167 research outputs found

    A Review of Relational Machine Learning for Knowledge Graphs

    Get PDF
    Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be “trained” on large knowledge graphs, and then used to predict new facts about the world (which is equivalent to predicting new edges in the graph). In particular, we discuss two different kinds of statistical relational models, both of which can scale to massive datasets. The first is based on tensor factorization methods and related latent variable models. The second is based on mining observable patterns in the graph. We also show how to combine these latent and observable models to get improved modeling power at decreased computational cost. Finally, we discuss how such statistical models of graphs can be combined with text-based information extraction methods for automatically constructing knowledge graphs from the Web. In particular, we discuss Google’s Knowledge Vault project.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF - 1231216

    D4.2 Intelligent D-Band wireless systems and networks initial designs

    Get PDF
    This deliverable gives the results of the ARIADNE project's Task 4.2: Machine Learning based network intelligence. It presents the work conducted on various aspects of network management to deliver system level, qualitative solutions that leverage diverse machine learning techniques. The different chapters present system level, simulation and algorithmic models based on multi-agent reinforcement learning, deep reinforcement learning, learning automata for complex event forecasting, system level model for proactive handovers and resource allocation, model-driven deep learning-based channel estimation and feedbacks as well as strategies for deployment of machine learning based solutions. In short, the D4.2 provides results on promising AI and ML based methods along with their limitations and potentials that have been investigated in the ARIADNE project

    Tensor factorization for relational learning

    Get PDF
    Relational learning is concerned with learning from data where information is primarily represented in form of relations between entities. In recent years, this branch of machine learning has become increasingly important, as relational data is generated in an unprecedented amount and has become ubiquitous in many fields of application such as bioinformatics, artificial intelligence and social network analysis. However, relational learning is a very challenging task, due to the network structure and the high dimensionality of relational data. In this thesis we propose that tensor factorization can be the basis for scalable solutions for learning from relational data and present novel tensor factorization algorithms that are particularly suited for this task. In the first part of the thesis, we present the RESCAL model -- a novel tensor factorization for relational learning -- and discuss its capabilities for exploiting the idiosyncratic properties of relational data. In particular, we show that, unlike existing tensor factorizations, our proposed method is capable of exploiting contextual information that is more distant in the relational graph. Furthermore, we present an efficient algorithm for computing the factorization. We show that our method achieves better or on-par results on common benchmark data sets, when compared to current state-of-the-art relational learning methods, while being significantly faster to compute. In the second part of the thesis, we focus on large-scale relational learning and its applications to Linked Data. By exploiting the inherent sparsity of relational data, an efficient computation of RESCAL can scale up to the size of large knowledge bases, consisting of millions of entities, hundreds of relations and billions of known facts. We show this analytically via a thorough analysis of the runtime and memory complexity of the algorithm as well as experimentally via the factorization of the YAGO2 core ontology and the prediction of relationships in this large knowledge base on a single desktop computer. Furthermore, we derive a new procedure to reduce the runtime complexity for regularized factorizations from O(r^5) to O(r^3) -- where r denotes the number of latent components of the factorization -- by exploiting special properties of the factorization. We also present an efficient method for including attributes of entities in the factorization through a novel coupled tensor-matrix factorization. Experimentally, we show that RESCAL allows us to approach several relational learning tasks that are important to Linked Data. In the third part of this thesis, we focus on the theoretical analysis of learning with tensor factorizations. Although tensor factorizations have become increasingly popular for solving machine learning tasks on various forms of structured data, there exist only very few theoretical results on the generalization abilities of these methods. Here, we present the first known generalization error bounds for tensor factorizations. To derive these bounds, we extend known bounds for matrix factorizations to the tensor case. Furthermore, we analyze how these bounds behave for learning on over- and understructured representations, for instance, when matrix factorizations are applied to tensor data. In the course of deriving generalization bounds, we also discuss the tensor product as a principled way to represent structured data in vector spaces for machine learning tasks. In addition, we evaluate our theoretical discussion with experiments on synthetic data, which support our analysis

    Short Text Categorization using World Knowledge

    Get PDF
    The content of the World Wide Web is drastically multiplying, and thus the amount of available online text data is increasing every day. Today, many users contribute to this massive global network via online platforms by sharing information in the form of a short text. Such an immense amount of data covers subjects from all the existing domains (e.g., Sports, Economy, Biology, etc.). Further, manually processing such data is beyond human capabilities. As a result, Natural Language Processing (NLP) tasks, which aim to automatically analyze and process natural language documents have gained significant attention. Among these tasks, due to its application in various domains, text categorization has become one of the most fundamental and crucial tasks. However, the standard text categorization models face major challenges while performing short text categorization, due to the unique characteristics of short texts, i.e., insufficient text length, sparsity, ambiguity, etc. In other words, the conventional approaches provide substandard performance, when they are directly applied to the short text categorization task. Furthermore, in the case of short text, the standard feature extraction techniques such as bag-of-words suffer from limited contextual information. Hence, it is essential to enhance the text representations with an external knowledge source. Moreover, the traditional models require a significant amount of manually labeled data and obtaining labeled data is a costly and time-consuming task. Therefore, although recently proposed supervised methods, especially, deep neural network approaches have demonstrated notable performance, the requirement of the labeled data remains the main bottleneck of these approaches. In this thesis, we investigate the main research question of how to perform \textit{short text categorization} effectively \textit{without requiring any labeled data} using knowledge bases as an external source. In this regard, novel short text categorization models, namely, Knowledge-Based Short Text Categorization (KBSTC) and Weakly Supervised Short Text Categorization using World Knowledge (WESSTEC) have been introduced and evaluated in this thesis. The models do not require any hand-labeled data to perform short text categorization, instead, they leverage the semantic similarity between the short texts and the predefined categories. To quantify such semantic similarity, the low dimensional representation of entities and categories have been learned by exploiting a large knowledge base. To achieve that a novel entity and category embedding model has also been proposed in this thesis. The extensive experiments have been conducted to assess the performance of the proposed short text categorization models and the embedding model on several standard benchmark datasets

