
Short Text Categorization using World
Knowledge

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

Dipl.-Inform. Rima Türker

Tag der mündlichen Prüfung: 03 March 2021

Referent: Prof. Dr. Harald Sack

Korreferent: Prof. Dr. Heiko Paulheim

To my parents.

Abstract

The content of the World Wide Web is drastically multiplying, and thus the amount of avail-
able online text data is increasing every day. Today, many users contribute to this massive
global network via online platforms by sharing information in the form of a short text. Such
an immense amount of data covers subjects from all the existing domains (e.g., Sports, Econ-
omy, Biology, etc.). Further, manually processing such data is beyond human capabilities. As
a result, Natural Language Processing (NLP) tasks, which aim to automatically analyze and
process natural language documents have gained significant attention. Among these tasks,
due to its application in various domains, text categorization has become one of the most
fundamental and crucial tasks.

However, the standard text categorization models face major challenges while per-
forming short text categorization, due to the unique characteristics of short texts, i.e., insuffi-
cient text length, sparsity, ambiguity, etc. In other words, the conventional approaches provide
substandard performance, when they are directly applied to the short text categorization task.
Furthermore, in the case of short text, the standard feature extraction techniques such as bag-
of-words suffer from limited contextual information. Hence, it is essential to enhance the text
representations with an external knowledge source. Moreover, the traditional models require
a significant amount of manually labeled data and obtaining labeled data is a costly and time-
consuming task. Therefore, although recently proposed supervised methods, especially, deep
neural network approaches have demonstrated notable performance, the requirement of the
labeled data remains the main bottleneck of these approaches.

In this thesis, we investigate the main research question of how to perform short text
categorization effectively without requiring any labeled data using knowledge bases as an
external source. In this regard, novel short text categorization models, namely, Knowledge-
Based Short Text Categorization (KBSTC) and Weakly Supervised Short Text Categorization
using World Knowledge (WESSTEC) have been introduced and evaluated in this thesis. The
models do not require any hand-labeled data to perform short text categorization, instead,
they leverage the semantic similarity between the short texts and the predefined categories.
To quantify such semantic similarity, the low dimensional representation of entities and cate-
gories have been learned by exploiting a large knowledge base. To achieve that a novel entity
and category embedding model has also been proposed in this thesis. The extensive experi-
ments have been conducted to assess the performance of the proposed short text categorization
models and the embedding model on several standard benchmark datasets.

v

Abstract

vi

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor Prof. Harald Sack
for giving me the opportunity to complete my Ph.D. under his supervision. I would like to
thank him especially for his constant support, patience and encouragement. Despite his busy
schedule, he always made time to address my questions. In addition, I would also like to thank
Prof. Heiko Paulheim and Prof. York Sure-Vetter for accepting the request to be the reviewer
of my thesis.

I would like to thank Dr. Lei Zhang whom I had the opportunity to work with closely. He
supported me throughout the journey of my Ph.D., especially in the most stressful and difficult
times and for that I am forever grateful.

I was very lucky to be part of an amazing FIZ ISE research team with whom I enjoyed working
very much. I would like to thank all my team mates for providing a friendly atmosphere. We
have made great memories, which will last forever.

Last but not least, I would like to express my deepest appreciation to my parents, who have
always believed in me. Thank you for always being there for me whenever I needed your
support despite the long physical distance between us. I dedicate this Ph.D. thesis to my
mother, Sevda and my father, Fuad.

vii

Acknowledgements

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Challenges and Tasks . 2
1.2 Research Questions . 4
1.3 Contributions of the Thesis . 6
1.4 Publications . 7
1.5 Guide to the Reader . 8

2 Foundations 11
2.1 Neural Networks . 11

2.1.1 Beginnings of Artificial Neural Networks 11
2.1.2 Basic Architecture of Neural Networks 13
2.1.3 Activation Functions . 15
2.1.4 Convolutional Neural Networks . 19
2.1.5 Recurrent Neural Networks . 23
2.1.6 Text Embedding Models . 26
2.1.7 Network Embedding Models . 32

2.2 Knowledge Graphs . 40
2.2.1 Definitions and Preliminaries . 41
2.2.2 Open Knowledge Graphs . 46
2.2.3 Linked Open Data . 49

2.3 Semantic Measures . 51
2.4 Summary . 54

3 Text Categorization 57
3.1 Arbitrary-length Text Categorization . 57
3.2 Short Text Categorization . 62
3.3 Text Preprocessing . 64
3.4 Feature Extraction . 66
3.5 Text Categorization Algorithms . 68

3.5.1 Decision Trees and Random Forest 69

ix

Contents

3.5.2 Naïve Bayes . 70
3.5.3 Support Vector Machines . 72
3.5.4 Logistic Regression: . 73

3.6 Evaluation Methods . 73
3.7 Summary . 77

4 Knowledge-Based Short Text Categorization 79
4.1 Introduction . 80
4.2 Related Approaches . 81

4.2.1 Dataless Text Categorization . 82
4.2.2 Entity and Category Embeddings 83

4.3 Preliminaries and Overview . 84
4.4 Probabilistic Approach . 86
4.5 Model Parameter Estimation . 87
4.6 Joint Entity And Category Embedding . 89

4.6.1 Network Construction . 89
4.6.2 Embedding Model . 90

4.7 Experiments . 91
4.7.1 Datasets . 91
4.7.2 Baselines . 93
4.7.3 Evaluation of KBSTC . 93
4.7.4 Evaluation of Entity and Category Embedding 95
4.7.5 Evaluation of Entity Linking . 96
4.7.6 Using Wikipedia as a Training Set 98
4.7.7 Partitioning the Training Data . 100

4.8 Summary and Conclusion . 100

5 Weakly Supervised Short Text Categorization 103
5.1 Introduction . 104
5.2 Related Approaches . 106
5.3 Weakly Supervised Short Text Categorization 107

5.3.1 Labeled Data Generation . 108
5.3.2 Wide and Deep Model for Short Text Categorization 110

5.4 Experiments . 113
5.4.1 Datasets . 113
5.4.2 Baseline Approaches . 115
5.4.3 Feature Sets . 116
5.4.4 Evaluation of WESSTEC . 116
5.4.5 Comparison of WESSTEC with the Unsupervised Approaches 118
5.4.6 Comparison of WESSTEC with the Supervised Approaches 119
5.4.7 Evaluation of the Generated Labeled Data 120

x

Contents

5.5 Summary and Conclusion . 121

6 Conclusion 123
6.1 Summary . 123
6.2 Outlook . 124

Bibliography 127

xi

Contents

xii

List of Figures

2.1 An overview of perceptron architectures. 13
2.2 An overview of simple feedforward neural network architectures. 17
2.3 A CNN architecture for sentence categorization. The image is extracted

from (Zhang & Wallace, 2017). 20
2.4 An overview of a simple recurrent neural network architecture for language

modeling. 24
2.5 An overview of Skip-gram model architecture. 28
2.6 An overview of CBOW model architecture. 30
2.7 An overview of Doc2Vec model architecture. 31
2.8 An example of a network embedding model. The image is extracted

from (Perozzi et al., 2014) . 33
2.9 An example of an information network. The image is extracted from (Tang

et al., 2015b). 35
2.10 An example of a simple RDF graph . 42
2.11 The evolution of the LOD cloud . 50

3.1 An overview of a text categorization task . 59
3.2 An example of an SVM trained with samples from two classes 72
3.3 An example of a ROC curve. The curve plots the TPR (y-axis) vs FPR (x-axis)

at different categorization thresholds. 76

4.1 The workflow of the proposed KBSTC approach (best viewed in color) 84
4.2 The Entity Category Network Construction (best viewed in color) 89
4.3 The performance of the supervised approaches for different training set sizes

sampled from the AG News dataset. The x axis corresponds to the number of
training samples, the y axis corresponds to the achieved accuracy score. The
dashed line represents the best accuracy score 92.4%, achieved by n-gram-
TF-IDF+MLR by using all the AG News training set. 99

5.1 The workflow of WESSTEC . 107

xiii

List of Figures

xiv

List of Tables

3.1 An example of a confusion matrix . 74

4.1 The data distribution of the AG News dataset 92
4.2 The data distribution of the Google Snippets dataset 92
4.3 The statistical analysis of the test datasets 92
4.4 The categorization accuracy of KBSTC against baselines (%) 93
4.5 The categorization accuracy of KBSTC with different embedding models (%) 95
4.6 The statistical analysis of the entity linking benchmarks 96
4.7 The comparison of Anchor Text Dictionary with EL Systems Micro F1 Results 97
4.8 The categorization accuracy of KBSTC against a traditional categorization

model, which is trained on the Wikipedia dataset and tested on AG and Snip-
pets (%) . 98

5.1 The data distribution of the DBpedia dataset 114
5.2 The data distribution of the Twitter dataset 114
5.3 The statistics for the short text datasets . 115
5.4 The categorization accuracy of different models with different features 117
5.5 The categorization accuracy against the unsupervised baselines 118
5.6 The categorization accuracy against the supervised baselines. The baselines

have been trained with the generated training sets (cf. Section 5.3.1) of re-
spective datasets. 119

5.7 The accuracy of generated training data based on the embedding models . . . 121
5.8 The categorization accuracy of WESSTEC against the Wide & Deep model

trained on majority vote based training set 121

xv

1 Introduction

The World Wide Web (the Web or WWW) is arguably the largest global repository of docu-
ments as well as other web sources (e.g., files, images, etc.) with over 1.7 billion websites1.
The documents, i.e., Web pages and the other Web sources, which constitute a huge global
network environment are interlinked by hyperlinks (Jacobs & Walsh, 2004) and identified
by Uniform Resource Locators (URLs) (Berners-Lee et al., 1998). This global collection of
information covers almost every possible topic of human interest. Today, Google processes
roughly over 40,000 search queries every second, more than 3.5 billion searches per day and
around 1.2 trillion searches per year worldwide2. This fact indicates the usefulness and sig-
nificance of the Web documents. Also, billions of users1 access and even contribute to this
enormous and global information exchange platform. Therefore, the content of the Web is
drastically multiplying every day (Chen et al., 2011).

Moreover, the rapid growth of online platforms such as Really Simple Syndication
(RSS) feeds, forums, etc. has given rise to the multiplication of online available short text
data. Besides, individuals often share their opinion in the form of a short text over different
platforms, such as microblog posts, product reviews and social media texts (Zeng et al., 2018).
Hence, it has become crucial to process and extract meaningful information from the available
online short text data. However, manually analyzing such a vast amount of data is beyond hu-
man capabilities. As a result, the fields of Natural Language Processing (NLP) (Jurafsky &
Martin, 2009), which aim to analyze and process natural language documents automatically
have evolved rapidly. In other words, NLP concerns to extract meaningful information from a
large number of natural language documents to satisfy users’ information needs. Some exam-
ples of NLP applications are text categorization (Türker et al., 2019), spelling and grammar
checking (Zukarnain et al., 2019), auto completion (Tahery & Farzi, 2020), text summariza-
tion (Liu & Lapata, 2019), question answering (Lukovnikov et al., 2019), etc. Among these
applications, text categorization is the fundamental one, which has been proven to be useful in
various applications, such as sentiment analysis, news feed filtering and categorization, spam
filtering, etc. (Zeng et al., 2018).

Text categorization is one of the crucial tasks of NLP, which aims to assign one or more
predefined categories (e.g., Sports, Economy, Business, etc.) to text documents based on the
attributes of the texts. In laymen’s terms, the text categorization task concerns labeling text
documents according to their content information. The textual data can be anything ranging

1https://www.internetlivestats.com/total-number-of-websites/
2https://www.internetlivestats.com/google-search-statistics/

1

https://www.internetlivestats.com/total-number-of-websites/
https://www.internetlivestats.com/google-search-statistics/

1 Introduction

from phrases, sentences, paragraphs, or entire documents. Hence, depending on the charac-
teristics of textual data the employed text categorization methods vary. There exist several
real-world examples of text categorization applications such as online news platforms, which
aim to first correctly categorize news contents in order to provide much more useful news to
users according to their personal preference. Another example is from a query-specific doc-
ument ranking system which concerns finding the most relevant set of documents for a given
user query (Ahmad et al., 2019). Therefore, it is also essential to categorize the content of the
documents for such systems.

While many text categorization methods (e.g., machine learning-based models) have
been proposed and demonstrated notable success in the categorization of long and well-
structured documents (e.g., news articles), in the case of short texts their performance sig-
nificantly falls down (Zeng et al., 2018). The reason here can be attributed to the main char-
acteristic of short texts, i.e., the limited length of the text which is no longer than 200 charac-
ters (Song et al., 2014). Furthermore, due to the limited contextual information, which is only
a few words (Song et al., 2014), short texts are usually rather ambiguous and sparse. More-
over, unlike other documents, such ambiguity cannot be resolved by relying on the contextual
information. Besides, since the short texts are sparse, the feature extraction is rather difficult.
Overall, the main attributes of short texts pose several major challenges to conventional text
categorization methods.

Due to the general advancement of computational power, recently, several sophisti-
cated deep learning approaches have been proposed for short text categorization (Kim, 2014;
Zhang et al., 2015). To alleviate the data sparsity problem, most of these approaches utilize ad-
vanced text representation techniques. To achieve that they exploit external knowledge (e.g., a
knowledge base) to enrich the text representations. However, although such approaches have
demonstrated remarkable performance in this task, they require a significant amount of man-
ually labeled data. Obtaining labeled data is a costly and time-consuming task. Therefore,
the requirement of large amounts of labeled data remains the main bottleneck for deep neural
network-based approaches (Meng et al., 2018). Especially, if the data to be labeled is of a
specific domain (e.g., chemistry, biology, etc.) then only the domain experts can label them.
Such labeling of text documents is also a very labor-intensive task because each domain expert
has to read each document and label them manually according to their domain knowledge.

Motivated by the stated challenges, this thesis concerns how to perform short text
categorization effectively without the requirement of any labeled data, instead, utilizing world
knowledge, such as a knowledge base as an external source.

1.1 Challenges and Tasks

Due to the drastic multiplication of Web content, short text categorization, which is the main
focus of this thesis has gained significant attention across academia and industry. However,

2

1.1 Challenges and Tasks

two main challenges are faced while performing short text categorization. These challenges
and the tasks, which aim to address the challenges are introduced as follows:

• Challenge 1: Requirement of labeled training data.

Over the last few years, with the advent of computational power, researchers have
focused on developing deep neural network based methods for the text categorization
problem. Further, the proposed approaches have demonstrated extremely superior
performance in this task. Despite the success of these models they can easily consume
million-scale labeled data (Meng et al., 2018). However, it is hard to obtain training
data due to the high cost of human labeling effort (Lu et al., 2014). Therefore, most
of the supervised categorization models suffer from the absence of labeled data. This
thesis aims to address the labeled data requirement by exploiting a knowledge base as
an external source while performing short text categorization. To achieve that the main
task is introduced as follows:

Task 1: Utilizing a knowledge base as an external source.

Knowledge bases, such as Wikipedia, which contains millions of interlinked
entities that are associated with hierarchically related categories are an excel-
lent data source for many natural language processing tasks (Chang et al., 2008;
Li et al., 2016c). One of the main concerns of this thesis is leveraging a knowledge
base as an external source to overcome the labeled data requirement while performing
short text categorization. More specifically, the semantic similarity between the entities
present in a short text and predefined categories provides crucial information to derive
the category of the text, and such semantic relation can be quantified with the help of
an interlinked structure of a knowledge base.

Besides the requirement of labeled data, another challenge we face while performing
short text categorization is stated below:

• Challenge 2: Limited context and non-standard characteristics.

While conventional text categorization methods have demonstrated notable suc-
cess, they provide substandard performance in the case of short texts. The reason
is attributed to the main characteristics of short texts. Unlike structured and long
texts (e.g., news documents), short texts do not follow the standard syntax of natural
language documents (Wang et al., 2017). Moreover, due to lack of context, short texts
are usually ambiguous. Such major characteristics of short texts pose great challenges
to the conventional text categorization methods. To overcome these challenges, the

3

1 Introduction

focus of the thesis is on enriching short text representations by exploiting knowledge
bases. In order to achieve that the following task is introduced:

Task 2: Enriching text representations by utilizing a knowledge base.

The traditional text categorization models represent texts as a bag-of-words to per-
form text categorization. Most of these methods ignore the entities and utilize only
words present in texts. In the case of short texts, where the context is rather limited and
the ambiguity is one of the major problems, such approaches that utilize only words
often lead to inaccurate results. Thus, it is indispensable to leverage external sources to
obtain more advanced text representations (Wang et al., 2017). In this thesis, in order
to enrich the text representations, we focus on exploiting entities present in short texts
and their associated categories from the underlying knowledge base.

1.2 Research Questions

The main research question of this thesis is defined as follows:

How to perform short text categorization effectively without requiring any hand-labeled
data?

This broad research question is broken down into three specific research questions,
each of which entails a combination of aforementioned challenges and tasks. Each of the
specific research question will be addressed in the remainder of this thesis.

The following first two research questions are derived from Challenge 1 "Requirement of
labeled training data" and concerns Task 1 "Utilizing knowledge bases as an external source":

Research Question 1. How can a knowledge base be utilized to categorize short texts without
requiring any labeled training data?

The entities present in short texts carry vital information about the content of the texts.
In fact, most of the time, in the case of short text, entities provide much more information
than the words (Wang et al., 2016a). On the other hand, knowledge bases describe real-world
entities and their relations, which form a graph structure (Paulheim, 2017). Therefore, linking
entities present in short texts to a knowledge base such as Wikipedia as well as mapping
predefined categories to Wikipedia categories can help to build a bridge between unstructured
data and structured data. Then the interlinked structure of Wikipedia can help to quantify the
semantic similarity between the entities within short texts and predefined categories. Such
semantic similarity can be leveraged to find the most relevant category for a given short text

4

1.2 Research Questions

without requiring any labeled data. This idea will be investigated in Chapter 4, which is based
on the following publication:

Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2019). Knowledge-based short text cat-
egorization using entity and category embedding. The Semantic Web-16th International
Conference, ESWC 2019, Portoro, Slovenia.

Research Question 2. How to learn the semantic representation of short texts and predefined
categories with the help of a knowledge base?

The semantic representation of short texts and categories is essential to measure the meaning-
ful similarity between them. Several word embedding models have been proposed to learn the
semantic representation of texts such as Skip-gram (Mikolov et al., 2013a). However, such
methods provide better text representations, when dealing with longer text, in which case,
even if a word is ambiguous, such ambiguity will be handled based on the available context.
On the other hand, in the case of short text, where the available context is rather limited and
each word obtains significant importance, such approaches often lead to inaccurate represen-
tations. Therefore, to be able to calculate semantic similarity between the short texts and the
predefined categories we focus on learning the low dimensional representation of entities and
categories from a knowledge base by exploiting its interlinked structure. This idea will be
investigated in Chapter 4, which is based on the following publication:

Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2019). Knowledge-based short text cat-
egorization using entity and category embedding. The Semantic Web-16th International
Conference, ESWC 2019, Portoro, Slovenia.

The next research question is derived from Challenge 1 "Requirement of labeled train-
ing data" and Challenge 2 "Limited context and non-standard characteristics" and concerns
Task 1 "Utilizing a knowledge base as an external source" and Task 2 "Enriching text repre-
sentations by utilizing a knowledge base":

Research Question 3. How to combine a knowledge base with a deep neural network to
perform short text categorization without requiring any hand-labeled data?

Supervised categorization methods, especially, recently proposed deep learning approaches
have demonstrated superiority for the short text categorization task. There are two main
advantages of these methods, first, they provide better categorization performance than the
conventional models, second, they significantly reduce the feature engineering efforts (Meng

5

1 Introduction

et al., 2018). However, despite their attractiveness, they require a large amount of labeled
training dataset. On the other hand, knowledge graphs are a great data source to generate
labeled data, which later can be utilized by the neural networks to perform short text cate-
gorization without requiring any manual effort. This idea will be investigated in Chapter 5,
which is based on the following publication:

Türker, R., Zhang, L., Alam, M., & Sack, H. (2020). Weakly Supervised Short Text Catego-
rization Using World Knowledge. The 19th International Semantic Web Conference, ISWC
2020.

1.3 Contributions of the Thesis

This section presents the most important contributions of the thesis. Each contribution is the
result of the specific research question (cf. Section 1.2) that has been investigated in this
thesis. The following contributions are introduced briefly and the details will be discussed in
the remainder of the thesis.

Contribution 1. A new paradigm for short text categorization, based on a knowledge base

Based on our publication (Türker et al., 2019), a method called Knowledge-Based Short
Text Categorization (KBSTC) is presented in Chapter 4. The method does not require any
labeled data to perform short text categorization, instead, it utilizes a knowledge base as an
external source. More precisely, KBSTC mainly relies on the semantic similarity between
the entities present in texts and predefined categories to perform short text categorization. In
order to find such semantic similarity, KBSTC exploits a knowledge base link structure. The
experiments that have been performed on different datasets show that KBSTC significantly
outperforms the categorization approaches which do not require any labeled data, while it
comes close to the results of the supervised approaches.

Contribution 2. A new embedding model to learn the low dimensional representation of
entities and categories from a knowledge base

The proper semantic representation of entities and categories in a common vector space
is necessary to be able to calculate the semantic similarity between them. To do so, based on
our publication (Türker et al., 2019), a new entity and category embedding model is proposed
in Chapter 4. The model first constructs two types of networks, namely, entity-entity and
entity-category networks by utilizing the Wikipedia hyperlink structure. The entity-entity
network captures the relations between the entities. On the other hand, the entity-category
network reflects the relations between the entities and categories. Then the embedding model

6

1.4 Publications

utilizes these two networks to generate the low dimensional distribution of the entities and
categories. To assess the quality of the proposed entity and category embedding model, its
performance has been compared with several different embedding models. The experimental
results suggest that the proposed embedding model can capture better semantic relations
between the entities and categories.

Contribution 3. A weakly supervised deep neural short text categorization model

Based on our publication (Türker et al., 2020), a model called Weakly Supervised Short Text
Categorization using World Knowledge (WESSTEC) is presented in Chapter 5. WESSTEC
consists of two main modules: (1) Labeled Data Generation module, which is responsible for
labeling short text documents by leveraging an external knowledge base and without requiring
any manual effort, (2) a deep neural network-based categorization model, which is designed
to utilize the generated labeled data by the first module for the training phase. WESSTEC
exploits the first module to label short text documents and then extracts different feature
sets by utilizing the words and concepts from the labeled documents to train the deep neural
network. Finally, the trained model is used to categorize new short text documents. The
performance of the model has been evaluated on multiple datasets. The experimental results
show that WESSTEC outperforms unsupervised state-of-the-art categorization approaches
while it achieves comparable performance to supervised approaches.

1.4 Publications

This section provides our publications as well as a master thesis which was supervised by the
author of this thesis.

• Conference and Workshop Papers

– Türker, R., Zhang, L., Alam, M., & Sack, H. (2020). Weakly supervised short
text categorization using world knowledge. The 19th International Semantic Web
Conference, ISWC 2020.

– Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2019). Knowledge-based short
text categorization using entity and category embedding. The Semantic Web -
16th International Conference, ESWC 2019.

– Biswas, R., Türker, R., Moghaddam, F. B., Koutraki, M., & Sack, H. (2018).
Wikipedia infobox type prediction using embeddings. The 1st Workshop on
Deep Learning for Knowledge Graphs and Semantic Technologies (DL4KGS) co-
located with the 15th Extended Semantic Web Conference, ESWC 2018.

• Poster and Demo Papers

7

1 Introduction

– Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2018b). "the less is more"
for text classification. The 14th International Conference on Semantic Systems,
SEMANTiCS 2018.

– Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2018a). TECNE: Knowledge-
based text classification using network embeddings. The 21st International Con-
ference on Knowledge Engineering and Knowledge Management, EKAW 2018.

– Aras, H., Türker, R., Geiss, D., Milbradt, M., & Sack, H. (2018). Get your hands
dirty: Evaluating word2vec models for patent data. The 14th International Con-
ference on Semantic Systems, SEMANTiCS 2018.

– Türker, R., Koutraki, M., Waitelonis, J., & Sack, H. (2017). Entity suggestion
ranking via context hashing. The 16th International Semantic Web Conference,
ISWC 2017.

• Supervised Master Thesis
– Alam M., Bie Q., Türker R. & Sack, H. (2020). Entity-based short text classifica-

tion using convolutional neural networks. International Conference on Knowledge
Engineering and Knowledge Management, EKAW 2020.

1.5 Guide to the Reader

This thesis comprises six main chapters. Chapter 1, Chapter 2 and Chapter 3 provide the
technical preliminaries and foundations of this thesis. On the other hand, Chapter 4 and
Chapter 5 are the core chapters of the thesis, they cover all the research questions introduced
in Section 1.2 along with the proposed solutions and the contributions. Finally, Chapter 6
concludes the thesis with a discussion of open issues and possible future directions.

• Chapter 1 gives the motivation of the work, and introduces the main research question
of the thesis which is broken down into three specific research questions. It further
summarizes the main contributions and structure of the thesis.

• Chapter 2 provides the foundations of the thesis. The chapter contains a brief intro-
duction to neural networks, knowledge graphs and semantic measures (e.g., semantic
similarity, semantic relatedness). This chapter does not discuss the aforementioned
subjects extensively, instead, it aims to provide the necessary background information
in the context of this thesis.

• Chapter 3 introduces the general task of text categorization. Further, it discusses the
short text categorization task, which is the main focus of this thesis. Moreover, the
chapter also provides state-of-the-art text categorization models and the most com-

8

1.5 Guide to the Reader

monly employed evaluation metrics for text categorization.

• Chapter 4 proposes a new approach (KBSTC) for the short text categorization prob-
lem. The model aims to overcome the labeled data requirement while performing
short text categorization by utilizing a knowledge base as an external source. Further,
it leverages the semantic similarity between the entities present in a short text and
predefined categories to derive the most relevant category for the text. To find the
semantic similarity between the entities and categories, this chapter also introduces a
new entity and category embedding model.

