inaccurate by researchers [66], when compared to other Machine Learn-

ing techniques, is still commonly used for scoring modelling, since it gives a logistics

distribution of the data.

Figure 3.1. Linear Regression Working Logic

3.1.2.2. Decision Tree. Decision Tree (DT) are tree-based methods in which each

path begins in a root node and multiple divisions are made, as can be seen in Figure 3.2,

through a hierarchical partition of training data, taking into account the dataset. This

creates sub-trees based on a certain features used to split the data, representing a sequence

of data divisions, with this split being done iteratively until it reach a leaf node with an

outcome, containing the number of records that can be used to classify the data [66].

These methods can be applied for classification and regression. The final goal of this

method is to reach a model that can predict the search value for that specific scenario by

learning simple decision rules [50].

3.1.2.3. Random Forest. Random Forest (RF) is a decision tree method, developed

for classification and regression [69] and is composed by a large number of trees, each

voting for the final outcome, being the final result determined by a majority vote from all
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Figure 3.2. Decision Tree Working Logic

decision trees [72], as shown in Figure 3.3. With a great performance in predictive tasks,

it is ideal for analyzing large numbers of parameters [73], even with small datasets, being

highly applicable for classification problems. Random Forest incorporates the process of

aggregation, bagging and Decision Trees, with a selection of a subset of features from each

node of the tree, avoiding the correlation in the bootstrapped set [66]. The generated

forest can also get great performance when new data is added [74].

Figure 3.3. Random Forest Working Logic

3.1.2.4. Neural Networks. Neural Networks (NN) algorithms are defined as computa-

tional models of the neural system composed of several neurons connected one to the other

by synapses, in the same way as the human nervous system. Each of the neurons analyzes

parts of the input and sends the information to the next layer and neurons continuously,

until it is able to reach a valid output [66]. This process continues until a final output is
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found. It is ideally used in nonlinear and complex problems which require large compu-

tational power and has some disadvantages when working with IoT systems due to low

complex and low power devices [50]. In this case, Multilayer Perceptron (MLP), a vari-

ation of the neural network algorithm which consists of multiple neurons organized into

layers [75], was used. These MLP networks are characterized by being general-purpose,

flexible and non-linear. Their complexity can be changed according to their application

by varying the number of layers and units of each layer, as can be seen in Figure 3.4.

Figure 3.4. MLP Working Logic

3.1.2.5. Support Vector Machines. Support Vector Machines (SVM) use a hyper-

plane to create a decision boundary, as seen in Figure 3.5, in order to separate di↵erent

classes of objects. Used for classification and regression, it uses complex mathematical

functions to create this hyperplane and be able to assign the members of each class [33].

To discover the position of the hyperplane it uses a small subset of vectors from the

training data, the support vectors, that define the edge of the class [76]. Mostly used for

classification, since it can divide a dataset into classes, it lacks some probability estimate,

mainly when large or more complex datasets are used [33].

Figure 3.5. SVM Working Logic
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3.1.3. Computing Techniques

With the increase of data providing from IoT devices and with the need to analyse

and store all this data, computing emerges as one of the major roles in IoT services

[16, 2, 9]. Computation represents the brain and computational ability of IoT, using

hardware processing (e.g, microcontrollers, microprocessors, system on chips (SoCs)) and

software or cloud applications to perform tasks [16].

As shown in Figure 3.6, there are three essential layers in an IoT project regarding

computation [77]:

• Layer 1 – Sensors: formed by the IoT devices and its users, that are responsible

for gathering information and performing operations upon the environment;

• Layer 2 – Edge Nodes: formed by more powerful nodes, in terms of computational

power and features, that are responsible for maintaining the nodes networks,

message exchange, storing data, data processing and some calculations;

• Layer 3 – Cloud Services: formed by cloud nodes that have higher computa-

tional requirements, such as Machine Learning, Business Intelligence, Big Data

analytics, and visualization.

Figure 3.6. Computation Layers in IoT

With the proliferation of IoT and Smart Cities, the Cloud Computing techniques used

in past years start to prove to have some limitations [78], so new techniques have emerged,

such as Edge Computing, to improve cloud services.

3.1.3.1. Cloud Computing. With the increase of IT solutions over the last decades,

Cloud Computing (CC) services provide easy, high performance computation with a low

investment on servers, since cloud computing works on remote central cloud base servers.
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As long as a device has an internet connection, it is able to send requests to the cloud

and take advantage of all the available services, such as computing or storage, allowing

also the connection between devices and services in di↵erent networks [79].

3.1.3.2. Edge Computing. With the proliferation of IoT devices, the need to reduce

latency in data analysis, in typical remote central cloud base computation services, allow

the adaptation of end devices to perform some of this computation, thus creating the

Edge Computing (EC) [80]. EC solves some challenges of managing systems on a central

cloud, such as response time, security and quality of service, by executing tasks closer to

the IoT devices, with management, storage, data analysis and decision making being done

directly on multiple edge nodes inside the network [77]. These interconnected devices and

EC techniques prevent overload of computer processes, as well as, obstructions in the flow

of data and the services that are sent or requested to the cloud [78].

3.2. Comparison of Machine Learning Algorithms for Data Analysis

In the literature it is possible to find several studies comparing Machine Learning

algorithms, but none focusing on multiple outputs or scenarios and each one using a

di↵erent methodology, making it almost impossible to compare among them which is the

best algorithm overall.

Despite those studies, that individually provide good research when focusing on a

particular field or output, our goal is to analyse the same algorithms under the same

methodology, for multiple scenarios, in order to understand which is the model that has

an overall advantage and that can be used in a modular and adaptable solution.

3.2.1. Methodology

To evaluate which are the best Machine Learning algorithms that fit our goal of

evaluating data retrieved by sensor networks in order to predict outcomes in real time,

each of the models was tested using following methodology:

(1) For each algorithm a model was trained using the corresponding dataset and the

default configuration parameters. This allowed for a quick comparison of the

performance, in terms of both accuracy and margin of error, of each model and

understanding which are more likely to guarantee best results and which need to

be improved to achieve them. The scikit-learn, an open source Machine Learning

library developed for Python implementation [81], was the selected framework for

the development of the Machine Learning models in the Anaconda environment.
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(2) The obtained model for each algorithm was then submitted into an hyperparametriza-

tion tuning, that compares the model performance using di↵erent model config-

urations parameters, to understand which is the configuration that obtains the

best performance, facing the dataset and the goal. For this, a method provided

by scikit-learn called RandomizedSearchCV was used, which performs the fit

and training of the algorithm under study, calculating which parameters are best

suited to it [82];

(3) To guarantee that the model is stable, after finding the best configuration and

training the model, a Stratified K-Fold cross validation is performed, in order to

guarantee that the model is not under or over-fitted. Using five folds, it is possible

to use a di↵erent set of training and validation data on each fold, allowing for

the model to check on every single datapoint. This way, it is possible to really

understand the model performance, as each of the fold will produce a result, that

is average at the end, allowing for a reduced error margin and variation, as more

data is used to fit the model;

This methodology will, not only, be used to evaluate the algorithms presented in

Section 3.1.2, but is also the methodology that will be followed for every learning system

implementation used in this thesis.

3.2.2. Test Scenarios

The learning systems based on Machine Learning approaches are the basis for the

entire solution presented in this thesis, not only in terms of self-configuration and au-

tonomous maintenance of the system hardware, but also to help achieve the purpose in

which they are installed in a real world scenario, analysing data in real time and deciding

how to improve the e�ciency of those tasks, mainly in a sustainable way.

As this solution can be implemented in multiple scenarios, each one using di↵erent data

and needing di↵erent outcomes, the option by one single solution for the learning system

could imply that in some scenarios it will have great results, but it can underperform in

many others. As such, and to have a better understanding of which models work better

in as many situations as possible or if a di↵erent approach for each scenario is needed,

the evaluation of the Machine Learning models was performed for multiple specifications

and di↵erent datasets and goals, in both regressions and classification problems.

The main problem with this particular methodology, is the need to have large datasets

to train and test the learning systems. Although datasets are available online, it is hard

35



Chapter 3 Learning Systems

to find those who target sustainability or have the required parameters needed, mainly in

terms of communication schemes.

To overcome that di�culty and train the models with data as close as possible to

the one that will be gathered by our hardware, when open-sourced data or previously

gathered datasets were not available, the datasets were chosen between the ones available

inside the IoT research group led by Prof. Pedro Sebastião, in which I co-supervised a

set of master students, as they use a similar architecture, in terms of hardware, sensors

and communication, guaranteeing that the data can be reliable and that it will fit our

methodology and framework.

The chosen scenarios can be found in Table 3.1 and include an HVAC operation

dataset, to understand if the system is ON or OFF based on the temperature in multiple

points; a water flow dataset, to detect leaks in the pipelines; an agricultural field conditions

dataset, to adjust the irrigation hour based on the soil humidity conditions; a weather

dataset, to forecast future conditions; a smart grid dataset, to predict the energy usage

inside a house; and a wireless communication data transfer dataset, to predict the signal

strength. Each of these are described in Appendix A, each including how the dataset was

composed, the goal for the model and how it can correlate with our approach.

Table 3.1. Learning System Test Scenarios

Scenario Dataset Provenance Number of Entries

HVAC System Operation Detection Sensor Data Collection [83] 1000

Water Leak Detection Master Thesis [84] 5607

Agricultural Irrigation Hour Master Thesis [85] 105217

Weather Conditions Online [86] 52609

SmartGrid House Consumption Online [87] 1051200

Communication Strength Signal Online [88] 878289

3.2.3. Results

To train, validate and test the models, in each scenario the presented dataset was

divided into three groups: 70% for training, 20% for validation and 10% for testing. For

each scenario the results and time of training will be discussed as well as how they are

influenced by the size of the dataset.

The accuracy results obtained for each model, for default, hyperparametrization and

cross-validation, can be seen in Table B1, B2 and B3, respectively. As can be seen,

the accuracy values of each algorithm trained were quite varied, which allowed us to see
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which were best suited to the dataset and application under study. Figure 3.7 shows an

aggregation of the results from the tables in the appendix.

Figure 3.7. Classification Results

The first thing to notice, in all models, is that the hyperparametrization values always

have the higher accuracy, followed by the cross-validation values and finally the default

values. This is justified by the methodology followed, as the default model in the first

step is tuned to improve the default result, obtaining always a better result. Then, in

the cross-validation step, as multiple combinations of the dataset are tested, and the

accuracy for each fold is averaged, it is expected that the accuracy decreases. Although

this happens, the cross-validation results are the ones that allow a better knowledge of

the model accuracy, as it was exposed to a higher variety of unknown data.

Considering only the cross-validation results, as they are the ones best fitted to evalu-

ate the model accuracy, the best model for classification is Random Forest, the dark blue

line in the graph, being the best solution for two out of the three scenarios, by almost 3%

in accuracy, and being the second best in the remaining scenario, with under 1% di↵erence

in accuracy. The other models have almost a similar pattern among all scenarios, with

SVM being the worst solution in all three tests.
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Furthermore, this test allows the comparison of the results in terms of the dataset size.

Regarding the results from the first tested scenarios, with all models over 98% accuracy

and little to none di↵erence between them and between default and cross-validation, it

is possible to associate the good results obtained with an overfitted model obtained from

the lack of data to test and validate the trained model. The other two scenarios, with

larger datasets, showed more diverse results among all models, and also a lower accuracy

result.

The size of the dataset also influenced the time it takes to train and generate the best

model for each algorithm. Table 3.2 shows the time it takes to train each model for the

fully followed methodology, as well as the time to train only the best configuration for

the model.

Table 3.2. Classification Time Results

Scenario

Time [min (seg)]

Random Neural Decision

SVM Forest Network Tree

HVAC 1 (1) 2 (1) 2 (1) 1 (1)

Leak Detection 6 (3) 5 (3) 8 (5) 2 (1)

Irrigation Hour 350 (180) 250 (64) 320 (180) 3 (5)

As in the classification accuracy the number of entries in the dataset a↵ects the training

time. In the first scenario, with the smaller dataset, it was almost instantaneous to

train each model, with less than 2 minutes each, and only one second to train the best

configuration. The last scenario, with over 100000 samples, takes almost 6 hours to train

the model, and 180 seconds to train the best configuration, in the worst scenario.

Comparing each algorithm, it is possible to conclude that the Decision Trees are the

ones that take less time to fully train and configure, even with larger datasets, with only

3 minutes needed in the worst scenario. Random Forest is the second quickest to train,

on all scenarios, being SVM and NN the worst in all scenarios.

Taking into consideration the accuracy and time results obtained for each scenario, it

is possible to establish that Random Forest is the best solution for classification problems.

Continuing our research for the regression scenarios, the MAE results obtained for each

model, for default, hyperparametrization and cross-validation, can be seen in Table B4, B5

and B6, respectively. Contrarily to the classification results, that the accuracy is always

between 0 and 100%, the MAE results do not have boundaries, and vary from scenario
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to scenario based on the data provided, and as such it is harder to compare among them,

and to properly display them, two graphs were needed, as shown in Figure 3.8.

Figure 3.8. Regression Results

As in the classification scenario, and since the methodology is the same, only the cross-

validation results were considered when comparing the di↵erent algorithms. As said, each

test has its range of values and measure, so it is harder to compare the results among

them. Nevertheless, it is easy to understand that Random Forest is the best overall model

for Regression, as it provides the best solution for three out of five scenarios and it is the

second best for the remaining two scenarios, in a close margin with Decision Trees. Linear

Regression proves to be the worst solution in all scenarios.

Once again, the dataset size influences the model train time, and the obtained results

can be found in Table 3.3.

Comparing each algorithm, it is possible to conclude that Linear Regressions are the

ones that take less time to fully train and configure, even with larger datasets, with only

22 minutes needed in the worst scenario, although, it also provides the worst results in

terms of MAE. Decision Trees and Random Forest are the second quickest to train, with

similar results on all scenarios.
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Table 3.3. Regression Time Results

Scenario

Time [min (seg)]

Linear Random Neural Decision

Regression Forest Network Tree

Temperature 2 (2) 11 (15) 4 (5) 12 (8)

Humidity 2 (2) 10 (15) 5 (5) 11 (8)

Precipitation 1 (2) 11 (15) 4 (5) 10 (8)

SmartGrid 22 (10) 34 (25) 125 (120) 30 (20)

Communications 14 (20) 32 (38) 68 (120) 21 (30)

Taking into consideration the MAE and time results obtained for each scenario, it is

possible to establish that Random Forest is the best solution for regression problems, with

Decision Trees having almost similar overall results.

3.3. Comparison of Edge and Cloud Computing for Data Analysis

With the best supervised learning algorithm selected for both classification and re-

gression, the next goal was to study how these models perform when ported to a Cloud

and Edge computing architecture.

The trained models in Anaconda are already ready to port to a Python file that will

run in a Cloud Computing script, having the same performance found in the tests done

in Section 3.2. But for the Edge Computing script, that will run on the microcontrollers,

the model needs to be ported into a C file. Due to the limited Flash in these devices,

usually with 8MB or less, the model needs to be adjusted to create a smaller size, and

those adjustments can lead to a lower accuracy or higher margins of error.

The goal of this section is to understand the impacts of porting a model to an Edge

Computing architecture in accuracy, file size, latency and power consumption needed to

perform an analysis.

3.3.1. Accuracy & File Size

To evaluate whether an edge computing approach a↵ects the quality of the model,

two of the previously tested models were used, the Irrigation Timing, for classification,

and the Communication Signal Strength, for regression. To port the trained model for an

edge computing model, the micromlgen library [89] was used, creating an C file capable

of running in the microprocessor.

Regarding the classification model, the best Random Forest configuration achieved

used the following parameters:
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• Number of Estimators: 212

• Split Criteria: gini

• Minimum Split Samples: 10

• Maximum Depth: 196

This model achieved a 85.49% accuracy and file size, after porting, of 559MB. As

discussed, to be able to run in a microprocessor, which normally has up to 8MB of Flash

Memory, the ported model needs to be under 4MB, so the model needs to be optimized.

First, the features type was evaluated and adjusted, in order to reduce the amount of

space needed to store and analyze them. Table 3.4, shows the initial and adjusted data

type.

Table 3.4. Irrigation Time Features Data Type

Feature Initial Adjusted

Year int64 int8

Month int64 int8

Day int64 int8

Hour int64 int8

Temperature float64 float32

Relative Humidity float64 float16

Total Precipitation Low float64 float32

Wind Speed float64 float16

Wind Direction float64 float32

Soil Humidity float64 float16

Had Irrigation int64 int8

Need Irrigation int64 int8

Is Favorable int64 int8

Suggested hour int64 int8

After adjusting the features data type, the model was retrained and ported, achieving

an accuracy of 85.49% accuracy and file size of 559MB, exactly the same results as before.

It is possible to conclude that the feature data type does not influence either the accuracy

or size of the model.

Following with the evaluation, the number of trees in the model, i.e. number of

estimators, was the next configuration tested. The goal is to decrease the number of

estimators and check the impact in both accuracy and size of the model. Table 3.5 shows

the obtained results.
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Table 3.5. Estimators Impact on Ported Classification Model

Feature Results

Estimators
100 50 25 10 5

(-52.83%) (-76.42%) (-88.21%) (-95.28%) (-97.64%)

Depth
196 196 196 196 196

(0.00%) (0.00%) (0.00%) (0.00%) (0.00%)

Accuracy [%]
85.33 85.17 85 84.42 83.09

(-0.19%) (-0.37%) (-0.57%) (-1.25%) (-2.81%)

Size [MB]
263 132 66.1 26.8 13.3

(-52.95%) (-76.39%) (-88.18%) (-95.21%) (-97.62%)

It is possible to determine that reducing the number of trees, or estimators, in a

Random Forest model will create a file that is almost proportionally reduced in terms of

size, with half the trees creating half the size and with less 97% of estimators the output

file is 97% smaller. It is also possible to assess that the reduction of estimators does not

have a major e↵ect on the model accuracy, with only a 3% decrease in accuracy when

using 97% less trees. As such, reducing the amount of trees in a Random Forest model

is a good way to reduce the file size for an edge computing model without compromising

its accuracy and e�ciency.

Although reducing the number of estimators can reduce proportionally the size of the

model, without a major e↵ect on the accuracy, the size of the model is still too big to

work on a microprocessor. Without the possibility to reduce even more the number of

estimators, the depth of each tree was the next parameter to assess on how it impacts the

model accuracy and size. As for the number of estimators, the reduction of depth was

performed on the best model, i.e., without changing the number of estimators or using

the best result from the previous test. Table 3.6 shows the obtained results.

Contrarily to the estimator approach, reducing the depth of each tree in the Random

Forest model does not proportionally a↵ect the file size. Although, when a smaller depth

is used, the file size can be reduced by up to 99%. Despite that capability of reducing

the file size, when the depth of the model is reduced it has a higher impact on model

accuracy, with a 10% lower result, compared with the best model, which is 7% higher

than when reducing the number of estimators, for a similar file size output. As such, to
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Table 3.6. Depth Impact on Ported Classification Model

Feature Results

Estimators
212 212 212

(0.00%) (0.00%) (0.00%)

Depth
20 10 5

(-89.80%) (-94.4%) (-97.45%)

Accuracy [%]
85.32 80.97 76.59

(-0.20%) (-5.29%) (-10.41%)

Size [MB]
494 43.3 1.62

(-11.63%) (-92.25%) (-99.71%)

reduce the model size, reducing the depth of a Random Forest is equally good as reducing

the number of estimators, but it has a higher influence on model accuracy and e�ciency.

Retraining with a new depth configuration allows the model to run in a microcontroller

but also has a higher impact on the accuracy, when compared to the estimator approach.