    Tensor factorization for relational learning

    Get PDF
    Relational learning is concerned with learning from data where information is primarily represented in form of relations between entities. In recent years, this branch of machine learning has become increasingly important, as relational data is generated in an unprecedented amount and has become ubiquitous in many fields of application such as bioinformatics, artificial intelligence and social network analysis. However, relational learning is a very challenging task, due to the network structure and the high dimensionality of relational data. In this thesis we propose that tensor factorization can be the basis for scalable solutions for learning from relational data and present novel tensor factorization algorithms that are particularly suited for this task. In the first part of the thesis, we present the RESCAL model -- a novel tensor factorization for relational learning -- and discuss its capabilities for exploiting the idiosyncratic properties of relational data. In particular, we show that, unlike existing tensor factorizations, our proposed method is capable of exploiting contextual information that is more distant in the relational graph. Furthermore, we present an efficient algorithm for computing the factorization. We show that our method achieves better or on-par results on common benchmark data sets, when compared to current state-of-the-art relational learning methods, while being significantly faster to compute. In the second part of the thesis, we focus on large-scale relational learning and its applications to Linked Data. By exploiting the inherent sparsity of relational data, an efficient computation of RESCAL can scale up to the size of large knowledge bases, consisting of millions of entities, hundreds of relations and billions of known facts. We show this analytically via a thorough analysis of the runtime and memory complexity of the algorithm as well as experimentally via the factorization of the YAGO2 core ontology and the prediction of relationships in this large knowledge base on a single desktop computer. Furthermore, we derive a new procedure to reduce the runtime complexity for regularized factorizations from O(r^5) to O(r^3) -- where r denotes the number of latent components of the factorization -- by exploiting special properties of the factorization. We also present an efficient method for including attributes of entities in the factorization through a novel coupled tensor-matrix factorization. Experimentally, we show that RESCAL allows us to approach several relational learning tasks that are important to Linked Data. In the third part of this thesis, we focus on the theoretical analysis of learning with tensor factorizations. Although tensor factorizations have become increasingly popular for solving machine learning tasks on various forms of structured data, there exist only very few theoretical results on the generalization abilities of these methods. Here, we present the first known generalization error bounds for tensor factorizations. To derive these bounds, we extend known bounds for matrix factorizations to the tensor case. Furthermore, we analyze how these bounds behave for learning on over- and understructured representations, for instance, when matrix factorizations are applied to tensor data. In the course of deriving generalization bounds, we also discuss the tensor product as a principled way to represent structured data in vector spaces for machine learning tasks. In addition, we evaluate our theoretical discussion with experiments on synthetic data, which support our analysis

    Towards music perception by redundancy reduction and unsupervised learning in probabilistic models

    Get PDF
    PhDThe study of music perception lies at the intersection of several disciplines: perceptual psychology and cognitive science, musicology, psychoacoustics, and acoustical signal processing amongst others. Developments in perceptual theory over the last fifty years have emphasised an approach based on Shannon’s information theory and its basis in probabilistic systems, and in particular, the idea that perceptual systems in animals develop through a process of unsupervised learning in response to natural sensory stimulation, whereby the emerging computational structures are well adapted to the statistical structure of natural scenes. In turn, these ideas are being applied to problems in music perception. This thesis is an investigation of the principle of redundancy reduction through unsupervised learning, as applied to representations of sound and music. In the first part, previous work is reviewed, drawing on literature from some of the fields mentioned above, and an argument presented in support of the idea that perception in general and music perception in particular can indeed be accommodated within a framework of unsupervised learning in probabilistic models. In the second part, two related methods are applied to two different low-level representations. Firstly, linear redundancy reduction (Independent Component Analysis) is applied to acoustic waveforms of speech and music. Secondly, the related method of sparse coding is applied to a spectral representation of polyphonic music, which proves to be enough both to recognise that the individual notes are the important structural elements, and to recover a rough transcription of the music. Finally, the concepts of distance and similarity are considered, drawing in ideas about noise, phase invariance, and topological maps. Some ecologically and information theoretically motivated distance measures are suggested, and put in to practice in a novel method, using multidimensional scaling (MDS), for visualising geometrically the dependency structure in a distributed representation.Engineering and Physical Science Research Counci
    corecore