• Chapter 5 presents a weakly supervised short text categorization approach
(WESSTEC) which does not require any hand-labeled data for the categorization
task. The model consists of two main modules, namely, labeled data generation and
deep learning-based categorization modules. The method first, labels the unlabeled
short text documents with the help of the first module, which is based on a heuristic
function, and then the heuristically labeled documents are utilized by the deep neural
network model for the categorization task.

• Chapter 6 concludes the thesis with a summary of the research questions, main contri-
butions, and an outlook on future research directions.

9

1 Introduction

10

2 Foundations

This chapter gives an overview of preliminaries and methods that are leveraged to build this
thesis. The chapter consists of three main sections, namely, neural networks, knowledge
graphs and semantic measures. Section 2.1 introduces the standard and well known neural
network architectures such as feedforward, convolutional, recurrent neural networks. Fur-
thermore, text embedding models such as Skip-gram, Doc2Vec, etc. and network embedding
models such as LINE, DeepWalk, etc. are also presented in this chapter. Section 2.2 presents a
general overview of knowledge graphs, the notable knowledge graphs such as DBpedia, Wiki-
data, as well as the methods that have been utilized to create the knowledge graphs. Finally,
this section is concluded by briefly introducing linked open data and demonstrating its evolu-
tion across the years. Section 2.3 is the last section of this chapter, the semantic measures (e.g.,
semantic relatedness and semantic similarity) are presented in this section. Especially, the se-
mantic similarity has been extensively utilized to build this thesis. The section briefly presents
different methods which leverage knowledge graphs, large text corpora, etc., to calculate the
semantic similarity.

2.1 Neural Networks

This section first provides a brief history of artificial neural networks. Next, the basic archi-
tectures of neural networks (e.g., single layer, multi-layer neural networks, etc.) are discussed.
Moreover, the most prominent text embedding and network embedding models and their ar-
chitectures are presented as well.

2.1.1 Beginnings of Artificial Neural Networks

Alan Turing laid the first foundations of artificial intelligence in the 1950s by publishing a
paper titled "Computing machinery and intelligence". In this paper, he introduced the well
known Turing Test which is designed to test a computer’s ability to determine whether it can
be regarded as intelligent or not. In the Turing test, a human evaluator, i.e., referee tries
to have natural language conversations with a person and a computer which is designed to
respond like a human. If the referee cannot distinguish between the computer and the person
then the machine would pass the Turing test and then the machine could be considered as
intelligent. Although this idea was proposed decades ago, today Turing test is still used widely

11

2 Foundations

as a benchmark in artificial intelligence.

The second most important event of artificial intelligence was a Dartmouth Summer
Research Project on Artificial Intelligence Workshop. The workshop lasted six to eight weeks
with brainstorming sessions. In one of the sessions, McCarthy proposed the phrase "artificial
intelligence" in 1955. Several notable people in the field of artificial intelligence (e.g., John
McCarthy, Marvin Minsky, Julian Bigelow, Donald MacKay, and more besides) participated
in the workshop.

On the other hand, Walter Pitts and Warren McCulloch started the history of neural
networks by publishing a paper titled "A Logical Calculus of Ideas Immanent in Nervous
Activity"1. The paper describes the idea of the artificial neural networks and provides the
relevant definitions on which we still rely today (Skansi, 2018). In their paper, the neurons
were splited into two groups, the first group is called peripheral afferents, i.e., input neurons
and the second group is the output neurons. Back then the concept of hidden layer was not
introduced.

Another notable person in the field of neural networks is Frank Rosenblatt, an Amer-
ican psychologist. Rosenblatt discovered the famous perceptron learning rule which is still
today one of the most widely used learning algorithms (Skansi, 2018). The rule describes how
to update the parameters (weights) of a neural network during the training phase. Besides his
discovery of perceptron, Rosenblatt also explored several neural network architectures in his
book Principles of Neurodynamics (Rosenblatt, 1961) and proposed an idea of multilayered
networks which are similar to today’s conventional convolutional neural networks. His con-
cept of multilayered networks is still considered as a start point for the development of the
deep neural networks.

The book, written by Marvin Minsky and Seymour Papert in 1969, caused a consid-
erable setback despite the developments in artificial neural networks. In the book, Minsky
and Papert tried to prove that perceptrons are simple linear classifiers and have major com-
putational limitations such as XOR function. Further, the book discouraged many people for
the further developments of artificial neural networks. However, after that, a positive devel-
opment, i.e., the discovery of Backpropagation (backward propagation of errors) algorithm,
occurred. Although the discovery of Backpropagation by Rumelhart, Hinton, and Williams
enabled the community to train a neural network with hidden layers, this discovery was ne-
glected by the community at that time.

In the early 1990s, Support Vector Machines (SVMs) gained significant attention due
to their performance and simplicity. People from the artificial intelligence community shifted
their focus on SVMs. In the late 1990s, two important improvements occurred which laid
the foundations of today’s deep neural networks: (1) the invention of the long short-term
memory by Hochreiter and Schmidhuber in 1997; (2) the design of the first convolutional
neural network, which is called LeNet-5 in 1998 by LeCun, Bottou, Bengio, and Haffner.

1http://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

12

http://www.cs.cmu.edu/~epxing/Class/10715/reading/McCulloch.and.Pitts.pdf

2.1 Neural Networks

(a) Perceptron without bias (b) Perceptron with bias

Figure 2.1: An overview of perceptron architectures.

After that, in 2006, Hinton, Osindero, and Teh published a paper that introduced deep belief
networks (DMB). After this paper, a new period of artificial intelligence has begun.

2.1.2 Basic Architecture of Neural Networks

In this section, the underlying architectures of single-layer and multi-layer neural networks
are discussed. Single-layer neural networks are also referred to as perceptrons, which have a
set of inputs and an output layer. The inputs are directly mapped to the output layer, which
consists only of a single node. On the other hand, multi-layer neural networks do not have
only input and output layers but also hidden layers. These types of neural networks are known
as feed-forward neural networks.

2.1.2.1 Single-layer Neural Networks: Perceptrons

Perceptrons have the simplest architecture of neural networks. It consists of only an input and
output layer. The output layer contains only a single node, which produces the final output
value. Figure 2.1 illustrates perceptron architectures with and without a bias neuron. The
bias value improves the performance of the network, in other words, it enables the network
to make more accurate predictions. Moreover, to incorporate bias into the neural network,
an additional input neuron called bias neuron which transmits the value 1 to the next layer is
added.

The given input features are x1, x2, ..., x4 (cf. Figure 2.1) and the input layer simply

13

2 Foundations

transmits each individual feature to the output layer by multiplying them with their corre-
sponding weight. For example, x1 is multiplied with w1, x2 is multiplied with w2 and so on.
In an arbitrary neural network architecture, the input layer does not perform any computation,
and thus often, it is not included in the count of the number of layers.

Given a training set, where each instance is of a form (X , y), and X = [x1, x2, ..., xd]
denotes an input variable with d-dimensional features and y is the actual label of X such that
y ∈ {−1,+1}. LetW = [w1, w2, ..., wd] denote the weight of the edges and b is a bias. Then,
the output ŷ is computed as follows (Aggarwal, 2018b):

ŷ = sign{W ·X + b} = sign{
d∑

j=1

wjxj + b} (2.1)

The sign function outputs either +1 or -1 as y ∈ {−1,+1}. In other words, the role of
the sign function here is an activation function. Given a set of inputs to a node, the activation
function determines the node’s output. Depending on the application at hand, different acti-
vation functions such as sigmoid, ReLU, and softmax can be utilized (cf. Section 2.1.3). The
formalized scenario (cf. Equation 2.1) is appropriate for a binary categorization task, where
the possible output of the sign function, i.e., -1 or +1 corresponds to a category label (e.g.,
spam or not spam).

By the time Rosenblatt proposed the perceptron algorithm, the optimization process
of a network was performed heuristically. Therefore, there was not any formal definition
of a loss function for perceptrons like we have today for almost all the standard machine
learning algorithms. However, the heuristic function’s goal was the same as today’s loss
functions, minimizing the number of miss categorized samples, i.e., minimizing the error
rate. However, today several resources related to perceptrons formalize this heuristic learning
process. Following the heuristically motivated loss function in the least-squares form with
respect to all training instances is given (Aggarwal, 2018b):

MinimizeWL =
∑

(X,y)∈D

(y − ŷ)2 =
∑

(X,y)∈D

(y − sign{W ·X})2. (2.2)

The above equation aims to find the optimal weight values W , which minimizes the Equa-
tion 2.2.

Typically, this type of a neural network is trained by feeding each input data instance
X one by one to create the corresponding prediction ŷ. Then the weights are updated in each
iteration based on the error value E(X) = (y − ŷ) as follows (Aggarwal, 2018b):

W ⇐Wα(y − ŷ)X (2.3)

where α denotes the learning rate of the neural network. Finally, the weights are updated
iteratively until the convergence is reached.

14

2.1 Neural Networks

The introduced perceptron model is a type of a linear classifier which defines a linear
hyperplane between the data points. Ideally, the data points belong to the same category fall
on one side of the hyperplane and the data points belong to the other category fall on the
other side of the hyperplane. Therefore, the perceptron model performs well when the data is
linearly separable.

2.1.3 Activation Functions

There exist several activation functions that are designed to be useful for learning a neural
network. Often, hidden layers and an output layer utilize different activation functions. The
choice of the activation function for a neural network is critical for its performance. For ex-
ample, the Rectified Linear Unit (ReLU) function has become very popular in the last years,
due to its effectiveness and efficiency. Most of the standard neural network architectures
utilize ReLU for the hidden layers. On the other hand, the choice of the activation function
for output layers is determined based on the task at hand. For example, if the task requires
a prediction of a probability of a binary class (i.e., 0 or 1), then the sigmoid function should
be applied to the output node. Another example is, if the neural network is designed for
the categorization task (e.g., text categorization), then the required output is a probability
distribution over the predicted classes. To obtain such an output, the softmax function can be
applied to the output layer.

The most widely leveraged activation functions are given as follows:

• Sigmoid Function: The sigmoid function maps the output of a node in the range (0, 1),
which is a probability value. A well-known example of a sigmoid function is the logistic
function. The following formula defines the sigmoid function:

Φ(v) =
1

1 + e−v
(2.4)

It should be noted that the sigmoid function is mostly utilized to predict the probability
of a binary class.

• Hyperbolic Tangent (Tanh) Function: The tanh function has a similar graphical
shape to the sigmoid function. However, tanh function outputs the value in [−1, 1].
The relation between the sigmoid and the tanh is defined as follows:

tanh(v) = 2 · sigmoid(2v)− 1 (2.5)

Then the tanh function is defined as follows:

Φ(v) =
e2v − 1

e2v + 1
(2.6)

15

2 Foundations

• Sign Function: The sign function or signum function maps the output to +1, 0 or -1
and defined as follows:

Φ(v) = sign(v) =

1, if v>0.
0, if v=0.
−1, if v<0.

(2.7)

• Rectified Linear Unit (ReLU) Function: As stated before, today, the ReLU function
is one of the most commonly utilized activation functions. Due to its simplicity, it has
replaced sigmoid and tanh in the standard neural network architectures for the hidden
layers (Aggarwal, 2018b). The ReLU can be formalized as follows:

Φ(v) = max{v, 0} (2.8)

• Softmax Function: Often, the softmax function is leveraged in the output layer of a
neural network which is designed for a multi-class categorization task. The output layer
of such a network consists of multiple output nodes and each of them corresponds to a
class (or category). The categorization is performed based on the estimated probabil-
ity of each class, i.e., the class which provides the highest probability is selected as a
relevant class for a given input. Therefore, it is important to convert the output of the
last hidden layer into probabilistic values. To do so, the softmax function is utilized.
Given a categorization task with k predefined classes, then the output layer should con-
tain k nodes and each output of the node corresponds to a probability of a certain class.
The softmax function converts the given vector v = [v1, ..., vk] of k real numbers into
probability distribution as follows:

Φ(v)i =
exp(vi)∑k
j=1 exp(vj)

∀i ∈ 1, ..., k (2.9)

The softmax function is applied to each element of the vector v. Further, each obtained
probability corresponds to the class probability.

2.1.3.1 Feedforward Neural Networks

In the previous section, a single layer neural network, i.e., perceptron, which does not have any
hidden layers, is presented. Feedforward neural networks are similar to perceptrons except
that they contain additional intermediate layers so-called hidden layers between input and
output layers (Aggarwal, 2018b). The simple architectures of feedforward neural networks
are shown in Figure 2.2. As the name indicates, in feedforward networks, the computations
are performed in the forward direction from input to the output.

16

2.1 Neural Networks

(a) No bias neurons (b) With bias neurons

Figure 2.2: An overview of simple feedforward neural network architectures.

To facilitate the discussion, the difference between shallow neural networks and deep
neural networks is explained. Shallow neural networks contain input and output layers, and
only one hidden layer. On the other hand, deep neural networks contain input and output
layers and multiple hidden layers. Hence, the given examples in Figure 2.2 are considered as
deep feedforward neural networks.

The default architecture of feedforward neural networks (e.g., Figure 2.2) contain a
series of fully connected layers, in other words, each node in one layer is connected to nodes
of the subsequent layer. For example, Figure 2.2b is a 3-layer (with 2 hidden and an output
layer) neural network. The feedforward neural networks have a standard architecture. Hence,
once the number of layers, nodes in each layer, and the loss function are defined, the rest of
the network’s architecture is straightforward.

In feedforward neural networks, each connection, i.e., edge between a neuron in a
layer and another neuron in the subsequent layer has a weight. Each neuron except the ones in
the input layer gets as an input of a sum of the multiplications of the inputs from the previous
layer and their respective weights. Further, often a bias value is also added to this sum. Then,
each neuron applies an activation function to produce an output. Note that the number of units
in each layer is referred to as the dimensionality of that layer (Aggarwal, 2018b).

Assume the input is d-dimensional vector X , where X = [x1, x2, ..., xd] and let p1

denote the number of units in the first hidden layer. W1 is a matrix such that W1 ∈ Rd×p1

and it contains the weights of the edges between the input layer and the first hidden layer.
Similarly, the dimension of the weight matrices in the hidden layers determined by the number
of neurons contained in the respective layers. Assume Wr is a weight matrix between rth

hidden layer and the (r + 1)th hidden layer, then Wr ∈ Rpr×pr+1 . Finally, assume the output
layer contains o nodes, then the final weight matrix is Wk+1 and Wk+1 ∈ Rpk×o.

Given an input X in order to produce the output ō the following recursive equations

17

2 Foundations

are used as follows (Aggarwal, 2018b):

h̄1 = Φ(W T
1 X)

h̄p+1 = Φ(W T
p+1hp), ∀p ∈ {1, ..., k − 1}

ō = Φ(W T
k+1hk)

where h̄1 is the column vector of an output of the first hidden layer, similarly, hp+1 is a column
vector of an output of (i+ 1)th layer, Φ is an activation function such as sigmoid, ReLU, etc.

It is often the case that different layers of a network use different activation functions.
For example, a simple feedforward neural network, which is designed for a binary catego-
rization task, often uses ReLU in the hidden layers and the sigmoid for the output layer. It
should be noted that all units in a particular layer use the same activation function. Further,
depending on the application at hand (e.g., categorization or dimensionality reduction), it is
possible to easily vary the standard neural network architecture to allow multiple outputs.

The given equations above are the general formulation of the forward operation, which
aims to transform the given input feature vectors into the outputs. In other words, similar to
the perceptron algorithm, input data are fed into the network one by one or in small batches
in order to produce outputs. In perceptron, the training process is straightforward because
the optimization is achieved by minimizing the heuristically motivated simple loss function.
However, in a multilayer neural network, the loss function is much more sophisticated. The
loss function is a combination of all the weights in each layer. The weight values of the multi-
layer neural network are updated according to the error gradients. In order to compute the
gradient of the loss function backpropagation algorithm has been widely used. Such training
process mainly relies on the update of weights and biases during the training phase with back-
propagation. In the following the backpropagation algorithm is briefly explained and more
details can be found in (Skansi, 2018).

First, an error function E(x) or cost function which measures the performance of the
network is defined as follows (Skansi, 2018):

E =
1

2

∑
n∈D

(y(n) − ŷ(n))2 (2.10)

where n denotes the training sample, y is the target for the training instance n and the ŷ is the
prediction, i.e., the output of the model. The error function sums error across all the training
samples, then the weights are updated accordingly.

Based on the backpropagation algorithm the derivative of the error function E is taken
with respect to wi (Skansi, 2018):

∂E

∂wi
=

1

2

∑
n

∂y(n)

∂wi

dE(n)

y(n)
(2.11)

18

2.1 Neural Networks

The updates of weights are proportional to the error derivations and they are added
together in all training samples (Skansi, 2018):

4wi = −η ∂E
∂wi

=
∑
n

ηx
(n)
i (y(n) − ŷ(n)) (2.12)

The details of the derivatives are shown in (Skansi, 2018). Finally, the weights are updated
according to the formula below (Skansi, 2018):

wupdate = wold − η∇E (2.13)

2.1.4 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are specialized neural networks which aim to process
grid-structured data, e.g., image data (2D grid), time-series data (1D grid). The most distinc-
tive feature of convolutional neural networks from other networks is the convolutional layer.
Typically, a traditional convolutional network architecture contains at least one convolutional
layer.

In 1998, the first CNN, i.e., LeNet-5 was developed by LeCun, Bottou, Bengio and
Haffner. This network was trained with MNIST data, which is a large dataset and contains bi-
nary images of handwritten digits. Thereafter, these networks have been utilized in a variety of
applications. In 2011, convolutional neural networks demonstrated remarkable performance
in an image-classification contest. After that they gained significant attention, especially, in
the field of image processing. While they can be utilized with various types of data, the major-
ity of the applications have been focused on image data. Some of the examples of applications
are image classification, image and video recognition, medical image analysis, etc.

Although convolutional neural networks have been mostly utilized in the field of im-
age processing, applying them to natural language processing tasks has also been explored
by the researchers. (Kim, 2014) designed a relatively simple convolutional neural network
architecture for a sentence categorization task and the model demonstrated strong empirical
performance across several datasets. The proposed model is still one of the most widely
used baselines for sentence categorization. After this paper (Kim, 2014), convolutional net-
works draw more attention from the natural language processing community. Several scien-
tific papers have been published in a similar direction (Peng et al., 2018; Duque et al., 2019;
Yao et al., 2019; Conneau et al., 2016).

The convolutional neural networks are similar to the traditional feedforward neural
networks in the sense that the information moves in an only forward direction, i.e., from an
input layer to hidden layers and finally to an output layer to produce an output. Figure 2.3
illustrates a simple example of a convolutional neural network architecture for a sentence cat-
egorization task. Unlike feedforward neural networks, which typically contain one type of
a hidden layer, i.e., fully connected layer, convolutional neural networks consist of different

19

2 Foundations

Figure 2.3: A CNN architecture for sentence categorization. The image is extracted
from (Zhang & Wallace, 2017).

types of hidden layers. The most common three types of layers, which are contained in stan-
dard convolutional neural networks are convolution, pooling, and ReLU layers. ReLU is an
activation layer, which is similarly applied as in the traditional neural networks. Besides the
aforementioned layers, the final layers of convolutional networks are often fully connected.
Further, the last hidden layer is mapped to the output layer to produce the final output of a
network. The number of nodes in an output layer is determined in an application-specific
way.

20

2.1 Neural Networks

Before discussing the layers of convolutional neural networks, we first briefly examine
the network’s general architecture. The majority of the related literature has mainly focused
on analyzing convolutional neural networks in an image categorization setting where the input
is image data. However, in this thesis, the focus is short text categorization. Therefore, the
model is discussed in the context of text categorization. Figure 2.3 illustrates a simple example
of a convolutional neural network architecture which is designed for sentence categorization.
Given a piece of text, e.g., a sentence, the goal of the model is to assign a label to it. As already
stated, such type of a network accepts grid-like structured data as an input; therefore, each
input sentence is converted into a sentence matrix. To this end, first, sentences are tokenized.
The vector representation of the tokens is utilized to form the sentence matrix. The rows of the
matrix are the token vectors which can be obtained from a pre-trained word embedding model
(e.g., Google pre-trained word2vec model). Let d denote the word vectors’ dimension and
s is the number of tokens present in a given sentence. Then, the dimension of the sentence
matrix is s × d. The value of s, i.e., the number of tokens to be considered from an input
sentence to form a sentence matrix, is often predefined based on the dataset. Because the
dimension of the input matrix specifies the number of neurons in the input layer. Obviously,
the length of the sentences in standard datasets vary, and thus the zero-padding strategy is used
to equalize the dimensions of the input matrices. Given a sentence matrix, the next operation
is the convolution, which is performed via "filters", i.e., "kernels". In Figure 2.3 there are 6
different filters with 3 different sizes. This operation aims to produce a feature map from a
given input matrix and a kernel. Often, in a convolution layer, the convolution is performed
multiple times independently, and each time operation utilizes a different kernel. The main
idea is that the convolution operation places the filter to each possible position of the input and
for each possible position a dot product between the filter and the matching grid of the input
is performed. To be able to perform such a dot product the filter and the input should fully
overlap. In other words, the filter should be aligned with the matrix in a way that there should
not be any part of the filter which is sticking out from the borders of the matrix. Based on this
the possible dot products between the filter and input specify the dimension of the next layer.
Note that the size of the filters is determined based on the application at hand. For example,
for a sentence categorization task given a sentence matrix where each row is a word vector,
then it is reasonable to use filters with a width equals to the dimension of the word vectors.
Whereas for image processing the most common filter sizes are 3× 3 and 5× 5.

After the convolution operation, the obtained feature maps have different dimensions.
In order to induce the feature maps to a fixed-length vector and reduce their dimensionality, a
max-pooling function is applied to each feature map independently. Thereafter, those vectors
are concatenated to form a single dense feature vector. To produce the outputs, the softmax
function is applied to this vector. It should be noted that it is possible to feed the dense feature
vector through fully connected layers and then the output layer. The architectural design of
the network can be easily altered based on the application at hand.

21

2 Foundations

The convolution operation relies on three important ideas that improve the perfor-
mance of the model (Goodfellow et al., 2016):

• Sparse interactions. The size of the filters or kernels is often much smaller than the
layers of which the filters are applied. Therefore, the feature maps, which are the con-
volution operations outputs, have a much smaller size than the inputs. Consequently,
fewer parameters need to be stored and processed in the next layers, and thus the
efficiency is improved automatically. For example, an input of an image can have mil-
lions of pixels that needs be processed. However, with the help of kernels, meaningful
features can be detected by utilizing only tens or hundreds of pixels (Goodfellow et al.,
2016).

• Parameter sharing. As the name indicates, parameter sharing means to exploit the
same parameters in multiple operations. For example, in a convolution operation, in
order to produce a feature map, a kernel slides over the input of which the filter is
applied. In other words, the kernel visits every possible location of the input. However,
instead of learning a parameter for each location/pixel (in case of image data) of the
input, only one set of parameters, i.e., the kernel’s parameters are learned.

• Equivariant representations. The idea of parameter sharing enables a layer to be
equivariance to translations (Goodfellow et al., 2016). The functions f(x) and g(x)
are considered to be equivariant to each other if g(f(x)) = f(g(x)). For the sake of
simplicity, we give the following example (Goodfellow et al., 2016). Let I be a function
that gives the coordinates of a certain feature, e.g., the brightness of a given image. Let
g be a function such that I

′
= g(I) and I

′
(x, y) = I(x− 1, y) which shifts every pixel

of I to one unit right. Then, according to equivariant representations, the output of the
following two operations will be the same: (1) first applying the translation function g
to I then applying convolution, (2) first applying convolution I

′
and then applying g.

In the following section, convolutional graph neural networks which are a special type
of convolutional neural network are briefly presented.

Convolutional Graph Neural Networks
Convolutional neural networks have demonstrated strong empirical performance on several
tasks, such as image recognition, text categorization, etc. Such networks are designed for
processing grid-structured data, such as image data. However, there exist many real-world

22

2.1 Neural Networks

datasets which are represented in graph forms. For example, social, customer-product, citation
networks (Gao et al., 2018). The adaption of convolutional networks to other structured data
types, such as graph data is not straightforward. In other words, the traditional convolution
operation cannot be directly applied to graph data and there are two main reasons for that (Gao
et al., 2018):

• The convolutional operation requires a fixed size of the number of neighbors for each
node. However, in graph-structured data the size of the neighbors for each node varies.

• The nodes of a graph should be in an order for the applicability of the convolution op-
eration. However, in generic graphs, there is no ranking function to order the neighbors
of nodes.

Due to the aforementioned challenges, the convolutional graph neural networks (ConvGNNs)
aim to process graph-structured data by generalizing convolution operation from grid data to
graph data. The ConvGNNs find their application in various domains (e.g., computer vision,
natural language processing, recommendation systems, chemistry). Moreover, there exists a
considerable amount of studies, which aim to apply ConvGNNs to different tasks (Wu et al.,
2019).

2.1.5 Recurrent Neural Networks

The aforementioned networks in the previous sections, i.e., feedforward and convolutional
neural networks are designed to process data whose attributes do not depend on each other.
However, certain data types like text or time-series data sequentially depend on each other.
Obviously, text data can be processed by a simple feedforward neural network. Yet, the se-
quential information of the words is not taken into account by such a network. Recurrent
neural networks are specialized for processing sequential data, and they are most commonly
used with text data.

Traditional text categorization approaches often, rely on bag-of-words representations
of texts. Such methods ignore the sequential information of the words. Bag-of-words rep-
resentations may work well for the categorization of long documents. However, for more
sophisticated tasks (e.g., machine translation, sentiment analysis, etc.) the ordering of the
words might be a critical feature. Therefore, in such tasks, recurrent neural networks have
been utilized successfully.