As reducing the number of estimators allows for maintaining the model accuracy and

reducing the depth allows for a smaller file, an approach where both values are reduced

can result in a small file without a higher drop in accuracy. For that, the best configuration

from both approaches were combined, and the result can be found in Table 3.7.

Table 3.7. Hybrid Approach Impact on Ported Classification Model

Feature Results

Estimators
25 10 5 25 10 5

(-88.21%) (-95.28%) (-97.64%) (-88.21%) (-95.28%) (-97.64%)

Depth
10 10 10 5 5 5

(-94.90%) (-94.90%) (-94.90%) (-97.45%) (-97.45%) (-97.45%)

Accuracy [%]
80.9 80.47 80 80.17 74.48 75.25

(-5.37%) (-5.87%) (-6.42%) (-6.22%) (-12.88%) (-11.98%)

Size [MB]
5.14 2.09 0.995 0.192 0.0773 0.0388

(-99.08%) (-99.63%) (-99.82%) (-99.97%) (-99.99%) (-99.99%)
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Following an hybrid approach of reducing both estimators and depth it is possible to

obtain a model file with an acceptable size and with a smaller loss in accuracy, when

compared with the depth approach. Using 95% less estimators and depth is possible to

achieve a 99% smaller file, almost the same as in the depth approach, with only a 5%

decrease in accuracy, which is 5% less lost than in the depth approach. If an even smaller

file is needed, re-adjusting the configuration, it is possible to achieve a 99.99% smaller file

with a 6% decrease in accuracy.

Thus, it is possible to conclude that tweaking these parameters allows for a fully

trained model to be ported to a microcontroller without compromising its integrity, and

that it can be adjusted to fulfil the best scenario needed.

To understand if this approach has the same results on both classification and re-

gression models, it was applied to the previously trained Communication Signal Strength

scenario. For that, the best Random Forest configuration was achieved with the following

parameters:

• Number of Estimators: 200

• Split Criteria: mse

• Minimum Split Samples: sqrt

• Maximum Depth: 63

This model achieved a MSE of 7.187 dBm and file size, after porting, of 3843MB. As

the previous model, this size is too large to run on a microcontroller.

Using the same approach, of reducing both the number of estimators and depth, the

MSE and file size obtained are presented in Table 3.8.

As in the classification model, the Random Forest regression follows the same path

when reducing the number of estimators and depth, with a 99% smaller file when using

95% less estimators and depth. In this scenario, there was not an accuracy to compare

and to model between 0-100%, since MSE is a real number (R), so only the variation

of the MSE, facing the best value, was accountable. As such, with a 99% smaller file

a 27% higher variation of MSE was obtained, accounting for almost 2 dBm, which is

still an acceptable value for the regression. As in the previous test, if a small file is

needed, tweaking with the configurations is possible to achieve a 99.999% smaller file,

compromising only more 4% of the MSE.

This shows that the approach for creating edge computing models from cloud com-

puting models is possible and that can be applied for both classification and regressions,
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Table 3.8. Hybrid Approach Impact on Ported Regression Model

Feature Results

Estimators
25 10 5 25 10 5

(-88.21%) (-95.28%) (-97.64%) (-88.21%) (-95.28%) (-97.64%)

Depth
10 10 10 5 5 5

(-94.90%) (-94.90%) (-94.90%) (-97.45%) (-97.45%) (-97.45%)

MSE [dBm]
9.131 9.137 9.104 9.422 9.435 9.44

(-27.05%) (-27.13%) (-26.67%) (-31.10%) (-31.28%) (-31.35%)

Size [MB]
7.15 2.85 1.4 0.182 0.0766 0.0389

(-99.81%) (-99.93%) (-99.96%) (-99.995%) (-99.998%) (-99.999%)

using Random Forest, creating small files that mimic the model, and run inside microcon-

trollers, without compromising its accuracy. Although some quality is lost, it is impor-

tant to notice that this will allow for systems to decide in real-time, without depending

on third-party computing and exchange of messages, and the latency involved, being an

excellent solution for non-critical decisions or for solutions without network capabilities

or running on batteries. Also, these edge computing decisions can always be backed with

a cloud computing analysis when needed.

3.3.2. Analysis Time & Power Consumption

As described in the previous section, Edge Computing allows the decision to be made in

real-time directly in the device, without further messages or third-party decisions, allowing

the reduction of latency in the decision. Our research showed that the Edge Computing

models have a 6% decrease in accuracy, when facing the same Cloud Computing model,

due to the need for the model to be ported to a smaller file, which can only be done by

adjusting the model parameters, such as depth and number of estimators.

To understand if this decrease in accuracy can be compensated by the decrease in

latency, that allows for quicker decisions, or the decrease of exchanged messages, that

allows for less energy being used in the node, the Irrigation Timing model, used in the last

section, was implemented, in both Cloud and Edge Computing, to evaluate the analysis

time and power consumption of each model, as well as the accuracy of the model. In
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Table 3.9 the obtained accuracy and file sizes for the Cloud and Edge Computing models

are shown.

Table 3.9. Irrigation Timing Model Specifications

Model Accuracy [%] File Size [MB]

Cloud Computing 85.49 559

Edge Computing 80.47 2.09

To deploy the models two nodes were simulated using the ESP32-DevKitC-v4, a devel-

opment board that includes the ESP32 microcontroller, 4MB of Flash and WiFi connec-

tivity. In the first, the Cloud Computing methodology was implemented, being the node

responsible for sending a request to the cloud for the model result and waiting for the re-

sponse, whereas, in the second node, the Edge Computing methodology was implemented,

being the model decision made directly on the node. On both nodes, the necessary data

for each model analysis, the sensor data, was simulated using random values that fit the

normal values found in the used dataset.

The simulation for each model was performed 50 times and for each of these decisions,

the accuracy, the time elapsed between the request and the result, the average power con-

sumption in this time and the number of messages exchanged were evaluated. Table 3.10

shows the obtained results.

Table 3.10. Analysis Time & Power Consumption Results

Model
Accuracy Average Average Average Messages

[%] Time [µs] Energy [mA] Exchanged

Cloud Computing 83.31 238153 122 2

Edge Computing 78.93 313 57 0

In terms of accuracy, it is possible to conclude that in both scenarios the behavior is

the same, both decreasing around 2% in accuracy, so, when considering only the model

accuracy, Cloud Computing has an advantage, as already concluded before.

It is on the other results that Edge Computing shows its advantages and compensates

for the lower accuracy. In terms of latency, the time between the decision being asked and

the result being available, although Cloud Computing needs only 238 ms, Edge Computing

can achieve a result in under 1 ms, needing only 313 µs, almost 760 times faster than

Cloud Computing. This is justified by the messages exchanged in both scenarios, as Edge

computing requires no messages, since the analysis is done directly on the node, and Cloud
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Computing requires a request being done by the node to the cloud and then waiting for

the result to be sent from the cloud. This proves that, although some accuracy is lost,

Edge Computing allows for a quicker response time, that can be crucial in systems that

require near real-time decisions, and that are non-critical in terms of decisions, allowing

for some margin of error.

Edge Computing also takes advantage in terms of energy needed to get a decision. On

average, the model requires 57 mA to get a decision, while the Cloud Computing needs

122 mA, more than 50% when facing Edge Computing. Once again, this is justified by the

lack of messages needed by the Edge Computing model, with external communications,

via WiFi, Cellular, or other methods, usually accounting for the most power consuming

activity in an IoT node. With this, it is possible to conclude that, when using an Edge

Computing approach, a more sustainable and low-power node can be achieved, allowing

for them to run on batteries for longer, and also to be able to introduce intelligence in

areas without network capabilities.

Once again, Edge Computing can always be backed with a Cloud Computing approach

when a more critical decision is needed.

3.4. Remarks

This chapter establishes the basis for the importance of the learning systems in the

developed solution. From the introduction of the concepts to its research and implemen-

tation, it presented a detailed approach of creating and evaluating learning systems and

porting them to their computing location.

With the goal of assessing the best Machine Learning algorithms to use for data anal-

ysis in IoT projects, several were studied, among them Decision Trees, Neural Networks,

Linear Regressions and SVM, although it was Random Forest the one with the best re-

sults for both classification and regression. This research also pointed to the importance

of analysing several models, as each scenario could benefit from a specific model. Finally,

configuring and validating the models proved to be essential to achieve the best results

and to guarantee the e�ciency of the model outside the training environment.

Being this a solution that will depend on edge nodes, capable of running some in-

telligence directly on them, a study to evaluate how this computing methodology would

a↵ect the e�ciency of the models was also performed. It was possible to conclude that

porting the fully trained models to an edge device implies some changes into its configu-

ration, in order to create a small model capable of running on low memory devices, that
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a↵ect its performance, reducing accuracy of the original model. Nevertheless, with the

proper configuration of these parameters, it is possible to create a smaller model without

compromising entirely its e�ciency, allowing a proper edge device analysis.

The advantage of Edge Computing was proven by the reduced latency and power

consumption when facing a Cloud Computing approach, being able to assess that the

lower accuracy is widely compensated by these, as it provides for faster decisions and

more sustainable nodes.

With the research presented in this chapter, several key points were gathered for the

development of the entire system, as this will be supported by Machine Learning tech-

niques, allowing not only an easier development of the next phases but also to guarantee

consistency and reliability in those phases.
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CHAPTER 4

Autonomous Communication System Configuration

This chapter presents the research and developed solutions for the autonomous con-

figuration of the communication systems. It starts with an overview on the research,

containing the related work found in the literature, followed by an explanation of some

of the most important definitions, including all the communication protocols used as well

as an introduction to peer-to-peer and cloud communication. With all the definitions

introduced, this chapter continues with the research done to find the best communication

protocol for each of the point-to-point communication, detailing the methodology followed,

the scenarios and tests performed and finally the obtained results and remarks. It follows

with the developed configuration models for the communication systems, both point-

to-point and cloud, including a comparison of an edge and cloud computing approach.

Finally, a remarks section closes this chapter with a brief discussion and conclusion of the

topics and results given in this chapter.

4.1. Overview

Communication is a major part of IoT systems and with the constant evolution of

devices and solutions more and more communication protocols arise, existing nowadays

more than 20 di↵erent protocols that can be used to connect devices. In an IoT system

messages can be exchanged inside the network, between the several nodes deployed, or

between the nodes and cloud servers. But as the name describes, IoT relies on the ability to

have a way to communicate between the “things” and the “Internet” and that is where the

main issues start to rise. One of the biggest problems is the lack of coverage or reliability

of communication protocols in certain environments, mainly when comparing indoor and

outdoor projects or city versus rural environments. In a Smart City environment, a WiFi

connection can be easy to find, a LoRaWAN gateway is available or a strong 4G signal

covers the entire area, but when it moves to rural areas, underdeveloped cities or poor

regions, the availability of these network structures can be weak or non-existent.

So, in order to deploy an autonomous communication configuration system that can

truly adapt to any specification or environment, the nodes need to adjust to the local
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characteristics and not the other way around. In other words, the node has to communi-

cate with the available networks and not demand the installation of networks to be able

to work.

With Machine Learning being more and more used alongside wireless communications,

the literature presents several researches, including a great survey [90], covering several

applications from security, interference, link configuration and node locations.

Our goal to create an autonomous communication configuration system that switches

protocols as a better one is available, falls inside this research. Although, almost none

similar approaches were found in the literature, being mainly link or coverage predictions

for specific protocols found.

In [91], the main objective is to perform a coverage prediction in wireless sensor

networks using Machine Learning, to determine an accurate mapping between network

features and network performance. It was concluded that the Neural Networks model

with three layers was su�cient to achieve high accuracy, and with more than three layers

the accuracy did not increase significantly.

The literature also shows some work being done to create a better LoRa link using

Machine Learning techniques, with [92], using Dynamic Selection, with 96% e�ciency,

and [93] using Neural Networks to improve the energy e�ciency of LoRa connection, with

a 99.92% accuracy, but only with 200 samples. Some works were also found with the use

of Machine Learning to predict the link quality of BLE mesh networks [94].

As our research is focused on creating a modular IoT solution capable of adapting

to any situation, based on Machine Learning, several approaches in terms of network

protocols need to be available, both for point-to-point communication as for cloud com-

munication.

4.1.1. Point-to-Point Communication

As said, device to device communication is a major part of IoT systems and new

advances in technology introduced wireless networks developed solely for IoT projects

or low-power devices, such as LoRa, BLE or ZigBee, with Wi-Fi still having a major

contribution and being modified to fit these new specifications. Since each project might

need a specific protocol, due to location, implementation conditions or energy supply, the

developed system will be available to work with the following technologies.

4.1.1.1. BLE. Bluetooth Low Energy (BLE) is an upgrade on the Bluetooth technology,

designed to consume the least amount of energy while using the same wireless standard
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[95]. BLE, working on the same 2.4GHz as Bluetooth, reduced the high speed and

high rate transmission, allowing for a decrease in power consumption by up to 80% and

increasing the range by 10 times, with connections up to 100 meters [96]. BLE also

introduced mesh and star topologies, in a one-to-many fashion, contrary to the simple

one-to-one connection provided by classic Bluetooth. As BLE is designed to broadcast

short messages in close spaces, it becomes one of the most used technologies in IoT

projects.

4.1.1.2. ESP-NOW. ESP-Now is a peer-to-peer wireless protocol developed by Espres-

sif which enables multiple devices to communicate with one another without using Wi-Fi.

The pairing between devices is needed prior to their communication, so after pairing a

device with each other, the connection is persistent [97]. This means that if suddenly

one of the boards loses power or resets, when it restarts, it will automatically connect to

its peer to continue the communication. This protocol enables a low power consumption

between multiple devices, being more power-e�cient and faster to deploy when compared

to Wi-Fi [98], supporting up to 20 nodes and being limited to 250 bytes packets.

4.1.1.3. LoRa. LoRa is a long range low power wireless technology that uses unlicensed

radio spectrum, usually on the 868 or 915 MHz range, based on Chirp Spread Spectrum

(CSS) modulation to allow for the communication reach [99]. As it aims to eliminate

repeaters, reduce device cost, increase battery life and support a large number of devices,

it is the perfect solution for most IoT projects that rely on gathering data on large areas

with low-power devices [100]. These features are possible since LoRa works on a star

topology, reducing complexity and congestion in the network, allowing for a viable low

power long communication, with a single gateway covering up to hundreds of square

kilometers [101].

4.1.1.4. ZigBee. ZigBee enables low-cost, low-power and low-data rate Machine-to-

Machine communications for IoT networks [102], in the 868 MHz, 915Mhz and 2.4GHz

frequency bands. Based on the IEEE 801.15.4 physical layer and the Medium Access

Control sublayer, it is complemented by an application framework layer defined by the

ZigBee Alliance [103]. Capable of working in mesh, star or cluster topology, ZigBee can

achieve distances up to 100 meters, when working on the 2.4GHz frequency, or up to 1

kilometer, when using the lower frequencies [102]. ZigBee is the preferred solution for

smart homes solutions, due to its low power capabilities.
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4.1.2. Cloud Communication

Besides the intra network communications, devices might need to exchange messages

to cloud servers, for analysis, storage or even communication with other networks. For

years this communication was performed solely over Wi-Fi, Ethernet, cellular networks or

even satellite. But as devices started to be more outdoor than indoor, and connectivity

went from small homes to entire cities, new protocols such as LoRaWAN or Sigfox, both

in the Low-Power Wide-Area Networks (LPWAN), started to be the go to choice for IoT

systems. Since each project might need a specific protocol, due to location, implementa-

tion conditions or energy supply, the developed system will be available to work with the

following technologies

4.1.2.1. Wi-Fi. Based on the IEEE 802.11 standard, Wi-Fi is the most common way for

devices to connect wirelessly to local networks and to the internet. Operating in the 2.4

GHz and 5 GHz bands, it can connect devices either in ad hoc, a peer-to-peer connection

such as ESPNow, or access point mode, where devices connect to an access point (AP)

[104].

4.1.2.2. LoRaWAN. LoRaWAN is built on the lower level of the LoRa protocol, mainly

on the physical level [105]. Contrarily to LoRa, which is a point-to-point communication

protocol, LoRaWANmessages are received by all the base stations in range, being the back

end responsible for removing duplicate receptions, checking security, sending acknowledg-

ments to the end device, and sending the message to the corresponding application server

[106]. The characteristics combined with the ability for users to deploy gateways, makes

LoRaWAN suitable and more robust for city-scale IoT deployments [106].

4.1.2.3. SigFox. Sigfox is an LPWAN network that deploys its proprietary base stations

equipped with cognitive software-defined radios and connects them to the back end servers

using an IP-based network [106]. SigFox uses Di↵erential Binary Phase-Shift Keying (D-

BPSK) modulation to send messages up to 12 bytes, on the 868 MHz radio spectrum,

in Europe, with a speed of 100 bps. This modulation technique is part of the Ultra-

Narrow Band (UNB) modulations category, like the CSS used in the LoRa modulation

scheme, with the advantages of being more e�cient, receive radio signal below the noise

level, close to -145 dBm, being easy to implement and transmit data in a low bit rate,

reducing the costs of the hardware components [107]. The disadvantage of SigFox is that

number of messages over the uplink is limited to 140 messages per day and the number
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of messages over the downlink is limited to four messages per day, which means that the

acknowledgment of every uplink message is not supported [106].

4.2. Comparison of Point-to-Point Protocols for Low-Cost IoT Devices

In the literature it is possible to find several studies comparing wireless communication

protocols, but none focusing on multiple outputs or scenarios and each one using a di↵erent

methodology, making it almost impossible to compare among them which is the best

overall protocol.

Despite those studies, that individually provide good research when focusing on a

particular field or output, our goal is to analyse the same protocols under the same

methodology, for multiple scenarios, in order to understand which is the one that has

an overall advantage or how multiple protocols can be used in a modular and adaptable

solution.

For that, the chosen protocols were tested under di↵erent conditions and specifications

to analyse range, power consumption and reliability.

4.2.1. Methodology

As said, communication is one of the major components of an IoT system, and as

these system are usually composed by WSN with multiple nodes interchanging messages,

a reliable protocol must be used to ensure the best communication between nodes, not only

in terms of quality of signal but also in terms of reliability, range and power consumption.

To evaluate which is the best communication protocol to transmit data between two

devices inside a sensor network under several scenarios and specifications, two nodes were

used to send a message between them using the communication protocols under study.

For each scenario, several specifications were tested, such as the presence of obstacles,

distance, transmission power, among others.

For that, several wireless communication protocols were used, being their characteris-

tics displayed in Table 4.1.

On each test scenario, each protocol was tested with the presented power transmission,

to understand how that can a↵ect the performance of the protocol.
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Table 4.1. Point-to-Point Protocols Characteristics

Protocol

Transmission Energy Range [m]
Sensitivity

Power Consumption [mA] Indoor/ LoS/

[dBm] Transmit IDLE Sleep Urban Rural [dBm]

BLE [108]
-7 8

10 0.07 100 250 -94
14 10

ESP-Now [108] - 90 60 - 100 500 -98

RF [109]
14 50

16 0.001 200 500 -120
20 150

LoRa [110]
5 20

12 0.001 500 2000 -135
23 120

ZigBee [111]
-7 20

17 0.002 60 1200 -103
8 40

Note: All the values are based on the used modules for the test, identified by the

reference in the protocol column

4.2.2. Test Scenarios

The modularity of the proposed system allows it to be adapted to a wide range of

solutions and specifications, meaning it needs to adapt to multiple scenarios and applica-

tions and that communication must always work, either indoors or outdoors, in a rural

or urban environment.

Range figure estimates are based on free-air terrain with limited sources of interfer-

ence. Actual range and reliability will vary based on transmitting power, orientation

of transmitter and receiver, height of transmitting antenna, height of receiving antenna,

weather conditions, interference sources in the area, and terrain between receiver and

transmitter, including indoor and outdoor structures such as walls, trees, buildings, hills,

and mountains.

As such, and to have a better understanding of which protocols work better in as much

situations as possible, or if di↵erent approaches for each scenario are needed, an evaluation

of point-to-point communications protocols was performed for multiple specifications, for

both indoor and outdoor, with line of sight and obstacles, and also some of the most usual

implementations of IoT systems in Smart Cities.

The chosen scenarios are described in the next sections, including the main goal for

that particular test case.
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4.2.2.1. Indoor 1 - Line of Sight + Obstacles. The first scenario was performed

indoors, on a 150 meters straight corridor inside the Building II at ISCTE campus, since it

was the longer straight space found that had doors or other obstacles to create interference

in the line of sight. Figure 4.1 shows both ends of the test site.

Figure 4.1. Indoor Line of Sight Scenario

In this scenario the tested distance between the nodes was 1, 5, 10, 20, 30, 40, 50, 60,

70, 80, 90, 100, 120 and 140 meters. For the obstacle test the same distances were used,

but the door in the middle of the corridor was closed and the transmitting and receiving

nodes were equally distant from the door.

4.2.2.2. Outdoor 1 - Line of Sight + Obstacles. The second scenario was per-

formed on Parque Eduardo VII, in Lisbon, an outdoor location with a line of sight of over

500 meters, as shown in Figure 4.2. Parallel to the line of sight there is a line of trees

that were used for the obstacle test.

In this scenario the tested distances between nodes were 1, 5, 10 meters and then

increments of 10 meters until the 100 meters mark, followed by increments of 20 meters

until the 300 meters mark, and finally by 50 meters increments until the 500 meters mark.

The same were used in the tree line to have obstacles between the nodes.

4.2.2.3. Indoor 2 - Household Environment. For the second indoor scenario an

135 m2 apartment was used, with several points tested around one transmitting node,

including points in the same division or across several divisions, to have walls, doors and

furniture as obstacles. Figure 4.3 shows the location of the transmitting node, the red

dot, and the test locations, the green dots, in a grid system.

4.2.2.4. Outdoor 2 - Urban Environment. In the last scenario, an urban environ-

ment was tested, with several points around one transmitting node, covering an area
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(a)

(b)

Figure 4.2. Outdoor Line of Sight Scenario: a) Google Maps Overview,
b) Test Location

Figure 4.3. Household Scenario

of 36ha, with a radius of 600 meters from the transmitting node position, as shown in

Figure 4.4 (a), where the red dot represents the transmitting node and the green dots rep-

resent the test locations. Figure 4.4 (b) represents the specifications of each test location,

with grid position (X,Y), distance and number of obstacles.
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(a)
(b)

Figure 4.4. Urban Scenario: a) Device Locations, b) Locations Information

4.2.3. Results

Figure 4.5 shows the obtained RSSI values for the transmissions in the first indoor

scenario, both the line of sight and obstacle line.

It is possible to check that almost every protocol was able to transmit in the full

distance of the scenario test, the 150 meters, on all transmission power configurations.

The only exception was BLE, which only reached that with the higher settings, being the

lowest transmission power, -7 dBm, only capable of reaching 60 meters and the middle

setting, 3 dBm, only capable of 80 meters.

When analysing the obstacle results, a totally di↵erent result is found. Only RF

and LoRa were able to reach the full 150 meters range, even with the lowest settings,

whereas ESPNow, BLE and ZigBee were only capable of reaching 40 meters with the

lowest settings and 120 meters for BLE and ZigBee with the highest transmission power.

This is an indication that RF and LoRa handle better with obstacles in the transmission

path. This can be justified by the use of lower transmissions frequencies and the CSS

modulation.

Figure 4.6 shows the obtained results for the first outdoor scenario, both the line of

sight and obstacle line.
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Figure 4.5. RSSI Indoor Line of Sight Results

In this scenario it is possible to understand the true limitations, in terms of range, of

the protocols with only LoRa and ZigBee being able to reach the 500 meters transmission

mark. Even so, it was only possible with the full transmission power, with ZigBee only

reaching 200 meters and LoRa 240 meters, with the lowest transmission power. ESPNow

only reached 180 meters, RF 220 and 140 meters, and BLE 140 and 50 meters, for the

highest and lowest settings, respectively.

In terms of obstacle interference, LoRa proves again to be the best protocol, reaching

the 500 meters mark with the highest transmission power and 180 meters with the lowest.

ZigBee showed the worst discrepancy between line of sight and obstacles, reaching only

100 meters with the highest settings and 50 meters with the lowest.

On a straight line, LoRa proved to be the best solution to reach further distances and

compensate for the interference of obstacles, in both indoor and outdoor scenarios. Even

so, LoRa is also the second most power consuming protocol under test, so when lower

distances are needed or no obstacles exist, ZigBee can be a better alternative in terms of

power consumption and reliability.
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Figure 4.6. Outdoor Line of Sight Results

Since a straight line of sight is not a usual scenario, the remaining test, in an urban

and residential scenario, might help understand how these protocols will really adapt in

a real case scenario. Contrarily to the previous scenarios, which evaluate how far the link

was able to create a connection with or without obstacles, in these next scenarios, the goal

is to understand how the location specification, in terms of distance, number of obstacles

and location a↵ect each protocol.

Figure 4.7 shows the obtained results for the household environment scenario.

It is possible to check that RF and LoRa were able to create a reliable link in every

tested location and with every transmission power, while ESPNow, BLE and ZigBee had

some di�culties in the further distance with multiple obstacles, even when working with

the highest transmission power. ZigBee, once again, proved that it is not very tolerable

to obstacles, being the protocol with more unavailability across all locations. The same

can be applied to BLE when working with the lower transmission power.

Finally, Figure 4.8 shows the obtained results for the urban environment scenario.

LoRa emerges, once again, as the best protocol, being the only one capable of creating

a communication link in more than half of the locations and the only capable of reaching
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Figure 4.7. Household Environment Results

Figure 4.8. Urban Environment Results
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the further locations tested. Nevertheless, it also shows some limitations, mainly when

more than three buildings are in between the nodes. ESPNow and BLE proved not to

be a choice when an outdoor urban environment is the application site, with less than

20% of the locations being able to connect, even with the best settings. RF and ZigBee

were able to create connections with the closest nodes, but had no link connection when

obstacles were presented.

Following the straight line tests results, LoRa continues to have the best performance

in all scenarios, and even with the second most power consuming module, it proves to

be the best overall solution for point-to-point communications between IoT nodes. For

indoor locations or situations with a low possibility of obstacles, ZigBee can be a great

solution, since it can match the range of LoRa while reducing the power consumption in

almost half.

Another conclusion that is possible to draw from this study is that similar results in

terms of availability, reliability and range can be obtained while using lower transmission

power configuration that reduces the amount of energy needed to exchange messages.

4.3. Point-to-Point Communication Configuration System

As proved by our point-to-point communication test, using a higher transmission

power value does not always result in a better communication link, since lower values

can reach the same distances while saving power and since multiple nodes transmitting

in full power can generate interference in the network [100]. This shows that not only is

it possible to reduce the energy consumption of the device, but also improve the network

reliability, by adjusting the transmission power of each end node.

This section presents a methodology for an implementation of an autonomous con-

figuration system for peer-to-peer communication in smart nodes supported by Machine

Learning, that uses regressions to predict the energy consumption and link quality of a

connection and then chooses the best protocol and transmission power to use. For that a

regression model is created and trained, to understand how it fits the methodology and

obtains the best accuracy. It also compares an edge and cloud computing approach, to

check if the decision done directly on the edge node and in real time, without the need of

sending any message or flooding the network, could save energy and time in the decision

process.
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4.3.1. Methodology

The presented methodology aims to create an autonomous solution, capable of se-

lecting the best communication protocol and its transmission power configurations for a

smart node, based on its location, the nearby gateways and geography (urban or rural

areas, obstacles and distance to the gateway), supported by Machine Learning algorithms

that can run directly on the node or with cloud communication. Figure 4.9 shows the

system methodology.

Figure 4.9. Point-to-Point Configuration Methodology

As it is possible to see, the methodology is divided into six steps. It starts with the

node gathering its location based on GPS coordinates, and pre-process that data. After

that, the learning algorithm makes a regression to predict the energy consumption and

quality of the link for each of the available protocols and transmission power. Those

predictions are then analyzed, and the best transmission power is selected, being the

node configured, in an autonomous way, with that value. After that, the node is ready to

send messages. From time to time, that can vary based on implementation scenario but

that should be done at least once a day, this process is repeated, to ensure the node is

always working in the best conditions possible.

Regarding the data processing and regression algorithm, Figure 4.10 shows the detailed

process, from the data input to the output of the best protocol and transmission power

value.

As described, it receives the node location and starts by comparing it to the list

of available gateways, calculating, for each one, a position (X,Y) facing the gateway in

the center of a grid (0,0), the distance to the gateway and also any information about

possible obstacles in the line of sight. With that information, it creates an array of data

that will be used to predict the Received Signal Strength Indicator (RSSI) and energy

consumption of the link while using those inputs for each of the communication protocols
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Figure 4.10. Point-to-Point Decision Methodology

and transmission power values possible. This is done using a regression model. After the

regression, using the output values, three decision models are used to evaluate the best

protocol and transmission power to use.

(1) Best Link Model (BLM) - The transmission power is chosen solely based on the

best link achieved, i.e., the one that gets the higher RSSI value. With this model,

the link will always get the perfect conditions to ensure reliability, not considering

the energy consumption. This mode can be used in nodes where information

needs to be always delivered in real time, ensuring maximum reliability.

(2) Energy E�ciency Model (EFM) - The transmission power is chosen based on

the lowest energy used by a transmission power value capable of sustaining a

communication link, even if the RSSI is higher or close to the threshold of the
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sensitivity on which each communication protocol can no longer transmit infor-

mation, putting aside the reliability of the signal, to favor energy e�ciency. This

mode can be used in nodes where data is not sensitive and crucial, and if some

packages are lost, it does not a↵ect the system.

(3) Reliable Link Model (RLM) - The transmission power is chosen based on the

lowest energy used by a transmission power value capable of achieving a good

communication link, i.e., with a RSSI close to -20dBm of the sensibility thresh-

old, even if when using higher transmission power, a better RSSI values can be

achieved. This mode is a middle solution between the previous two, it compro-

mises some of the energy e�ciency to guarantee a better connection.

4.3.2. Communication Protocol Configuration Output

As studied in Chapter 3, for a Machine Learning model to work, it needs to be trained

with a set of supervised data, that include the output desired for a set of parameters. It

is with these data, that the model will learn and predict upon future data.

The used dataset is composed of the data collected in the Point-to-Point protocol

comparison done in Section 4.2. The data contains the RSSI and power consumption

values of the various protocol’s transmissions performed by an IoT smart node in di↵erent

scenarios around a single gateway, while varying the transmission power value, as well as

the distance to the gateway and the number of obstacles in the line of sight.

The dataset is composed of 18448 entries, with the following parameters:

• X – X grid position of the node facing the gateway at position (0,0);

• Y – Y grid position of the node facing the gateway at position (0,0);

• scenario – Characteristics of the transmission scenario (indoor, outdoor, ...);

• distance – Distance, in meters and in line of sight, from the node to the gateway;

• obstacles – Number of obstacles, in line of sight, between the node and the

gateway;

• protocol – Communication protocol used for the transmission;

• power – Transmission Power value used for the transmission;

• energy – Energy used to perform the transmission;

• rssi – RSSI value registered from the transmission;

4.3.2.1. Regression Results. The training methodology presented in Section 3.2.1 was

followed in order to obtain the best Random Forest regression model possible to predict
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the energy consumption and RSSI value of the transmissions, based on node position,

communication protocol and the transmission power used.

For the energy consumption prediction, following the methodology, the hyper parametriza-

tion tuning, showed that the best configuration for the Random Forest regression model

was with the following parameters:

• n estimators – 127

• max features – ’sqrt’

• max depth – 70

• min samples split – 5

• min samples leaf – 1

• bootstrap – False

This model achieved a MAE of 1.503 mA and an accuracy of 99.88%. Figure 4.11

shows the predicted values facing the real values, obtained by the model.

Figure 4.11. Point-to-Point Energy Regression Predicted vs Real Values

This shows that the model can predict the energy consumption of a transmission with

a 1.503 mA margin of error, which is an acceptable value. Also, as Figure 4.11 shows, the

predicted values follow a proportional line, meaning that the model is well fitted for the

dataset.

To further validate the model accuracy, and following the methodology presented, the

model was validated with a Stratified K-Fold Cross Validation, using 5 folds and 20% of

the data as validation points. Figure 4.12 shows the learning curve for the validation test.

It is possible to see, at the end of the learning curve, that both training and validation

converge to a similar and lower MAE value, showing that the model is well fitted. The
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Figure 4.12. Point-to-Point Energy Regression Learning Curve

validation MAE was 1.519 mA, 0.015 mA higher than the training MAE, with an accuracy

of 99.60%, 0.28% lower, being these values too small to be considered.

As such, is it possible to conclude that the trained model is well fitted and capable

of predicting the energy consumption values of communication transmissions, based on

location, distance and obstacles to the gateway, and the transmission power value, and

can be ported to the node implementation.

Following the training methodology for the RSSI model, the hyper parametrization

tuning, showed that the best configuration for the Random Forest regression model was

with the following parameters:

• n estimators – 157

• max features – ’auto’

• max depth – 90

• min samples split – 5

• min samples leaf – 1

• bootstrap – True

This model achieved a MAE of 1.9558 dBm and an accuracy of 98.68%. Figure 4.13

shows the predicted values facing the real values, obtained by the model.

This shows that the model can predict the RSSI of a transmission with a 1.9558 dBm

margin of error, which is an acceptable value. Also, as Figure 4.13 shows, the predicted

values follow a proportional line, meaning that the model is well fitted for the dataset.
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Figure 4.13. Point-to-Point RSSI Regression Predicted vs Real Values

To further validate the model accuracy, and following the methodology presented, the

model was validated with a Stratified K-Fold Cross Validation, using 5 folds and 20% of

the data as validation points. Figure 4.14 shows the learning curve for the validation test.

Figure 4.14. Point-to-Point RSSI Regression Learning Curve

It is possible to check, at the end of the learning curve, that both training and valida-

tion converge to a similar and lower MAE values, showing that the model is well fitted.

The validation MAE was 2.031 dBm, 0.07 dBm higher than the training MAE, with an

accuracy of 98.42%, 0.25% lower, being these values too small to be considered.

As such, is it possible to conclude that the trained model is well fitted and capable of

predicting the RSSI values of communication transmissions, based on location, distance

and obstacles to the gateway, and the transmission power value, and can be ported to the

node implementation.
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4.3.3. Comparing an Edge vs Cloud Approach

To compare if the autonomous configuration system works better using an edge or

cloud computing approach, the presented methodology was implemented in a smart node,

Figure 4.15, capable of transmitting with all the communication protocols studied.

Figure 4.15. Smart Node

Several nodes were deployed around one gateway, using the same urban environment

as the one used on Section 4.2.2.4, covering an implementation area of 36ha, with a radius

of 600 meters from the gateway position. The nodes were deployed for a period of one

and a half months, fifteen days using the BLM scenario, fifteen days using the EML

scenario and the other fifteen using the RLM scenario, being the ones working on the

edge computing model self-configured every 48 hours, or if any message was not able to

be delivered, since these do not need external messages and require less energy, and the

ones working with the cloud computing model self-configured once a week, since they

need to transmit a message via the gateway to the cloud asking for the configuration

parameters, therefore needing more power to perform this task.

Before the implementation, the regression model was ported to an edge computing

model capable of running in the smart node. For this, the methodology presented in

Section 3.3 was used. Table 4.2 shows the ported model characteristics facing the trained

cloud model.

The cloud computing model, with an MAE of 1.503 mA and 1.9558 dBm, originated

an 83.2 and 97.8 MB file containing the Random Forest regression model for energy and
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Table 4.2. Point-to-Point Configuration System Edge Computing Model
Characteristics

Feature Model MAE [dBm] File Size [MB] Estimators Depth

Energy
Cloud Computing 1.503 83.2 127 70

Edge Computing 3.203 0.437 15 7

RSSI
Cloud Computing 1.9558 97.8 157 90

Edge Computing 3.992 0.503 15 7

RSSI prediction, respectively. As said, the microcontrollers are not capable of sustaining

files that big, so for the edge computing port, the number of estimators and depth was

adjusted, in order to create a smaller file. As studied in Section 3.3, it is possible to create

files up to 99.99% smaller in size, when reducing 90% of estimators and depth, with this

a↵ecting around 25% the accuracy of a regression. The obtained edge computing model,

for each regression, contains 15 estimators, 90% less, and a depth of 7, 92% less, originating

models with a 3.203 mA and 3.992 dBm MAE, with file sizes of 437 and 503 kB, 99.5%

smaller. Although this model has almost doubled the MAE of the original model, it is

still a valid result for an energy and link quality regression, and one capable of running

on an edge device.

After one and half months of deployment, running all the scenarios described, the

results were analyzed and are outlined using a scatter plot with a linear distribution,

showing the average Transmission Power and RSSI used by each node during the im-

plementation period, as well as the chosen protocol, for both edge and cloud models.

Table 4.3 summarize the obtained results.

4.3.3.1. Best Link Model Scenario. As described in the methodology, the Best Link

Model (BLM) chooses the protocol and transmission power based solely on the best link

achieved, i.e., the one that gets the highest RSSI value.

In this scenario, both edge and cloud computing models choose LoRa as the main

protocol to use, in 92% and 93% of the cases, respectively. For edge computing, the

remaining cases used Zigbee, 3%, or RF, 5%, as for cloud computing, Zigbee, 4%, and

RF, 3%, were the selected ones. These variations in the selection of the communication

protocols come in line with LoRa being the best overall protocol, as studied in Section

4.2, for urban environments and long distances, with the other protocols being selected

only for close range nodes without obstacles.
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Table 4.3. Implementation Results

Model Protocol P
tx

[dBm] RSSI [dBm] I
tx

[mA]

BLM

EC
LoRa 20 -115.36 90

(92%) (-) (-) (-)

CC
LoRa 20 -117.48 112

(93%) (-2) (+2%2) (+24%2)

EFM

EC
LoRa 10 -130.25 29

(87%) (-50%1) (+13%1) (-68%1)

CC
LoRa 11 -123.88 43

(84%) (-45%1 || +10%2) (+5%1 || -5%2) (-62%1 || +48%2)

RLM

EC
LoRa 14 -124.15 50

(98%) (-30%1) (+8%1) (-45%1)

CC
LoRa 16 -120.24 68

(96%) (-20%1 || +14%2) (+2%1 || -3%2) (-39%1 || +36%2)

1 - Comparing to the BLM scenario under the same model

2 - Comparing to the EC model under the same scenario

The LoRa scenarios, being the vast majority of cases, will be the only ones analyzed

in this scenario. The results obtained for RSSI and transmission power, for both edge

and cloud computing, can be found in Figure 4.16. Table 4.4 shows the average values

for this scenario.