Recurrent neural networks have a simple architecture that is derived from conventional
feedforward neural networks by adding recurrent connections on hidden layers. Although the
recurrent networks can be used almost with any sequential data, its application in the text-
domain is the most common. In the following, the examples of applications that commonly
utilize recurrent neural networks are given (Aggarwal, 2018b):

1. Language models. Given a set of history of words with their sequential information,

23

2 Foundations

language models aim to predict the next word in that sequence. This is a typical
scenario of standard language models, which find their application in various areas of
text mining and information retrieval.

2. Auto regressive analysis. Auto regressive analysis tasks aim to learn the next element
of a given real-valued time-series.

3. Machine translation. Given a sentence as an input, machine translation aims to
translate the sentence into the desired language. In such a scenario the input and the
output are sentences.

4. Text categorization. Text categorization aims to assign one or more predefined cate-
gories to a given text. In the case of text categorization, the input is a piece of text and
the output is a vector of class probabilities.

Figure 2.4: An overview of a simple recurrent neural network architecture for language
modeling.

The simple recurrent network representation is shown in Figure 2.4. This architecture
is particularly designed for language modeling, which aims to predict the next word, given the
history of the words. The main characteristic of the network is the presence of shared weight
matrices, i.e., Wxh,Whh,Why in the temporal layers of the network. Each time-stamp, i.e.,
the position in the sequence (starts at 0 or 1, and increases by 1) has an input, output, and
hidden unit. First, each word from a given sequence is one-hot encoded and then fed one at
a time to the neural network. In other words, each word is fed to the network at the relevant
time-stamp. In the given example of a language model, the output is a vector of probabilities
where each dimension corresponds to a certain word.

Given an input vector at time t (e.g., one hot encoded tth word of the sequence) is xt,

24

2.1 Neural Networks

the hidden state is ht and the output yt which is the predicted probabilities of the (t + 1)th

word. The hidden state can be formulated as follows (Aggarwal, 2018b):

ht = f(ht−1, xt) (2.14)

where h(t−1) is the hidden vector at time (t − 1), input xt and output yt are d-dimensional
vector of a vocabulary of size d. Further, the function f utilizes weight matrices and activation
functions to compute all the hidden states. Although each hidden state is updated at each
timestamp, the weight values remain the same over all the timestamps. Equation 2.15 can be
expanded to include also the output as follows (Aggarwal, 2018b):

ht = tanh(W xhxt +W hhht−1)

yt = Whyht
(2.15)

where tanh denotes an activation function, Wxh is input-hidden matrix and Whh is a hidden-
hidden matrix (cf. Figure 2.4), and yt is an output.

The given architecture in Figure 2.4 can easily be modified in order to be employed
for other applications. In other words, depending on the application at hand input and output
units can easily be adapted. For example, for a sentiment analysis task which is a special type
of a text categorization application, the input is sequential data and the output corresponds to
the category of the given sequence.

In the following section, long short-term memory networks which are a special type
of recurrent neural network are briefly presented.

Long Short-Term Memory Networks
Due to temporal layers, recurrent neural networks can be very deep and thus training becomes
a challenging task. Further, as stated before the parameter matrices of the recurrent network
are shared among the different layers of the network. Such characteristics of the network can
harm the optimization process. This problem referred to as vanishing and exploding gradients,
which is one of the most common problems that recurrent neural networks face (Aggarwal,
2018a).

Long Short-Term Memory (LSTM) networks are designed to address the problem of
vanishing and exploding gradients by changing the recurrence conditions of the hidden states.
To do so, there exist an additional hidden vector so called cell state and denoted by c̄t(k) which
is of a size p. The cell state is responsible for keeping the information (at least a part of it)
from the previous stages. To achieve that a smooth way of updating the cell states over time
is applied. By doing so, the persistence in information storage which prevents the vanishing
and exploding gradient problems is achieved.

25

2 Foundations

The parameter update operation leverages 4 different p dimensional vectors, i.e., ī
(input), f̄ (forget), ō (output), c̄ (new content of the cell state).

To compute the hidden state vector h̄t
(k) and the cell vector c̄t(k) first the the interme-

diate vectors are computed as follows:
ī

f̄

ō

c̄

 =

sigm

sigm

sigm

tanh

W (k)

[
h
−(k−1)
t

h
−(k)
t−1

]

where ”sigm” denotes a sigmoid operation. The vector c̄ is the newly proposed con-
tents of the cell state.

After calculating the four intermediate vectors, with the weigh matrices W (k) for the
kth layer, then the equation that updates the cell state defined as follows (Aggarwal, 2018b):

c̄t
(k) = f̄ � c̄(k)

t−1 + ī� c̄

where � denotes element-wise product of vectors.

Finally, the equation which is applied to update the hidden states is defined as fol-
lows (Aggarwal, 2018b):

h̄t
(k)

= ō� tanhc̄(k)
t

2.1.6 Text Embedding Models

The idea of enabling intelligent systems to understand natural language has been a goal of
various fields of artificial intelligence (Srinivasan, 2017). Such systems require natural lan-
guage data to be transformed into a specific format to be able to process them. One of the
most common ways is to represent texts in a form of a sparse and high dimensional discrete
vectors, e.g., bag-of-words, one-hot encoding, etc. However, these types of representation
models have three main disadvantages:

1. The dimension of the vectors is high, which is determined by the unique number of
words present in vocabulary.

2. To generate text vectors the semantic relation between the words is not taken into ac-
count.

3. Such models often lead to inaccurate results on new and rare words.

Due to these challenges, recently word embedding models have emerged as an impor-
tant research field (Almeida & Xexéo, 2019). These models aim to generate a low dimensional

26

2.1 Neural Networks

vector representation of words or phrases by preserving syntactic and semantic relationships
of the words. The models are trained to learn the vector representation of words in a way that
semantically similar words should have similar representations. Hence, such words are placed
close to each other in a vector space.

The embedding models have been extensively leveraged in a variety of natural lan-
guage processing tasks, e.g., text categorization, question answering, machine translation,
semantic analysis. Moreover, it is also common to exploit word vectors from embedding
models to simply construct document vectors. Subsequently, the generated document vectors
can also be utilized in a wide range of natural language processing tasks such as query-specific
document ranking, document similarity calculation, document categorization.

Beside the word embedding models, there is a considerable research body on docu-
ment embedding models which aim to generate the distributed representation of texts, i.e.,
documents, paragraphs, sentences. The basic idea of these models is utilizing syntactic and
semantic information of words contained in documents to generate document vectors.
In the following, we give an overview of the most prominent word and document embedding
models:

• Skip-gram (Mikolov et al., 2013a). The Skip-gram is one of the models of word2vec
which is a group of word embedding models (i.e., Skip-gram and Continuous bag-of-
words) (Mikolov et al., 2013a). The method learns the low dimensional representation
of words while capturing syntactic and semantic word relationships from a given large
corpus. The word vectors are computed by leveraging 2-layer simple feedforward neu-
ral networks. Training Skip-gram is very efficient. In other words, depending on the
size of the corpus and the parameters, the training phase can only take a couple of hours.
Moreover, the model can be easily adapted to obtain domain-specific word or phrase
representations. For example, for a patent document categorization task, the word vec-
tors can be generated by training the model with a relevant large patent text corpus. It
should be noted that the Skip-gram model designed to be trained in an unsupervised
manner.

Figure 2.5 depicts the overview of the Skip-gram model. For the sake of simplicity let
w(t−2), w(t−1), w(t), w(t+1), w(t+2) be a sequence of words from a given corpus.
Given a center word w(t) from a sequence, the model tries to predict the probability for
every word in the vocabulary of being the nearby, i.e., surrounding context, word of
w(t). According to Figure 2.5, w(t) is a center word and its surrounding context words
are w(t− 2), w(t− 1), w(t+ 1), w(t+ 2). The number of surrounding context words
for each center word is determined by a parameter called window size. In this example,
the window size is equal to 2 as there are 2 left and 2 right context words for w(t).

The goal of training the Skip-gram model is to compute word vectors that are applicable
to predict the surrounding words of a given center word. Then the objective of Skip-

27

2 Foundations

Figure 2.5: An overview of Skip-gram model architecture.

gram model is to maximize the average log probability of a given sequence of words
w1, w2, w3, ..., wT as follows:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

logp(wt+1|wt) (2.16)

where c is the size of the training context and specified by the window size. The bigger
the window size is more the training samples are.

The probability p(wt+1|wt) defined by using softmax function:

p(wO|wI) =
exp(v

′
wO

T
vwI)

W∑
w=1

exp(v′
w
T
vwI)

(2.17)

where vw is input and v′w is output vector representations of w, and W is the number of
all the unique words in the vocabulary. Computing such an equation for each training
sample is a very expensive task. Therefore, instead of calculating full softmax, hierar-
chical softmax, which is computationally much more efficient is used. Unlike softmax,
which evaluates |W | output nodes to find the probability distribution, hierarchical soft-
max evaluates only approximately log2(W) nodes. The output layer, i.e., the last layer
is represented as a binary tree in hierarchical softmax. Each leaf node corresponds to a
word w, w ∈W and each node in the tree represents the relative probability of its child
nodes. The hierarchical softmax defined as follows:

28

2.1 Neural Networks

P (w|wI)

L(w)−1∏
j=1

σ([n(w, j + 1) = ch(n(w, j))] · v′

n(w,j)

T
vwI) (2.18)

where n(w, j) is j-th node on the path from the root to w, L(w) denotes the length of
this path and σ(x) = 1/(1 + exp(−x)). Given the equation of hierarchical softmax the
cost of computing P (w|wI) is on average not greater than logW .

Furthermore, the authors adapt Noise Contrastive Estimation (NCE) (Gutmann &
Hyvärinen, 2012) method as an alternative to hierarchical softmax. Noise contrastive
estimation is based on the assumption that an ideal model should be capable of dif-
ferentiating data from the noise through the logistic regression model. Then for the
Skip-gram model given P (wO|wI) the goal is to distinguish between the target word
wO and the negative samples which are generated randomly. For each data sample, there
are k negative samples. Then the objective of negative sampling defined as follows:

logσ(v
′
wO

T
vwI) +

∑
i=1

Ewi∼Pn(w)

[
logσ(−v′

wO

T
vwI)

]
(2.19)

where Pn(w) is a noise distribution, from which the negative samples are generated.
Pn(w) is a parameter and the authors show that the uniform distribution of it performs
the best for several tasks.

The Skip-gram model requires large corpora for learning the vector representation of
words. The frequency of words has a vital impact on the quality of the vectors. In
a very large corpus, usually, the most frequent words are the least informative words
(e.g., "the", "a", "an", "up"). To address this problem a simple subsampling approach
has been defined as:

P (wi) = 1−

√
t

f(wi)
(2.20)

where f(wi) is the frequency of the word wi and t is a chosen threshold, around 10−5.

Overall, the Skip-gram model has been the base of many embedding models such as
DeepWalk, node2vec, Doc2Vec, etc. In addition, it is still one of the most standard
baselines for many word, document and network embedding models.

• Continuous Bag-of-Words (CBOW) (Mikolov et al., 2013a). The continuous Bag-
of-Words (CBOW) is another model of word2vec. The model aims to learn the low
dimensional representation of words from given large text corpora. Figure 2.6 illustrates
the overview of CBOW. The model is very similar to the Skip-gram model, however the
inputs and outputs are reversed. CBOW also computes the word vectors by exploiting
a simple feedforward neural network.

29

2 Foundations

Figure 2.6: An overview of CBOW model architecture.

Let w(t − 2), w(t − 1), w(t), w(t + 1), w(t + 2) be a sequence of words from a given
corpus (cf. Figure 2.6). Given context words w(t − 2), w(t − 1), w(t + 1), w(t + 2)
CBOW trained to be applicable for predicting the center, i.e., target word w(t). Similar
to Skip-gram model, the number of context words are determined by the given window
size. The objective of CBOW model is to maximize the average log probability of a
given sequence of words w1, w2, w3, ..., wT as follows:

1

T

T∑
t=1

logp(wt|wt−c...wt+c). (2.21)

where c is window size.

The probability p(wt|wt−c...wt+c) can be calculated with the softmax function as fol-
lows:

p(wt|wt−c...wt+c) =
exp(v̄T v

′
wt

)
W∑
w=1

exp(v̄T v′
w)

(2.22)

where W is the entire vocabulary of the given corpus, v
′
w is the vector of word w and v̄

is the average vector of all the context words.

• Doc2Vec (Le & Mikolov, 2014). Doc2Vec model extends Skip-gram model in order to
obtain the latent representation of texts, i.e., sentences, paragraphs, documents. Unlike
Skip-gram, which learns only the vector representation of words from a large corpus,
Doc2Vec learns vector representation of words as well as documents in which the words
present. Doc2Vec is an unsupervised algorithm which is trained to be useful for pre-
dicting the words within documents to learn the document representations. Therefore,

30

2.1 Neural Networks

semantically similar documents that share many common words expected to be located
close to each other in a common vector space. Figure 2.7 illustrates the overview of

Figure 2.7: An overview of Doc2Vec model architecture.

Doc2Vec architecture. The document vector D is concatenated (or averaged) with the
word vectorsW from the document and the model predicts the next word from the given
context.

The model is inspired by the CBOW architecture, which is trained to predict context
words from a given center word. Similar to CBOW, the Doc2Vec model is also trained
to predict the next word from a piece of given context information. However, in
Doc2Vec the inputs are not only words but also a document vector, which is treated
similarly as the word vectors. Every word and document from the given corpus mapped
to a unique vector. After the training, word and document vectors can be used in a
wide range of natural language processing tasks such as text categorization, question
answering, text summarization, etc. Since the architecture of Doc2Vec is very similar
to Skip-gram, the technical details are omitted.

• BERT (Devlin et al., 2019). Bidirectional Encoder Representations from Transformers
(BERT) is an embedding model, which utilizes both right and left context jointly to pre-
train deep bidirectional representations. The pre-trained model then can be easily fine-
tuned to create a language representation model for a wide range of natural language
processing tasks. The implementation of BERT is much more sophisticated than the
previous embedding models , therefore, the technical details of the model are skipped
in this section.

Input to BERT is a sequence of words which can be a single sentence or a pair of sen-
tences. The framework consists of two main steps, namely, pre-training and fine-tuning.
During the pre-training phase the model is trained with two unsupervised tasks, namely,
masked language modeling and next sentence prediction. The masked language mod-
elling randomly masks some tokens of the input, then it tries to predict those masked
tokens. In this task, the output layer leverages a softmax function over the entire vocab-
ulary. Finally, the model tries to predict the masked inputs instead of an entire input.

31

2 Foundations

The second task of pre-training is binarized next sentence prediction (NSP). The goal
of this task is to train the model to learn the connection between two sentences. The
dataset for this task is easily generated from a given corpus as follows:

Given a sentence A and if sentence B is the actual next sentence that comes right after A
then it would be labeled as IsNext and the randomly selected sentences from the corpus
would be labeled as NotNext.

The second component of the framework is fine-tuning. After the pre-training phase, all
the parameters of the model can be fine-tuned with labeled data. In other words, depend-
ing on the application at hand different types of inputs and outputs can be plugged into
BERT in order to fine-tune all the parameters. For example, for a question answering
task, inputs, and outputs, i.e., question-passage pairs are fed into BERT for fine-tuning.
Note that for each application, such as question answering, named entity recognition
there are different fine-tuned models.

2.1.7 Network Embedding Models

Networks are powerful graph-based structures for modeling large-scale data. Many real-world
systems form a structure of a network such as information networks, social networks, etc.
Moreover, networks are great data sources for a variety of tasks such as link prediction, node
categorization, node clustering, etc. However, the raw representation of network elements
such as nodes, edges, etc. cannot be directly processed by the machine learning systems.
There exist traditional explicit network representation methods such as adjacency matrices;
however, they seem to be relatively inefficient, especially in large-scale networks. Hence, ef-
fective and efficient representation of networks has emerged as an important field of research.
To facilitate the discussion first the formal definition of a network embedding is given as fol-
lows (Arsov & Mirceva, 2019):

Definition 2.1.1. (Network Embedding):
A network embedding function f : v → rv which maps each vertex v ∈ V to d dimensional

vector in Rd, rv is the d dimentional vector representation of v.

Recently, several network embedding models have been designed to generate the low
dimensional vector representation of nodes of a network. These models aim to preserve the
network structure while learning the distributed representation of nodes in a low dimensional
space. For example, if any two nodes in a network have a strong connection, then these two
nodes are located closely in the vector space. Because the distance between two vectors in a
vector space quantifies the measure of similarity between them.

On the other hand, the similarity between the nodes can be defined in an application-
specific way. For example, in a social network, if two nodes share several common neigh-
boring nodes, then those nodes can be considered similar. In that case, they should be placed

32

2.1 Neural Networks

(a) Karate network (b) The distributed representation of the karate net-
work

Figure 2.8: An example of a network embedding model. The image is extracted from (Per-
ozzi et al., 2014)

closely in the vector space. Figure 2.8 illustrates an example of an embedding model. Given
karate network (Figure 2.8a) as an input, the similar nodes (which share the same color) placed
close to each other in the embedding space (Figure 2.8b).

There are two main goals that network embedding models aim to achieve while
representing the nodes in a low dimensional space (Cui et al., 2019):

1. Reconstruction of the original network should be possible from the learned vector
space, in other words, the distance between the nodes that connected in the original
network should be small in the learned vector space.

2. The learned embedding space should be applicable to original network inference tasks,
such as identifying important nodes.

Network embedding models adopt different approaches, i.e., matrix factorization, ran-
dom walk, deep neural networks, etc. in order to transfer the nodes into their low dimensional
representation. In the following the most commonly used methods by the network embedding
models are given:

• Matrix Factorization.
Network embedding models aim to find the low dimensional representation of nodes
of a given network. Matrix factorization methods are common ways to achieve this
purpose. Such methods accept large network topology matrices, where each row and

33

2 Foundations

column corresponds to a node as an input (Cui et al., 2019). Each entry in such matrices
indicates the relation between the corresponding nodes. Then given a matrix M , the
matrix factorization can be defined as follows:

min
W,C
‖M −W TC‖. (2.23)

where W and C are two matrices and have lower ranks than M . Overall, the matrix
factorization operation, given a matrix M aims to find W and C matrices.

• Random Walk.
Random walks have been used in a variety of applications such as in recommendation
systems as a similarity measure (Perozzi et al., 2014). In the context of network embed-
dings, random walk models are being utilized to produce arbitrary paths from a given
network. By doing so, neighborhood information of vertices can be extracted from the
network. Network embedding models, which exploit random walk techniques mainly
rely on the neighborhood information of vertices to generate vector representation of
vertices. This idea highly relates to a neural language model by regarding a vertex as a
word and a random walk as a sentence.

• Neural networks.
Neural networks especially deep neural networks are also commonly exploited
by several network embedding models (Devlin et al., 2019; Perozzi et al., 2014;
Tang et al., 2015b). Section 2.1 provides a general overview of neural networks.

The network embedding models that have been employed in this thesis work are presented as
follows:

• DeepWalk (Perozzi et al., 2014). The DeepWalk network embedding model aims to
learn distributed representations of vertices in a given network by considering the neigh-
borhood relations of vertices. To this end, the model attempts to conduct two main tasks:

1. The model generates random walks over the network,

2. The representation of each vertex is generated based on the Skip-gram model (cf.
Section 2.1.6) by utilizing the generated paths (from the 1st step).

More precisely, DeepWalk relates the distribution of each vertex present in random
walks to the distribution of words that appear in a piece of text (Cui et al., 2019).
Motivated by this assumption, DeepWalk adapts the language model, i.e., Skip-gram
to update the representation of each vertex generated by the random walks. Given a
graph the random walk generator randomly samples a vertex v which is considered as
a root of the random walk W . Then the walk uniformly samples the neighbor of the

34

2.1 Neural Networks

last visited vertex iteratively until the maximum length of the walk t is reached. The
maximum length of the walks (t) is an input parameter. Likewise, the number of walks
at each vertex is also an input parameter.
The Skip-gram model iterates over the collection of vertices that appear within the
given window size. In Section 2.1.6 the Skip-gram model is introduced, therefore, in
this section, the technical details of Skip-gram are skipped.

• LINE (Tang et al., 2015b). Large-scale Information Network Embedding (LINE)
learns the latent representations of vertices of an information network. The network
could be undirected, directed, and/or weighted. As the name implies, the model is ca-
pable of scaling to very large information networks. Figure 2.9 illustrates an example
of a simple information network. The thickness of the edges between vertices indicates
the strongness of the connections.

LINE aims to optimize an objective function, which preserves the local structure, i.e.,
first-order proximity as well as the global structure, i.e., second-order proximity of a
given network.

Figure 2.9: An example of an information network. The image is extracted from (Tang
et al., 2015b).

First-order proximity is defined between two nodes that are connected by an edge (Cui
et al., 2019). For example, in Figure 2.9 the edge between vertex 6 and 7 is thicker
therefore, the connection is stronger. According to the first-order proximity, these nodes
should be close to each other in the vector space. On the other hand, the first-order
proximity between the vertex 5 and 6 is zero as there is no edge between them. To
model the first order proximity between vertices vi and vj the following joint probability
defined as:

p1(vi, vj) =
1

1 + exp(−~uTi · ~uj)
(2.24)

35

2 Foundations

where ~ui (~uj) is the vector representation of node vi (vj), respectively. In addition, its
empirical probability can be defined as p̂1(vi, vj) =

wij

W , where W =
∑

(i,j)∈E wij ,
E is the set of edges between nodes in the network, and wij is the weight of the edge
(i, j). In order to preserve the first-order proximity, the model aims to minimize the KL-
divergence between the two distributions p1(vi, vj) and p̂1(vi, vj). By omitting some
constants, the final goal is to minimize the following objective function:

O1 = −
∑

(i,j)∈E

wij logp1(vi, vj) (2.25)

On the other hand, the second-order proximity is determined between the two nodes
in a network by considering their common (shared) nodes. In other words, two nodes
that share the same neighbors are considered to be similar according to the notation of
second-order proximity. For example, the node 5 and 6 in Figure 2.9 should be placed
closely as there are several common neighbors between them. To model the second-
order proximity, for each edge (i, j), the conditional probability is defined as follows:

p2(vj |vi) =
exp(−~uTj · ~ui)
|V |∑
k=1

exp(−~uTk · ~ui)
(2.26)

where V is the set of nodes connected with vi in the network. The empirical probability
of p2(vj |vi) can be defined as p̂2(vj |vi) =

wij

di
, where di is the out-degree of vi. In

order to preserve the second-order proximity, the conditional distribution p2(vj |vi) is
made close to p̂2(vj |vi) based on the KL-divergence over the entire set of nodes in the
network, such that the model minimizes the following objective function:

O2 = −
∑

(i,j)∈E

wij logp2(vj |vi) (2.27)

In order to keep both first-order and second-order proximities for each node, two
LINE models are trained. The first LINE model is trained by preserving the first-order
proximity, and then another LINE model is trained by preserving the second-order
proximity. Finally, concatenating the embeddings of both models yields a final embed-
ding for each node.

• PTE (Tang et al., 2015a). PTE aims to learn the distributed representation of texts in
a semi-supervised manner. It leverages labeled as well as unlabeled data to learn the
representation of documents. Further, unlike other embedding models such as Skip-
gram, which do not use any labeled data and are generalizable for a variety of tasks,
PTE is designed to be utilized by a particular task. More precisely, the obtained vector

36

2.1 Neural Networks

representations from PTE can be easily fine-tuned for a certain task with a small set
of labeled dataset. Given a large text corpus PTE first represents co-occurrence infor-
mation between words-words, words-documents, and words-labels by generating three
different networks as follows:

– Word-word network reflects the co-occurrence information of words in the same
context (i.e., context window). The weight of each edge of this network is deter-
mined by the number of times co-occurrence of the two words in the same context
windows.

– Word-document network encodes the co-occurrence information of words in
documents. The weight of an edge between a word and document defined by the
number of times the word present in the document.

– Word-label network reflects the information of word co-occurrences in a category
level. The weight between the word wi and category cj is wij and it is defined
as: wij =

∑
(d:ld=j) ndi where ld is a category label of document d and ndi is the

term frequency of word wi.

– The combination of word-word, word-document, and word-label networks con-
stitutes the heterogeneous text network.

The heterogeneous text network is being exploited by PTE to learn the latent represen-
tation of words while preserving the second-order proximity (cf. Section 2.1.7).

The overall heterogeneous network consists of three homogeneous networks, i.e., word-
word, word-document and word-label networks. To model the second-order proximity
of a homogeneous network, for each edge (vi, vj), the conditional probability p(vj |vi)
is defined as follows (Tang et al., 2015b):

p(vj |vi) =
exp(−~uTj · ~ui)∑

vk∈V
exp(−~uTk · ~ui)

, (2.28)

where V is the set of vertices connected with vi in the network, ~ui, ~uj and ~uk are the
vectors of vertices vi, vj and vk, respectively. The empirical probability of p(vj |vi) can
be defined as p̂(vj |vi) =

wij

di
, where di is the out-degree of vi and wij is the weight of

the edge (vi, vj).

In order to preserve the second-order proximity, the conditional distribution p(vj |vi) is
made close to p̂(vj |vi) based on the KL-divergence over the entire set of vertices in the

37

2 Foundations

network, to this end, the model minimizes the following objective function:

O = −
∑

(vi,vj)∈E

wij log (p(vj |vi)) , (2.29)

The embedding of the individual word-word, word-document and word-label networks
are learned simultaneously by minimizing the following objective function:

Opte = Oww +Owd +Owl , (2.30)

where Oww, Owd and Owl are the objective functions defined in Equation (2.29) for the
homogeneous word-word, word-document and word-label networks, respectively. To
optimize the objective function in Equation 2.30, the edges are firstly collected from
these three homogeneous networks as three sets, one for word-word edges, one for
word-document edges and the other for word-label edges, and then in each training
iteration, edges are sampled from each set to update the model. Readers can refer
to (Tang et al., 2015a; Tang et al., 2015b), for the detailed optimization process.