Table 4.4. BLM Scenario Results

P
tx

[dBm] RSSI [dBm] I
tx

[mA]

Edge Computing 20 -115.36 90

Cloud Computing 20 -117.48 112

It is possible to check, Figure 4.16 (a), that when using Edge Computing alongside the

BLM mode, the closest nodes transmit with a average value of -85 dBm, while mid-range

and further nodes transmit with an average -110 dBm and -125 dBm, respectfully. For

the same distance, the average transmission power value, Figure 4.16 (b), is 18, 20 and

22, respectively.
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(a) EC RSSI (b) EC TP

(c) CC RSSI (d) CC TP

Figure 4.16. Results for BLM Scenario

One thing that is interesting to see, is that some mid-range nodes can transmit with

an average of 14 dBm of transmission power. Also, the further nodes with more obstacles

were not able to create a connection.

As for the Cloud Computing model, when associated with BLM mode, in terms of

RSSI, it has similar results as the Edge Computing model, as can be seen when comparing

Figure 4.16 (c) and Figure 4.16 (a), with the connection link being only 2% worst, about

-2 dBm. In terms of transmission power, although both models achieve an average of 20

dBm, when looking to Figure 4.16 (d) and Figure 4.16 (b), it is possible to check that in

the Cloud Computing model the further nodes have higher transmission power, while the

Edge Computing presents a more even distribution between all nodes.

In terms of energy consumption, the nodes using the Edge Computing model used

less 24% power facing the Cloud Computing nodes. As such, comparing the two models

it is possible to check that the edge computing achieves better results on all fields, using

20 mA less, while increasing the quality of the link connection by 2 dBm. So, a better

connection can be achieved with a lower power consumption.
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4.3.3.2. Energy E�ciency Model Scenario. The Energy E�ciency Model (EFM)

chooses the protocol and transmission power based on the lowest energy value of a trans-

mission power that can achieve a connection.

As in the BLM mode, in this scenario, both edge and cloud computing models choose

LoRa as the main protocol to use, although in a smaller value, 87% and 84% of the cases,

respectively. For edge computing, the remaining cases used Zigbee, 6%, RF, 5%, and

BLE, 2%, as for cloud computing, Zigbee, 9%, RF, 5%, and BLE, 2%, were the selected

ones. Once again, the variations in the protocol chosen are accounted for only in the

nodes in close range, without obstacles.

The results obtained for RSSI and transmission power, for both edge and cloud com-

puting, can be found in Figure 4.17, being once again presented only the LoRa results.

Table 4.5 shows the average values for this scenario.

(a) EC RSSI (b) EC TP

(c) CC RSSI (d) CC TP

Figure 4.17. Results for EFM Scenario

The results show that when using Edge Computing alongside EFM mode, the quality

of the signal decreases while lower transmission power values are used, facing the BLM

mode. Figure 4.17 (a) shows that the closest nodes transmit with an average value of
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Table 4.5. EFM Scenario Results

P
tx

[dBm] RSSI [dBm] I
tx

[mA]

Edge Computing 10 -130.25 29

Cloud Computing 11 -123.88 43

-115 dBm, while mid-range and further nodes transmit with an average -123 dBm and

-131 dBm, respectively. For the same distance, Figure 4.17 (b), the average transmission

power value is 6, 10 and 17, respectively. As in the previous scenario, the further nodes

with more obstacles were not able to create a connection.

In the Cloud Computing model, as in the BLM scenario, a similar behaviour can be

found when comparing with the Edge Computing, Figure 4.17 (c). Contrarily to the BLM

scenario, in the EFM mode, this model achieved a better link connection, being 7 dBm

higher, or -5%. This is partially caused by the higher transmission power being used by

the Cloud Computing model, Figure 4.17 (d), that is, on average, 1 dBm higher than the

Edge Computing, allowing for a better signal quality.

As for energy consumption, the Cloud Computing, with a higher transmission power,

consumed on average 43mA, which is 48% more than the Edge Computing model. Con-

sidering these results, the Edge Computing model, besides the 5% lower link quality,

presents once again the best alternative, mainly when considering this is an energy e�-

cient mode, focused only on decreasing the power consumption. So, a worst connection

can be achieved, but is it done with a lower power consumption.

4.3.3.3. Reliable Link Model Scenario. Finally, the Reliable Link Model (RLM)

compromised some of the energy e�ciency of the ELM model and the link quality of the

BLM model, choosing the protocol and transmission power based on the lowest energy

value of a transmission power that can achieve a good connection, i.e., close to -20 dBm

of the sensibility threshold for that network.

Following the path of the previous modes, in this scenario, both edge and cloud com-

puting models choose LoRa as the main protocol to use, with a higher value, 98% and

96% of the cases, respectively. For edge computing, the remaining cases used Zigbee, 2%,

as for cloud computing, Zigbee, 3%, and RF, 1%, were the selected ones.

As for the previous scenarios, only the LoRa results will be analysed, with the obtained

for RSSI and transmission power results, for both edge and cloud computing, presented

in Figure 4.18. Table 4.6 shows the average values for this scenario.
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(a) EC RSSI (b) EC TP

(c) CC RSSI (d) CC TP

Figure 4.18. Results for RLM Scenario

Table 4.6. RLM Scenario Results

P
tx

[dBm] RSSI [dBm] I
tx

[mA]

Edge Computing 14 -124.15 50

Cloud Computing 16 -120.24 68

When using the Edge Computing model with the RLM mode, as in the EFM mode,

the quality of the signal decreases while lower transmission power values are used, facing

the BLM mode, but achieves a better quality of signal with slightly higher transmission

power values, facing the EFM mode. The closest nodes, Figure 4.18 (a), transmit with an

average value of -105 dBm, while mid-range and further nodes transmit with an average

-115 dBm and -128 dBm, respectively. For the same distance, Figure 4.18 (b), the average

transmission power value is 7, 12 and 18, respectively.

As in BLM mode, some mid-range nodes can transmit with a higher transmission

power value, with an average of 22 dBm. As in the previous scenarios, the further nodes

with more obstacles were not able to create a connection.
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Regarding the Cloud Computing model, as in the previous modes, it follows the Edge

Computing in terms of behaviour, Figure 4.18 (c), having a better communication link,

3% higher, than the Edge Computing model. This, as in the EFM mode, can be justified

by the use of a higher transmission power, Figure 4.18 (d), in this case by 2 dBm. Also,

when comparing the transmission power results, it is possible to check that, as in the BLM

mode, the further nodes have a higher transmission power than the Edge Computing nodes

that have a more even distribution.

This higher transmission power, as in the EFM mode, draws more power from the

nodes, consuming 36% more than the Edge Computing nodes. Considering this and

the slight di↵erence between link quality, of only 3%, the Edge Computing gets, once

again, the advantage facing the Cloud Computing. So, a slightly worse connection can be

achieved, but is it done with a lower power consumption.

4.3.4. Discussion

This section presented a methodology for an autonomous implementation of a self-

configuring smart node supported by Machine Learning, that uses Random Forest regres-

sions to predict the energy consumption and link quality of a connection and then chooses

the best Transmission Power and communication protocol to use.

The first thing to conclude is that with proper configuration, the smart node can act

in a lower power fashion, creating more sustainable networks.

Regarding the computation model, capable of predicting the energy consumption and

RSSI of a wireless communication, based on the location of the node, distance and ob-

stacles to the gateway and the transmission power value, Random Forest achieved an

accuracy of 99.88% and 98.68%, with a margin of error of 1.504 mA and 1.9558 dBm,

respectively for energy and RSSI prediction. This proves to be an e�cient way to config-

ure the node without human intervention, with the nodes being self-configured every 48

hours, or if any message was not able to be delivered.

One of the other goals of this research was to understand how the edge computing

methodology faces a cloud computing methodology for deciding which is the best protocol

and transmission power value for a smart node to transmit messages. The edge computing

methodology can achieve better results, while sometimes having a lower quality of service,

although only by a slight margin, proving to be a better solution, since it takes less time

to decide and configure the node, being done locally and without external inputs.
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Finally, three modes of selecting the best transmission power value were presented,

each with a specific role depending on the needs of the network. The BLM mode proves to

be reliable, with the best quality link being achieved, with RSSI values higher, but with

more energy being used. The EFL mode proves to be a solution for low power nodes,

using 68% less energy but compromising the reliability of the network by 13%. The RLM

mode is a balanced solution, it can save 45% more energy than the BLM mode with a 7%

better quality than the EFL mode.

By applying this methodology to a network, not only can it extend the life cycle of the

nodes but also reduce the need for maintenance and interference between nodes, creating

a more sustainable and reliable network.

4.4. Cloud Communication Configuration System

Cloud communication is how an IoT system is capable of sending the gathered data

and receiving tasks or interacting with the users. As described, multiple techniques are

available for these exchanges of messages, each of them with its advantages and disadvan-

tages. As LPWAN are increasingly available for the general public, systems no longer have

to rely only on WiFi and cellular networks to connect to the cloud services. Nevertheless,

and as each scenario can have di↵erent coverage from multiple protocols, and with each

having di↵erent requirements, such as price, energy consumption or data package size,

the use of the correct network protocol can improve the e�ciency of an IoT system.

As for the Point-to-Point communication system, this section presents a methodology

of an autonomous configuration system for cloud communications in smart nodes sup-

ported by Machine Learning, that uses regressions to predict the availability of protocols

and the energy consumption and link quality of those connections, in order to choose the

best protocol for transmission. Besides the methodology and the model for the regres-

sion techniques, it will also present a comparison between an edge and cloud computing

approach to evaluate the latency and energy consumption of the nodes to reach a decision.

4.4.1. Methodology

The presented methodology aims to create an autonomous solution, capable of select-

ing the best communication protocol for cloud communication in a smart node, based

on its location, the available networks covering that area and its base stations, and the

price and energy consumption of transmitting a message, supported by Machine Learning
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algorithms that can run directly on the nodes or with cloud communication. Figure 4.19

shows the system methodology.

Figure 4.19. Cloud Configuration Methodology

As it is possible to see, the methodology is divided into six steps. It starts with the

node gathering its location based on GPS coordinates, and pre-process that data. After

that, the learning algorithm makes a regression to predict the quality of the link for each

of the available protocols. Those predictions are then analyzed, and the best available

protocol is selected, being the node configured, in an autonomous way. After that, the

node is ready to send messages. Every 12 hours, or if any message was not able to

be delivered, this process is repeated, to ensure the node is always working in the best

conditions possible.

Regarding the data processing and regression algorithm, Figure 4.20 shows the detailed

process, from the data input to the output of the best protocol and configuration value.

The configuration system receives the node location and starts by comparing to the

list of available base stations for each protocol, calculating, based on each protocol range,

what are the ones in range of the node location and the distance between the node and

the base station. Then, using the available base station in range, it creates an array of

data that will be used to predict the RSSI of the communication link using the associated

protocol to each of the base stations, through a regression model. After the regression,

using the output values, the decision for the protocol to use is done using a score for each

of the available protocols. Table 4.7 shows how the scoring is done.

Each category has the same importance and the amount of points awarded for each

category, based on the protocol, follows the threshold values found in Table 4.8.

For each decision, the available protocols are scored and the highest score is the one

used for the communication transmission. This way is possible to choose the best con-

figuration based on availability, price and energy consumption, creating a methodology

that adapts to the node location and network availability, supports sustainability while
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Figure 4.20. Cloud Decision Methodology

reducing the costs for the user and improving the system reliability and e�ciency. It is

also possible to change the scoring system to favour any specific parameter, e.g., if the

goal is to transmit always using the lower cost or power consumption.

4.4.2. Communication Protocol Configuration Output

As studied in Chapter 3, for a Machine Learning model to work, it needs to be trained

with a set of supervised data, that include the output desired for a set of parameters. It

is with these data, that the model will learn and predict upon future data.

The used dataset is composed of crowd-sourced data collected by the NetBravo project

[88], ”a European Commission crowd-sourcing project designed to gather and share radio

spectrum data about mobile telephony coverage, WIFI channel occupancy, broadband

and net neutrality connection tests. Anyone with a recent smartphone can download

the netBravo app which will automatically record the characteristics of the signal they’re
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Table 4.7. Cloud Configuration Scoring Description

Category Points Available Evaluation Process

Message Size

0
Message size is larger than

the maximum package size

1
Message is smaller than

the maximum package size

Price
6 Free

5 to 1 In ascending order of price

Message Limit
0

Communication is limited

to any amount of messages

1 Communication is unlimited

Energy Consumption 6 to 1
In ascending order of

energy consumption

Average RSSI Predicted 6 to 1 In descending order of RSSI

Table 4.8. Cloud Configuration Protocol Thresholds

Category Wi-Fi 2G 3G 4G LoRaWAN SigFox

Message Size [bytes] - - - - 51 12

Price -
0.10€ 0.10€ 0.10€

-
16.13€

per MB per MB per MB per year

Message Limit - - - -
1 per 140 per

minute day

Energy
120 250 150 100 70 70

Consumption [mA]

getting on their phone – WIFI, 4G, 3G, 2G or nothing - and test the latency, upload

and download performance of their Internet connection with additional net neutrality

tests they can select.”, combined with LoRaWAN and SigFox data from a fingerprint

localization dataset for large outdoor environments [112], that contains information such

as ”the receiving time of the message, base station IDs’ of all receiving base stations and

the Received Signal Strength Indicator (RSSI) per base station (BS)”.

To complement these data, the information from the possible receiving BS for each

entry was added. For LoRaWAN, the dataset already includes the associated BS and its

location; for SigFox, the dataset only provides the BS id, but not the location, so using

all the points received by each BS, the location was estimated; for the cellular protocols

(2G, 3G and 4G) the OpenCelliD database, the largest open-data of cell towers [113],
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was used to associate each entry with the cells in range; and finally, for the WiFi data the

Radiocell database was used, containing information about 10 million WiFi base stations

[114], once again, to associate each entry with the cells in range.

As each of these databases have di↵erent parameters, units and configuration, some

data pre-processing was needed to join all the information into one dataset. This included

removing unnecessary data or data only available on one dataset, identifying each protocol

with its ID and adding the range of each network.

This allows us to have a dataset of multiple cloud wireless protocols such as 2G, 3G,

4G, Wi-Fi, LoRaWAN and Sigfox. The NetBravo dataset contains points from across

the entire European Union countries, whereas the other dataset only contains data from

Antwerp, Belgium. As such, to have a more reliable result, only the NetBravo entries

from the Antwerp region were considered in the final dataset. With that in mind, the

final dataset is composed of 1349428 entries, with the following parameters:

• Latitude – Latitude of the node;

• Longitude – Longitude of the node;

• Protocol – Protocol used in the data transmission: 1 - Wi-Fi, 2 - 2G, 3 - 3G, 4 -

4G, 5 - LoRaWAN, 6 - SigFox;

• BS Code – Base station identifier;

• BS Lat – Latitude of the Base station;

• BS Long – Longitude of the Base station;

• BS Distance – Distance between the node and the Base station;

• RSSI – Link quality of the data transmission;

To follow the presented methodology, another dataset was needed, containing only

the location of each Base Station. Using the previously described data, it was possible to

create a dataset composed of 27682 entries, with the following parameters:

• BS Network – Protocol used in the Base Station: 1 - Wi-Fi, 2 - 2G, 3 - 3G, 4 -

4G, 5 - LoRaWAN, 6 - SigFox;

• BS Lat – Latitude of the Base station;

• BS Long – Longitude of the Base station;

• BS Code – Base station identifier;

• BS Range – Base station range;

4.4.2.1. Regression Results. Once again, the training methodology presented in Sec-

tion 3.2.1 was followed in order to obtain the best Random Forest regression model possible
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to predict the RSSI value of the transmissions, based on node position, communication

protocol, nearby Base Stations and its distance.

Following the methodology, the hyper parametrization tuning, showed that the best

configuration for the Random Forest regression model was with the following parameters:

• n estimators – 158

• max features – ’auto’

• max depth – 123

• min samples split – 5

• min samples leaf – 1

• bootstrap – False

This model achieved a MAE of 2.616 dBm and an accuracy of 96.82%. Figure 4.21

shows the predicted values facing the real values, obtained by the model.

Figure 4.21. Cloud RSSI Regression Predicted vs Real Values

This shows that the model can predict the RSSI of a transmission with a 2.6168 margin

of error, which is an acceptable value.

To further validate the model accuracy, and following the methodology presented, the

model was validated with a Stratified K-Fold Cross Validation, using 5 folds and 20% of

the data as validation points. Figure 4.22 shows the learning curve for the validation test.

It is possible to see, at the end of the learning curve, that both training and validation

converge to a similar and lower MAE value, showing that the model is well fitted. The

validation MAE was 2.618 dBm, 0.002 dBm higher than the training MAE, with an

accuracy of 96.27%, 0.56% lower, being these values too small to be considered.

As such, is it possible to conclude that the trained model is well fitted and capable

of predicting the RSSI values of communication transmissions, based on location, type
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Figure 4.22. Cloud RSSI Regression Learning Curve

of protocol, the nearby Base Stations and its distance, and can be ported to the node

implementation.

4.4.3. Edge vs Cloud Approach Results

To validate the autonomous configuration system for cloud communications and com-

pare if it works better using an edge or cloud computing approach, the presented method-

ology and regression model was implemented in a smart node.

Since the data used to train the model was from Antwerp, it was impossible to perform

an in site deployment, as in the Point-to-Point configuration system, so a simulation was

performed. The smart node used in the previous test, Figure 4.15, was configured to use

the proposed methodology, while simulating its position, to use Antwerp coordinates, and

the protocol to use.

Before the simulation the regression model was ported to an edge computing model

capable of running in the smart node. For this, the methodology presented in Section 3.3

was used. Table 4.9 shows the ported model characteristics facing the trained cloud model.

Table 4.9. Cloud Configuration System Edge Computing Model Charac-
teristics

Model MAE [dBm] File Size [MB] Estimators Depth

Cloud Computing 2.6168 5126 158 123

Edge Computing 4.3831 1.723 25 8

The cloud computing model, with an MAE of 2.6168 dBm, originated an 5.1 GB file

containing the Random Forest regression model with 158 estimators and a depth of 123.
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As said, the microcontrollers are not capable of sustaining a file that big, so for the edge

computing port, the number of estimators and depth was adjusted, in order to create a

smaller file. As studied in Section 3.3, it is possible to create files up to 99.99% smaller

in size, when reducing 90% of estimators and depth, with this a↵ecting around 25% the

accuracy of a regression. The obtained edge computing model contains 25 estimators,

85% less, and a depth of 8, 94% less, originating a model with a 4.3231 dBm MAE,

1.7063 dBm higher, with a file size of 1.732 MB, 96.63% smaller. Although this model

has almost doubled the MAE of the original model, it is still a valid result for a link

quality regression, and one capable of running on an edge device.

To follow the presented methodology, for the edge computing approach, besides the

model C file, also the dataset CSV file, containing the base stations information, needed

to be uploaded to the node. This proved to be impossible, since this last file has 2 MB

of size, and in conjunction with the model file and the application file surpass the 4 MB

Flash limit of the node. From a methodology point of view, this is a major disadvantage

for the edge computing approach, since the node and the model are intended to work

anywhere in the world, and if it can not cope with the data for only one city, it will not

work in a larger deployment.

To surpass this limitation, the methodology for the edge computing approach was

revised to remove the need of the base station knowledge, being the prediction of link

quality solely made based on node location and protocol. This new methodology assumes

that all networks are in range and uses only the training data, without the associated

base station, to understand if a connection is possible.

For this, a new model was trained, following the same methodology of training pre-

sented in Section 3.2.1. This revised model achieved a MAE of 5.482 dBm and an accuracy

of 87.93%. Although this is 2.8 dBm higher than the previous model, it can still be con-

sidered acceptable for a link communication, since it is under 9 dBm [70]. When ported

to an edge computing model, the MAE increases to 6.1298 dBm.

Besides this new model, and to be able to properly compare the edge and cloud

computing approaches using the original methodology, the base station file was shortened

by 70%, to be able to fit in the microcontroller and perform the original methodology. As

such, three models will be tested and compared. Table 4.10 shows the models information.