After learning the word vectors, the vector representation of an arbitrary text (e.g.,
phrase, sentence, paragraph) d, which consists of words w1, w2, w3, ..., wn, defined as
follows:

~d =
1

n

n∑
i=1

~ui. (2.31)

• RDF2Vec (Ristoski & Paulheim, 2016). RDF2Vec aims to learn the distributed rep-
resentations of entities from RDF graphs. Similar to DeepWalk, RDF2Vec converts the
RDF graph into a set of sequences. To do so, it leverages graph walk techniques, i.e.,
breadth-first algorithm and Weisfeiler-Lehman Subtree RDF graph kernels (de Vries,
2013; de Vries & de Rooij, 2015). The Weisfeiler-Lehman Subtree graph kernel has
been proposed for a graph comparison task. Basically, it computes the number of sub-
trees that are shared between two graphs in order to determine the similarity. The au-
thors (de Vries & de Rooij, 2015) have modified the method to be applicable to RDF
graphs. RDF2Vec leverages this model to generate a set of entity sequences. The dis-
tribution of each entity present in sequences can be related to the distribution of the
words appearing in sentences. Further, the generated sequences are used to train neural
language models, i.e., Skip-gram and Continues bag-of-words.

The proposed model differs from the DeepWalk mainly in two aspects:

1. RDF2Vec is specifically designed for RDF graphs, which are directed and edge
labeled, such as knowledge bases.

38

2.1 Neural Networks

2. The generated entity vectors are task-independent, in other words, the latent rep-
resentation of the entities can be utilized in different tasks with different datasets.

• Joint Embedding of Hierarchical Categories and Entities (Li et al., 2016c). The
embedding model aims to embed entities and hierarchically related categories from
large knowledge bases into a common vector space. Further, the method designed to be
useful for capturing semantic relatedness between entities and categories by integrating
structural knowledge from knowledge bases. (Li et al., 2016c) propose two different
embedding models, namely, Category Embedding (CE) model and Hierarchical Cate-
gory Embedding (HCE) model to reflect the semantic relatedness between entities and
categories.

– Category Embedding (CE). The model extends the already existing entity em-
bedding approach (Hu et al., 2015) by additionally including category informa-
tion. Similar to DeepWalk, and RDF2Vec, the proposed approach is also based on
the Skip-gram embedding model. The originated work (Hu et al., 2015) forms an
entity context by acquiring all the entities from the entire article (e.g., Wikipedia
article) that describes the entity. The model improves this approach by integrating
category information from a knowledge base to the entity context. Given a tar-
get entity, the model is designed to predict its context entities and its associated
categories from the knowledge base.

The probability of target-context entity pair (et, ec) defined as follows:

P (ec|et) =
et · ec∑

e∈E
exp(et · e)

(2.32)

Then, the entity and the category vectors are learned by maximizing the following
average log probability:

L =
1

|D|
∑

(ec,et)∈D

[logP (ec|et) +
∑

ci∈C(et)

logP (ec|ci)]. (2.33)

where D is the set of all entity pairs, ci is a category vector and C(et) is the
associated categories of entity et.

– Hierarchical Category Embedding (HCE). This model extends the CE model
by including the hierarchy information of the categories into semantic space. The
model assumes that if a category is placed close to an entity in the semantic space
then its ancestor categories should also be placed close to the entity. Further,

39

2 Foundations

the ancestor categories are also weighted based on the distance between the target
entity and the ancestor category. In other words, the categories that are close to the
target entity based on the category hierarchy (e.g., directly associated categories)
should be weighted more. Based on these assumptions the following weighted-
average log probability is proposed:

L =
1

|D|
∑

(ec,et)∈D

[wilogP (ec|et) +
∑

ci∈A(et)

logP (ec|ci)]. (2.34)

where A(et) denotes the ancestor categories of et, wi is the weight of each
category and wiα

1
l(cc,ci)

where l(cc, ci) is the average number of steps to reach
cc from ci. The weight value reflects the relevancy between the category and its
ancestor categories. The closer a categories to its ancestor category, the more
relevant they are considered to be.

Both CE and HCE adapts the same optimization approach, i.e., stochastic gradient de-
scent of Skip-gram as follows:

L =
∑

(ec,et)∈D

[logσ(ec · et) +
∑

ci∈A(et)

wilogσ(ec · ci)]+∑
(èc,et)∈D̀

[logσ(−èc · et) +
∑

ci∈A(et)

wilogσ(−èc · ci)]
(2.35)

where D̀ is the negative sample pairs.

The authors evaluated both embedding models, i.e., category embedding and hierarchi-
cal category embedding, in the context of concept categorization and dateless catego-
rization. The hierarchical category embedding method has provided better performance
in both tasks.

2.2 Knowledge Graphs

This section provides a general overview of knowledge graphs. The section contains three
main subsections. In the first subsection, formal definitions of knowledge graphs and rele-
vant details are given. In the second subsection, the most prominent open knowledge graphs
are introduced. Finally, the last subsection briefly discusses the Linked Open Data and its
evolution.

40

2.2 Knowledge Graphs

2.2.1 Definitions and Preliminaries

Knowledge graphs have been utilized in many information systems which require to lever-
age a structured, diverse, large-scale collection of data (Paulheim, 2017; Hogan et al., 2020),
e.g., the Google Knowledge Graph plays a very important role for improve the search en-
gine results. Besides the industry, knowledge graphs have also been extensively utilized
in various research areas such as artificial intelligence. Hence, there has been a consid-
erable amount of study on knowledge graphs, and many scientific literature have been
published in this direction (Hogan et al., 2020; Paulheim, 2017; Ehrlinger & Wöß, 2016;
Färber et al., 2015).

Given that knowledge graphs are drawing more attention especially after the announce-
ment of the Google Knowledge Graph, different definitions have been proposed to describe
them (Hogan et al., 2020). Here, some of the most recent and prominent definitions are pre-
sented as follows:

Definition 2.2.1. (Knowledge Graph):
"A knowledge graph is a semi-structured data model characterized by three components: (i)
a ground extensional component, that is, a set of relational constructs for schema and data
(which can be effectively modeled as graphs or generalizations thereof); (ii) an intensional
component, that is, a set of inference rules over the constructs of the ground extensional
component; (iii) a derived extensional component that can be produced as the result of the
application of the inference rules over the ground extensional component (with the so-called
"reasoning" process)." (Bellomarini et al., 2019)

Definition 2.2.2. (Knowledge Graph):
“A knowledge graph mainly describes real world entities and their interrelations, organized
in a graph; defines possible classes and relations of entities in a schema; allows for potentially
interrelating arbitrary entities with each other; covers various topical domains." (Paulheim,
2017)

Definition 2.2.3. (Knowledge Graph):
“A knowledge graph acquires and integrates information into an ontology and applies a rea-
soner to derive new knowledge." (Ehrlinger & Wöß, 2016)

Definition 2.2.4. (Knowledge Graph):
Different than the aforementioned definitions, Färber et al. (2018) gives the formal definition
of a knowledge graph as an RDF graph. "An RDF graph consists of a set of RDF triples (cf.
Definition 2.2.5), where each RDF triple (s,p,o) is an ordered set of the following RDF
terms: a subject s ∈ U ∪B, a predicate p ∈ U, and an object U ∪ B ∪ L. An RDF term
is either a URI u ∈ U, a blank node b ∈ B, or a literal l ∈ L. U, B and L are pairwise
disjoint". (Färber et al., 2018)

41

2 Foundations

Figure 2.10: An example of a simple RDF graph

Furthermore, in the Semantic Web community the term knowledge graph is also used to
refer to the Semantic Web Knowledge Bases such as Wikidata, DBpedia, YAGO, etc. (Paul-
heim, 2017). To facilitate the discussion, first we give the definition of the Semantic Web
which was proposed by Tim Berners-Lee et al. as "A new form of web content that is mean-
ingful to computers”, in 2001. Since then the fundamentals of the Semantic Web have been
based on the idea of representing knowledge in a structured and machine understandable way.
Today, knowledge bases are one of the most essential components of the Semantic Web. They
employ a graph-based form to represent knowledge, which can be domain specific such as
facts about chemical interactions or domain independent. The facts in knowledge bases are
modeled by directed edge-labeled graphs as shown in Figure 2.10. Such graphs consist of a
set of nodes such as dbr:Albert_Einstein, dbo:Scientist and directed-labeled
edges between those nodes such as rdf:type, rdfs:subClassOf.

The Semantic Web knowledge bases follow standardized data modeling formats which
facilitate the knowledge exchange. These standards include but not limited to Resource De-
scription Framework (RDF), Resource Description Framework Schema (RDFS) which is an
extension of the RDF and Web Ontology Language (OWL). The specifications of the data
modeling formats are published by World Wide Web Consortium2 (W3C) which is an organi-
zation publishes the main international standards for the World Wide Web.

The RDF standards allow to define different types of nodes in a knowledge base
namely, resources (entities on the Web) which could be anything like people, location, docu-
ments, etc., literals that allow representing data type values such as dates, integers, etc. and

2https://www.w3.org/standards/

42

https://www.w3.org/standards/

2.2 Knowledge Graphs

blank nodes. The RDF resources are identified by unique Internationalized Resource Identi-
fiers (IRIs) (Dürst & Suignard, 2005) that allow identification of entities on the Web. However,
blank nodes are not assigned to any identifier and thus they do not carry any additional infor-
mation within a knowledge base. Instead, blank nodes can only indicate an existence of a
thing. The representation of knowledge in knowledge bases is based on the idea of mak-
ing statements about the resources in the form of RDF triples (subject, predicate,
object), where the subject could be an entity or a blank node, whereas the object could be
an entity or a blank node or a literal. Note that literals can only be in an object position.

Definition 2.2.5. (RDF triple):
"Given a set of URIs U, a set of blank nodes B, and a set of literals L, an RDF triple is

represented as t = (s, p, o) ∈ (U ∪ B) × U × (U ∪ B ∪ L), where s is a subject, p is a
predicate and o is an object" (Alam, 2015).

Definition 2.2.6. (Triple Pattern):
"Let U, B, L be disjoint infinite sets of URIs, blank nodes, and literals, respectively. Let V
be a set of variable such that V ∩ (U ∪ B ∪ L) = ∅. A triple pattern defined as a 3-tuple
(s, p, o) ∈ (U ∪ V)× (U ∪ V)× (L ∪ U ∪ V), where the components subject, predicate and
object correspond to RDF terms or variables" (Deibe, 2018).

Definition 2.2.7. (RDF Graph):
"A finite set of RDF triples is called as RDF Graph G such that G = (V,E), where V is a set
of vertices and E is a set of labeled edges" (Alam, 2015).

Some of the RDF triple examples from Figure 2.10 are (dbr:Albert_Einstein
rdf:type dbo:Person) and (dbr:Alfred_Kleiner rdf:type
dbo:Scientist). Note that RDF’s namespace abbreviated by "rdf:"3. There ex-
ist several serialization syntaxes to convert RDF graphs into machine readable forms such
as N-triples4, Turtle5, etc. Listing 2.1 is the turtle serialization of the RDF graph, which
is depicted in Figure 2.10. Listing 2.1 shows that the RDF vocabulary has been used
to define resources (e.g., dbr:Albert_Einstein rdf:type dbo:Scientist)
and predicates (e.g., dbo:birthPlace rdf:type dbo:Property).

3http://www.w3.org/1999/02/22-rdf-syntax-ns#
4https://www.w3.org/TR/n-triples/
5https://www.w3.org/TR/turtle/

43

http://www.w3.org/1999/02/22-rdf-syntax-ns##
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/

2 Foundations

Listing 2.1: RDF document in turtle serialization

@pref ix r d f : < h t t p : / / www. w3 . org /1999/02 /22− r d f−syn t ax−ns #> .
@pref ix r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#> .
@pref ix xsd : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema#> .
@pref ix dbo : < h t t p : / / d b p e d i a . o rg / o n t o l o g y / > .
@pref ix dbr : < h t t p : / / d b p e d i a . o rg / r e s o u r c e / > .

dbo : b i r t h P l a c e r d f s : r a n g e dbo : P l a c e .
dbo : b i r t h P l a c e r d f s : domain dbo : Pe r so n .
dbo : b i r t h P l a c e r d f : t y p e r d f : P r o p e r t y .

dbo : S c i e n t i s t r d f : t y p e r d f s : C l a s s .
dbo : S c i e n t i s t r d f : s u b C l a s s O f dbo : Pe r so n .

dbr : A l b e r t _ E i n s t e i n dbo : b i r t h D a t e "1879−03−14"^^ xsd : d a t e .
dbr : A l b e r t _ E i n s t e i n r d f : t y p e dbo : Pe r s on .
dbr : A l b e r t _ E i n s t e i n r d f : t y p e dbo : S c i e n t i s t .
db r : A l b e r t _ E i n s t e i n dbo : d o c t o r a l A d v i s o r dbr : A l f r e d _ K l e i n e r .

Another particular RDF vocabulary is RDFS which enables the specifica-
tion of schema knowledge (Hitzler et al., 2010). RDFS’s namespace abbreviated
by "rdfs:"6. For example, the definition of domain and range of properties
(e.g., (dbo:birthPlace rdfs:domain dbo:Person), (dbo:birthPlace
rdfs:range dbo:Place)) and hierarchical relationships, i.e., sub classes (e.g.,
dbo:Scientist rdfs:subClassOf dbo:Person), sub properties and more be-
sides (Hitzler et al., 2010). Due to the capability of specifying such schema knowledge,
RDFS can also be considered as an ontology language. To facilitate the discussion first define
the term ontology. According to (Gruber et al., 1993) ontology can be defined as follows:

Definition 2.2.8. (Ontology):
From a computer science point of view there exist different definitions for an ontology. Orig-
inally, (Gruber et al., 1993) defined ontology as "explicit specification of a conceptualiza-
tion". Thereafter, an ontology defined as "formal specification of a shared conceptualization"
by (Borst et al., 1997). Finally, (Studer et al., 1998) combined these two definitions and de-
fined an ontology as "formal, explicit specification of a shared conceptualization". Today, the
latter definition is the one which is most commonly accepted and used.

In this definition, conceptualization implies that existing of an abstract model of a cer-
6http://www.w3.org/2000/01/rdf-schema#

44

http://www.w3.org/2000/01/rdf-schema##

2.2 Knowledge Graphs

tain domain which contains identified relevant concepts and their relations. Explicit denotes
that meaning of all concepts must be defined explicitly. Shared stands for consensus about the
ontology and formal refers to machine readability and understandability.

Figure 2.10 illustrates that the simple ontologies can be modeled by RDF(S), how-
ever, for modeling more complex representations of knowledge the Web Ontology Language
(OWL) is being used. OWL is based on formal logic and supports much greater expressive-
ness than RDF(S). Further, it allows logical reasoning on the knowledge and thus enables to
deduce implicit knowledge which is not explicitly modeled. There exist different flavours of
OWL2 which is the last version OWL and based on description logic, i.e., OWL2 EL, OWL2
RL, OWL2 QL, OWL2 DL, OWL2 Full. Each of these species of OWL2 has different level
of expressivity. OWL2 DL is more expressive than OWL2 EL, OWL2 RL and OWL2 QL and
less expressive than OWL2 Full. In other words, OWL2 DL is the expressive and decidable
version of OWL. Therefore, in this section we focus on OWL2 DL.

OWL2 standards which are specified by World Wide Web Consortium allow to define
class expressions (e.g., conjunction, disjunction), properties, class and property axioms, and
facts. Moreover, OWL supports RDF syntax therefore, similar to RDFS documents, each
OWL document in RDF syntax is also an RDF document. OWL’s name space is abbreviated
by "owl:" 7. Further, the OWL axioms expressed in terms of classes, individuals and proper-
ties as follows:

• Classes. OWL classes are similar to RDFS classes. There exist two predefined classes
in OWL namely, owl:Thing whose members are all individuals and owl:Nothing
which is an empty class, i.e., it does not contain any individual. Definition of a class as
follows:

– :Wine rdf:type owl:Class.

• Individuals. OWL individuals can be defined in two different ways, namely via class
membership which is similar to RDFS class instances and without a class membership.

– :RoseWine rdf:type :Wine .

– :Beer rdf:type owl:NamedIndividual .

• Properties. OWL allows definition of two types of properties, i.e., object properties
and datatype properties and they are similar to RDFS properties.

– Object Properties. Object Properties of OWL have classes as domain and range.

* :pairWith rdf:type owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range :Seafood .

7<http://www.w3.org/2002/07/owl#>

45

<http://www.w3.org/2002/07/owl#>

2 Foundations

– Datatype Properties. Datatype Properties of OWL have datatypes as range.

* :color rdf:type owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range xsd:date .

Obviously, it is also possible to define much more expressive facts with OWL such as logical
class constructions, property restrictions, etc. More details about OWL can be found in (Hit-
zler et al., 2010).

2.2.2 Open Knowledge Graphs

Open knowledge graphs are openly available and freely usable. There are different ways of
constructing open knowledge graphs, i.e, they can be curated by a small group of people or
crowd sourced by a large group of people or created by utilizing automatic or semi-automatic
methods (Paulheim, 2017). In the following, the examples of knowledge bases which have
been built by different methods are given:

• Cyc and OpenCyc (Lenat, 1995). Cyc is one of the oldest curated knowledge bases of
common sense which is developed and maintained by the CyCorp company starting in
1984. The artificial intelligent project Cyc, represents millions of common sense facts.
For example:

– "You have to be awake to eat.",

– "You cannot remember events that have not happened yet.".

Cyc aims to be served as a structured data source especially to the artificial intelligence
based applications such as information retrieval, speech recognition, etc. (Lenat, 1995)
A small version of Cyc, so called OpenCyc has been made publicly available in order
to serve as a great data source, especially, for artificial intelligence researchers. Further,
there used to be an existing endpoint to OpenCyc, which was also linked to other
Linked Open Data8 datasets such as DBpedia. The 2012 version of OpenCyc consist
of approximately 2.5 million facts around 120,000 instances. The schema of OpenCyc
contains around 45,000 hierarchly related type information and 19,000 possible rela-
tions (Paulheim, 2017). The CyCorp company, the developer of OpenCyc, has stopped
its support for the knowledge base since March 2017.

• WordNet (Fellbaum, 1998). WordNet is a large lexical knowledge base which rep-
resents semantic relations between words for the English language. It is created in
the Cognitive Science Laboratory of Princeton University starting in 1985. WordNet

8https://lod-cloud.net/

46

https://lod-cloud.net/

2.2 Knowledge Graphs

includes the lexical categories of different types of words, i.e., nouns, verbs, adjectives
and adverbs. The words that are from the same lexical category collected into sets
of synonyms, called synsets. Synsets are interlinked by the semantic links such as
hyperonymy, meronymy. This knowledge graph can be navigated easily with the
browser. WordNet is publicly available and can be downloaded freely. The 3.0 version
of WordNet consists of in total 155,287 unique strings, 206,941 word-sense pairs and
117,659. The unique strings include 117,798 nouns with 82,115 synsets, 11,529 verbs
with 13,767 synsets, 21,479 adjectives with 18,156 synsets, 4,481 adverbs with 3,621
synsets.

• Freebase (Bollacker et al., 2008). Freebase is a public knowledge base which is
created through crowd sourcing by the announcement of American software company
Metaweb in March 2007. In contrast to other curated knowledge bases, e.g., Cyc,
which required more than 900 person years to create (Paulheim, 2017), Freebase
provided an interface to the public editors. Thereby, the editors could directly include
new facts to the knowledge base by editing structured data with the provided schema
templates. Besides the contribution of the editors, the knowledge from Wikipedia has
been integrated to Freebase (Färber et al., 2015). In 2010, Freebase acquired by Google
and on August 31, 2016, it was completely shut down. The last version of Free-base
consist of more than 3 billion facts about around 50 million entities. Further, its schema
contains 27,000 entity types and 38,000 relations (Paulheim, 2017).

• Wikidata (Vrandecic & Krötzsch, 2014). Wikidata is a collaboratively edited knowl-
edge base by the community and it is operated by the Wikimedia foundation. Wikidata
has been extensively exploited as a main data source by a wide range of information
system applications, especially by the Semantic Web community. Unlike aforemen-
tioned knowledge bases, Wikidata does not only contain facts but also the source of the
facts so that the validity of facts can be approved. Moreover, after the shut down of
Freebase, its data moved to Wikidata. To date, Wikidata contains roughly 83,343,004
instances9 and 1,036,340,466 million statements10. Its schema defines roughly 7,450
relations11.

• DBpedia (Auer et al., 2007). DBpedia is one of the most popular knowledge graphs
in the Linked Open Data cloud (Färber et al., 2015). Unlike the aforementioned
knowledge bases, DBpedia has been created by automatically extracting structured
and multilingual knowledge from Wikipedia, i.e., Wikipedia infoboxes. The types of
infoboxes in Wikipedia are mapped to the DBpedia ontology (i.e., DBpedia Classes),

9https://www.wikidata.org/wiki/Wikidata:Main_Page
10http://tools.wmflabs.org/wikidata-todo/stats.php
11https://www.wikidata.org/w/index.php?title=Special:ListProperties

47

https://www.wikidata.org/wiki/Wikidata:Main_Page
http://tools.wmflabs.org/wikidata-todo/stats.php
https://www.wikidata.org/w/index.php?title=Special:ListProperties

2 Foundations

further, the attributes of these infoboxes correspond to the properties in DBpedia
ontology (Paulheim, 2017). Similar to Wikidata, DBpedia has been widely utilized
in various research fields of the Semantic Web. Today, the most recent version of the
DBpedia, i.e., DBpedia 2016-10 contains 6.6M entities12, 13 billion facts (RDF triples),
and its ontology schema comprises 760 classes, 1,622 datatype properties as well as
1,105 object properties.

• YAGO (Suchanek et al., 2007). Similar to DBpedia, YAGO is also cre-
ated by extracting knowledge from Wikipedia. In contrast to DBpedia, YAGO
comprises information not only from Wikipedia (e.g., infoboxes, categories)
but also WordNet (e.g., synsets, hyponymy), GeoNames (Färber et al., 2015;
Fabian et al., 2007). Further, DBpedia creates different knowledge bases for each
language edition of Wikipedia (e.g., English, German, etc.) that are linked to each
other whereas YAGO contains knowledge from various Wikipedia language editions.
The version 3 of YAGO contains around 24 million facts about 4.5 million entities
in 10 languages. The schema comprises 488,496 classes and 77 manually defined
relations (Mahdisoltani et al., 2015).

• NELL (Carlson et al., 2010). Never Ending Language Learning13 (NELL) project
have been developed at Carnegie Mellon University, Pittsburgh, Pennsylvania since
January 2010. Unlike DBpedia and YAGO which utilizes semi-structured content (e.g,
Wikipedia Infoboxes) as a base, NELL designed to exploit unstructured data to extract
meaningful knowledge. In other words, the project attempts to conduct two main tasks
everyday: (1) it tries to extract facts from text found in Web pages, (2) it aims to improve
the first step i.e., fact extracting capability, so that next time it can extract more accurate
facts from the Web. Each extracted fact has a weight which reflects the confidence of it.
The system is still running today and has been enhancing its knowledge base since the
time project has been developed. To date, NELL has collected over 50 million candi-
date facts by reading the Web, and 2,810,379 of these facts are in high confidence. On
NELL website, only the facts that has the high confidence are displayed.

So far the well-known open knowledge bases have been presented. Most of the open knowl-
edge bases contain links to other RDF data sources which enables users to navigate from one
data source another one by following RDF links. Hence, the Semantic Web aims to make
meaningful links between publicly available RDF data sources (e.g, DBpedia, Wikidata, etc.)
to enable persons and machines to explore Linked Open Data freely. In the following let us
briefly discuss the phrase Linked Open Data.

12https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
13http://rtw.ml.cmu.edu/rtw/

48

https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10
http://rtw.ml.cmu.edu/rtw/

2.2 Knowledge Graphs

2.2.3 Linked Open Data

Linked Open Data (LOD) refers to publicly available RDF datasets which are identified via
URI and accessible via HTTP. Further, those RDF datasets are also linked to other datasets
via URI.

The principles of Linked Data were first outlined by Berners-Lee in 2006:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the standards (e.g.
RDF).

• Include links to other URIs, so that they can discover more things.

The four rules provide broad guidance on which publishing RDF data can be based. LOD
can be accessed using traditional HTML browsers and users can easily explore and navigate
between different data sources.

The network of publicly available RDF datasets that are in concordance with linked
data principles is growing more and more everyday. As of April 2017, the number of publicly
available RDF datasets is 9,960 and it contains roughly more than 149 billion facts and more
than around 800 million links. The visualization of interlinked RDF datasets which is referred
to as Linked Open Data Cloud14 has been created by Max Schmachtenberg & Cyganiak.
Figure 2.11 illustrates the evolution of the LOD cloud from 2007 its beginning until 2019.
Each node in the networks represents one dataset. As of March 2019, the huge network
consists of 1,239 datasets including 16,147 links. Further, each color of the datasets, i.e.,
nodes, from 2014, 2017 and 2019 represents a different domain. For example, the green
nodes from 2017 represent datasets from linguistics domain. Moreover, DBpedia has been
one of the most popular datasets in these LOD clouds across the years.

14https://lod-cloud.net/

49

https://lod-cloud.net/

2 Foundations

May 2007 (12 datasets)
July 2009 (95 datasets)

August 2014 (570 datasets)

August 2017 (1,163 datasets)

May 2020 (1,255 datasets)

Figure 2.11: The evolution of the LOD cloud

50

2.3 Semantic Measures

2.3 Semantic Measures

Semantic measures are leveraged by a wide range of fields such as Natural Language Pro-
cessing, Semantic Web, Bioinformatics, etc. The main topic of this thesis is short text cate-
gorization, which is one of the fundamental tasks of natural language processing, and thus in
this section semantic measures in the context of natural language processing applications are
presented.

Semantic measures are theoretical tools, which aims to quantify the semantic rela-
tion between elements, e.g., words, sentences, documents (Harispe et al., 2013). The formal
definition of semantic measures is given below.