The simulation was performed on 500 randomly selected points in the city of Antwerp,

using both edge and cloud computing approaches. For each simulation the available
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Table 4.10. Revised Cloud Configuration System Edge Computing Model
Characteristics

Model MAE [dBm] File Size [MB] Estimators Depth

Cloud Computing 2.6168 5126 158 123

Edge Computing 4.3831 1.732 25 8

Revised Edge Computing 6.1298 1.918 25 8

protocol and the number of gateways in range, the awarded points, the selected protocol

and the estimated RSSI were recorded. Table 4.11 shows the obtained results.

Table 4.11. Cloud Configuration System Simulation Results

Model
Protocols

ID Available Range Avg. Points Selected

Cloud

Wi-Fi 74 103 9.80 8

2G 258 9 7.76 26

3G 313 13 8.61 21

4G 281 8 9.60 75

LoRaWAN 306 3 10.31 294

SigFox 155 13 9.30 15

None - - - 61

Edge

Wi-Fi 49 42 9.93 5

2G 138 4 8.02 19

3G 208 5 8.98 18

4G 186 3 9.81 53

LoRaWAN 216 2 10.40 192

SigFox 86 7 9.73 12

None - - - 201

Revised Edge

Wi-Fi - - 9.37 104

2G - - 5.19 4

3G - - 6.23 6

4G - - 8.68 14

LoRaWAN - - 9.81 202

SigFox - - 9.49 170

None - - - -

For the cloud computing model, LoRaWAN was the most selected protocol, with

almost 59% of the locations. The other protocols were chosen between 4 and 13% each.

84



Chapter 4 Autonomous Communication System Configuration

Also, in 61 locations, none of the protocols were chosen. In terms of the points decision

system, it is possible to see that there is an even distribution of points among the protocols,

which can be directly related to the availability of the networks on each point, with none

being available on all the performed test, meaning that the lowest scoring protocols were

benefited from the unavailability of the higher scoring networks, achieving better results.

Wi-Fi was the least selected protocol, which was a surprise, since it is a free protocol, but

it can be justified by the low availability, only 74 times. Overall, this model proved to be

a good choice for the decision process of the cloud communication system.

For the original edge computing model, once again LoRaWAN was the most selected

model, in 38% of the locations, with the other protocols ranging from 1 to 10%. In this

scenario 201 locations had no protocol selected, which is over 3 times more than in the

cloud computing scenario. This is justified by the lack of base stations available to the

model to analyse, as only 30% of the original base station database was given to the

edge model. This impact is also visible in the number of available base stations for each

protocol, which is on average 60% lower than the cloud computing scenario. As fewer

protocols are available, it also a↵ects the point system, with an even lower deviation on

the results. As was already possible to conclude, this model is not a good choice for

the decision process, not only since it can not support the full methodology, but it also

provides worse results.

To cope with this failed edge computing methodology, a revised edge model was tested.

In this case, as the base station knowledge was eliminated from the methodology, the

model assumed that there was always availability from all networks. That methodology

created an unreal decision system since, as proven by the cloud computing model, where

multiple locations did not have some protocols available. That can be proven by the

awarded point for each network, as the lowest scoring protocols always score low, whereas

the higher scoring protocols always score high and are the chosen ones. Although, in

this scenario there is no protocol that stands from the other, as LoRaWAN, SigFox and

Wi-Fi were the selected ones, on average, in 30% of the locations each. Beside having its

disadvantages, this model can be used when a cloud computing solution is not available.

Beside the presented results, to further evaluate the di↵erences between edge and cloud

computing for the cloud communication configuration system, the average decision time,

energy consumption and number of messages exchanged were also recorded. Table 4.12

shows the obtained results.
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Table 4.12. Analysis Time & Power Consumption Results

Model
MAE Average Average Average Messages

[dBm] Time [µs] Energy [mA] Exchanged

Cloud Computing 2.6168 681610 118 2

Edge Computing 4.3831 3532849 83 0

Revised Edge Computing 6.1298 1197 52 0

Although the original edge computing model was already discarded, this decision time

analysis allows to prove, even further, the unacceptability of that model, as it takes over

3.5 seconds to make a decision, almost 5 times more than the cloud computing model. This

latency between the request and the decision can be justified by the lack of computation

power of the edge node, which takes time to open the base station file and go through

every single line to find if it is in range of the device. As for the revised edge computing

model, since the base station knowledge was discarded, only 1197 µs are needed to reach

a decision, although, as already stated, this scenario presents its own problems versus the

cloud computing model.

In terms of energy used, as expected, the cloud computing model requires more energy,

since it needs to exchange messages with the cloud servers, requiring 118 mA, 56% more

than the revised edge computing model, with only 52 mA.

4.4.4. Discussion

This section presented a methodology for an autonomous implementation of a self-

configuring cloud communication system supported by Machine Learning, that uses Ran-

dom Forest regressions to predict the link quality of a connection and then chooses the

best communication protocol to use.

Regarding the computation model, capable of predicting the RSSI of a wireless com-

munication, based on the location of the node, protocol, and nearby base stations and

its distance, Random Forest achieved an accuracy of 96.82%, with a margin of error of

2.6168 dBm. This proves to be an e�cient way to configure the system without human

intervention.

One of the other goals of this research was to understand how the edge computing

methodology faces a cloud computing methodology for deciding which is the best proto-

col to transmit messages. The edge computing methodology proved to not be capable of

handling the defined methodology, as the edge nodes does not provide the needed compu-

tation power nor flash memory capacity to have all the necessary knowledge to follow the
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methodology. Even with a revised edge computing model, that does not depend on third

party knowledge, edge computing was not able to perform at the level of cloud computing.

As such, although with a higher decision time and power consumption, cloud computing

achieved the best results, with a MAE 4 dBm lower.

On a final note, to implement the cloud computing methodology outside of the sim-

ulation environment, it is necessary to define an initial communication protocol to use

for sending and receiving the decision request and result, as these messages need to be

exchanged with the servers prior to the node self-configuration.

4.5. Remarks

This chapter establishes the basis for the importance of the autonomous communi-

cations systems in the developed solution. From the introduction of the concepts to its

research and implementation, it presented a detailed approach of creating and evaluating

the autonomous configuration of the communication systems and how its implementation

will create a more sustainable and reliable solution.

With the goal of assessing the best communication protocol for point-to-point com-

munication inside a WSN, several were studied, among them ESPNow, Bluetooth Low

Energy, FSK Radio Frequency, LoRa and ZigBee. All these protocols were tested un-

der di↵erent scenarios and configurations, being possible to conclude that, although with

a higher power consumption needed to transmit a message, LoRa was the best overall

solution for indoor and outdoor scenarios, being the one that best adapts in terms of

long distances and obstacles interference. ZigBee comes as a low power alternative for

locations with fewer obstacles. It was also proved that using a higher transmission power

does not always create the best communication link, with lower configurations being able

to reach the same distances without a↵ecting the link quality.

As for the point-to-point autonomous configuration system, a Machine Learning solu-

tion based on Random Forest was developed in order to predict the best protocol to use

in terms of link quality and energy consumption. Associating this model with the system

capabilities of deciding the best protocol based on the solution needs, either a higher relia-

bility, lower power consumption or a middle approach, it was possible to achieve a system

capable of adapting the protocol used to send a message based on the specification of the

network and location, while saving 65% of the energy needed to exchange messages and

only reducing by 13% the quality of the network. It was also possible to conclude that a
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Edge Computing approach achieves better results, being quicker to reach a decision and

saving more energy, when facing a Cloud Computing approach.

For the cloud communication autonomous configuration system, Edge Computing

proved not to be capable of handling the decision part of the system, due to the lim-

itations of the edge devices. So a Cloud Computing system was achieved using a Random

Forest model, capable of predicting the link quality of wireless protocol to send messages

to the servers, based on location, available protocols and near by gateways, and a scoring

system, that chooses the best available protocols based on message size, communication

cost, message limits and energy consumption. The system proved to be able to self-

configure the node and adapt it, without human intervention, to communicate with the

best possible protocol.

With the research presented in this chapter, several key points were gathered and

developed for the final modular IoT solution system, as this will be heavily dependent on

communication and message exchanges, allowing not only for an easier development of

the next phases but also to guarantee consistency and reliability in those phases.
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CHAPTER 5

Sustainable Smart Node

This chapter presents the research and developed solutions for the sustainable mod-

ular IoT smart node. It starts with an overview of the research, containing the related

work found in the literature, followed by an explanation of some of the most important

definitions, including a comparison of all the major IoT modules. With all the definitions

introduced, this chapter continues with the system architecture, node features, modules

and modes. It follows with detailed description on how modularity, self-configuration and

sustainability were achieved through the use of Machine Learning and edge computing.

The implementation of all the described methodology and features is presented. Finally,

a remarks section closes this chapter with a brief discussion and conclusion of the topics

and results given in this chapter.

5.1. Overview

Our approach on a true heterogeneous IoT solutions, is based on a fully adaptable

Wireless Sensor Network (WSN), with a set of modular smart nodes that can adapt to

the specification of the installation purpose. The system architecture follows the nature of

a typical WSN, being the node capable of acting as three types of nodes (gateway, sensor

and actuator). This is done using a plug&play modular fashion, where the necessary

hardware modules are attached to the smart node in order to create a gateway, sensor or

actuator node. This allows for a single node architecture to gather and transmit sensor

data as well as perform tasks upon actuators in the environment.

To create the methodology for this smart node, research in order to find the best

hardware components, not only in terms of the core controller, but also for communication

modules, power supplies, sensors and other was necessary. In the first phase some o↵-the-

shelf modules were tested, but the inability to make changes, some in hardware, others

in software, leads us to creating our own nodes from scratch. The following methodology

is the result of research and several iterations, based on tests, hardware availability and

other specifications that will be described further.
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5.1.1. Smart IoT Node

As described an IoT system must be capable of gathering, transmitting and analysing

data and interact with the environment or user, in order to create a more autonomous

and intelligent solution. For that it uses a set of devices, called smart nodes, capable of

performing all these actions.

A smart IoT node is composed of several modules that when together create a device

capable of gathering, transmitting and analysing information, through four main groups:

Core, Sensors/Actuators, Power Supply and Communication [115]. Each of these modules

create a layer that will help the node perform the needed tasks, as shown in Figure 5.1.

Figure 5.1. Smart IoT Node Layers

The Core includes all the computing power, composed by the microcontroller, memory

and the needed connectors and hardware to merge with the other groups. The Sensors

and Actuators are how the node interacts with the environment where it is implemented,

by collecting sensor data or performing actions, with motors, lights or others. In terms

of Power Supply, how the node is powered, this can be done in several ways, from typical
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power transformers connected to the grid to batteries or self-sustained methods such as

solar panels. Finally, the Communication is how the node will exchange data with other

devices, and for that multiple wireless protocols can be used, as evaluated in the previous

chapters.

Besides the physical part, an IoT smart node must have a behavior part that deals

with all the needed functionalities, such as logic control, to connect all the modules, basic

configuration, communication, sensing, acting, energy saving and update mode [115].

5.1.2. Core Microcontrollers

In the core of the smart node is usually a microcontroller, a small computer installed

on a single integrated circuit chip that contains a CPU, memory and programmable

input/output peripherals. Nowadays, with the proliferation of IoT systems and cheap

electronics, the choice of microcontrollers is endless. Table 5.1 presents the most used

microcontrollers in the market and their characteristics.

Table 5.1. Microcontrollers Characteristics

ESP32 ATMega32u4 Cortex M0+ nRF52840

[108] [116] [117] [118]

Manufacture Espressif Atmel ARM Nordic

Architecture 32 bits 8 bits 32 bits 32 bits

RAM [kB] 520 2.5 8 256

Flash [MB] 4-16 0.032 0.032 1

Power
28 15 16 25

Consumption [mA]

Power Consumption
10 12 3 1.3

Sleep [µA]

Communications BLE & WiFi - - BLE & ZigBee

GPIO (ADC) 34 (18) 26 (12) 12 (4) 48 (8)

Since our smart node need to have as much communication protocols as possible, a

considerable Flash memory size, for the edge computing models and a high number of

available programmable pins, the ideal choice for the core microcontroller was the ESP32

ultra-low-power microcontroller [108], a dual-core chip with built-in WiFi and BLE, with

embedded antennas, and the ability to connect up to 18 analog sensors.
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5.1.3. Modular IoT Nodes

As described a smart IoT node must have a set of components to be able to function,

including the Core, Sensors/Actuators, Power Supply and Communications. To achieve

modularity each of these components must be exchangeable inside the node without com-

promising the functionality of the node. This is usually done using a plug&play system,

where the modules are attached among them and can be swapped, removed or inserted

without needing to make modifications to the main board.

Throughout the literature it is possible to found several approaches to modular and

plug&play IoT nodes, from academic to industrial solutions. For example, both Arduino

and Raspberry Pi projects follow this approach, where they sell a core board, containing

the embedded processor, capable of being programmed and configured, and then sell

a variety of shields that can be coupled with the core board to provide the remaining

services, from actuator control to wireless communications. As such, they are able to

provide a custom and modular solution that can fit the requirements of the system that

can be changed by only swapping or adding a new shield, not requiring to change the

entire hardware when a new feature is needed.

BITalino, a project developed by Hugo Silva et al. [119, 120], shows an academic

approach to the modularity of smart IoT nodes, in this case for bio-signals acquisition

and physical computing, that started in the university and is now commercially available.

With their plug&play custom board they are able to create a device capable of retrieving

data from sensors, transmit them over Bluetooth and communicate with a web application.

Other approaches were found that use o↵-the-shelf components to create modular and

plug&play solutions for IoT smart nodes. In [121] the authors compare a set of o↵-the-

shelf modules to create the best modular solution for an adaptable IoT solution that can

fit in health monitoring, precision agriculture and indoor sensing. They found a wide

choice of subsystems that are available in the market creating a set of solutions based on

the system needs. Although this shows the possibility of creating a modular system it

also presents some limitations, mainly with a wide variety of solutions being presented,

falling in the lack of heterogeneous solutions problem, and for not presenting a true smart

node, with cross-layer modularity not being presented, meaning that the nodes needed to

be configured by hand and cannot be autonomous.
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Several other concepts are shown to use custom boards instead of o↵-the-self compo-

nents, such as [122] and [123], creating a true heterogeneous and modular solution, but

none tackle the autonomous part and the interaction between modules.

Our goal and major contribution for a new smart IoT node is to create an architec-

ture capable of being modular and to have autonomous configuration, based on module

detection, error detection and edge computing.

5.2. System Architecture

Our approach on a modular IoT solution is based on a set of smart nodes capable

of adapting to the needs of the WSN and their purpose, being adjusted with the help of

Machine Learning. The way our approach achieves the desired adaptability is by using

a smart node that can act as any of the three typical WSN nodes. This is done using a

plug&play modular fashion, where the necessary hardware modules are attached to the

smart node in order to create a gateway, sensor or actuator node, as shown in Figure 5.2,

and edge computing analysis supported by Machine Learning algorithms, that analyse

the modules attached and configure the node to act accordingly.

Figure 5.2. Node Overview

5.2.1. Node Features

As described before, the smart node di↵ers from all the other IoT nodes due to its

modularity and edge computing. Based on that, the node can act upon multiple spec-

ification, allowing it to perform a set of tasks to which other WSN application require

multiple node architectures, such as:
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• Create and manage the WSN: As the node can act as both gateway and sensor

nodes, and with the ability to communicate between nodes, it can create a WSN

with a star topology, with a gateway node in the middle managing the entire

network, while other nodes act as sensor nodes and collect and send data to the

gateway, as shown in Figure 5.3;

Figure 5.3. Star Topology

• Cloud computing: As the node can be equipped with several communication

modules, it is able to communicate with cloud servers or platforms, such as

Amazon AWS, Microsoft Azure, IFTTT, among many other, to store and analyse

data;

• Edge computing: The node has the ability to analyse, in real time and locally,

sensor data as they are collected by the sensor nodes, to allow for quicker re-

sponses to environment changes, based on Machine Learning models that can be

trained and uploaded to the node;

• Information gathering: As the node can have multiple analog or digital sensors

attached, it is capable of gathering information in real-time and transmit them;

• Actuator control: As for sensors, the node is also able to have multiple actuators

attached, using relay systems to control high-power devices, such as motors or

lights.

5.2.2. Node Modules

For these features to work, and as already specified, the node is composed of a set of

modules that are attached to the main core module, in a Plug&Play fashion, to allow an
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easy implementation. These modules include communication, sensors, actuators, power

supply and other, and each of them will be explained in the following sections. Each of

the modules includes a set of resistors, each with di↵erent values, that will be used to

identify each module when they are connected to the main core.

5.2.2.1. Main Core. The main core of the smart node is composed by an ESP32 and

a RFM95W LoRa transceiver [110], capable of creating an encrypted multi-point local

network, ideal for communication between nodes inside the WSN.

5.2.2.2. Sensor Module. The sensor module is composed of an 74HC4051, an 8-

channel analog multiplexer, capable of reading up to eight analog sensors while using

one analog port from the main core, freeing more ports for other features. This module

has four analog sensor ports, each with a VCC, Signal and GND line, and two I2C ports,

each with the SCL, SDA, VCC and GND lines, that are directly connected to the ESP32

in the main core. If more sensor ports are needed, the sensor module has an expansion

module in order to add four more sensors and two I2C ports.

5.2.2.3. Actuator Module. The actuator module is composed of an 74HC595, an 8-bit

serial-in, parallel-out shift register, that uses three digital ports from the main core to

control up to 256 digital outputs, once again, freeing more ports for other features. Since

the ESP32 might not have enough power to supply the coupled actuators, this module is

equipped with four Panasonic AQY212EHAT Solid State Relays (SSR) in order to operate,

through a simple electronic circuit and HIGH and LOW signals from ESP32, actuators up

to 60 VAC/VDC. Each of the SSR also has a Resistor/Capacitor snubber, to protect the

module against short-circuits. This module includes a power entry, to supply the needed

current to power the actuators. If more than four actuators are needed, this module has

an expansion module to add four more actuator ports or more eight, if needed.

5.2.2.4. Communication Module. In the main core, the node already has access to

WiFi, ESPNow and BLE, from the ESP32, and LoRa and LoRaWAN from the RFM95W,

but to ensure that the node can actually adapts to any specification, and work with

the developed autonomous communication configuration system, several communication

modules were developed, including 2G/3G/4G, using the SIM7600E, NB-IoT, using the

SIM7000E, and SigFox, using the ATA8520E, for the cloud communications, and ZigBee,

using the XBee Pro3, for point-to-point communication. For each, all the necessary
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hardware to put the communication module to work and the corresponding antenna is

included.

5.2.2.5. Power Module. The power module is divided into four categories, each of

them design to fit with a set of other modules:

• Battery Power: Includes a CR123A 3V battery holder, capable of powering the

main core and sensor module and is capable of reading the battery capacity;

• USB Power: Includes a micro-USB entry and a LM1117-3.3V LDO regulator to

convert the 5V power supply to the needed 3.3V;

• Solar Power: Includes the TP4056 battery charge module and the ports to con-

nect the solar panel and a lithium 3.7V battery that will store the solar energy.

It also includes a LM1117-3.3V to convert the 3.7V power supply to the needed

3.3V;

• AC or DC Power: Includes a LM2596, a step-down switching regulator, to convert

the input power, min. 9V to max. 24V, to 5V and then to 3.3V using the LM1117-

3.3V. It also includes a KBP206G bridge rectifier to convert the AC power input

into DC power, if needed.