Definition 2.3.1. (Semantic Measures):
σk : Ek × Ek → R
where Ek is the set of elements, k ∈ K and K is various types of elements that are
comparable semantically, e.g., K = words, concepts, sentences, texts, ... and R =
{[0, 1],R+, {a, b, c, ...}} (Harispe et al., 2013).

Although there exist several notations that are associated with semantic measures, se-
mantic relatedness and semantic similarity are the ones most commonly utilized in natural
language processing applications such as text categorizatio.

Definition 2.3.2. (Semantic Relatedness):
"Strength of the semantic interactions between two elements without restriction regarding the
types of semantic links considered" (Harispe et al., 2013).

Definition 2.3.3. (Semantic Similarity):
"Specializes the notion of semantic relatedness, by only considering taxonomical relationships
in the evaluation of the semantic strength between two elements" (Harispe et al., 2013).

(Gomaa et al., 2013) have introduced semantic similarity with the help of corpus-based
and knowledge-based algorithms:

• Corpus-based similarity: In order to measure the corpus-based similarity of language
units, large corpora are exploited. The most popular techniques of corpus-based simi-
larity are as follows:

– Latent Semantic Analysis (LSA) (Landauer & Dumais, 1997): This method
relies on the assumption that similar words tend to occur in similar pieces of texts.
Hence, to generate the document vectors, the frequency of words contained in the
documents is considered. In other words, a large matrix where each row represents
a term and each column corresponds to a document from a given corpus is con-
structed by considering word occurrences in documents. Subsequently, Singular
Value Decomposition (SVD) is applied to the matrix, to reduce the dimensionality

51

2 Foundations

while preserving the similarity among the documents. Then the similarity between
the documents is quantified by applying cosine similarity to the document vectors.

– Explicit Semantic Analysis (ESA) (Gabrilovich et al., 2007): Similar to LSA,
ESA constructs document vectors by leveraging a large corpus, i.e., English
Wikipedia. Each document is transformed into a weighted vector of Wikipedia
entities, i.e., concepts. In other words, first, the words from a given corpus are
converted into a vector where each dimension corresponds to a TF-IDF value be-
tween the word and a Wikipedia article. Then the document vectors are formed
by utilizing the vectors of the words present in the documents.

– Normalized Google Distance (NGD) (Cilibrasi & Vitanyi, 2007): In contrast
to LSA and ESA which utilize large corpora, NGD exploits the number of hits re-
turned by the Google search engine to determine the semantic similarity between
two words. The semantically similar words tend to be close based on the NGD,
whereas the dissimilar words tend to be far away from each other. The NGD
between two terms, i.e., x and y defined as follows:

sim(x, y) =
max{logf(x), logf(y)} − logf(x, y)

logM −min{logf(x), logf(y)}
(2.36)

where f(x) is the number of hits for the search term x, similarly, f(y) is the
number of hits for the search term y. In addition, f(x, y) is the number of web
pages on which both x and y occur, and M is the total number of web pages that
have been searched by Google.

• Knowledge-based similarity: The knowledge-based similarity between the language
units is determined by exploiting information obtained from large knowledge bases,
e.g., WordNet (cf. Section 2.2.2). The measures of knowledge-based semantic similar-
ity are categorized into two groups (Gomaa et al., 2013):

1. based on information content,

2. based on path length.

Moreover, (Resnik, 1995) has defined the knowledge-based semantic similarity, with
the help of the notion of information content. The method utilizes a taxonomy structure, i.e.,
is-a relations to derive the semantic similarity between concepts. The model first associates
each concept in the taxonomy with a probability. To this end, the model defines a probability
function p such that p : C → [0, 1], for any concept c ∈ C of the taxonomy, p(c) is the
probability of encountering an instance of concept c. Finally, the semantic similarity between
arbitrary two concepts is defined as follows (Resnik, 1995):

sim(c1, c2) = min
c∈S(c1,c2)

[−logp(c)] (2.37)

where −logp(c) is the information content of the concept c defined by (Ross, 1976) and

52

2.3 Semantic Measures

S(c1, c2) is the set concepts subsume both c1 and c2.

Moreover, (Waitelonis et al., 2015) have proposed connectedness weighting to quan-
tify the semantic similarity and relevancy between an entity within a document D and the
document D. The method first collects all the entities from D and the entities (from the un-
derlying knowledge graph), which are connected at least two entities from the document. The
function rel(ei, ej) is defined to obtain a graph between the collected entities, and it returns
true if there is a link between ei and ej . Given ei ∈ D let Ei denote the set of entities that ei
has a link to and Fi denote a set of entities to which ei indirectly connected:

Ei = {e ∈ D|rel(e, ei)} and Fi = {e ∈ D|∃x : rel(e, x) ∧ rel(x, ei)}

Then the connectedness is defined as follows:

cn(ei, d) = 1 + (|Ei|+ |Fi|)×
|D|
nd

, where nd =
∑
ej∈D

|Ej |+ |Fj |. (2.38)

On the other hand, (Nies et al., 2014) have proposed three different methods, i.e., ontology-
based, link-based, shared-links-based to measure the semantic similarity between the docu-
ments. The proposed measures, first, link the named entities present in a text to an external
knowledge base, i.e., DBpedia, and then exploit these entities to derive the similarity between
the documents. The proposed similarity measures are as follows (Nies et al., 2014):

• ontology-based: The similarity between two entities is determined by the number of
edges in the shortest path between the entities in the underlying ontology schema.

• link-based: The similarity between two entities is derived based on the in/direct con-
nections from the underlying knowledge base.

• shared-links-based: As the name indicates the similarity between two entities is
quantified based on the number of shared connections.

Furthermore, there has been a considerable amount of studies on the distributed
representation of language units (cf. Section 2.1.6). Several embedding models have been
proposed to construct the vector representation of words, entities, sentences, paragraphs, etc.
Today, such embedding models are extensively utilized due to their effectiveness and effi-
ciency. Therefore, to quantify the semantic similarity between the elements of the semantic
spaces has become a crucial task to be achieved. One of the most common ways of measuring
the similarity between two vectors from a common multidimensional space is comparing
the distance between them. In other words, the vectors that are closely placed in the vector
space considered to be similar. In order to measure the distance between two vectors, several
different metrics have been utilized widely.

53

2 Foundations

The most prominent vector similarity measures are presented as follows:

• Cosine Similarity: The cosine similarity is one that most commonly used to measure
the similarity between two vectors of language units, such as word vectors, document
vectors, query vectors, etc. The measure is based on the cosine angle between the two
vectors. Hence, if any two vectors roughly pointing to the same direction then they are
considered to be similar. Given vectors A and B the cosine similarity is calculated as
follows:

sim(A,B) =
A ·B
‖A‖‖B‖

(2.39)

• Euclidean Distance: The Euclidean distance is derived by measuring a regular straight
line which connects the vectors. The smaller the distance, the greater is the similarity
between the vectors. The Euclidean distance is calculated with the following formula:

sim(A,B) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2 (2.40)

where A, B are vectors and the Cartesian coordinates of A, B are A = (a1, a2, ..., an)
and B = (b1, b2, ..., bn), respectively.

• Manhattan Distance: The Manhattan distance is measured by the sum of the absolute
differences of coordinates of given two data points. The formula of the Manhattan
distance is as follows:

sim(A,B) = ‖A−B‖ =
n∑

i=1

|ai − bi| (2.41)

where A, B are vectors and A = (a1, a2, ..., an), B = (b1, b2, ..., bn).

2.4 Summary

This chapter has presented a brief overview of the general neural network models (e.g.,
feedforward, convolutional neural networks, etc.), notable knowledge graphs (e.g., DBpe-
dia, Wikidata, etc.) and semantic measures (e.g., semantic similarity, semantic relatedness,
etc.). The neural networks have been extensively leveraged to build this thesis. Therefore,
in the next sections, how these models are utilized to build more sophisticated approaches is

54

2.4 Summary

explained. Furthermore, as stated before, knowledge bases have been utilized as a main data
source for the proposed models in this thesis (cf. Section 4 and Section 5). Therefore, in the
next sections, more details about how the knowledge graphs are being utilized are given. In
the last section of this chapter, semantic measures such as semantic relatedness and semantic
similarity have been presented. The approaches proposed in this thesis (cf. Section 4 and
Section 5) extensively leverage semantic similarity measure, and thus several different ways
of calculating semantic similarity have been discussed in this chapter.

55

2 Foundations

56

3 Text Categorization

This chapter aims to give general background information about text categorization. The chap-
ter consists of six sections. Section 3.1 introduces an arbitrary-length text (e.g., news article)
categorization task, its application scenarios and related studies on this task. Section 3.2 de-
scribes a short text (e.g., news title) categorization task which is the main topic of this thesis
and provides related studies on this task. Extracting meaningful features from text documents
is a crucial task for text categorization. In order to achieve that text preprocessing techniques
are applied as the first step to text documents by natural language processing applications. In
this regard, Section 3.3 and Section 3.4 present the most prominent text preprocessing tech-
niques and feature extraction methods, respectively. Section 3.5 provides a brief description
of the machine learning algorithms which are commonly used for the text categorization task.
Finally, the chapter is concluded with Section 3.6 which presents the most commonly used
evaluation metrics (e.g., accuracy, precision, recall, etc.) for text categorization models.

3.1 Arbitrary-length Text Categorization

The available text data on the Web is growing more and more every day. According to IBM1,
80% of the data on the Web is unstructured, and the most common form of these unstructured
data is text (e.g., phrases, sentences, paragraphs, documents). It is essential to obtain mean-
ingful insights from such data. To this end, the most important steps are learning to process
and understand the data (Sarkar, 2016). Hence, as a fundamental step, text categorization is a
crucial task, which enables us to automatically organize such a vast amount of text data.

Definition 3.1.1. (Text Categorization):
Given an input text t and n predefined labels L = l1, l2, .., ln, the output of the text catego-
rization system is the most relevant label li ∈ L for the given text t, i.e., computing the label
function fcat(t) = li , where li ∈ L.

Due to the availability of text data on the Web, the text categorization task has gained
significant attention across industry and academia. Hence, the problem of text categorization
has been extensively studied in various domains such as data mining, machine learning, infor-
mation retrieval, etc. It is one of the most fundamental tasks in natural language processing.

1https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-
not-even-know/

57

https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/
https://www.ibm.com/blogs/watson/2016/05/biggest-data-challenges-might-not-even-know/

3 Text Categorization

The main goal of the categorization task is to assign a category label to an instance of
text data for which the label is unknown. It should be noted that in a multi label categorization
task there is no limitation on the number of assigned labels. In such a task the system can
assign one or more categories to a given text instance. The discussion of this task is omitted
as it is out of the scope of this thesis. In this thesis we focus on multi class categorization
task where the goal is to assign only one label from a predefined set of labels to an instance
of a text. The general categorization task assumes that each category label is a predefined
categorical value, e.g., Sports, Science, Politics, etc.

There exist three main types of text categorization methods, namely, manual, rule
based and machine learning based. Although manually labeled documents by the experts
are often highly accurate, it is the most expensive method among the mentioned approaches.
Especially, if the text to be labeled is of a specific domain only several domain experts can
categorize such data. Further, manually labeling text documents is also a very time consuming
task. Therefore, today such a method is the least desired approach for the text categorization
task. Rule-based systems, on the other hand, leverage user defined linguistic rules to perform
categorization. These systems are built and maintained manually. Further, the goal of the
designed rules is utilizing the semantic content of the documents to assign relevant categories.
Each rule consists of a pattern and the corresponding category (Chakravarthy et al., 2008). It
is often the case that the rules are designed based on the domain of the datasets, and thus in
the case of a change of the domain all the rules might need to be re-designed. Hence, such
a process still requires huge amounts of manual effort. Finally, the machine learning based
systems, in contrast to the aforementioned systems, rely on the past observations, i.e., training
set to make predictions about the labels of unseen data. Machine learning systems, first,
utilize a training set which is a labeled dataset to learn the association between the predefined
labels and the content of the documents. In the second step, the trained models are utilized
to make predictions about labels on unseen documents. Although machine learning-based
systems seem to be the most efficient and effective, they require large amounts of labeled
data for the training phase. As mentioned before, obtaining labeled data is an expensive and
time-consuming task. However, despite the problem of labeled data requirements, machine
learning-based systems are the most common text categorization methods.

An overview of processes that are involved in a machine learning based text cat-
egorization task is shown in Figure 3.1. The traditional supervised approaches have two
main steps, i.e., training and testing. In the training phase, the labeled documents are first
preprocessed (cf. Section 3.3), i.e, cleaned from the noise and then the features are extracted
(cf. Section 3.4) from the documents. The categorization algorithm (cf. Section 3.5) is trained
by exploiting the features and the labels. Thereafter, each given unlabeled document, i.e.,
a test sample, is first preprocessed and its features are extracted. Finally, the trained model
is used to label the unlabeled documents by utilizing the extracted features. Each process is
explained in detail in the reminder of this chapter.

58

3.1 Arbitrary-length Text Categorization

Figure 3.1: An overview of a text categorization task

Moreover, text categorization has been exploited in various domains and has a wide
variety of application scenarios, for instance:

• Information retrieval. Text categorization techniques have been extensively exploited
by information retrieval systems as well as search engines (Kowsari et al., 2019). The
main task of information retrieval systems is to retrieve all the relevant documents
to a given user query while retrieving minimum irrelevant documents. One of the
most common problems such systems face is efficiency. Often, very large corpora are
being utilized as a basis for information retrieval systems. Hence, finding the most
relevant documents can be a very time consuming task. Therefore, text categorization
techniques are applied to such a vast amount of documents to enhance the search results
by reducing the number of irrelevant documents that are being retrieved.

• Document organization. As stated before, text categorization techniques have gained
significant attention across the industry and academia. The main reason for this fact
is their capability of organizing a vast amount of text data effectively. There exists
a variety of text categorization techniques. They can be exploited for the document
organization task in many domains, e.g., a large collection of patent documents, Web
content, digital libraries, academic articles. In addition, it has become essential for
many companies to organize and analyze business information like legal documents,
emails, Web pages, etc. in order to make decisions within companies.

• Sentiment analysis. The sentiment analysis task utilizes text categorization techniques

59

3 Text Categorization

to identify the expressed opinion/emotion (e.g., positive or negative or neutral) within
a text. Today, especially, businesses adopt sentiment analysis systems to understand
the social sentiment of their brands, products, etc. Thereafter, according to the social
sentiment of customers, businesses adapt their products.

• Spam filtering. The goal of the spam filtering systems, as the name indicates, is to
decide whether a given email is a spam or not. It is important and desirable for many
organizations to determine the spam, i.e., unwanted, and/or virus-infected emails in
order to avoid them from getting into email inboxes. Most of the business email net-
works and university networks use spam filtering models to protect their email systems
from the many possible risks. The spam filtering systems extensively utilize binary text
categorization techniques in order to decide whether an email is a spam or not.

In the following section, the related studies for arbitrary-length document categoriza-
tion, which utilize traditional machine learning techniques are presented.

Related Work on Arbitrary-length Text Categorization
As stated before, text categorization is a well studied problem for several decades. In fact, in
the 80s the most popular way of performing text categorization was rule based (Sebastiani,
2002). In other words, first, a set of rules (if-then rules) for each category defined manually
by the experts. Thereafter, the documents were categorized based on the rules (Sebastiani,
2002). However, since the early 90s, the application of machine learning models for the text
categorization task has become very popular (Aggarwal & Zhai, 2012).

Traditional machine learning based approaches often rely on vector space document
representations (e.g, Bag-of-Words (BoW), Term Frequency-Inverse Document Frequency
(TF-IDF)) for constructing documents’ features. Subsequently, machine learning methods
such as Decision Trees, Support Vector Machines (SVMs), K-nearest neighbor, etc. are ap-
plied to text categorization problem by utilizing the extracted features.

Decision trees and rule based models find their applications in a wide range of text
categorization tasks (Su & Zhang, 2006; Li & Jain, 1998; Cohen & Singer, 1999). Moreover,
probabilistic models and naïve Bayes have also been exploited successfully (Sahami et al.,
1998; Koller & Sahami, 2007). In fact, in the text categorization domain the naïve Bayes
might be the most commonly utilized generative model (Aggarwal & Zhai, 2012).

SVMs were first proposed by (Cortes & Vapnik, 1995) and demonstrated remarkable
success in the problem of text categorization. Further, (Joachims, 1997) showed that text
data is well suited for SVMs to achieve notable success. The SVMs were first applied to
text data by (Joachims, 1997; Joachims, 1998). Today, they are still one of the most widely
leveraged baseline models, in fact, even very sophisticated deep learning models often struggle
to outperform their performance. In addition to the SVMs, which are linear categorizers,

60

3.1 Arbitrary-length Text Categorization

logistic regression has also been applied to the text categorization problem successfully (Ifrim
et al., 2008; Genkin et al., 2007; Komarek & Moore, 2003).

Besides the aforementioned traditional machine learning models, recently several deep
learning methods have been proposed. They have demonstrated remarkable performance in
text categorization as well as many other natural language processing tasks. Due to their
effectiveness, today the most successful text categorization methods are mostly based on deep
learning approaches.

The recurrent neural networks consider the sequential information of data for the cat-
egorization task and they have been utilized most commonly with textual data. Moreover, it
has been proven by several studies (Wang et al., 2019; Zhou et al., 2015; Liu et al., 2016)
that recurrent neural networks can easily be exploited for text categorization. (Wang et al.,
2015) and (Liu et al., 2016) apply recurrent neural networks for sentiment analysis of tweets,
and (Teng et al., 2016) improves the proposed model by exploiting more sophisticated recur-
rent neural network architecture for the same task. (Zhang et al., 2016) combines a recurrent
neural network and convolutional neural network for sentence and document modeling.

Besides the recurrent neural networks, recently, convolutional neural networks have
also been utilized for text categorization. Several convolutional neural network variations
have been studied for sentence categorization and sentiment analysis (Collobert et al., 2011;
Kalchbrenner et al., 2014; Lei et al., 2015). (Zhang et al., 2015) proposes a deep learning ar-
chitecture where character-level features are exploited. In other words, it is the first study that
has applied convolutional neural networks only on character level features. The model first
extracts character level features and these features then fed into a convolutional network. The
model outperforms the baselines such as bag-of-words based models and word-based convolu-
tional neural networks on most of the datasets. Due to its performance, the method has become
very popular among researchers. (Conneau et al., 2017) have proposed a sophisticated neural
network architecture so-called a very deep convolutional neural network by exploiting up to
29 convolutional layers. The model utilizes character level features to perform categoriza-
tion. Further, it is the first approach which applied very deep convolutional neural networks
to the text categorization task. The reported results show that the model is capable of obtain-
ing the state-of-the-art results on several public datasets. Recently, (Yao et al., 2019) have
proposed a graph convolutional network-based model for text categorization. The approach
first builds a word-document graph, based on corpus-based word co-occurrence. Further, the
model considers the text categorization problem as a node categorization problem. Given doc-
ument labels, the model then jointly learns the low dimensional representation of both words
and documents. The experimental results demonstrate that the model outperforms numerous
baselines.

61

3 Text Categorization

3.2 Short Text Categorization

The growth of Web e-commerce and online platforms has given rise to the multiplication of
online available short text data. Hence, it has become crucial to perform short text categoriza-
tion for a wide range of applications, such as sentiment analysis, spam filtering, etc. However,
due to the main characteristics of short text, the traditional text categorization methods per-
form poorly when they are directly applied to short texts.

The main characteristic of short text is the limited length which is no longer than
200 characters (Song et al., 2014). In other words, unlike arbitrary text documents, the short
text consists of a dozen words to a few sentences (Song et al., 2014). Some of the short text
examples are search snippets, tweets, news feeds, short messages, online chat logs, forum
messages, etc.

Besides its limited length, short texts have other unique characteristics:

• Sparseness (Song et al., 2014): As stated before, the most distinct feature of short texts
is the insufficient text length which consists of dozens of words. Due to the limited
text length, extracting meaningful features from short texts is much more challenging
in comparison to arbitrary text documents.

• Malformed (Sakor et al., 2019): Short texts are often not structured well, i.e., the mean-
ing of the texts are not explicitly expressed, they are incomplete.

• Non-standardability (Song et al., 2014): The short text often contains non-standard
terms as well as many misspellings.

• Ambiguity (Wang et al., 2017): Due to polysemes and typos within the short texts, they
are usually very ambiguous. Further, due to the insufficient context, the ambiguities
often cannot be resolved based on the available context.

Short text categorization is similar to arbitrary text categorization (cf. Defini-
tion 3.1.1), which aims to assign a category to a given short text. However, due to the
aforementioned characteristics of short text, conventional text categorization models which
rely on vector space model cannot perform well on short text documents. For example, given
a sentence:

“Tiger lost the US Open.”

The given sentence2 is an ambiguous short text. Humans can categorize this text cor-
rectly to the category “Sports” without the need of any training process or any labeled
data. However, most of the categorization algorithms fail to categorize this sentence correctly
due to its shortness, sparsity and ambiguity. In addition, the words inside the text such as

2http://apps.yovisto.com/labs/ner-benchmarks/data/kore50-nif-2014-11-03.ttl

62

3.2 Short Text Categorization

Tiger, lost, US and Open are very ambiguous. For example, Tiger might refer to
different concepts such as an animal3, a place4, a movie5, etc. These different interpretations
of a word confuse the algorithms to assign a correct category to this sentence.

One of the main reasons that humans can categorize such an ambiguous and short
text, is the capability of considering surface forms and their referred entities in the given
text. Knowing that Tiger refers to a golf player “Tiger Woods6" and US Open refers to
“United States Open Championship7" yields a correct categorization. Nonetheless, almost
all the standard text categorization approaches consider words instead of entities present in
the text (Zhang et al., 2015). Therefore, designing a successful short text categorization
model requires an additional effort. Unlike arbitrary text categorization models, short text
categorization approaches adopt more sophisticated text representation methods. In other
words, due to the sparsity, short text categorization models often, enrich the text represen-
tations by capturing more semantic and syntactic information from the documents. Further,
several methods utilize external knowledge such as knowledge bases to enhance the semantic
representation of the texts.

In the following section, the related studies for short text categorization, which utilize
traditional machine learning techniques are presented.

Related Work on Short Text Categorization
As stated before, due to the sparsity issue of short texts, traditional text categorization methods
often cannot be directly applied to short text. Hence, there exists a considerable amount of
research body that focuses on alleviating the data sparsity problem of short text. To do so,
several studies (Wang et al., 2017; Chen et al., 2019; Wang et al., 2016b) utilize external data
sources in order to enrich short text representations.

(Wang et al., 2017) propose a convolutional neural network-based model which lever-
ages external sources, further, it combines implicit as well as explicit representations. The
explicit approaches, model the text according to the traditional natural language processing
steps, such as part of speech tagging, conceptualization, labeling, etc. On the other hand, the
implicit representation methods model the text by leveraging neural language models, such as
Skip-gram. In other words, the implicit representation methods try to obtain the low dimen-
sional distributed representation of short texts. The proposed method, first, conceptualizes the
short texts by utilizing an external knowledge base. Then, the short texts are transformed into
vectors by obtaining the vector representation of entities and words from pre-trained embed-

3https://en.wikipedia.org/wiki/Tiger
4https://en.wikipedia.org/wiki/Tiger,_Georgia
5https://en.wikipedia.org/wiki/Tiger_(2017_film)
6https://en.wikipedia.org/wiki/Tiger_Woods
7https://en.wikipedia.org/wiki/2018_U.S._Open_(golf)

63

3 Text Categorization

ding models. Finally, a convolutional neural network is trained by feeding the embedding of
the short texts. The performance of the proposed model is compared with several baselines
including a combination of BoW and traditional SVM, and more sophisticated deep neural net-
works (Kim, 2014; Zhang et al., 2015). The model significantly outperforms all the baselines
on several benchmarks. Moreover, similar to (Wang et al., 2017), yet, a more sophisticated
approach proposed by (Chen et al., 2019). The model combines the implicit and explicit text
representations by leveraging knowledge bases, i.e., YAGO and Freebase. The method utilizes
an attention mechanism in order to assign more weights to the relevant concepts with respect
to the entire concept set. Further, the model employs also a self-attention mechanism to obtain
short text representations using word-level and character-level features. The model has trained
by leveraging both short text representations and concept representations and outperformed all
the baselines. Moreover, (Wang et al., 2016b) proposed deep learning-based approaches for
short text categorization. The results of these approaches have been compared with traditional
supervised methods, such as SVM, multinomial logistic regression, etc. The authors showed
that in most of the cases their approach achieved superior results. To overcome the sparsity
problem of short text documents (Chen et al., 2011) proposed a method that enhances the
short text representations by leveraging topics at multiple granularities. Similarly, in order to
expand the semantic representation of short text documents, (Phan et al., 2008) proposed an
approach to discover hidden topics based on an external Wikipedia corpus using LDA.

While performing well in practice, the aforementioned approaches, i.e., traditional
machine learning based as well as deep learning approaches have both training and testing
phases. For the training phase, they require a million scales of labeled data. As stated before,
obtaining training data is a time-consuming and costly task. Further, their performances highly
depend on the size of training data, its distribution, and the chosen hyperparameters. Last but
not least, these approaches might face an efficiency problem, i.e., the training and testing
phase might be slow depending on the complexity of the method as well as the size of the
dataset.

3.3 Text Preprocessing

Text data, especially short texts are often, very noisy, i.e., they contain unnecessary characters,
words, misspellings, etc. Extracting meaningful features becomes a challenging task from
such data. Moreover, the feature extraction techniques cannot be properly applied to the noisy
texts. Hence, the noise contained within texts can have adverse effects on the performance of
the applications. Therefore, text cleaning and preprocessing have become a crucial step for
many natural language processing applications. Depending on the dataset and the application
at hand different text cleaning and preprocessing techniques can be utilized.