5.2.3. Node Tasks

Although the same core is used on every type of node, to accomplish the specific tasks

required by each node inside the WSN, and allow it to work as Figure 5.4 shows, the

smart node adapts according to the modes presented in the next sections.

Figure 5.4. WSN Node Tasks

5.2.3.1. Gateway Mode. Only the main core is used, attached with the USB power

supply module. In this scenario the developed autonomous cloud communication system,
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from Section 4.4, is used to connect the WSN to the cloud. The roles of this node is

to create and control the entire WSN point-to-point network, receiving messages from

the other nodes and sending them to the cloud, as well as receive messages from the

cloud and send them to the corresponding node, using the autonomous point-to-point

communication system, in the BLM configuration, from Section 4.3.

The node-to-node communication is how information is exchanged inside the WSN,

from sensor information to actuator actions. Since nodes can be far from each other,

and as some of the nodes are powered by batteries, as concluded in Section 4.2, LoRa

is the ideal solution. The proposed system can support a network of up to 250 nodes,

with individual node addressing, with bigger networks not compromising the reliability of

the system nor giving extra work in the implementation, since the nodes are configured

automatically inside the network when booting for the first time.

The node-to-server communication is how information containing sensor data leaves

the network and actions are received. In order to create a constant low-power data

connection, the MQTT protocol was adopted, since it is an optimal connection protocol

for IoT and M2M, being suitable for small, cheap, low power and low memory devices

with low bandwidth networks. Being built on top of the TCP protocol, and using a

publish/subscribe pattern, is capable of providing flexibility and simplicity connectivity

[124].

5.2.3.2. Sensor Mode. The main core is used, attached with the sensor module and

the battery or solar power module. This mode is only responsible for gathering sensor data

and sending them to the gateway via LoRa, including also checking the battery capacity

and sending a message when less than 30% capacity is reached. Since it is a battery

powered node, when the node is not collecting data it enters in a deep-sleep mode, allowing

the battery to last longer. In this mode, the autonomous point-to-point communication

system, in the RLM or EFM configuration, is used to transmit the collected data. It can

also implement some edge computing data analysis.

5.2.3.3. Controller Mode. Attached to the main core is the controller module, and

the AC or DC power supply module, powered by an external power supply. This node

is responsible to perform tasks in the installation sites, such as turn ON/OFF actuators,

when a new message arrives from the gateway. For that it uses the autonomous point-to-

point communication system, in the BLM configuration. In some implementations, and

since this node is always powered by a fixed outlet, the mode can also include the sensor
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module, in order to gather information, analyse them directly on the node using edge

computing, and act upon the actuators in real-time.

5.3. Edge Computing & Self-Configuration

As said, the developed smart node is autonomous and can be self-configured without

human intervention, as it is supported by a set of edge computing algorithms. These

algorithms are responsible for detecting which modules are attached to the smart node,

if they are compatible, mainly in terms of power supply, and finally configuring the node

workflow according to the tasks each module requires.

Figure 5.5 represents the step by step analysis done by the edge computing when

the node is turned ON. It starts by retrieving the values from the modules attached to

smart node, using them to predict, with a Random Forest Classifier, the type of module;

then, knowing all the modules attached and their requirements, it will detect if there is

any incompatibility between the modules; and finally, if no errors are detected, it will

identify the node as a gateway, sensor or controller node and configure the node for the

corresponding tasks.

Figure 5.5. Smart Node Edge Computing Methodology

Each of these steps will be described in detail, including how each of the edge com-

puting models were developed, in the following sections.

5.3.1. Module Detection

The first thing the node does is retrieve information about the connected modules,

using the resistance values of each module, that are collected by the main core. Those

values are collected using an 74HC4051, being each of the input ports dedicated to a

specific module, as described in the Module ID column of Table 5.2. Then the goal is to

predict which module is attached to that specific port, as described on the Module Option

and Description column in the same table.
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Table 5.2. Module Codes for Module Detection

Module Module ID Module Option Module Description

Sensor 0
0 Not Available

1 Sensor Module (4 sensors + 2 I

2
C)

Actuator 1

0 Not Available

1 AC Actuator Module (4 actuators)

2 DC Actuator Module (4 actuators)

Communication 2
0 Not Available

1 NB-IoT Module

Power 3

0 Not Available

1 Battery Power

2 AC Power

3 DC Power

4 USB Power

To create an edge computing model capable of predicting the module type based on the

resistance value, the training methodology followed across all our research, and described

in Section 3.2.1, was followed, being Random Forest the selected algorithm.

To create the training dataset, each combination of the modules was assembled and

the resistance values were retrieved 500 times, in order to create a dataset capable of

identifying the modules as best as possible. The final dataset contains 6000 entries with

the following parameters:

• Module ID – Specification of the module type

• Module Option – Variation of the module type

• Value – Resistance value

The training methodology presented in Section 3.2.1 was followed in order to obtain

the best Random Forest classifier model possible to predict the attached module, based

on the module resistance.

Following the methodology, the hyper parametrization tuning, showed that the best

configuration for the Random Forest classifier model was with the following parameters:

• n estimators – 10

• max features – ’auto’

• max depth – 10

• min samples split – 5

• min samples leaf – 4
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• bootstrap – True

This model achieved an accuracy of 64.66%. Figure 5.6 shows the predicted values

versus the real values, obtained by the model.

Figure 5.6. Module Detection Predicted vs Real Values

To further validate the model accuracy, and following the methodology presented, the

model was validated with a Stratified K-Fold Cross Validation, using 5 folds and 20% of

the data as validation points. Figure 5.7 shows the learning curve for the validation test.

Figure 5.7. Module Detection Classification Learning Curve

It is possible to observe, at the end of the learning curve, that both training and

validation converge to a similar value, showing that the model is well fitted, with a

validation accuracy of 65.2%.

As such, is it possible to conclude that the trained model is not suitable for predicting

the attached module based on its resistance. In a further evaluation of the trained model,
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the results matrix, Figure 5.8, was analysed to check if it was possible to understand what

was happening.

Figure 5.8. Module Detection Matrix Analysis

Analysing these results and considering the format of the intended output, that is

composed by two numbers, the first identifying the Module ID and the second the Module

Option, in the matrix is possible to assess that the second number is always correctly

identified, being the problem with the identification of the Module ID. But, due to the

following methodology for the module detection, the Module ID is already identified by

the main core when choosing the input port of the 74HC4051, so the first number from

the classification model result can be discarded and replaced by the main core identifier.

This logic is used as follows:

f o r ( i = 0 ; i < 5 ; i++){

// Read the input va lue from the port i o f the 74HC4051

v = readModuleValue ( i ) ;

// Use the edge computing model to p r ed i c t the module

// c l a s s i f i c a t i o n

p = model . p r ed i c t ( v ) ;

// Remove the f i r s t b i t from the r e s u l t and append the

// input va lue

r = i + s t r i p (p , l a s t b i t ) ;

}

With this revised methodology implemented alongside the classification model, the

implementation was tested by attaching several modules to the main core and checking

if the output corresponds to the module attached. For each combination, 100 tests were
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performed, in order to guarantee the reliability and accuracy of the detection system. Fig-

ure 5.9 shows that the revised methodology is able to achieve 100% accuracy in detecting

which modules are attached to the main core.

Figure 5.9. Revised Module Detection Matrix Analysis

With a validated and accurate system for detecting which modules are connected to

the main core, the Random Forest model was ported to run on the edge device. The

ported model created a file with 334 kB, so no modifications to the model were needed

to be able to port it to the microcontroller.

5.3.2. Configuration Error Detection

After knowing which modules are attached to the main core, the next step in the self-

configuration system is to detect if there are any incompatibilities between the modules,

mainly in terms of the power source needed for each mode. Table 5.3 shows the possible

outputs from the modules combinations.

Table 5.3. Configuration Error Output

Error Description Combinations

1 No power source No power module attached

2 Incompatible power source

Actuator with or without Communications

with Solar, Battery or USB

Any cellular communication with Solar or Battery

0 No error Other combinations

To create an edge computing model capable of detecting incompatibilities in the at-

tached modules, the training methodology followed across all our research, and described

in Section 3.2.1, was used, being Random Forest the selected algorithm.
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The training dataset is composed of each of the possible combinations of modules and

the corresponding output, as presented in Table 5.3, in order to create a dataset capable

of identifying errors as best as possible. The final dataset contains 168 entries with the

following parameters:

• Sensor Module – Module Option for the Sensor Module (see Table 5.2)

• Actuator Module – Module Option for the Actuator Module (see Table 5.2)

• Communication Module – Module Option for the Communication Module (see

Table 5.2)

• Energy Module – Module Option for the Energy Module (see Table 5.2)

• Error – Error output (see Table 5.3)

The training methodology presented in Section 3.2.1 was followed in order to obtain

the best Random Forest classifier model to predict the attached module, based on the

module resistance.

Following the methodology, the hyper parametrization tuning, showed that the best

configuration for the Random Forest classifier model was with the following parameters:

• n estimators – 15

• max features – ’sqrt’

• max depth – 10

• min samples split – 5

• min samples leaf – 2

• bootstrap – False

This model achieved an accuracy of 100%. Figure 5.10 shows the predicted values

versus the real values, obtained by the model.

To further validate the model accuracy, and following the methodology presented, the

model was validated with a Stratified K-Fold Cross Validation, using 5 folds and 20% of

the data as validation points. Figure 5.11 shows the learning curve for the validation test.

It is possible to see, at the end of the learning curve, that both training and validation

converge to a similar value, showing that the model is well fitted, with a validation

accuracy of 89.5%, .

As such, is it possible to conclude that the trained model is suitable for detecting

incompatibilities in the attached modules. The 100% accuracy in this model can be

justified by the dataset containing all the possible scenarios and not much variation can
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Figure 5.10. Error Detection Predicted vs Real Values

Figure 5.11. Error Detection Classification Learning Curve

be found in a real case scenario, so it is normal for the model to have a perfect fit and

accuracy.

With a validated and accurate system for detecting incompatibilities in the attached

modules, the Random Forest model was ported to run on the edge device. The ported

model created a file with 127 kB, so no modifications to the model were needed to be able

to port it to the microcontroller.

5.3.3. Configuration Mode Detection

If no errors are found in the previous step, the last step of the self-configuration is to

configure the node with the corresponding tasks based on the attached modules. For this

step, a simple switch case scenario was implemented, since it is only a matter of checking

if a module is attached and to implement the needed features.
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Based on the attached modules, the following modes are configured in the node:

• Only the Main Core – The Gateway Mode is configured. The node will create

the LoRa network, connect with the server, using the autonomous cloud commu-

nication system, and start listening for other nodes;

• Sensor Module – The Sensor Mode is configured. The node will gather informa-

tion from the attached sensors and send them to the gateway. Deep sleep can be

configured in between the collection periods;

• Actuator Module – The Controller Mode is configured. The node will wait for

messages from the gateway and control the actuators based on those messages;

• Battery or Solar Module – When one of these modules is attached, a battery

capacity check is performed, in order to send a message when the capacity falls

under 30% and warn the user that it might need to be replaced;

In the sensor or controller mode, it will broadcast a message saying a new node was

created and wants to be part of the network. After being accepted into the network, it

starts the corresponding tasks. In order to be fully configured, the user then needs to

say what type of sensors or actuators are attached, so the software can understand the

data that is being collected and how to control those actuators. This is the only human

interaction needed to create the system.

5.3.4. Data Analysis

For the Data Analysis using Edge Computing models, as shown in the previous chap-

ters, there are already a set of models that need to be part of node, such as the autonomous

communication systems and the module detection and self-configuration system. Table 5.4

shows the space already allocated for these decision models.

Table 5.4. Edge Computing Allocated Space

Function Model Size [kB]

Node Configuration
Module Detection 334

Error Detection 127

Communications Point-to-Point Configuration System 940

Total 1401

Since the ESP32, the microcontroller used in our Main Core, has 2 MB of available

Flash to store edge models, it is still possible to implement an edge computation data
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analysis system in any of the node modes, regarding that the model file needs to have less

than 600 kB.

5.4. Implementation

As said, in order to create our smart node some research was done to understand

which were the best components to use and how to connect them into the final solution.

For that, the development and implementation of the smart node started with some o↵-

the-shelf modules assembled in a laboratory environment and only after that they were

ported into custom Printed Circuit Board (PCB) boards.

In a first stage each of the nodes, aggregation, sensor and actuator, were assembled

using the ESP32-DevkitC-v4, using jumper wires and a breadboard to simulate the mod-

ularity. The goal was to combine all the needed hardware and understand the needed pins

for each module and all their variations. Figure 5.12 shows the assembled gateway, with

the NB-IoT communication module, the actuator, with the relay system, and the sensor

node, with the 74HC4051 and sensor connectors.

After understanding how the modularity will work and the needed pins and compo-

nents, the ESP32-DevkitC-v4 was replaced with a bare ESP32-WROOM-32E module,

using an adapter board, Figure 5.13, and only the necessary components. This step was

crucial, since the ESP32-DevkitC-v4 had several components that were not needed in our

implementation, such as LED’s, voltage regulators, USB connectors and several resistors

and capacitors that not only increase the cost of the device but also consume unnecessary

energy when the node is connected. With this step it was possible to understand how the

core module can be ported into a custom node

The final step was to develop a custom PCB board for each of the modules, as described

in Section 5.2.2. For that, the KiCaD software was used and the PCBs were manufactured

in JCLPCB, a Chinese PCB manufacturer. Figure 5.14 shows the final modules for the

Core, Sensor, Actuator, DC Power, AC Power, USB Power and Battery Power. The

schematics, PCB layouts and BOM files can be found in Appendix C

The modules can be stacked on top of each other in order to connect them and create

the node modes described in Section 5.2.3.
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(a) Actuator Node (b) Sensor Node

(c) Aggregation Node

Figure 5.12. Breadboard Implementation
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Figure 5.13. ESP32 Adapter Board

Figure 5.14. Modular IoT Smart Node
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5.5. Dashboard & Control

Although a heterogeneous WSN is presented, capable of adapting to the specifications

of the installation without human intervention, there is still a need to tell the network

what those specifications are. Also, any IoT system requires a visualization platform,

capable of showing the data collected by the network as well as give the user a way to

send commands to the network when needed.

Our research shows that when the typical user has an application for each of the

systems they use, mainly when they are from di↵erent manufactures. Even when the

same company o↵ers two IoT systems to the user, they use di↵erent apps or dashboards

to control them.

Since our goal was to provide a heterogeneous solution, not only in terms of hardware

but also in software, with our interactive dashboard the user can control their networks re-

gardless of the specifications or environment. The dashboard will act as gateway between

the WSN and the user and has the following features:

• Cross platform, i.e., available on web, Android and iOS;

• Allow remote control over the network, regardless of the location of the user or

the network;

• Visualization of all the collected data;

• Basic configuration of the network:

– Identifying the attached sensors – This is how the network will be able to

self-configure the nodes;

– Identifying the attached actuators;

– Identifying the purpose of the network – This is how the software will be

able to analyze the sensor data;

– Remove or disable nodes from the network;

• Manually control the actuators;

• Receive alarms;

The dashboard will show all the sensors connected to each network, showing all the

corresponding data and configurations. Whenever a new node is connected, it will auto-

matically appear in the dashboard and be ready for the user to conclude their configura-

tion. Figure 5.15 shows the developed dashboard on all platforms.
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Figure 5.15. System Dashboard

5.6. Remarks

This chapter presented the research and development of the sustainable modular IoT

smart node supported by Machine Learning. From the introduction of the needed concepts

to develop a modular IoT smart node to the developed intelligence that controls the node

it shows how the smart node was built, its features and implementation.

With a goal of creating a modular node, several modules were designed in order to

create a node that can act as a gateway, actuator or sensor node, while being powered by

a set of di↵erent ways, such as batteries, solar or DC power. Based on the used modules

and the combinations between them, tasks were created for the model to act upon.

As the module will be self-configurable based on the attached modules, several edge

computing models were created based on the Machine Learning methods. For detecting

the attached modules a Random Forest Classifier capable of assessing the modules based

on its resistance, achieving a low accuracy of 65%. After a careful analysis of the model

results, using a simple logic based on the previous results allows the model to improve its

results and achieve a 100% accuracy when detecting the attached modules based on its

resistance. After knowing what modules were attached, it was necessary to know if there

was some configuration error, i.e., if any of the attached modules were not compatible.

For that a Random Forest Classifier was developed to identify incompatibilities among

the attached modules based on each module’s ID. This model achieved an 89.5% accuracy.

Finally, in order to self-configure the node, a script was created to start the needed tasks

based on the attached modules. All these intelligence and computing models were ported

to the node in an edge computing fashion.
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As the smart node is composed of a set of di↵erent modules, each of them was designed

into a custom PCB and manufactured. Each of the modules was created using only the

bare and needed components, in order to create the most energy e�cient module.

The proposed hardware architecture for the WSN meets the requirements of the cur-

rent IoT systems and proves to be an optimization from the current solutions on the

market, since it is able to adapt to multiple situations or scenarios. Besides that, the

ability to perform in a low-power scheme and also adapt the consumptions to the user

needs, allows the system to be very reliable in terms of battery usage.
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Implementation & Case Studies

This chapter presents the implementation of the developed sustainable modular IoT

solution for Smart Cities application supported by Machine Learning. It starts with an

overview of the case study scenarios and guidelines for the performed implementation

tests. It follows with the description of the implementation scenarios where a traditional

IoT system was already implemented, including the problem statement, the system de-

scription and the obtained results using the current implementation. For each of the

implementation scenarios, the way our new solution is implemented is described as well

as the obtained results. Each scenario ends with a comparison between the tradition

and our new approach in terms of e�ciency, energy used and decision time, in order to

understand if our solution is capable of having the same performance as a typical solution

while creating a more sustainable process. Finally, a remarks section closes this chapter

with a brief discussion and conclusion of the topics and results given in this chapter.

6.1. Overview

Cities depend on water to achieve a successful environment, not only for human con-

sumption but also for the production of food and materials, green spaces and agricultural

field irrigation and many others. But most of these activities still use humans to admin-

ister the correct amount of water and manage the entire systems, leading to complex and

inaccurate results.

For example, in irrigation, one of the major activities in terms of water consumption,

with more than 70% of the world fresh water being used for landscape and agricultural

irrigation, 30% of that water is wasted or misused due to many situations such as lack of

control, leaks or misuse, according to [125].

As such, we will implement our new sustainable modular IoT solution facing two

developed systems during our research, in the field of water management in Smart Cities

applications: detecting leaks in water distribution pipelines; and improving the water

management in irrigation systems for both landscape and urban farming.
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In each of these applications, the previous system will be described, with the corre-

sponding results, as well as the new implementations and obtained results, being then

compared among them.

6.2. Leak Detection for Water Distribution Pipelines

To achieve the main objective of detecting leaks and their location in pipes in real

time using Machine Learning, there was a need to design a control and monitoring system

to be applied in water distribution pipelines in the public and private domains. This

system intends to use multiple sensors with real-time data collection, mainly water flow

parameters, to improve the e�ciency and the early detection of leaks, with the support

of Machine Learning techniques.

6.2.1. Traditional IoT Approach

The system consists of various water flow measuring sensors, spread throughout the

water distribution pipeline to collect information as water flows by them [126]. Each of

the sensor nodes, Figure 6.1, consists of an ESP32-DevKitC microcontroller and a YF-B2

water flow sensor [127], a water rotor combined with a hall-e↵ect sensor, that detect speed

changes with the di↵erent rate of water flows through it. To transmit the gathered sensor

information to the aggregation node, it uses a LoRa connection through the RFM95W

module. This node is powered by an 3V CR123A battery that, combined with a deep

sleep functionally of the ESP32, can last up to 545 days.