The most common text preprocessing techniques are presented as follows:

64

3.3 Text Preprocessing

• Text tokenization: Text tokenization is a process of splitting a piece of into smaller
parts which are called tokens. Two types of tokenization methods, i.e., sentence and
word tokenizations are most commonly exploited. The sentence tokenization aims to
split a paragraph or a document into its sentences. On the other hand, word tokenization
aims to break the sequence of text into its word tokens.

For example, given a sentence:
"Berlin is the capital of Germany", and its word tokens are
{"Berlin", "is", "the", "capital", "of", "Germany"}.

• Noise removal: Text documents often contain unnecessary characters (e.g., hashtags,
emojis, etc.) which could harm the feature extraction process and consequently, the
categorization process. Therefore, most of the natural language processing applications
remove special characters and punctuations from the text before processing or extract-
ing any features from it.

• Case conversions: Text documents might contain inconsistent capitalization of words.
This can be a critical problem, especially for the text categorization systems. For
example, "car" and "Car" refer to the same thing. Therefore, it would be inappropriate
to consider them as two different words in the feature extraction process. Therefore,
converting all the words to a lower case can help to achieve consistency in terms of
capitalization form of the words. However, this process can be problematic for the
interpretation of some words, for instance, "US" refers to "United States of America"
and "us" is a pronoun (Kowsari et al., 2019). Moreover, for different languages such
as German, it might be even better to keep the capitalization form of the words due to
the nature of the language. Overall, based on the characteristics of a corpus (e.g., the
language of the carpus) the case conversion can be applied.

• Removing stop-words: Text documents often include many stop words such as "of",
"the", "in", etc., which do not contribute to the performance of the categorization
process. Therefore, many natural language processing applications remove stop words
before they start processing the text data. Further, another benefit of removing stop
words is that it helps to reduce the size of a dataset, which is critical when dealing with
a large scale corpus.

• Stemming and Lemmatization: Text documents could contain a different form of the
same words, such as "works" and "worked". Stemming and lemmatization techniques
aim to reduce the morphological variation of words. While the goal of stemming is to
reduce the inflected words into their base form, lemmatization tries to bring words down
to their lemma form, i.e., dictionary form. Although stemming and lemmatization seem

65

3 Text Categorization

to be closely related, there is a key difference between them. In contrast to lemmatiza-
tion, which aims to correctly identify the meaning of a word based on its context, the
stemmer works on a single word without considering its context. Further, in compari-
son to lemmatizations, stemmers are much easier to implement and they are faster. For
example, given words "closed" and "closely" will be both converted to "close" after ap-
plying a standard stemming algorithm. On the other hand, an example of lemmatization
is a word "better" has "good" as its lemma.

3.4 Feature Extraction

There exist a vast amount of available text data on the Web. Hence, both industry and academia
desire to be able to automatically process and get meaningful insights from such data. Several
applications such as information retrieval, search engines, text categorization, text summariza-
tion, machine translation, etc. utilize text data as the main data source. However, most of the
systems including text categorization models cannot process the text data in a raw form, i.e., a
sequence of words. Therefore, to be able to process text data, the essential step is converting
it into numerical features, i.e., vector representations. The features of text data refer to the
properties of text which are unique and measurable (Sarkar, 2016). The vector representa-
tion of the data should reflect the attributes of the text. There exist several feature extraction
techniques which help to build feature vectors from texts that are intended to be useful for the
subsequent application, such as text categorization, information retrieval, etc.

The Vector Space Model (a.k.a Term Vector Model) is an extensively utilized model for
transforming text documents into vectors. The vector space model can be defined as follows:

Definition 3.4.1. (Vector Space Model):
Let d denote a document such that d ∈ D, where D is a given corpus and n is the total
number of distinct terms in the corpus D. Then the vector space can be denoted as V S =
W1,W2, ...Wn and then d will have a n dimensional vector d = w1, w2, ...wn where wi

denotes the weight of the term i in d.

There are several ways of computing each dimension value, i.e., the weight of each
term, such as term frequency, term frequency-inverse document frequency, etc. Following the
most common feature extraction models from texts are presented:

• Bag-of-Words (BoW): As the name indicates, a bag-of-words model represents a
text as a set, i.e., a bag of its words. The bag-of-words model does not consider the
sequential and semantic information of the words and extracts only the uni-grams from
texts. Following an example is given.

66

3.4 Feature Extraction

Given a sentence:
"Berlin is the capital of Germany and Ankara is the
capital of Turkey."

The BoW representation of the sentence is
BoW={"Berlin":1, "is":2, "the":2, "capital":2, "of":2,
"Germany":1, "and":1, "Ankara":1, "Turkey":1}.

After transforming texts into their bag-of-words representations, several measures can
be calculated to transform the bag-of-words into feature representations. One of the
most common ways of calculating features from bag-of-words is the term frequency.
According to the vector space model, the above BoW representation is converted into a
feature vector as follows:

BoW=[1, 1, 1, 2, 1, 2, 2, 2, 1]

Each dimension of the vector corresponds to a term and its weight is the number of
occurrences of the term within the corresponding document.

• Term Frequency-Inverse Document Frequency (TF-IDF): TF-IDF is another very
popular feature extraction model. The main essence of the model is to convert doc-
uments into vectors to reflect the importance of each term for each document from
a given corpus. Moreover, TF-IDF is a type of a term weighting factor which is
extensively utilized in vector space models. TF-IDF model transforms the documents
into high dimensional vectors where each dimension corresponds to a certain term from
the vocabulary. The weight of each term, i.e., each dimension value, computed to be
useful for measuring the importance of a term for a document. In order to quantify the
importance of a term for a given document the multiplication of the term frequency and
inverse document frequency are considered and they are defined as follows:

Definition 3.4.2. (Term Frequency):
The term frequency of a term refers to the number of times the term occurs in a certain
document. In other words, the simple count of occurrence of a term in the document.

Definition 3.4.3. (Inverse Document Frequency):
The inverse document frequency quantifies the importance of a term in a corpus by
considering its frequency of occurrences across the documents.

The articles, i.e., "a", "an", "the" may appear much more frequently than the many other

67

3 Text Categorization

terms in the documents. However, they do not carry any important information for dis-
tinguishing the documents from each other. Therefore, the inverse document frequency
intends to decrease the weight of the terms that appear very frequently while increasing
the weight of the terms that appear rarely in the corpus. The inverse document frequency
is calculated as follows:

− log
nt
N

(3.1)

where N denotes the total number of text documents in the given corpus and nt is the
number of documents in which the term t appears. Finally, the weight wt of a term t in
document d according to TF-IDF is calculated as follows:

wt,d =

{
tf(t, d) · −lognt

N if tf(t, d) > 0.

0, otherwise.
(3.2)

Note that there are several variations of TF-IDF weighting schema. Formula 3.2 is one
of the simplest ways of calculating the TF-IDF weight of a term.

Embedding models: Embedding models have become very popular techniques for con-
structing feature sets from text documents. Several embedding methods such as Word2Vec,
Doc2Vec, etc. have been proposed to generate the low dimensional representation of lan-
guage units, i.e., terms, phrases, documents. In comparison to the vector space model, em-
bedding models are much more sophisticated. Often, they rely on neural networks, matrix
decomposition (cf. Section 2.1.6 and Section 2.1.7) to generate the low dimensional vector
representations. While BoW and TF-IDF methods which leverage only the word occurrence
information, embeddings capture both syntactic and semantic word relations. In other words,
BoW and TF-IDF ignore the semantic relatedness between the words. Moreover, the em-
bedding models generate a low dimensional representation of language units, however, the
dimension of the vector space models is often equal to the unique number of words present
in a given large corpus. In other words, features that are generated based on BoW have a
much higher number of dimensions. Therefore, the categorization task is much more efficient
with the embedding models. Given that embedding models have become very popular and
demonstrated notable success in many natural language applications in the last years, recently
proposed almost all the text categorization approaches rely on embedding models. Since the
embedding models are presented in Section 2.1.6 and Section 2.1.7, their technical details are
omitted in this section.

3.5 Text Categorization Algorithms

This section provides a brief description of the machine learning algorithms, which have been
commonly used for the text categorization task. The approaches that are presented in this

68

3.5 Text Categorization Algorithms

section have a training and testing phase. The training phase aims to train a machine learning
model by utilizing a labeled dataset, i.e., a training set. The model learns the association
between the attributes of documents and the labels. Thereafter, the model is leveraged to
predict the labels of unseen data, i.e., test documents, and this process is referred to as a test
phase.

3.5.1 Decision Trees and Random Forest

The essence of a decision tree is to split a given dataset in a hierarchical, i.e., tree-like fashion.
The division is achieved based on numerous decisions, i.e., split conditions. In other words,
the model aims to split a given dataset into regions, where each of them is associated with a
class label. Moreover, random forest models are the more robust and solid implementation of
decision trees. In the next two subsequent sections, both models are presented briefly.

3.5.1.1 Decision Trees

Decision trees, as the name implies, have a tree-like structure. They split the data in a top-
down fashion where the root represents the data space. Each branch of a tree presents splitting
condition(s) and the leaves of the tree are the class labels. The split conditions are similar to
the feature selection criteria (e.g., looking for specific terms) in text categorization (Aggar-
wal, 2018a). The split criteria which is based on a single condition called "univariate split",
whereas the one, which is based on multiple attributes called multivariate split. Decision trees
can be successfully applied to various domains such as text categorization. In the case of text
categorization, split criteria can correspond to a frequency of one or more words present in
given texts or presence or absence of certain words (Aggarwal, 2018a). However, it is a well-
known fact that decision trees are prone to over fitting. The decision trees are built based on
the training datasets. In other words, the split conditions are determined based on the training
sets. Hence, it is possible to construct a tree in a very accurate way where each leaf contains
data points from a single class, i.e., without any misclassified instance. Such type of a deci-
sion tree provides 100% accuracy on the training set. However, it performs very poorly on a
test set. The reason for a substandard performance here can be attributed to the extreme way
of constructing the decision tree. This type of a problem is tackled by adopting a pruning
process for the lower level of the tree. However, in this way, the leaves of the tree may contain
multiple class labels (Aggarwal, 2018a). Once a decision tree is built, the prediction phase
is very straightforward. For each test sample, starting from the root, the branch to follow is
determined based on the split criteria. This process is repeated in a top-down fashion until one
leaf node is reached.

69

3 Text Categorization

3.5.1.2 Random Forests

Random forests are more robust and effective implementation of decision trees. As the name
implies, random forests adopt a randomized feature selection process for the tree construc-
tions. Further, in contrast to decision trees, random forests construct multiple trees by ran-
domizing feature selection process. Then for each test point, the constructed trees are utilized
to make a prediction. The obtained predictions from each tree are then averaged, i.e., the
number of times each predicted class is counted, to produce the final result. In this way,
i.e., randomizing the tree construction and exploiting multiple trees for the prediction task,
improves the performance of categorization.

3.5.2 Naïve Bayes

A naïve Bayes is a probabilistic model which is designed based on the well known Bayes the-
orem. To facilitate the discussion, first, the definition of a Bayes theorem is given as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(3.3)

The naïve Bayes algorithm has been extensively studied and is still one of the stan-
dard baselines for text categorization. The model is a probabilistic generative model, which
relies on the idea that a given text corpus is generated from a mixture of different predefined
categories. The generative process is defined as follows (Aggarwal, 2018a):

1. Select rth class Cr with a probability αr = P (Cr),

2. Generate the document according to the probability distribution of Cr.

The training and test sets are considered to be formed according to this generative
model. Obviously, only the training data are utilized to estimate the parameters of the proba-
bilistic model. Thereafter, the model is leveraged to estimate the probability of generation of
each test document from each predefined category. Finally, each test sample is labeled with
the category that provides the highest probability of generating the document. Note that the
generative process utilizes Bernoulli or multinomial distributions most commonly.

The Bernoulli Model: The Bernoulli model considers only the absence and presence of
terms within documents, it ignores the term frequencies. Therefore, a document vector is
a sparse binary vector and each dimension of it corresponds to a term. According to the
Bernoulli model the probability of generating a document D from a class Cr defined as
follows:

P (D|Cr) =
∏
tj∈d

p
(r)
j

∏
tj /∈d

(1− p(r)
j) (3.4)

70

3.5 Text Categorization Algorithms

where p(r)
j is the probability of the jth term tj present in the document is generated

from rth class. Given the formula above, the naïve Bayes model assumes that the presence
or absence of the different terms is conditionally independent with respect to the given class.
However, such an assumption is not true in a real-world setting. Hence, the term naïve is used
to refer this model.

The training phase aims to estimate the model parameters, namely, p(r)
j and αr. On

the other hand, in the testing phase, these parameters are utilized to predict the label of a
given test document.

Multinomial Model: In contrast to the Bernoulli model, the multinomial model utilizes
term frequencies to model probability distributions. However, the training and the test phase
of the model are very similar to the Bernoulli model. According to the multinomial model the
probability of P (D|Cr) defined as follows:

P (D|Cr) =
∏
j=1

(qjr)
dj (3.5)

where qjr is the parameter of the model which corresponds the fractional presence of
the term tj in the rth class andD is a document and its vector of frequency given by (d1...dn).
Similar to the Bernoulli model, the training phase aims to estimate the model parameters, i.e.,
qjr and αr.

3.5.2.1 k -Nearest Neighbors

The k-nearest neighbors algorithm assigns labels to unlabeled instances based on their similar-
ities to training samples. The model does not have any training phase, instead, it converts each
training and test instance into feature vectors. This enables model to calculate the similarity
between the training and test samples.

The model first identifies the k-nearest neighbors of a given test instance based on
similarity. After collecting k neighbors, the category which has the majority of the neighbors
is returned as the most relevant to the given test sample. The basic implementation of the
model with n training samples requires n comparisons, i.e., similarity computation, for each
test instance to find the k-nearest neighbors. Thus, the efficiency of the model becomes an
issue. This complexity problem can be tackled by using an inverted index (Aggarwal, 2018a)
data structure model.

In order to compute the vector similarities, often, cosine similarity is utilized. More-
over, k is a parameter and its value can be determined empirically depending on the charac-
teristics of the dataset. In other words, different values of k is leveraged by the training set
and the one which provides the highest accuracy is used for the categorization task. The alter-
native way of finding the optimal value of k is by utilizing a validation set in a leave-one-out
manner.

71

3 Text Categorization

The k nearest neighbor algorithm have been extensively utilized as a baseline for the
text categorization tasks. However, when the value of k is set to 1 then the model becomes less
robust and can easily over fit. However, if the size of the training set is sufficiently large and
representative then the model can still perform well. The alternative way of avoiding error that
occurs when k is set to 1 is utilizing weighted nearest neighbors approach (Aggarwal, 2018a).

3.5.3 Support Vector Machines

A Support Vector Machine (SVM), in the case of binary categorization aims to split data points
which belong to two categories based on a margin. The model first creates two hyperplanes
so called margin hyperplanes symmetrically on both sides of the decision boundary. The
hyperplanes are generated in a way that most data points lie on either side of the hyperplanes,
however, on the correct side. Figure8 3.2 illustrates the simple SVM which is trained with
samples from two categories. The decision surface w · x − b = 0 lies in the middle of two

Figure 3.2: An example of an SVM trained with samples from two
classes

hyperplanes and it has the equal distance to each of the margin hyperplanes wherew·x−b = 1
and w · x − b = −1. Note that the points that lie between the margins are penalized and
this region reflects the uncertainty points called bounded support vectors. Moreover, two
hyperplanes could also touch one or more training data points as shown in Figure 3.2 and
such data points called as free support vectors. The common variation of SVM objective

8https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:
SVM_margin.png

72

https://en.wikipedia.org/wiki/Support_vector_machine##/media/File:SVM_margin.png
https://en.wikipedia.org/wiki/Support_vector_machine##/media/File:SVM_margin.png

3.6 Evaluation Methods

function is as follows:

MinimizeJ =
1

2
‖W‖2 + C ·

n∑
i=1

ξi (3.6)

where C is chosen empirically, i.e., the value that maximizes the accuracy. The points
that violate the margin penalized by C and their amount represented by a slack variable ξ.
Therefore, the main goal of the training function is to minimize each ξ. In other words, the
objective function J aims to minimize the slack variable ξ as it represents the amount that
margin rules are violated.

3.5.4 Logistic Regression:

Logistic regression is a probabilistic model, which predicts the probabilities of predefined cat-
egories for each given test instance. As the name indicates, it uses a logistic function to model
the binary categorization task. Given a training set which is in a form of (x1, y1)...(xn, yn)
where y ∈ {1,−1}, then the objective function of logistic regression is defined as follows:

MinimizeJ =
n∑

i=1

log[1 + exp{−yi(W · xi)}] +
λ

2
‖W‖2 (3.7)

Similar to the presented machine learning models, the training phase tries to estimate the
parameters to be able to make predictions for the given test set. Further, the parameters of
the model are learned by exploiting the stochastic gradient descent model (Aggarwal, 2018a).
Note that there are two variants of the prediction task, namely, deterministic and probabilistic.
Often, the probabilistic prediction is utilized. Typically, logistic regression considers that the
dependent variable y is generated from a probability distribution which is parameterized by
sigmoid of W · xi. Depending on the predicted target variable, it is possible to use a different
type of distribution.

3.6 Evaluation Methods

The evaluation of text categorization methods is a crucial task to assess the performance of the
systems. The existing techniques designed to evaluate the text categorization systems in terms
of effectiveness and efficiency. Further, such techniques allow the comparison of a system
with other text categorization methods. The effectiveness of a text categorization approach
denotes the ability to categorize the documents into their correct labels. On the other hand,
the efficiency refers to the execution time as well as the requirement of external resources
(e.g., CPU, memory) for building and running the system. There are several metrics such
as accuracy, precision, recall, etc. to evaluate the effectiveness of the systems. Most of the
evaluation metrics are based on the elements of a confusion matrix. Table 3.1 illustrates a

73

3 Text Categorization

general structure of a confusion matrix which comprises "true positives (TPs)", "true nega-
tives (TNs)", "false positives (FPs)", "false negatives (FNs)". The confusion matrix allows to
visualize the performance of a method. Note that the illustrated confusion matrix is suitable
for binary categorization, where there are only two classes, namely, positive and negative.

Predicted
Negative Positive

A
ct

ua
l

Negative True Negative (TN) False Positive (FP)

Positive False Negative (FN) True Positive (TP)

Table 3.1: An example of a confusion matrix

Following the elements of the confusion matrix are explained briefly:

• True positives: The collection of data samples that are correctly categorized as positive.

• True negatives: The collection of data samples that are correctly categorized as nega-
tive.

• False positives: The collection of data samples that are incorrectly categorized as pos-
itive.

• False negatives: The collection of data samples that are incorrectly categorized as
negative.

As stated before, most of the text categorization models exploit elements of the confu-
sion matrix to evalute the performance of the system by calculating the standard metrics. The
most prominent text categorization evaluation metrics are as follows:

• Accuracy: The accuracy is the most basic and commonly used measure for evaluating
the performance of the categorization model and defined as follows:

accuracy =
(TP + TN)

(TP + FP + FN + TN)

• Precision and Recall: The precision measures the correctness while recall measures
the completeness of the system. They are calculated in the following ways:

precision =
TP

(TP + FP)

recall =
TP

(TP + FN)

74

3.6 Evaluation Methods

• F-1 score: The F-1 score measures the performance of the model by leveraging pre-
cision and recall. In other words, it is defined as the harmonic mean of precision and
recall, and calculated as follows:

F1 =
(2× precision× recall)

(precision+ recall)

• Macro Average and Micro Average: Macro average method calculates the precision,
recall and F-1 score for each category, i.e., positive and negative, separately. Thereafter,
it takes the average of each metric in the following ways:

macroPrecision =
1

C

∑C
i=1 TPi∑C

i=1 TPi + FPi

macroRecall =
1

C

∑C
i=1 TPi∑C

i=1 TPi + FNi

macroF1 =
(2×macroPrecision×macroRecall)

(macroPrecision+macroRecall)

Micro average method on the other hand, aggregates all the TPs, FPs, TNs, FNs from
each class to calculate the metrics in the following ways:

microPrecision =

∑C
i=1 TPi∑C

i=1 TPi + FPi

microRecall =

∑C
i=1 TPi∑C

i=1 TPi + FNi

microF1 =
(2×microPrecision×microRecall)

(microPrecision+microRecall)

75

3 Text Categorization

• Receiver Operating Characteristic (ROC) Curve: In comparison to previously
introduced evaluation metrics, the ROC curve has been used less frequently for the
evaluation of the text categorization algorithms. As the name indicates, it is a curve
shaped graph illustrates the performance of the categorization algorithm at all the
categorization thresholds. The curve has two parameters, namely, True Positive Rate
(TPR) and False Positive Rate (FPR). Moreover, the ROC curve is created by piloting
the TPR against FPR at different threshold settings.

The parameter of the curve is calculated as follows:

– True Positive Rate (TPR): It is same as the recall calculation as follows:

TPR =
TP

TP + FN
(3.8)

– False Positive Rate (FPR): It is defines as follows:

TPR =
FP

FP + TN
(3.9)

A typical ROC curve9 looks like as follows:

Figure 3.3: An example of a ROC curve. The curve plots the TPR (y-axis) vs FPR (x-axis)
at different categorization thresholds.

9https://developers.google.com/machine-learning/crash-course/
classification/roc-and-auc

76

https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc

3.7 Summary

3.7 Summary

This chapter has given a general overview of the arbitrary-length text categorization task as
well as the short text categorization task, which is the main topic of the thesis. Although the
provided overview has been rather general, the more specific details about short text catego-
rization are presented in the remainder of the thesis. Moreover, the state-of-the-art approaches
that are related to text categorization have been introduced in this chapter. These approaches
utilize standard machine learning and neural networks methods. In addition, a standard ma-
chine learning based text categorization pipeline which includes text preprocessing, feature
extraction (e.g., BoW and TF-IDF), training, testing steps, etc. has been presented. Finally,
the evaluation metrics which aim to assess the performance of the text categorization models
have also been presented.

77

3 Text Categorization

78

4 Knowledge-Based Short Text
Categorization

This chapter is one of the core chapters of this thesis. The chapter investigates two research
questions defined in Section 1.2 (Research Question 1 and 2):

• How can a knowledge base be utilized to categorize short texts without requiring any
labeled training data?

• How to learn the semantic representation of short texts and pre-defined categories with
the help of a knowledge base?

In this regard, this chapter proposes a novel probabilistic model for Knowledge-Based
Short Text Categorization (KBSTC), which is based on the following publication:

Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2019). Knowledge-based short text cat-
egorization using entity and category embedding. The Semantic Web-16th International
Conference, ESWC 2019, Portoro, Slovenia.

The proposed model does not require any labeled training data to categorize a short
text, instead, it utilizes a knowledge base as an external source. KBSTC leverages entities
and categories from the large knowledge base, which are further embedded into a common
vector space, for which a new entity and category embedding model is proposed. Given a
short text, its category (e.g., Business, Sports, etc.) can then be derived based on the entities
mentioned in the text by exploiting semantic similarity between entities and categories. To
validate the effectiveness of the proposed method, the experiments on two real-world datasets,
i.e., AG News and Google Snippets have been conducted. The experimental results show that
the proposed approach significantly outperforms the categorization approaches which do not
require any labeled data, while it comes close to the results of the supervised approaches.

79

4 Knowledge-Based Short Text Categorization

4.1 Introduction

Short text categorization is gaining more and more attention due to the availability of a huge
number of text data, which includes search snippets, short messages as well as text data gen-
erated in social forums (Burel et al., 2017; Türker et al., 2018a; Türker et al., 2018b). Fur-
thermore, people often voice their opinions on online platforms such as Twitter, Amazon,
etc. in the form of a short text (Zeng et al., 2018). Hence, a large body of short text data is
generated everyday. Although traditional text categorization methods perform well on long
text such as news articles, yet, by considering the short text, most of them suffer from issues
such as data sparsity and insufficient text length, which is no longer than 200 characters (Song
et al., 2014). Furthermore, short texts are often malformed, i.e., the meaning of the texts is not
explicitly expressed, and thus extracting meaningful features from short texts is a challeng-
ing task (Sakor et al., 2019). Moreover, simple text categorization approaches based on the
bag-of-words (BOW) cannot properly represent short texts as the semantic similarity between
single words is not taken into account (Wang et al., 2016b). Such methods only consider the
word occurrences within the documents, they discard the sequential and semantic information
of the words. Also, approaches that utilize word embeddings, which consider the semantic
relation of the words, perform better when dealing with longer text. Because in the case of
longer text the ambiguities can be resolved based on the provided context information within
the given text. On the other hand, in the case of short text, where the available context is
rather limited and each word obtains significant importance, such approaches often lead to
inaccurate results.

Another characteristic of existing approaches is that they are designed in the paradigm
of supervised learning. Therefore, they all require a significant amount of labeled training
data. Manually labeling of such data can be a rather time-consuming and costly task. Espe-
cially, if the text to be labeled is of a specific scientific or technical domain, crowd-sourcing
based labeling approaches do not work successfully and only expensive domain experts are
able to fulfill the manual labeling task. Alternatively, semi-supervised text categorization ap-
proaches (Nigam et al., 2000; Xuan et al., 2017) have been proposed to reduce the labeling
effort. These approaches mainly aim to perform text categorization by leveraging limited la-
beled data as well as unlabeled data. The key idea is improving the categorization performance
by combining unlabeled data with a small amount of labeled data. Yet, due to the diversity
of the documents in many applications, generating small training set for semi-supervised ap-
proaches still remains an expensive process (Li et al., 2016a). Moreover, (Singh et al., 2008)
show that leveraging labeled data may not always provide gain on the performance. In fact,
the performance of the semi-supervised learning approach might fall down due to the charac-
teristics of the unlabeled data.