Figure 6.1. Leak Detection Traditional Sensor Node [126]
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The aggregation node, Figure 6.2, is responsible for the communication with the server,

transmitting the information collected from the sensors. It is composed of an ESP32-

DevkitC and a RFM95W LoRa module, to receive the messages from the sensor nodes. For

the server communication, MQTT is used via an NB-IoT connection, using the SIM7000E

module.

Figure 6.2. Leak Detection Traditional Aggregation Node [126]

In the server, the information is stored and then analysed using a Random Forest

Classifier, that through the previous study achieved an 85% accuracy predicting water

leaks and to inform the user of leak location, based on the sensor data. Depending on the

analysis done by the algorithm, the information is shown to the user as being all normal

within the system or will alert the user for potential locations of water leaks. This logic

can be better comprehended by the flowchart of Figure 6.3.

The system was implemented in a simulation scenario that mimic a set of pipelines

that supply water in irrigation systems or households, with the goal of warning the user

when situations such as leaks start to appear and their location, not only to notify the

user but also to help prevent this type of situation from evolving to bigger ruptures or

other problems, such as water and monetary waste. Figure 6.4 shows the experimental

laboratory implementation of the water distribution system.

The system was left running for several hours, collecting data from individual sensors

as water flowed through them and sending those values to the server to be analyzed and

to predict whether leaks are occurring and where they are. The test started with a new

set of pipes in perfect conditions and, over time, holes were made in them to simulate

leaks. As such it is possible to check if the system can detect them and warn the user
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Figure 6.3. System Logic [126]

Figure 6.4. System Implementation [126]

about their location in real time. To check the accuracy of the system, as each hole was
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made, the timestamp and location were recorded to later compare with the results from

the system.

Figure 6.5 shows the obtained results, allowing us to observe when true positives,

true negatives, false positives, and false negatives were obtained for each of the possible

outputs. With this, it is possible to understand the situations where the outputs were

wrongly predicted and to calculate the accuracy of the system for that particular test.

Figure 6.5. Traditional Implementation Results [126]

It is possible to see that the predicted outputs of the system are able to detect not

only if a leak exists but also the section where it occurs based on the data collected from

the sensors. Looking at the diagonal in the matrix that presents the true positives, where

the values were correctly predicted, it shows that the system is able to detect more correct

situations than wrong ones, with 2374, accounting for a 75% accuracy. There are some

mistakes between the 0 and 1 output values, indicating that, when detecting minor leaks,

the system still needs to be improved. Also, some situations where the output was 2

were identified as 3. The more concerning situations are major leaks that were identified

as non-problems in 82 cases and situations where no leak was present but was identified

87 times as majors’ leaks. This showcases that the accuracy of the system is still not

perfect but is in line with the results from the training, where the RF model got only 85%

accuracy.

6.2.2. Sustainable Modular Approach

Following the system architecture from the traditional approach, the nodes were re-

placed by our sustainable modular approach and the Machine Learning model was im-

plemented in an Edge Computing model, directly in the nodes, instead of the Cloud

Computing model in the server.
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For the Aggregation Node, the Gateway Mode, described in Section 5.2.3.1, was used.

Composed by the Main Core and the USB Module, it is capable of gathering the LoRa

messages and sending them to the server using MQTT. For that, the NB-IoT Module was

also attached. Figure 6.6 shows the modular aggregation node.

Figure 6.6. Leak Detection Modular Aggregation Node

For the Sensor Node, the Sensor Mode, described in Section 5.2.3.2, was used. Com-

posed by the Main Core, the Battery Module and the Sensor Module, is capable of

retrieving the water flow sensor values and sending them, via LoRa, to the aggregation

node. Figure 6.7 shows the modular sensor node.

The best configuration for the Random Forest Classifier model, using Cloud Comput-

ing, was with the following parameters:

• n estimators – 158

• split criteria – ’gini’

• max features – ’auto’

• max depth – 138

• min samples split – 5

• min samples leaf – 2

• bootstrap – True
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Figure 6.7. Leak Detection Modular Sensor Node

This model achieved an 84.79% accuracy and a file size, after porting, of 126 MB.

As discussed in Section 5.3.4, in order to fit our modular approach, the model needs

to be under 600 kB. So, using the methodology described in Section 3.3, the number of

estimators and the depth were adjusted. Table 6.1 shows the ported model characteristics

facing the trained cloud model.

Table 6.1. Leak Detection System Edge Computing Model Characteristics

Model Accuracy [%] File Size [MB] Estimators Depth

Cloud Computing 84.79 126 158 138

Edge Computing 80.13 0.238 20 10

By reducing 87% the number of estimators and 93% the model depth, it was possible

to reach a model with 238 kB, 81% smaller than the original model, while decreasing less

than 4% in accuracy. This edge computing model was implemented in the aggregation

node, as the sensor node does not have the other sensor nodes information needed to run

the model.

After creating a similar system using our sustainable modular approach, the exact

same simulation used in the traditional approach was implemented. Once again, the
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system was left running for several hours, collecting the water flow values and sending

them to the aggregation node, being this time analysed directly in the node, instead of in

the server. New pipes were added into the system, and as in the previous scenario, over

time holes were made to simulate ruptures.

Figure 6.8 shows the obtained results, once again allowing us to see when true positives,

true negatives, false positives, and false negatives were obtained for each of the possible

outputs. With this, it is possible to understand the situations where the outputs were

wrongly predicted and to calculate the accuracy of the system for that particular test.

Figure 6.8. Modular Implementation Results

The traditional approach achieved an 75% accuracy, with 2374 correct outputs, and

82 cases of major leaks identified as non-problems, and the reverse situation happening

87 times. With our new approach, we got a similar result, achieving an 73% accuracy,

with 2348 correct outputs, 2% lower. This can be justified by the lower accuracy from the

edge computing model. Even so, the problems detected in the traditional approach occur

less times, with 73 major leaks being detected as non-problems and the reverse situation

occurring 68 times.

This proves that our solution can work as well as a traditional IoT solution.

6.2.3. Comparison

Since our system is supposed to be a more sustainable approach, not only the quality

of the service needs to be compared. With the implementation of both approaches under

the same scenario, it was possible to compare its accuracy, decision time, energy used and

messages exchanged. Table 6.2 shows the obtained results for both scenarios.

Although with a lower accuracy, our new approach was able to decrease the energy

consumption in 31%, not only due to the low power modules used but also since less
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Table 6.2. Leak Detection System Results Comparison

Scenario

Average Average Average

Accuracy Decision Energy Messages

[%] Time Used Exchanged

[µs] [mA] LoRa NB-IoT

Cloud Computing 75 736287 136 3703 3703

Edge Computing 73 14283 94 3703 1690

messages were sent to the server for analysis, being this done directly on the aggregation

node. In terms of latency, our new approach is over 50 times faster to get a decision, when

facing cloud computing. Finally, in terms of message exchange, a message was only sent

to the server when a problem was encountered, allowing for a reduction of 2013 NB-IoT

messages.

With these results it is possible to conclude that our sustainable modular approach

is indeed more sustainable than a traditional IoT approach, not only reducing the power

consumption of the entire system but also reducing the costs of data transmission.

6.3. Water Management for Sustainable Farming Irrigation

In order to improve the sustainability and e�ciency of irrigation in agricultural fields,

a system was developed using a WSN, artificial intelligence and Machine Learning, that

work according to the field needs being autonomously adapted. Through the collection of

real time local data directly in the field, it is possible to improve the irrigation system, as

well as give the owner the appropriate information, such as the best time of the day for

irrigation. This system allows the farmer to have a better understanding of their fields

and reduce the costs of water and maintenance.

6.3.1. Traditional IoT Approach

The system uses a wide range of sensors that are strategically spread over the agricul-

tural fields in order to collect the data needed for the correct monitoring, using a WSN

[128]. The system needs to include several Sensor Nodes, for data collection, an Actuator

Node, to turn ON/OFF the irrigation system, and an Aggregation Node, to manage the

network and send/receive messages from the server.

The aggregation node is the same from the previous case study, Figure 6.2, composed

by an ESP32-DevKitC, a RFM95W, for LoRa transmissions between the nodes, and a

SIM7000E NB-IoT module for communication with the server via MQTT.
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The sensor node, Figure 6.9, also as the previous case study, is composed of an ESP32-

DevKitC and a RFM95W, for transmitting the gathered data over LoRa, and a set of

sensors. In this case, it was complemented with a SI7021, a temperature & humidity

sensor, a DS18B20, a waterproof soil temperature sensor, and an analog capacity soil

moisture sensor, a humidity waterproof sensor which provides the capacity of collecting

data with high precision. In this scenario, the sensor node was powered by a 31 cm2 solar

panel and a 3.7V 4000mAh LiPo battery, which can last 235 days without solar exposure,

with and average consumption of 42.58mA.

Figure 6.9. Irrigation Management Traditional Sensor Node [128]

As for the actuator node, Figure 6.10, it shares the same core of the other nodes, with

an ESP32-DevKitC and a RFM95W LoRa module. It is also connected to a weather

station, the SEN 0186 [129], capable of collecting measured wind speed, wind direction

and precipitation values, that need to be constantly collecting data, thus not being able

to work with battery powered sensor nodes. To be able to control the 24V irrigation

pumps the Panasonic AQY212EHAT Solid State Relays (SSR) were used, being this

node powered by a 24V transformer.

In the server, the collected sensor data was analyzed and transformed into knowledge

to understand the real amount of water needed or the best time of day to irrigate. For that,

two di↵erent approaches were done, one only based on calculations using the sensor data,

to discover the optimal irrigation time, and a second one based on a Machine Learning
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Figure 6.10. Irrigation Management Traditional Actuator Node [128]

approach, using the sensor data to predict the best irrigation hour and then calculate the

irrigation time.

The calculation approach is described in detail in [128, 130] and take into account the

use of soil moisture, air temperature and humidity, rain and wind sensors and considering

the type of crops, the type of valves and tubing used, the distance between these same

valves the number of irrigation in one day and the evapotranspiration.

The Machine Learning approach uses a Random Forest Classifier, that based on the

collected data from the sensor nodes in the field, is capable of predicting the best irrigation

hour with an 85% accuracy. Once again, this classification method was chosen based on

a previous study done in [128].

The system was implemented in a small urban farm, whose field management was

performed by the owner, who watered it once a day, around 20:00, using a hose, being

the only days that it was not irrigated, the rainy ones. Figure 6.11 shows the urban farm

used for the test.

The managed field was divided in two irrigation zones, with each one assigned the fol-

lowing sensors: air temperature and humidity, and soil moisture and temperature sensors.

123



Chapter 6 Implementation & Case Studies

Figure 6.11. Tested Urban Farm [128]

Besides that, the data of wind speed, wind direction and the rainfall were also collected by

the weather station. The sensor implementation on the field can be seen in Figure 6.12.

Figure 6.12. System Implementation—Sensor Nodes [128]

Regarding irrigation, it was installed one Actuator Node that managed two water

pumps, each one attached to each irrigation zone, as seen in Figure 6.13.

In the first zone was implemented the calculation approach, which verifies every hour

if there are some zones to be irrigated, in case of matching, the script calculates the

amount of water needed for that zone. Since the owner usually irrigates his garden once
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Figure 6.13. System Implementation—Actuator Node [128]

a day, with the exception of rainy days, at the same hour, it was programmed that the

irrigation zone that this algorithm was taking care of would be irrigated at 20:00, every

day, according to the algorithm decisions.

In the second zone, the calculation approach was complemented with the Machine

Learning approach. By implementing these two algorithms in parallel, the field was

autonomous, since neither the irrigation hour nor the irrigation time had to be entered

manually into the system.

To expose the system to di↵erent situations, the test was in operation for three months,

between September and November of 2020, where it was exposed to good weather and

rainy days.

Table 6.3 presents the results for the entire test, for the three months, based on water

used to irrigate the field in each exposed situation, where the third method is the one

used by the owner to irrigate his garden.

Table 6.3. Traditional Approach Water Usage

Test Days

Avg. Water Total

Used per Day [L] Consumption [L]

1 2 3 1 2 3

Sunny 45 3.12 2.33 5.75 140.4 104.85 258.75

Rainy 28 0 0 0 0 0 0

After Rain 17 2.17 2.22 5.75 36.89 37.74 97.75

Total 90 177.29 142.59 356.5
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The calculation approach is able to achieve about 50% of savings, when compared with

traditional methods, in this case manual irrigation. When combining it with a Machine

Learning approach that predicts the best irrigation hour, it is possible to save up to 60%

more water than traditional methods, with more than 214 L of water saved in only 90

days.

6.3.2. Sustainable Modular Approach

As in the previous case study, the same system architecture from the traditional

approach was followed, being the nodes replaced by our sustainable modular approach

and the Machine Learning model implemented in an Edge Computing model, directly in

the nodes, instead of the Cloud Computing model in the server.

For the Aggregation Node, the one from the leak detection system was used, as shown

in Figure 6.6.

For the Sensor Node, the Sensor Mode, described in Section 5.2.3.2, was used. Com-

posed by the Main Core, the Solar Module and the Sensor Module, is capable of retrieving

the sensor values and sending them, via LoRa, to the aggregation node. To the Solar Mod-

ule, the same 31 cm2 solar panel and 3.7V 4000mAh LiPo battery from the traditional

approach, were connected. Figure 6.14 shows the modular sensor node.

Figure 6.14. Irrigation Management Modular Sensor Node

For the Actuator Node, the Controller Mode, described in Section 5.2.3.3, was used.

Using the Main Core, the DC Power Module and the DC Actuator Module, it was possible

to control the 24V irrigation pumps and power the node over the 24V power transformer.
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Also the Sensor Module was attached to connect the weather station sensors. Figure 6.15

shows the modular sensor node.

Figure 6.15. Irrigation Management Modular Actuator Node

The best configuration for the Random Forest Classifier model, using Cloud Comput-

ing, was with the following parameters:

• n estimators – 212

• split criteria – ’gini’

• max features – ’auto’

• max depth – 196

• min samples split – 10

• min samples leaf – 2

• bootstrap – True

This model achieved an 85.49% accuracy and a file size, after porting, of 559 MB.

As discussed in Section 5.3.4, in order to fit our modular approach, the model needs

to be under 600 kB. So, using the methodology described in Section 3.3, the number of

estimators and the depth were adjusted. Table 6.4 shows the ported model characteristics

versus the trained cloud model.
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Table 6.4. Irrigation Management System Edge Computing Model Char-
acteristics

Model Accuracy [%] File Size [MB] Estimators Depth

Cloud Computing 85.49 556 212 196

Edge Computing 80.17 0.192 25 5

By reducing 89% the number of estimators and 98% the model depth, it was possible

to reach a model with 192 kB, 99.97% smaller than the original model, while decreasing

less than 6% in accuracy. This edge computing model was implemented in the sensor

node, that after getting a decision send a LoRa message to the actuator node to start the

irrigation process.

After creating a similar system using our sustainable modular approach it was im-

plemented in the same urban farm as in the previous test. This time only one zone was

controlled, the zone number 2 from the previous test, and the Machine Learning coupled

with the calculation approach method was used, since it proved to be the best solution.

To, once again, expose the system to di↵erent situations, the test was in operation for

three months, between March and May of 2021, where it was exposed to good weather

and rainy days.

Table 6.5 presents the results for the entire test, for the three months, based on water

used to irrigate the field in each exposed situation, where the third method is the one

used by the owner to irrigate his garden.

Table 6.5. Sustainable Modular Approach Water Usage

Test Days

Avg. Water Total

Used per Day [L] Consumption [L]

2 3 2 3

Sunny 60 2.36 5.75 141.60 345.00

Rainy 18 0 0 0 0

After Rain 12 2.28 5.75 27.36 60.00

Total 90 168.96 405.00

Our new sustainable and modular approach, with the edge computing decision system,

achieved the same 60% water savings over the manual irrigation, with 236 L, or 52 L/m2,

of water saved. Since the actuation process in this system does not depend heavily on

Machine Learning, it is the calculation process that decides the amount of water to use,
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it is normal not to find many di↵erences in the e�ciency and quality of the service when

compared to the traditional IoT approach.

6.3.3. Comparison

Once again, since our system is supposed to be a more sustainable approach, not

only the quality of the service needs to be compared. With the implementation of both

approaches under the same scenario, it was possible to compare its accuracy, decision

time, energy used and messages exchanged. Table 6.6 shows the obtained results for both

scenarios.

Table 6.6. Irrigation Management System Results Comparison

Scenario

Average Average Average

Accuracy Decision Energy Messages

[%] Time Used Exchanged

[µs] [mA] LoRa NB-IoT

Cloud Computing 85.49 589274 159 2201 2201

Edge Computing 80.17 8737 86 25 0

Although with a lower accuracy, our new approach was able to decrease the energy

consumption in 46%, not only due to the low power modules used but also since less

messages were sent to the server for analysis, being this done directly on the sensor node.

Compared to the previous scenario, even less energy was used since no LoRa messages

were needed to send the data to the aggregation node to be analyzed, since it was done

directly on the sensor node, using 2176 less LoRa messages. With this, also no NB-IoT

messages were needed for the decision process nor the actuation on the environment. In

terms of latency, the edge computing approach is 67 times faster.

These results further validate that our sustainable modular approach is capable of

replacing a traditional approach while being more sustainable, reducing the power con-

sumption of the entire system but also reducing the costs of data transmission and decision

time.

6.4. Remarks

This chapter presented the implementation of the new developed system, based on

the research and development presented in the previous chapters. It presented a detailed

approach on using sustainable modular IoT solutions to replace traditional IoT systems,

in order to create more sustainable processes and solutions.
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With the goal of assessing if the new solution would have a similar performance to

other IoT solutions already developed and tested in real case scenarios, two previous

research projects, both in the field of water management in Smart Cities, were selected

to be replaced with this new approach.

In the first one, used to detect leaks in water supply pipes for houses or irrigation

systems, the system used a set of sensor nodes, combined with an aggregation node, to

send the sensor data to the cloud to be analyzed. With an accuracy of 75%, it proved

to be a reliable solution to detect leaks. Using the new solution, we replaced the entire

hardware with the smart nodes, which in a modular way were able to create the sensor

and aggregation nodes. The data analysis model was ported into an edge computing

model and inserted in the aggregation node. Although losing some accuracy, being 2%

lower, this allowed for the reduction of more than 2013 exchanged messages, creating a

more power saving system, able to reduce up to 31% the power consumption of the overall

system.

In the second scenario, used to reduce the water consumption of irrigation systems,

the system used sensor nodes, to collect the field conditions using sensors, an actuator

node, to control the irrigation pumps, and an aggregation node, to send the data to the

cloud and receive the irrigation configuration timings. This system, which used Machine

Learning to predict the best irrigation hour and a set of calculations to predict the water

needs for the field, was able to reduce up to 60% of the water consumption comparing

to the manual irrigation. With the new approach, we switched all the hardware to our

modular smart nodes and ported the Machine Learning model to run directly on the sensor

node. Although the same 60% water savings were achieved with the new approach, it was

done using 46% less energy, since there was a reduction of 2176 LoRa messages and 2201

NB-IoT messages. Also, a 67 times faster decision process was obtained.

These two implementation scenarios showed that not only this new solution can be

applied to di↵erent systems, using di↵erent nodes under specific configurations, but that

can also do it in a more sustainable and e�cient way. It also proves that the new solution

is ready for the market and that it can easily undergo a technology transfer process.

With the results presented in this chapter, the entire research is validated and proven

to be useful to create a sustainable modular IoT solution for Smart Cities or regions

applications supported by Machine Learning.
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Conclusions

With the proliferation of Smart Cities, supported by Internet of Things, Wireless

Sensor Networks, Wireless Communications and Machine Learning, a new set of challenges

rise and put in question the sustainability and security of these solutions. New research

and product development must focus on creating green devices that not only reduce the

energy consumption, but also create more e�cient and secure communications, storage

and data mining, while reducing the complexity of deployment, inter-connectivity and

scalability. It is only after these problems are no longer a reality that the resistance and

mistrust in Smart Cities will disappear and the population start to accept them.

This thesis presented a new solution for Smart Cities applications based on modular

IoT smart nodes supported by Machine Learning that can create more sustainable and

e�cient systems. This solution is composed of smart nodes that can self-configure its

software, communication configuration and data analysis, without human intervention,

allowing for an easy deployment into new services. For that a set of modules were de-

veloped that, when connected, will create an autonomous solution capable of adapting

to any situation or configuration, in order to achieve maximum e�ciency in the associ-

ated task, but also do it in a more sustainable way, reducing the decision times, power

consumption and costs. These modules include the smart node, a fully adaptable and

modular node that can create WSN in a one-fits-all solution; an autonomous communica-

tion configuration system, capable of tackling both device-to-device and device-to-server

communications, using the best protocol available and its configuration, based on location

and conditions; and a set of learning systems, based on Machine Learning, that not only

are the basis of both of the previous modules, but will also help analyse the data and

extract the need knowledge to improve e�ciency and the performance of the system.

The learning systems were the first module to be presented, as they were the basis

for the entire solution. Several algorithms were tested with the goal of assessing if one

solution could support the entire system or if multiple solutions were needed based on the

system needs. Decision Trees, Random Forest, Neural Networks, Linear Regressions and

Support Vector Machines were tested under di↵erent scenarios and datasets and Random

131



Chapter 7 Conclusions

Forest proved to be the best solution in all of them, for both classifications and regressions.

Although this happens, it is possible to conclude that it is important to analyse several

solutions for the same problem, as each could benefit from a specific configuration. The

next step was to understand if running the learning system directly on the edge devices

could improve the system performance and energy e�ciency. For that, a study was done

on how the fully trained cloud computing models could be ported into the low-memory

microcontrollers and how it a↵ects its performance. Although it reduces the accuracy of

the models, edge computing proved to also reduce latency and power consumption, being

90% faster using 50% less power with an accuracy only 6% lower. As such it is possible to

conclude that more sustainable decision processes can be achieved without compromising

its e�ciency and reliability.

The next phase was to apply these learning systems to create an autonomous commu-

nication configuration system, capable of creating a more sustainable message exchange

system, for device-to-device and device-to-server, based on the available protocols, node

location and environment conditions. For device-to-device, it started with understanding

how the most typical protocol behaves in di↵erent scenarios, such as indoor or outdoor,

rural or urban and with or without obstacles. ESPNow, Bluetooth Low Energy, FSK

Radio Frequency, LoRa and ZigBee were tested and, although using a higher power con-

sumption, LoRa proved to be the best overall protocol, as it was the only one able to

adapt to the indoor and outdoor environment on both short and long distances and with

or without obstacles. It was also possible to conclude that using a higher transmission

power does not always create the best communication link, mainly when tackling shorter

distances. Knowing how each protocol behaves, it was possible to create a configuration

system for point-to-point communication that predicts the link quality and energy con-

sumption of each protocol and configuration and choose the best one based on quality

e�ciency, energy e�ciency or an hybrid approach. With this, it was possible to create

a communication system capable of saving 65% of the energy needed to send a message

while only reducing 13% the quality of the network. The same methodology was applied

to the cloud communication system, for using WiFi, Cellular, LoRaWAN or SigFox. In

this scenario, edge computing proved not to be able to cope with the task, not only hav-

ing a higher margin of error and a higher decision time, it was not able to use the full

methodology due to the lack of memory of the devices. Nevertheless, the cloud computing
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model proved to be able to configure the node with the best available protocol based on

the nearby base stations and protocols available.

The final developed module was the smart IoT node, a modular node capable of acting

as a gateway, sensor or actuator node and that is self-configurable based on the attached

modules. For this self-configuration, a set of edge computing models were used to discover

the attached modules, if they were compatible and then to configure the node tasks based

on the attached modules. These models proved to work, with an accuracy of 89%, on the

worst scenario, being able to create a fully adaptable and autonomous node.

With the goal of assessing if the developed nodes could be put together to create a new

solution capable of providing a more e�cient and sustainable system, it was compared

with two typical IoT solutions in a Smart City environment: leak detection in the water

distribution pipelines and a smart irrigation system for urban farms. For each of these

scenarios, this new solution was assembled in order to mimic the smart solution already

implemented and tested, using multiple smart nodes allocated to the specific tasks. In

the first scenario, several sensor nodes were used to collect the water flow information and

an edge computing model was implemented in the gateway to analyse those data. After

testing this new solution versus the previous implementation, it was possible to conclude

that this solution, although with an accuracy 2% lower, was able to reduce the power

consumption of the entire system by 31% while also reducing the number of exchanges

messages, creating not only a more sustainable system but also increasing the quality of

the network. In the second scenario, several sensor nodes were used to collect information

about the urban farm fields conditions and an actuator node to control the irrigation

pumps. With these, it was possible to reduce up to 60% the consumption of water, a

similar result facing the previous smart solution, but with 46% less power needed and

with almost no messages exchanged.

These results prove that our solution not only is capable of having the same perfor-

mance as a typical IoT solution but will do it in a more sustainable and e�cient way,

allowing for Smart Cities to reach its full potential and solving some of the challenges

underlying its fast proliferation.

Although a full solution is provided, alongside all its research and methodologies, that

is ready for a technology transfer process and to be inserted into to the market, still some

improvements and new research can be done, mainly:

• Battery Optimization: Create mechanisms to improve the battery usage;
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• Cost Reduction: Revised the used hardware to create cheaper nodes;

• Deep Learning: Update the learning system to use more recent Machine Learn-

ing methods, such as Deep Learning, in order to improve overall accuracy and

performance.

Beside these, as stated in Chapter 2, there are still several challenges that were not

tackled in this thesis, such as security, storage or data trust, that still can be researched

and where this innovative solution can also help. All of these can be further developed in

the future.
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[128] A. Glória, J. Cardoso, and P. Sebastião, “Sustainable irrigation system for farming supported by

machine learning and real-time sensor data,” Sensors, vol. 21, no. 9, 5 2021.

143



References

[129] DFRobot, “Weather Station Datasheet,” 2019, [Online] Available: https://wiki.dfrobot.com/

Weather Station with Anemometer Wind vane Rain bucket SKU SEN0186, (visited 21/02/2021).
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APPENDIX A

Learning System Scenarios

This appendix presents a detailed description of the scenarios used in the Machine

Learning classification and regression tests, in order to assess the best models and con-

figurations to use in IoT projects. For each of them the scenario goal, dataset used and

how it was gathered is described.

A.1. HVAC System Operation Detection

The first scenario was a classification scenario designed to identify if a HVAC sys-

tem is turned ON inside an o�ce space, based on a network of smart sensors collecting

temperature and humidity data. This system intends to identify if the HVAC is turned

ON and if it really needs to be, in order to improve energy e�ciency and create a better

environment for workers, while reducing costs.

The dataset used, as explained in [83], contains data from 6 di↵erent nodes inside a

42m2 o�ce from two months of operation, corresponding to around 1000 samples collected,

with the features presented in Table A1.

Table A1. HVAC Dataset

Feature Description

Sensor
n

Value from Sensor Node (see Table A2)

Timestamp Timestamp from collection

HVAC HVAC state (ON/OFF)

Table A2. HVAC System Sensor Nodes

Sensor
n

Location

1 Window (First Floor)

2 Backo�ce (First Floor)

3 Stair

1 Window (Second Floor)

1 Back O�ce (Second Floor)

The goal of this scenario is to classify whether the HVAC system is ON based on

temperature and humidity data, as they are gathered in real time by the sensors.
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A.2. Water Leak Detection

The second classification scenario under study was the use of WSN to predict leaks

in water distribution pipes in agricultural fields, not only to detect when a leak occurred,

but also the size and location.

The dataset used, created by [84], was composed using a small water distribution

system in a laboratory, with three sensors placed on a pipeline, on which holes were

carved, being the results classified based on location and size. The leaks were detected

by a drop of water flow, captured by the sensor, when compared to the first or previous

sensor in the system, allowing it to also detect the section, between two sensors, where

the leak is encountered. The dataset also classifies the leak by size, according to Table

A3.

Table A3. Leak Size Output [84]

Output Description

0 No leaks in that section

1 Micro leaks in that section

2 Minor leaks in that section

3 Major leaks in that section

The dataset contains 5607 entries, with the features presented in Table A4.

Table A4. Leak Detection Dataset [84]

Feature Description

id ID of the data input

sensorID Corresponding sensor

value Value collected

average Average from last 5 values for that sensor

di↵ ref Di↵erence from Sensor 1

di↵ sen Di↵erence from previous sensor

hasProblems Leaks on that section

With this dataset a classification approach is intended to use water flow data, collected

by the sensors in real time, to detect if a pipe has some sort of rupture.
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A.3. Agricultural Irrigation Hour

Another classification problem studied was the use of ground sensor data and weather

conditions, to predict the best time of day for water administration in agricultural fields,

in order to reduce the consumption of water.

The dataset used, created by [131, 85], was gathered using a network of sensors

that collected environmental and field data and complemented by values provided by the

Instituto Português do Mar e da Atmosfera (IPMA) [86].

This data contains 105217 entries with a vast number of features, as can be seen in

Table A5.

Table A5. Agricultural Irrigation Hour Dataset [131, 85]

Feature Description

Year Year of the observation

Month Month of the observation

Day Day of the observation

Hour Hour of the observation

Temperature Air Temperature registered [�C]

Relative Humidity Air Humidity registered [%]

Total Precipitation Low Precipitation registered [mm/day]

Wind Speed Wind Speed registered [km/h]

Wind Direction Wind Direction registered [�]

Soil Humidity Soil Moisture registered [%]

Had irrigation Field irrigated [0/1]

Need Irrigation Field needs irrigation [0/1]

Is Favorable Conditions favorable for irrigation [0/1]

Suggested Hour Suggested irrigation hour [0–23]

The goal with this dataset is to use a classification technique to predict the next best

hour of irrigation based on weather and field conditions gathered by the sensors in the

field.

A.4. Weather Conditions

Another regression scenario tested was the prediction of weather conditions based

on historical data. This is a common prediction example and can be very useful in our

approach to more sustainable activities, mainly when linked with the previously presented

agricultural scenarios, as weather is the main influence on those scenarios.
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The dataset was provided by IPMA [86], and contains 52609 samples from hourly

real time weather stations data from March 1st, 2014 to March 31st, 2019, for Lisbon,

Portugal, containing the features presented in Table A6.

Table A6. Weather Conditions Dataset

Feature Description

Latitude Latitude of the field

Longitude Longitude of the field

Altitude Latitude of the field

Day Day of the observation

Month Month of the observation

Year Year of the observation

Temperature Max Maximum temperature registered [�C]

Temperature Min Minimum temperature registered [�C]

Wind Speed Average wind speed registered [km/h]

Precipitation Total precipitation registered [mm/day]

Evapotranspiration Evapotranspiration registered [mm/day]

The goal with this dataset is to use a regression technique to predict future tempera-

ture, humidity and precipitation using only a new timestamp.

A.5. SmartGrid House Consumption

The third regression scenario tested, accounts for the prediction of energy consumption

inside a house based on smartgrid data. For that, multiple open-access datasets are

available online, as M. Panda [132] analyzed. For our test, the Almanac of Minutely

Power Data set (AMPDs) [87], that ”contains 1 minute aggregate meter readings as well as

sub-metered readings from 19 individual circuits. Each reading includes measurements of

voltage, current, frequency, power factor, real power, reactive power and apparent power.

Furthermore, the aggregate gas and water consumption was also measured at 1 minute

intervals, in addition to 1 individual usage for each utility.”, as M. Panda concluded

[132]. From those 19 files the ”Electricity WHE” dataset [133] was chosen, containing

the aggregate meter reading for the whole house.

The latest version of the dataset contains data for April 2012 to March 2014, with

1051200 records, with 12 features, from which only the Timestamp, that was converted

from a unix timestamp to a date format (DD/MM/YY hh:mm) and then individualized

into features (day, month, year, hour, minute); and the Instant Real Power, in Watt [W],
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that was converted into a kilowatt-hour [kWh] value, were extracted. To complement

the dataset, information about the energy contract was included, based on a tri-hourly

contract with 3 periods of energy charge based on the day of the week, hour and season.

The final dataset features are as displayed in Table A7.

Table A7. SmartGrid Consumption Dataset

Feature Description

day Timestamp day

month Timestamp month

year Timestamp year

hour Timestamp hour

minutes Timestamp minutes

weekday Timestamp week day (Sunday - 1; Saturday - 7)

energyPeriod Tri-hourly energy period

power Real Power reading total meter reading [W]

energy Energy consumption [kWh]

With this dataset, the intended goal is to be able to predict how much energy is being

consumed in a certain timestamp based on smartgrid data. This can be incorporated in

many smarthome solutions, to check if turning a new appliance will congest the network

or even how much it will cost to the user and if turning it on another hour can potentially

reduce the costs.

A.6. Communication Strength Signal

Finally, the last regression scenario falls under the device communication area, as this

will be a key module of the developed solution. In this scenario the regression will be

used to predict the quality of a signal, using di↵erent protocols, based on the location of

the device.

For that, the NetBravo open-access dataset [88] was used, a crowd-sourced dataset

composed by measurements of signal strength for Wi-Fi and 2G, 3G and 4G cellular based

on coordinates location, all over Europe. The dataset contains 878289 entries, with the

features presented in Table A8.
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Table A8. Communication Strength Signal Dataset

Feature Description

X Coordinate X

Y Coordinate Y

type Communication Protocol

RSSI Signal Strength
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APPENDIX B

Machine Learning Algorithms Comparison Results

This appendix presents the results obtained in the comparison of Machine Learning

Algorithms for data analysis, as described in Section 3.2.

B.1. Classification

Table B1. Default Classification Results

Algorithm
Accuracy [%]

HVAC Leak Detection Irrigation Hour

SVM 97.59 77.98 79.57

Random Forest 98.79 82.88 84.74

Neural Network 98.79 79.5 82.36

Decision Tree 97.59 81.28 76.83

Table B2. Hyper Classification Results

Algorithm
Accuracy [%]

HVAC Leak Detection Irrigation Hour

SVM 98.3 80.3 80.21

Random Forest 99.39 85.7 85.49

Neural Network 99.7 82.9 83.21

Decision Tree 98.79 83.5 79.65

Table B3. Cross-Validation Classification Results

Algorithm
Accuracy [%]

HVAC Leak Detection Irrigation Hour

SVM 98.19 78.62 79.3

Random Forest 98.5 83.06 84.6

Neural Network 99.34 78.96 80.2

Decision Tree 98.2 80.57 77.0

B.2. Regression
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APPENDIX C

Smart Node Schematics

This appendix presents a detailed description of the developed modules for the smart

IoT node. For each of the modules the schematics, the Bill of Materials (BOM), the PCB

layout and the final assembled board are presented.

C.1. Main Module

Figure C1. Main Module Schematics
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Table C1. Main Module BOM

Label Description Label Description

C1-C2 1µF Capacitor (SMD 0805) R1-R2 10k⌦ Resistor (SMD 0805)

C3 10µF Capacitor (SMD 0805) R3 100k⌦ Resistor (SMD 0805)

J1-J2 1x10 Male Stackable Header (2.54mm) R4 10k⌦ Resistor (SMD 0805)

J3 1x4 Male Stackable Header (2.54mm) U1 ESP32-WROOM-32E

J4 1x6 Male JST PH Connector (2.00mm) U2 74HC4051 (SOIC127)

J6 U.FL Male Connector U3 RFM95W

(a) PCB Layout (b) Assembled Node

Figure C2. Main Module Implementation

158



Appendix C Smart Node Schematics

C.2. Sensor Module

Figure C3. Sensor Module Schematics

Table C2. Sensor Module BOM

Label Description Label Description

J1-J2 1x10 Male Stackable Header (2.54mm) J9-J10 1x4 Male JST PH Connector (2.00mm)

J3 1x6 Male Header (2.54mm) J11 1x4 Male Stackable Header (2.54mm)

J4 1x4 Male Header (2.54mm) R1-R2 10k⌦ Resistor (SMD 0805)

J5-J8 1x3 Male JST PH Connector (2.00mm) U1 74HC4051 (SOIC127)

(a) PCB Layout (b) Assembled Node

Figure C4. Sensor Module Implementation

159



Appendix C Smart Node Schematics

C.3. Actuator Module

Figure C5. Actuator Module Schematics

Table C3. Actuator Module BOM

Label Description Label Description

C1-C4 47nF Capacitor (SMD 0805) R5-R6 100⌦ Resistor (SMD 0805)

J1-J2 1x10 Male Stackable Header (2.54mm) R7-R10 10k⌦ Resistor (SMD 0805)

J3 1x6 Male Header (2.54mm) R11-R12 100⌦ Resistor (SMD 0805)

J4-J5 1x6 Terminal Block (5.00mm) R13-R14 10k⌦ Resistor (SMD 0805)

J6 1x4 Male Stackable Header (2.54mm) U1 74HC595 (SOIC-16)

Q1-Q4 BC847 (SMD SOT-23) U2-U5 AQY212EHAT (SSR DIP-4)

R1-R4 10k⌦ Resistor (SMD 0805)
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(a) PCB Layout
(b) Assembled Module

Figure C6. Actuator Module Implementation

C.4. Battery Module

Figure C7. Battery Module Schematics
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Table C4. Battery Module BOM

Label Description Label Description

J1-J2 1x10 Male Stackable Header (2.54mm) R1 0⌦ Resistor (SMD 0805)

J3 1x6 Male Header (2.54mm) R2 1M⌦ Resistor (SMD 0805)

Q1 BSS84 (SOT-23) R3-R5 10k⌦ Resistor (SMD 0805)

Q2 BC847 (SOT-23) U1 CR123A Battery Socket

(a) PCB Layout (b) Assembled Module

Figure C8. Battery Module Implementation

C.5. USB Module

Figure C9. USB Module Schematics
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Table C5. USB Module BOM

Label Description Label Description

C1 22µF Capacitor (SMD 0805) J3 1x4 Male Stackable Header (2.54mm)

C2-C3 100nF Capacitor (SMD 0805) J4 USB Connector

C4 22µF Capacitor (SMD 0805) R3-R4 10k⌦ Resistor (SMD 0805)

J1-J2 1x10 Male Stackable Header (2.54mm) U1 LM1117-3.3 (SMD SOT-223)

(a) PCB Layout (b) Assembled Module

Figure C10. USB Module Implementation

C.6. AC/DC Module

Figure C11. AC/DC Module Schematics
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Table C6. AC/DC Module BOM

Label Description Label Description

BR1 KBP206G J1-J2 1x10 Male Stackable Header (2.54mm)

C1 22µF Capacitor (SMD 0805) J3/4/7/8 LM2596 Step Down Converter

C2-C3 100nF Capacitor (SMD 0805) J5 1x2 Terminal Block (5.00mm)

C4 22µF Capacitor (SMD 0805) J6 1x4 Male Stackable Header (2.54mm)

C5 1000µF Radial Capacitor (THT 5.0mm) R13-R14 10k⌦ Resistor (SMD 0805)

D1 S1A+ Recovery Diode (SMA) U1 LM1117-3.3 (SMD SOT-223)

(a) PCB Layout
(b) Assembled Module

Figure C12. AC/DC Module Implementation
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