To overcome the requirement for labeled data, a number of dataless text categoriza-
tion methods have been proposed (Song & Roth, 2014; Chang et al., 2008). These methods
do not require any labeled data as a prerequisite. Instead, they rely on the semantic similarity

80

4.2 Related Approaches

between a given document and a set of predefined categories to determine which category the
given document belongs to. More specifically, documents and categories are represented in a
common semantic space based on the words contained in the documents and category labels,
which allows calculating a meaningful semantic similarity between documents and categories.
The categorization process depends on this semantic similarity. On the other hand, (Druck
et al., 2008; Chen et al., 2015a) proposed dataless categorization models which require man-
ually designed seed words, i.e., representative keywords for each label. The models have
provided promising categorization accuracy. However, the performance of such models is
mainly affected by the selection of seed words. Furthermore, the most prominent and suc-
cessful dataless categorization approaches are designed for long documents.

Motivated by the already mentioned challenges, this chapter proposes a novel prob-
abilistic model for Knowledge-Based Short Text Categorization (KBSTC), which does not
require any labeled training data. The proposed approach differs from the traditional text cat-
egorization approaches since it is designed for the task of short text categorization. It is able
to capture the semantic relations between the entities represented in a short text and the pre-
defined categories. In order to capture such semantic relations, this chapter also proposes a
new network embedding technique which is capable of embedding both entities and categories
from a large knowledge base into a common vector space. Finally, the category of the given
text can be derived based on the semantic similarity between entities present in the given text
and the set of predefined categories. The similarity is computed based on the vector represen-
tation of entities and categories.
Overall, the main contributions of this chapter are as follows:

• a new paradigm for short text categorization, based on a knowledge base;

• a probabilistic model for short text categorization;

• a new method of entity and category embedding;

• an evaluation using standard datasets for short text categorization.

4.2 Related Approaches

The aim of this work is to assign a category (e.g., Business, Sports, etc.) to a given short
text by utilizing entity and category embeddings without requiring any labeled data. Thus,
our work is mainly related to three prior studies: Short Text Categorization, Dataless Text
Categorization as well as Entity and Category Embedding.

The state-of-the-art short text categorization approaches are presented in Section 3.2.
Therefore, in this section, dataless text categorization approaches and embedding models that
are relevant to the proposed entity and category embedding model are discussed.

81

4 Knowledge-Based Short Text Categorization

4.2.1 Dataless Text Categorization

In order to address the problem of missing labeled data, (Chang et al., 2008) have introduced a
dataless text categorization method by representing documents and category labels in a com-
mon semantic space. As a source, the online encyclopedia, Wikipedia was utilized supported
with Explicit Semantic Analysis (ESA) (Gabrilovich et al., 2007) to quantify semantic related-
ness between the labels to be assigned and the documents. As a result, it was shown that ESA
is able to achieve better categorization results than the traditional BOW representations. The
method demonstrated remarkable categorization performance without using any labeled data.
In fact, the model obtained comparable results with the supervised methods which have uti-
lized 100 labeled samples for training. Furthermore, (Song & Roth, 2014) proposed a dataless
hierarchical text categorization by dividing the dataless categorization task into two steps. In
the semantic similarity step, both labels and documents were represented in a common seman-
tic space, which allows calculating semantic relatedness between documents and labels. In the
bootstrapping step, the approach made use of a machine learning based categorization proce-
dure with the aim of iteratively improving categorization accuracy. Similar to (Chang et al.,
2008), the performance of the proposed approach is evaluated on the same datasets. Since
the approach relies on the similarity between the label names and the texts, the representative
label names are essential for the approach. Therefore, the authors expanded the original label
names by adding more relevant descriptions. The experimental results come close to the result
of the supervised approaches which trained on thousands of labeled data samples. The base-
lines are based on the traditional machine learning models, i.e., Naive Bayes (NB), Support
Vector Machine (SVM), etc. with the features calculated based on the term frequency and the
inverse document frequency to perform categorization.

In addition, Latent Dirichlet Allocation (LDA) was utilized for dataless text catego-
rization (Li et al., 2016a; Hingmire et al., 2013). (Chen et al., 2015b) proposed an LDA based
dataless categorization method referred to as Descriptive LDA (DescLDA). DescLDA is an
extension of the standard LDA model, in which a describing device (DD) is applied. The DD
is a model which helps to infer Dirichlet priors from categories/labels of the given dataset.

The aforementioned studies are designed for the categorization of long and well struc-
tured documents such as news articles. In contrast to these approaches, our proposed approach
differs in two main aspects. First, all the mentioned studies were designed for the categoriza-
tion of documents of arbitrary length. However, the main purpose of KBSTC is to categorize
short text documents without the necessity of labeled training data. Second, none of the men-
tioned approaches did make use of the entities present in a short text document. To represent
a document, all the mentioned approaches consider the words contained in the document and
they ignore the entities. However, entities carry much more information than words.

82

4.2 Related Approaches

4.2.2 Entity and Category Embeddings

Section 2.1.6 and Section 2.1.7 discuss the technical details of embedding models that are
presented in this section. Hence, in this section, the technical details are omitted.

To be able to capture the semantic relation between the entities present in short texts
and the predefined categories, the embedding of entities and categories into a common vector
space is crucial for KBSTC. There exist several embedding models, which can be employed
to generate entity and category embeddings. For instance, RDF2Vec (Ristoski & Paulheim,
2016), DeepWalk, etc. RDF2Vec aims to learn the distributed representation of the vertices
in an RDF graph. Further, it treats each type of vertices and edges equally. However, the
connection between the vertices in a graph may vary. In other words, some entities might
strongly related to each other than the other entities. Yet, such types of relations are ignored
in RDF2Vec, instead, each edge between the vertices (e.g., entities) is treated equally. On the
other hand, similar to RDF2Vec, DeepWalk (Perozzi et al., 2014) adopts a language modeling
approach, i.e., Skip-gram to learn the representation of vertices in a large network. Such
approaches are also designed for homogeneous networks in which there exists only one type
of vertice and edge.

(Li et al., 2016d) have proposed the state of the art joint entity and category embed-
ding models, namely, the Category Embedding (CE) model, and the Hierarchical Category
Embedding (HCE) model. The first model CE learns simultaneously representations of en-
tities and their associated categories based on the Skip-gram model (Mikolov et al., 2013a).
In order to enhance the embedding quality, the authors extended the CE model and integrated
the category hierarchy structure into the embedding space, which yielded the HCE model.
The authors applied both models to the dateless categorization task and reported that HCE
can represent semantic relatedness between entities and categories better than the CE model.
Moreover, (Tang et al., 2015a) have proposed a model called PTE which uses labeled data
and word co-occurrence information to build a heterogeneous text network, where multiple
types of vertices exist and then apply the proposed algorithm to learn the embedding of text.

As stated before, capturing the meaningful semantic relatedness between the entities
and categories from large knowledge bases is essential for KBSTC. Except for PTE, all the
presented embedding models are designed for homogeneous networks where each vertex
and edge are treated equally. However, it is assumed that the entity-entity, entity-category,
category-category relation should be treated differently while computing the entity and cat-
egory vectors. Therefore, inspired by PTE, a heterogeneous network entity, and category
embedding model is proposed in this chapter. The model first constructs a weighted network
of entities and categories, and then jointly learns their embeddings from the network. The
proposed embedding model is presented in Section 4.6.

83

4 Knowledge-Based Short Text Categorization

Figure 4.1: The workflow of the proposed KBSTC approach (best viewed in color)

4.3 Preliminaries and Overview

This section introduces the preliminaries and provides a formal definition of the Knowledge-
Based Short Text Categorization (KBSTC) task, followed by the description of the proposed
probabilistic approach for KBSTC.

Preliminaries. Given a knowledge base KB containing a set of entities E = {e1, e2, .., en}
and a set of hierarchically related categories C = {c1, c2, .., cm}, we model KB as a graph
GKB = (V,R) with V = E ∪ C as the set of vertices and R = REE ∪ REC ∪ RCC as the
set of edges of the form (vi, vj) reflecting various relationships between the vertices vi and
vj , where each edge in REE with vi, vj ∈ E represents an entity-entity relation, each edge
in REC with vi ∈ E and vj ∈ C represents an entity-category association, and each edge in
RCC with vi, vj ∈ C reflects the category hierarchy.

In this work, as the knowledge base, we utilize Wikipedia, which is a collaboratively
edited knowledge source, contains more than 5 million articles, where each article is associ-
ated with one or more categories. Moreover, Wikipedia contains a rich category hierarchy. In
Wikipedia each article and each category page are considered as an entity in E and a category
in C, respectively. In addition, each relationship (vi, vj) between the pair of vertices vi and vj
are extracted from Wikipedia and the following rule applies:

84

4.3 Preliminaries and Overview

• (vi, vj) ∈ REE if and only if vi, vj ∈ E and there is a link from the article vi to the
article vj in Wikipedia,

• (vi, vj) ∈ REC if and only if vi ∈ E, vj ∈ C and the article vi has the associated
category vj in Wikipedia, and

• (vi, vj) ∈ RCC if and only if vi, vj ∈ C and vi is subcategory of vj in Wikipedia.

Definition (KBSTC task). Given an input short text t that contains a set of entities Et ⊆ E
as well as a set of predefined categories C ′ ⊆ C (from the underlying knowledge base KB),
the output of the KBSTC task is the most relevant category ci ∈ C ′ for the given short text t,
i.e., we compute the category function fcat(t) = ci, where ci ∈ C ′.

KBSTC Overview. The general workflow of KBSTC is shown in Figure 5.1. In the
first step, each entity mention present in a given short text t is detected. In order to detect
entity mentions, first all n-grams from the input text are gathered and then the extracted n-
grams matching surface forms of entities (based on the Anchor-Text dictionary) are selected
as entity mentions. Next, for each mention, a set of candidate entities are generated based on
a prefabricated Anchor-Text Dictionary, which contains all mentions and their corresponding
Wikipedia entities. To construct the Anchor-Text Dictionary, all the anchor texts of hyperlinks
in Wikipedia pointing to any Wikipedia articles are extracted, whereby the anchor texts serve
as mentions and the links refer to the corresponding entities.
Given the short text t as “IBM adds midrange server to eServer lineup",
the detected mentions are “IBM”, “midrange server” and “eServer”.
For each mention a set of entities are generated;
{“IBM”, “IBM_Notes”, “IBM_AIX”,..},
{“Midrange_computer”, “Mid-range_speaker”, “Mid-range”,..} and
{“IBM_eServer”, “Server”, “Web_server”,..}.
Likewise the predefined categories,
C’={Sports, Technology, Culture, World}, are mapped to Wikipedia cate-
gories. Finally, applying the proposed probabilistic model (cf. Section 4.4) by utilizing
the entity and category embeddings that have been precomputed from Wikipedia (cf. Sec-
tion 4.6), the output of the KBSTC task is the semantically most relevant category for the
entities present in t. Thereby, in the given example the category Technology should be
determined.
Note that in this work we have utilized Wikipedia as a KB. However, KBSTC is applicable
to any arbitrary domain as long as there exists a KB providing domain-specific entities and
categories.

85

4 Knowledge-Based Short Text Categorization

4.4 Probabilistic Approach

The KBSTC aims to assign the most relevant category for a given short text, and thus its task
is formalized as estimating the probability of P (c|t) of each predefined category c and an
input short text t. The result of this probability estimation can be considered as a score for
each category. Therefore, the most relevant category c for a given text t should maximize
the probability P (c|t). Based on Bayes’ theorem, the probability P (c|t) can be rewritten as
follows:

P (c|t) =
P (c, t)

P (t)
∝ P (c, t) , (4.1)

where the denominator P (t) can be ignored as it has no impact on the ranking of the cate-
gories.

To facilitate the following discussion, we first introduce the concepts of mention and
context. For an input text t, a mention is a term in t that can refer to an entity e and the
context of e is the set of all other mentions in t except the one for e. For each candi-
date entity e contained in t, the input text t can be decomposed into the mention and con-
text of e, denoted by me and Ce, respectively. For example, given the entity e as IBM,
the input text “IBM adds midrange server to eServer lineup.” can be de-
composed into a mention me as “IBM” and a context Ce as {“midrange server”,
“eServer”}, where “midrange server” and “eServer” can refer to the context
entities Midrange_computer and IBM_eServer, respectively.

Based on the above introduced concepts, the joint probability P (c, t) is given as fol-
lows:

P (c, t) =
∑
e∈Et

P (e, c, t) (4.2)

=
∑
e∈Et

P (e, c,me, Ce)

=
∑
e∈Et

P (e)P (c|e)P (me|e, c)P (Ce|e, c) (4.3)

=
∑
e∈Et

P (e)P (c|e)P (me|e)P (Ce|e) , (4.4)

whereEt represents the set of all possible entities contained in the input text t. We assume that
in Equation (4.3) me and Ce are conditionally independent given e, in Equation (4.4) me and
Ce are conditionally independent of c given e. The intuition behind these assumptions is that a
mentionme and a contextCe only rely on the entity ewhich refers to and co-occurs with, such
that once the entity e is fixed, me and Ce can be considered as conditionally independent. The
main problem is then to estimate each probability in Equation (4.4), which will be discussed
in the next section.

86

4.5 Model Parameter Estimation

4.5 Model Parameter Estimation

The proposed probabilistic model has four main components, i.e., P (e), P (c|e), P (me|e)
and P (Ce|e). This section provides the estimation of each component in detail.

Entity Popularity. The probability P (e) captures the popularity of the entity e. Here,
we simply apply a uniform distribution to calculate P (e) as follows:

P (e) =
1

N
(4.5)

where N is the total number of entities in the KB.

Entity-Category Relatedness. The probability P (c|e) models the relatedness between an
entity e and a category c. With the pre-built entity and category embeddings (cf. Section 4.6),
there are two cases to consider for estimating P (c|e). Firstly, when the entity e is directly
associated with the category, denoted by cae , inKB, i.e., e appears in some Wikipedia articles
that have associated category cae , the probability P (cae |e) can be approximated based on
similarity as

P (cae |e) =
sim(cae , e)∑

c′ae∈Cae

sim(c′ae , e)
, (4.6)

where Cae is the set of categories that are directly associated with e, and sim(cae , e) denotes
the cosine similarity between the vectors of the category cae and the entity e in the embedding
space. Secondly, in case where the entity e is not directly associated with the category c, the
hierarchical structure of categories in KB is considered. More specifically, the categories in
Cae are incorporated into the estimation of the probability P (c|e) as follows:

P (c|e) =
∑

cae∈Cae

P (cae , c|e)

=
∑

cae∈Cae

P (cae |e)P (c|cae , e)

=
∑

cae∈Cae

P (cae |e)P (c|cae), (4.7)

where we consider that e is related to c only through its directly associated category
cae , such that once cae is given, e and c are conditionally independent.

In Equation (4.7), the probability P (cae |e) then can be simply calculated based on
Equation (4.6) and the probability P (c|cae) that captures the hierarchical category structure,
is estimated as follows:

P (c|cae) =

{
1

|Acae
| if c is an ancestor of cae ,

0 otherwise ,
(4.8)

87

4 Knowledge-Based Short Text Categorization

where Acae is the set of ancestor categories of cae , which can be obtained by using the
category hierarchy in KB.

Mention-Entity Association. The probability P (me|e) of observing a mention me given
the entity e is calculated based on the Anchor-Text Dictionary as follows:

P (me|e) =
count(me, e)∑

m′
e∈Me

count(m′e, e)
, (4.9)

where count(me, e) denotes the number of links using me as anchor text pointing to e as the
destination, and Me is the set of all mentions that can refer to e.

Entity-Context Relatedness. The probability P (Ce|e) models the relatedness between
the entity e and its context Ce that consists of all the other mentions in the input text t except
me. Each mention in Ce refers to a context entity ec from the given KB. The probability
P (Ce|e) can be calculated as follows:

P (Ce|e) =
∑

ec∈ECe

P (ec, Ce|e)

=
∑

ec∈ECe

P (ec|e)P (Ce|ec, e)

=
∑

ec∈ECe

P (ec|e)P (Ce|ec) (4.10)

=
∑

ec∈ECe

P (ec|e)P (mec |ec), (4.11)

where ECe denotes the set of entities that can be referred to by the mentions in Ce. In Equa-
tion (4.10), the context Ce is conditionally independent of e given the context entity ec, and in
Equation (4.11) ec is assumed to be only related to its corresponding mention mec ∈ Ce such
that the other mentions in Ce can be ignored.

Similar to P (cae |e) (cf. Equation (4.6)), the probability P (ec|e) in Equation (4.11)
can also be estimated based on the pre-built entity and category embeddings. Let sim(ec, e)
be the cosine similarity between the entity vectors of ec and e. Then the probability P (ec|e)
can be calculated as follows:

P (ec|e) =
sim(ec, e)∑

e′∈E
sim(e′, e)

, (4.12)

where E is the set of all entities in KB. In addition, the probability P (mec |ec) in Equa-
tion (4.11) can be calculated based on Equation (4.9).

88

4.6 Joint Entity And Category Embedding

Figure 4.2: The Entity Category Network Construction (best viewed in color)

4.6 Joint Entity And Category Embedding

This section provides a description of the proposed embedding method that embeds entities
and categories into a common vector space by integrating knowledge from a large knowl-
edge base. The generated embedding model is originated from PTE (Tang et al., 2015a) (cf.
Section 2.1.7) which is a heterogeneous network embedding technology. Firstly, the entity-
category network construction in Section 4.6.1 is presented, and subsequently, the joint entity
and category embedding model is presented in Section 4.6.2.

4.6.1 Network Construction

The semantic representation of a text is crucial for text categorization algorithms. Traditional
text categorization approaches use words to generate a feature set, and adopt machine learning
algorithms. However, it is assumed that in short text words tend to be ambiguous, however
entities carry much more information (Wang et al., 2016a). Therefore, in this study entities
and their semantic relation with categories are used as a main feature to categorize the given
short text.

To calculate the meaningful semantic relatedness, the proper semantic representation
of entities and categories in a common vector space is essential for the proposed approach. For
this reason, the entity and category network is firstly constructed, which will be later utilized
to generate the entity and category embeddings.

Figure 4.2 depicts the process of the entity-entity and entity-category network con-
struction, where the heterogeneous network consists of both entity vertices and category
vertices, and accordingly two types of edges, i.e., edges between two entity vertices and edges
between an entity vertex and a category vertex. The weights of the edges between different
vertices are crucial due to their significant impact on the embedding model (cf. Section 4.6.2).
By leveraging the hyperlink structure in Wikipedia, we propose a method to calculate the
edge weights for both entity-entity and entity-category networks:

89

4 Knowledge-Based Short Text Categorization

• Weights for Entity-Entity Edges. In order to explain the weight calculation, firstly the
concept of linked entity has to be defined. The hyperlinks that are present in an arbitrary
Wikipedia article and refer to another Wikipedia article are called linked entities. The
weight of an edge between an entity-entity pair is the number of Wikipedia articles
where both entities appear as a linked entity.

• Weights for Entity-Category Edges. The weight of an edge between an entity-
category pair is the number of Wikipedia articles where the entity appears as a linked
entity and simultaneously the corresponding article containing the linked entity belongs
to the category in Wikipedia.

As shown in Figure 4.2, the linked entities and the associated categories for each Wikipedia
article are used to generate the entity-entity and the entity-category edges. The edges of
(e1, e2), (e1, e4), (e2, e4), (e1, c1) and (e4, c1) are thicker due to their higher co-occurrence
frequency.

4.6.2 Embedding Model

As introduced before, the overall heterogeneous network consists of two homogeneous net-
works, i.e., the entity-entity and entity-category networks. Similar to PTE (Tang et al., 2015a),
to embed each of these networks, our proposed embedding model aims to capture the second-
order proximity (cf. Section 2.1.7). More specifically, the second-order proximity is cal-
culated between two vertices in a network by considering their common (shared) vertices.
Therefore, according to the second order proximity vertices that share many same neighbors
should be placed closely in the vector space.

To model the second-order proximity of a homogeneous network, for each edge
(vi, vj), the conditional probability p(vj |vi) is defined as follows (Tang et al., 2015b):

p(vj |vi) =
exp(−~uTj · ~ui)∑

vk∈V
exp(−~uTk · ~ui)

, (4.13)

where V is the set of vertices connected with vi in the network, ~ui, ~uj and ~uk are the vectors
of vertices vi, vj and vk, respectively. The empirical probability of p(vj |vi) can be defined as:

p̂(vj |vi) =
wij

di
, (4.14)

where di is the out-degree of vi and wij is the weight of the edge (vi, vj).

In order to preserve the second-order proximity, the conditional distribution p(vj |vi)
is made close to p̂(vj |vi) based on the KL-divergence over the entire set of vertices in the

90

4.7 Experiments

network, such that the model minimizes the following objective function:

Ohomo = −
∑

(vi,vj)∈E

wij log (p(vj |vi)) , (4.15)

The embedding of the individual entity-entity and entity-category networks can be
learned by utilizing the second-order proximity between vertices. However, our goal is to
simultaneously learn the embedding of the constructed heterogeneous network by minimizing
the following objective function:

Oheter = Oee +Oec , (4.16)

where Oee and Oec are the objective functions defined in Equation (4.15) for the ho-
mogeneous entity-entity and entity-category networks, respectively. To optimize the objective
function in Equation (4.16), we adopt a similar approach as described in (Tang et al., 2015a),
where all the edges are firstly collected from these two homogeneous networks as two sets,
one for entity-entity edges and the other for entity-category edges, and then in each training
iteration, edges are sampled from both sets to update the model. Readers can refer to (Tang
et al., 2015a; Tang et al., 2015b), for the detailed optimization process.

4.7 Experiments

This section provides a detailed description of the datasets and the baselines for evaluating
the proposed approach, followed by the experimental results as well as a comparison to the
existing state-of-the-art approaches in the related areas.

4.7.1 Datasets

To validate the effectiveness of the proposed method experiments are conducted on two
different benchmarks: AG News and Google Snippets.

• AG News (AG)1: This dataset is adopted from (Zhang & LeCun, 2015), which contains
both titles and short descriptions (usually one sentence) of news articles. News data is
one of the largest parts of the available text data on the Web (Zhang & LeCun, 2015).
Therefore, it is an important task to evaluate a text categorization algorithm with this
type of data. The data distribution of the training and test datasets is shown in Table 4.1.
In our experiments, the dataset has two versions, where one contains only titles and
the other contains both titles and descriptions. The total number of entities and the

1http://goo.gl/JyCnZq

91

http://goo.gl/JyCnZq

4 Knowledge-Based Short Text Categorization

Category #Train #Test

Business

30,000 1,900
Sports

World

Sci/Tech

Total 120,000 7,600

Table 4.1: The data distribution of the AG
News dataset

Category #Train #Test

Business 1200 300

Computers 1200 300

Cult-arts-entertainment 1880 330

Education-Science 2360 300

Engineering 220 150

Health 880 300

Politics-Society 1200 300

Sports 1120 300

Total 10,060 2,280

Table 4.2: The data distribution of the
Google Snippets dataset

average number of entities and words per text in the test datasets are shown in Table 4.3.

• Google Snippets (Snippets)2: This is a well-known dataset for short text categoriza-
tion, which was introduced in (Phan et al., 2008) as a short text categorization bench-
mark. The dataset contains short snippets from Google search results and its distribution
is shown in Table 4.2. Several short text categorization approaches (Chen et al., 2011;
Dai et al., 2013; Wang et al., 2016b; Bouaziz et al., 2016) have used this dataset to
asses the performance of the proposed models. As shown in Table 4.3, the test dataset
has an average of 8.9 entities and an average of 17.97 words in each snippet.

Dataset Avg. #Ent Avg. #Word

AG News (Title) 3.21 7.14

AG News (Title+Description) 11.83 38.65

Google Snippets 8.90 17.97

Table 4.3: The statistical analysis of the test datasets

As the focus of this work is the KBSTC task, where the goal is to derive the most rel-
evant category from the knowledge base for a given short text. Hence, to adapt these datasets
the labels/categories have been aligned with the categories in the underlying knowledge base.

2http://jwebpro.sourceforge.net/data-web-snippets.tar.gz

92

http://jwebpro.sourceforge.net/data-web-snippets.tar.gz

4.7 Experiments

Model AG (title) AG (title+description) Snippets

Dataless ESA 53.5 64.1 48.5

Dataless Word2Vec 49.5 52.7 52.4

NB+TF-IDF 86.6 90.2 64.4

SVM+TF-IDF 87.6 91.9 69.1

LR+TF-IDF 87.1 91.7 63.6

KBSTC+Our Embedding 67.9 80.5 72.0

Table 4.4: The categorization accuracy of KBSTC against baselines (%)

More specifically, each label/category in these datasets are manually mapped to its corre-
sponding Wikipedia category, e.g., the category Sports from the AG dataset is mapped to the
Wikipedia category Sports3. Furthermore, as KBSTC does not depend on any training/labeled
data, the training datasets of AG and Snippets are only used for the training of the supervised
baseline methods. Lastly, to measure the performance of KBSTC, the categorization accuracy
(the ratio of correctly categorized data over all the test data (cf. Section 3.6)) have been used.

4.7.2 Baselines

To demonstrate the performance of the KBSTC approach, the following dataless and super-
vised categorization methods have been selected as baselines:

• Dataless ESA and Dataless Word2Vec: As described in Section 4.2, the dataless
approaches do not require any labeled data or training phase, therefore, they can be
considered as the most similar approaches to KBSTC. Two variants of the state-of-the-
art dataless approach (Song & Roth, 2014) are considered as baselines, which are based
on ESA (Gabrilovich et al., 2007) and Word2Vec (Mikolov et al., 2013b), respectively.

• NB, SVM, LR: Additional baselines include the traditional supervised models (cf. Sec-
tion 3.5), i.e., Naive Bayes (NB), Support Vector Machine (SVM) and Logistic Regres-
sion (LR), with the features calculated based on the term frequency and the inverse
document frequency (TF-IDF).

4.7.3 Evaluation of KBSTC

Table 4.4 shows that the accuracy of the proposed probabilistic KBSTC approach (cf. Sec-
tion 4.4) based on our entity and category embedding model (cf. Section 4.6) in comparison

3https://en.wikipedia.org/wiki/Category:Sports

93

https://en.wikipedia.org/wiki/Category:Sports

4 Knowledge-Based Short Text Categorization

to the baselines on the AG and Snippets datasets.

It is observed that the KBSTC approach considerably outperforms the dataless cate-
gorization approaches. While Dataless ESA and Dataless Word2Vec have been assessed with
two different news datasets, namely, 20Newsgroups Data, RCV1 Data, which consist of long
news articles, and achieved promising results in (Song & Roth, 2014), they cannot perform
well with the short text due to the data sparsity problem. In other words, dataless approaches
construct the document vectors by utilizing the words present in documents. However, short
text documents are often malformed, i.e., the meaning of the sentence is not explicitly ex-
pressed, therefore, using only words for the categorization task may lead to inaccurate results.
Furthermore, for Dataless approaches the label names are crucial to compute the most accurate
vector representation of the labels, therefore, in (Song & Roth, 2014), the labels have been en-
riched by their description before obtaining their vector representation. However, the datasets
(AG News and Google Snippets) that have been used in these experiments do not contain any
label description. As shown in Table 4.1 and Table 4.2 the labels are only words. Lack of la-
bel descriptions could be another reason why the dataless approaches have performed poorly
on these datasets however, KBSTC is capable of performing short text categorization without
requiring any additional description of labels.

Remarkably, KBSTC outperforms all the baselines on the Snippets dataset, however,
all supervised approaches outperform KBSTC on the AG dataset. Especially, SVM as ex-
plained in detail in Section 3.5 is one of the most extensively employed standard baselines
for text categorization. Even, today, several sophisticated deep neural network approaches are
struggling to outperform SVM. The reason of the differences among the obtained accuracy
can be attributed to the different characteristics of the two datasets. AG is a larger dataset
with more training samples (cf. Table 4.1) in comparison to Snippets (cf. Table 4.2). Further,
the samples of the Snippets dataset are not equally distributed among the categories, hence,
it is an imbalanced dataset. Moreover, the AG dataset provides only 4 different categories in
comparison to 8 categories of the Snippets dataset. Those differences might be the reason for
the significant decrease in accuracy for the supervised approaches on the Snippets dataset in
comparison to the AG dataset. This could be an indicator that the size of the training data and
the number of classes make a real impact on the categorization accuracy for the supervised ap-
proaches. Since KBSTC does not require or use any labeled data, the number of the available
training samples has no impact on its accuracy.

Regarding the results of KBSTC, the AG (title+description) dataset yields better ac-
curacy than the Snippets dataset, which in turn, results in better accuracy than the AG (title)
dataset. The reason might be found in the nature of the datasets. As shown in Table 4.3, the
average number of entities per text in AG (title+description) is greater than Snippets, followed
by AG (title). AG (title+description) provides richer context, i.e., larger number of entities,
therefore, KBSTC obtains the best accuracy with this dataset. Often a richer context with
more entities can make the categorization more accurate.

Overall, the results in Table 4.4 have demonstrated that for short text categorization,

94

4.7 Experiments

Model AG (title) AG (title+description) Snippets

KBSTC+HCE 67.0 79.6 72.3
KBSTC+DeepWalk 57.1 74.2 64.3

KBSTC+RDF2Vec 62.7 77.5 68.2

KBSTC+Our Embedding 67.9 80.5 72.0

Table 4.5: The categorization accuracy of KBSTC with different embedding models (%)

KBSTC achieves a high accuracy without requiring any labeled data, a time-consuming train-
ing phase, or a cumbersome parameter tuning step.

4.7.4 Evaluation of Entity and Category Embedding

To assess the quality of the proposed entity and category embedding model (cf. Section 4.6),
we have compared it with the following embedding models:

• HCE (Li et al., 2016d) is a joint embedding of entities and hierarchical categories.
The model learns simultaneously the representation of entities and their associated
categories from large knowledge bases. Although the authors proposed two flavors of
the entity and category embedding, namely, CE and HCE (cf. Section 2.1.7). The ob-
tained experimental result demonstrates that HCE can capture better semantic relations
between the entities and categories. Therefore, in these experiments, HCE has been
considered for the comparison. Further, among the baseline embedding models, HCE
is the most similar embedding model to the proposed embedding approach.

• DeepWalk (Perozzi et al., 2014) uses a language modeling approach (Mikolov et al.,
2013a) to learn the distributed representation of vertices in large social networks such
as Flickr and YouTube. The algorithm can only be employed by the networks with
binary edges.

• RDF2Vec (Ristoski & Paulheim, 2016) adopts a language modeling approach (Mikolov
et al., 2013a) to learn the representation of vertices in a directed RDF graph.

While the Wikipedia entity and category embeddings generated by HCE can be di-
rectly used, DeepWalk has been applied on the network constructed using Wikipedia and
RDF2Vec has been applied on the RDF graph of DBpedia to obtain the needed embeddings.
Then, these embeddings are integrated into KBSTC to compute the entity-category and entity-
context relatedness (see Equation (4.6) and Equation (4.12)).

95

4 Knowledge-Based Short Text Categorization

The results of KBSTC with different embedding models are shown in Table 4.5. The
proposed entity and category embedding model outperforms all other embedding models for
the KBSTC task on the AG dataset, while HCE performs slightly better than our model on the
Snippets dataset.

HCE is a more specific embedding model that has been designed to learn the represen-
tation of entities and their associated categories from Wikipedia. Moreover, it also considers
the hierarchy between the categories. Therefore, it is expected that the semantic relatedness
between entities and categories in the HCE model would be captured better than DeepWalk
and RDF2Vec, as it has been designed especially for this task. However, HCE is not flexible to
be adapted to other networks. In other words, HCE can be trained only with the network which
contains entities and hierarchically related categories. Further, including more elements such
as words into the embedding space is not straightforward. In contrast to HCE, our model can
deal with more general networks. For example, with words and word-category relations as an
additional type of vertices and edges in the heterogeneous network described in Sec. 4.6.1, it
is straightforward to adapt our embedding model by involving a new object function Owc into
Eq. (4.16), which is considered as our future work.

On the other hand, although DeepWalk and RDF2Vec aim to learn the representation
of vertices in general networks and RDF graphs, respectively, they have been either designed
for homogeneous networks or treated each type of vertices and edges in an RDF graph equally.
The experimental results also indicate that our embedding model enables to capture a better
semantic representation of vertices by taking into account different types of networks, i.e., the
entity-entity and entity-category networks.

4.7.5 Evaluation of Entity Linking

Dataset #Doc Avg-Ent Avg-Word

DBpedia Spotlight 58 5.69 32

N3 RSS-500 500 1.18 34

Table 4.6: The statistical analysis of the entity linking benchmarks

As discussed in Section 4.4, the first step of KBSTC is to detect entity mentions in
a given short text and then for each mention to generate a candidate list of entities based on
the anchor text dictionary, which is employed to determine the most relevant category for the
input text based on the proposed probabilistic approach. An alternative way could be to first
use an existing entity linking (EL) system to obtain the referent entity for each mention and
then based on that derive the category of the input short text. The reason we did not adopt the
latter solution is that most of the existing EL systems rely on the rich context of the input text
for the collective inference to boost the overall EL performance. However, due to the lack of

96

4.7 Experiments

such context in a short text, existing EL systems might not perform well in our case, i.e., the
correct entities in the input short text cannot be found, which plays a vital role in the KBSTC
approach.

Instead of directly using an existing EL system, our probabilistic approach actually
involves an internal step of EL for the input short text t, where the main difference is that we
consider a list of candidate entities for each mention. The output is a set of possible entities
Et present in t with the confidence score of each entity e ∈ Et as P (e)P (me|e)P (Ce|e) (cf.
Equation (4.4)), where P (e) captures the popularity of e, P (me|e) and P (Ce|e) reflect the
likelihood of observing the mention me and the context Ce given e. By incorporating the
confidence score of each e ∈ Et and its relatedness to each predefined category c, represented
by P (c|e), we can compute the final joint probability P (c, t) to determine the most relevant
category for t (see Eq. (4.4))

Methods Spotlight N3 RSS-500

P (e|m) 0.69 0.64

AIDA 0.25 0.45

AGDISTS 0.27 0.66
Babelfly 0.52 0.44

DBpedia Spotlight 0.71 0.20

Table 4.7: The comparison of Anchor Text Dictionary with EL Systems Micro F1 Results

To evaluate the effectiveness of the EL step in our approach, the experiments have
been conducted on two datasets from the general entity linking benchmark GERBIL (Usbeck
et al., 2015):

• DBpedia Spotlight: The dataset is released in (Mendes et al., 2011). The dataset con-
tains relatively short text samples, named and nominal entities present in the samples
are annotated.

• N3 RSS-500: This dataset is one of the N3 datasets (Röder et al., 2014). Similar to the
DBpedia Spotlight dataset, N3 RSS-500 consists of short texts which are annotated by
the domain experts.

We have chosen these two datasets for the EL evaluation, because among the other EL bench-
marks, these are the ones, which contain only short text, similar to our test datasets (cf. Ta-
ble 4.6). To make our EL method be comparable with existing EL systems, in the experiments
we also generate one single entity for each mention, which maximizes the confidence score,

97

4 Knowledge-Based Short Text Categorization

computed by P (e)P (me|e)P (Ce|e). The results of Micro F1 for various EL systems and our
method are shown in Table 4.7. It is observed that our EL method achieves promising results
for both datasets, which are very close to the best results yielded by the state-of-the-art EL
systems. More importantly, because of the insufficient context of short text required by the
collective inference for EL, it is difficult to provide the correct referent entity for each mention
in many cases, such that our EL method used in KBSTC takes into account a list of candidate
entities with their confidence scores for each mention.

4.7.6 Using Wikipedia as a Training Set

To further demonstrate the effectiveness of the proposed KBSTC approach, an additional ex-
periment has been conducted. The results in Table 4.4 indicate that supervised methods can
perform well in case of the existence of a sufficient amount of training data. However, in
a real-world scenario, the labeled data might not be available and this is the case most of
the time. Further, labeling a dataset is an expensive and time-consuming task. An alterna-
tive solution to the expensive manual process of compiling a labeled training dataset would
be to automatically extract the training data from existing publicly available sources such as
Wikipedia.

Method AG (title+description) Google Snippets

SVM+TF-IDF 59.9 53.9

KBSTC 80.5 72.0

Table 4.8: The categorization accuracy of KBSTC against a traditional categorization
model, which is trained on the Wikipedia dataset and tested on AG and Snip-
pets (%)

To do so, Wikipedia which contains more than 5 million articles has been leveraged.
Each article in Wikipedia is associated with one or more categories. To generate the training
data, for each category from the two datasets (AG and Snippets), training samples have to
be assembled. For this purpose, Wikipedia articles associated with the corresponding cate-
gories (or their subcategories) are first collected. In other words, if the dataset category is
Technology then all the Wikipedia articles associated with the category Technology are col-
lected. Thereafter, 10,000 Wikipedia articles are then randomly selected as training data per
category, which constitute the training datasets for AG and Snippets. Since SVM achieved the
best results among the supervised approaches (cf. Table 4.4), two SVMs are trained with the
generated training data for AG and Snippets, respectively. In the experiments, we have used
the original test datasets from AG and Snippets for evaluating the trained SVMs.

The results are shown in Table 4.8, which indicate that the KBSTC approach achieved
higher accuracy in comparison to the SVMs. More interesting, the same approach (SVM+TF-

98

4.7 Experiments

IDF) trained with the AG and Snippets datasets achieved the accuracy scores of 91.9% and
69.1% (see Table 4.4), while it only achieved the accuracy scores of 59.9% and 53.9% when
trained with the collected Wikipedia articles. This provides us some insights that it might not
be suitable to directly use Wikipedia as the training datasets for supervised approaches and
also serves as the motivation of the KBTSC approach proposed in this work.

From these results, it can be concluded that not only the size of the training set is im-
portant for the categorization performance but also the nature and characteristics of training
data play an important role in the performance of the categorization model. In other words,
train and test datasets should have similar characteristics in order to obtain reasonable accu-
racy from the supervised categorization approaches. This fact indicates that categorization
accuracy highly depends on the nature of the chosen training dataset. However, the perfor-
mance of KBSTC does not depend on the availability of any labeled data, as KBSTC does not
have any training phase.

KBSTC100 500 1000 2000
0

0.2

0.4

0.6

0.8

0

0.92

KBSTC SVM NB LR

Figure 4.3: The performance of the supervised approaches for different training set sizes
sampled from the AG News dataset. The x axis corresponds to the number of
training samples, the y axis corresponds to the achieved accuracy score. The
dashed line represents the best accuracy score 92.4%, achieved by n-gram-TF-
IDF+MLR by using all the AG News training set.

99

4 Knowledge-Based Short Text Categorization

4.7.7 Partitioning the Training Data

As stated before, the performance of the supervised approaches highly depends on the size and
the characteristics of the training data as well as the parameters of the model. In the previous
experiments (cf. Section 4.7.6), it has been proved that the nature of the training data plays a
vital role in the performance of the categorization method. To additionally show the impact
of the size of the labeled data on the text categorization task, a further experiment has been
conducted.

Here, four smaller training datasets from the AG News training dataset have been ran-
domly sampled. The new datasets are of size 100, 200, 1000, and 2000 texts. For each sampled
datasets TF-IDF has been calculated as a feature and three different supervised categorizers
(i.e. Support Vector Machine (SVM), Logistic Regression (LR), and Naive Bayes (NB)) have
been trained on these features. The complete AG news test dataset has been considered for
testing. The experimental results of the accuracy scores are depicted in Figure 4.3. Although
with the entire dataset supervised approaches seem to perform well (cf. Table 4.4), with fewer
training samples (e.g., 100, 500 samples) SVM, NB and LR perform poorly. In fact, it should
be noted that manual labeling of 100 samples is a labor-intensive and time-consuming task.
However, it is clear that by increasing the size of the training data the accuracy of the su-
pervised approaches improves. The results suggest that the size of the training dataset has a
huge impact on the accuracy of the supervised methods. However, KBSTC performs solid
and stable and achieves adequate accuracy without requiring any labeled data.

4.8 Summary and Conclusion

This chapter has investigated two research questions (cf. Section 1.2 (Research Question 1
and 2)):

• How can a knowledge base be utilized to categorize short texts without requiring any
labeled training data?

• How to learn the semantic representation of short texts and pre-defined categories with
the help of a knowledge base?

In this regard, a novel probabilistic model for Knowledge-Based Short Text Categorization
(KBSTC) has been proposed. It is a new paradigm for short text categorization based on a
large knowledge base. KBSTC does not require any labeled training data, instead, it considers
entities present in the input text and their semantic similarity to the predefined categories to
categorize short text. In order to calculate the semantic similarity between the entities and cat-
egories, a new embedding model has been proposed. The proposed model tries to capture the
relatedness between the entities and hierarchically related categories from knowledge bases.
To do so, it first creates entity-entity and entity-category networks from a given knowledge

100

4.8 Summary and Conclusion

base. Then, jointly learns the low dimensional distribution of the vertices of the networks,
i.e., entities and categories. In conclusion, the experimental results have proven that KBSTC
is capable of categorizing short text in an unsupervised way with high accuracy. Further, it
outperforms all the baselines, which do not require any labeled data for short text categoriza-
tion. Since the performance of the supervised approaches depends on the characteristics of the
training set (e.g., size, balanced or unbalanced), KBSTC provides better performance than the
supervised approaches on some datasets (e.g., Snippets). Moreover, the samples with more en-
tities have enabled KBSTC to provide better accuracy. Besides, the experimental results have
also demonstrated that the proposed joint entity and category embedding model, which em-
beds entities and categories from a large knowledge base to a common vector space captures
better semantic relation between entities and categories than the baseline embedding mod-
els. As for future work, our aim is to include words along with entities for the KBSTC task,
which requires also the extension of the proposed embedding model towards the additional
inclusion of word embeddings into the common entity and category vector space. Further, the
performance of KBSTC will also be evaluated on social media text such as tweets.

101

4 Knowledge-Based Short Text Categorization

102

5 Weakly Supervised Short Text
Categorization

This chapter is one of the core chapters of this thesis and it investigates the following research
question which is defined in Section 1.2 (Research Question 3):

• How to combine a deep neural network with a knowledge base to perform short text
categorization without requiring any hand-labeled data?

In this regard, this chapter proposes a weakly supervised short text categorization approach
which is based on the following publication:

Türker, R., Zhang, L., Alam, M., & Sack, H. (2020). Weakly supervised short text categoriza-
tion using world knowledge. The 19th International Semantic Web Conference, ISWC 2020.

The proposed model consists of two main modules:

1. a data labeling module, which leverages an external Knowledge Base (KB) to compute
probabilistic labels for a given unlabeled training data set,

2. a categorization model based on a Wide & Deep learning approach.

The effectiveness of the proposed method is validated via evaluation on multiple datasets, i.e.,
AG news, Google Snippets, Twitter, DBpedia. To assess the performance of the proposed
method extensive experiments have been conducted. The experimental results show that the
proposed approach outperforms unsupervised state-of-the-art categorization approaches and
achieves comparable performance to supervised approaches.

103

5 Weakly Supervised Short Text Categorization

5.1 Introduction

Due to the rapid growth of the Web content, online short text data such as search snippets,
news feeds, short messages, etc. is drastically multiplying (Chen et al., 2011). Furthermore,
the reason of the significant amount of availability of short text data can be also attributed to
the online platforms where people express their opinion in short text forms. Hence, short text
categorization has become a crucial task for a wide range of applications including sentiment
analysis and news feed categorization (Hu et al., 2019). While conventional text classification
methods such as Support Vector Machines (SVMs) have demonstrated their success in classi-
fying long and well structured text, as e.g., news articles. However, in case of short text they
seem to have a substandard performance (Zeng et al., 2018). Moreover, unlike paragraphs
or documents, categorization of short text is a much more challenging task due to its main
characteristics such as:

• limited context, i.e., only a few words within the text,

• sparsity and

• ambiguity as it does not have enough contextual information.

Hence, the traditional categorization methods based on Bag of Words (BoW) (Wang et al.,
2016b) or approaches that utilize word embeddings perform poorly if directly applied to short
text. Furthermore, approaches that utilize word embeddings for categorization perform better
when dealing with longer text, in which case, even if a word is ambiguous, such ambiguity will
be handled based on the given context. In the case of short text, where the available context
is rather limited and each word obtains significant importance, such approaches often lead to
inaccurate results, especially, on new and rare words. Thus, to overcome these challenges, it
is indispensable to use external sources such as Knowledge Bases (KBs) to enrich and obtain
more advanced text representations (Wang et al., 2017).

Recently, several deep learning approaches have been proposed for short text cat-
egorization, which demonstrated remarkable performance in this task (Chen et al., 2017;
Ma et al., 2018). The two main advantages of these models for the categorization task are
that

• a minimum effort is required for feature engineering,

• their categorization performance is better in comparison to traditional text categoriza-
tion approaches (Meng et al., 2018).

However, the requirement of large amounts of labeled data remains the main bottleneck for
neural network based approaches (Meng et al., 2018). Furthermore, the models that are trained
with a limited amount of labeled data tend to face an overfitting problem (Chen et al., 2015a).
Acquiring labeled data for the categorization task is costly and time-consuming. Especially, if
the data to be labeled is of a specific domain then only a limited number of domain experts are
able to label them correctly. In other words, the domain experts need to read such a significant

104

5.1 Introduction

amount of data carefully and label them according to their domain knowledge (Meng et al.,
2018). This is a very expensive and labor intensive task.

To overcome the requirement for labeled data bottleneck, several dataless (Li et al.,
2016a; Hingmire et al., 2013), semi supervised (Nigam et al., 2000; Xuan et al., 2017), and
weakly supervised (Meng et al., 2018; Meng et al., 2019) categorization algorithms have been
proposed. The dataless categorization algorithms do not require any labeled data to perform
text categorization. Instead, they project each predefined label and document into a common
vector space by exploiting the words present in the labels and the documents. As a second
step, based on the vector similarity a label is assigned to each document. However, the most
prominent dataless categorization methods are designed for long text, e.g., news article cat-
egorization (Li et al., 2016a). Moreover, other dataless approaches leverage label names/de-
scriptions as seed words for supervision (Chen et al., 2015a). Therefore, the performance of
such systems highly depends on manually designed seed words or label descriptions.

In addition, for addressing the labeled data scarcity problem, semi supervised text
categorization algorithms have been proposed. These approaches leverage both labeled and
unlabeled data to perform categorization. Nevertheless, they still require some set of labeled
data. Yet, generating small training sets for semi supervised methods still remains an expen-
sive process due to the diversity of the documents in many applications (Li et al., 2016b).
Furthermore, there has been a considerable amount of studies in weakly supervised text cat-
egorization approaches. Most of these methods require user-given weak supervision sources
such as some labeled documents, class related keywords, etc. for the categorization task. Pro-
viding manually designed such sources is still an expensive task. Besides, existing weakly
supervised text categorization solutions mostly rely on hard-coded heuristics, such as looking
for specific keywords or syntactical patterns in text, which still requires domain expertise and
is especially prone to noise. Moreover, the most well-known weakly supervised methods are
designed for long text categorization.

Motivated by the aforementioned challenges, this chapter proposes a novel model for
Weakly Supervised Short Text Categorization using World Knowledge (WESSTEC). The
proposed approach does not require any labeled data for short text categorization. It exploits a
knowledge base and embedding models such as Doc2Vec (Le & Mikolov, 2014), LINE (Tang
et al., 2015b), Word2Vec (Mikolov et al., 2013b) etc. as weak supervision sources without
requiring any manual effort. Instead, given a list of labels and unlabeled short text documents,
the proposed method first associates each text with its relevant concepts in the KB to enhance
the semantic representation of short texts and then generates labels for each document by
utilizing the aforementioned embedding models. In the second step, words and concepts from
the labeled documents are exploited for training a Wide & Deep learning based categorization
model (Cheng et al., 2016). Finally, the trained model is used to categorize new short text
documents.

105

5 Weakly Supervised Short Text Categorization

Overall, the main contributions of this chapter are as follows:

• a new paradigm for short text categorization, based on a knowledge based weak super-
vision;

• a method to combine weak supervision sources to generate labeled data, which can be
used for any arbitrary categorization model;

• adaptation of a Wide & Deep model for weakly supervised short text categorization;

• utilizing multiple features, i.e, both words and entities present in a given short text and
their combination for the Wide & Deep model;

• an experimental evaluation using four different standard datasets for short text catego-
rization.

5.2 Related Approaches

This study aims to categorize short text documents under a weak supervision setting with-
out requiring any manually labeled data. The related studies on Short Text Categorization
is presented in Section 3.2 and thus this section introduces prior related studies on Weakly
Supervised Text Categorization.

There has been a considerable amount of studies related to weakly supervised text
categorization to address the problem of missing labeled data (Meng et al., 2018; Meng et al.,
2019; Rabinovich et al., 2018).

(Meng et al., 2018) propose a weakly supervised neural network based text categoriza-
tion approach. The proposed model consists of two main modules:

• a pseudo-document generator, which utilizes three types of user provided seed infor-
mation in order to generate pseudo labeled documents. The types of seed information
are:

– label surface names,

– class-related keywords,

– labeled documents.

• a self-training module, which first trains a neural model with the pseudo labeled doc-
uments, then applies a bootstrapping strategy to refine the model. To bootstrap the
pre-trained model, its highly confident predicted documents are utilized.

The performance of the model has been assessed on three different datasets as well as with
different seed information. The model outperforms all the baselines with different weak su-
pervision sources.

The same authors extend the aforementioned model in a similar paradigm of weak su-
pervision to be able to classify the text documents into a given category/label hierarchy (Meng

106

5.3 Weakly Supervised Short Text Categorization

Figure 5.1: The workflow of WESSTEC

et al., 2019).

On the other hand, (Hingmire & Chakraborti, 2014) proposed Latent Dirichlet Alloca-
tion (LDA) based weakly supervised text categorization approach. LDA is a generative model
which does not require any labeled data. Further, it assumes that each document in a given
corpus is a mixture of latent topics. The proposed method finds a likely set of topics for each
given document and the human annotator assigns meaningful category labels to these latent
topics. Then the labeled latent topics are utilized to categorize documents.

The presented methods require user-given weak supervision sources such as class-
related keywords, a small amount of labeled data, etc. Hence, the requirement for domain
expertise is still inevitable. On the contrary, the proposed approach in this chapter, i.e.,
WESSTEC does not require such manually designed weak supervision sources for the cat-
egorization task. Instead, it utilizes unsupervised embedding models such as Word2Vec,
Doc2Vec, and LINE as weak supervision sources.

5.3 Weakly Supervised Short Text Categorization

This section provides a formal definition of the short text categorization task, followed by the
description of the proposed approach.

Problem Formulation. Given an input short text t and n predefined labels L = {l1, l2, .., ln},
the output is the most relevant label li ∈ L for the given short text t, i.e., the label function
flab(t) = li, where li ∈ L is computed.

Method Overview. The general workflow of WESSTEC is shown in Figure 5.1. As

107

5 Weakly Supervised Short Text Categorization

stated before, WESSTEC contains two main modules, namely, Labeled Data Generation and
the categorization model, which is based on Wide & Deep (Cheng et al., 2016).

Given a list of labels and a set of unlabeled short text documents, the Labeled Data
Generation module is responsible for generating probabilistic training labels for each docu-
ment. To do so, it utilizes three different embedding models, i.e., LINE (Tang et al., 2015b),
Doc2Vec (Le & Mikolov, 2014) and Word2Vec (Mikolov et al., 2013b) to estimate the proba-
bility of each predefined label for a given document. This module aims to generate documents
with probabilistic labels as training data. It should be noted that the generated training data,
i.e., labeled short text documents, can be leveraged by any supervised model for the training
phase.

The second main module of the workflow is a Wide & Deep learning based categoriza-
tion model (Cheng et al., 2016), which utilizes the documents with the probabilistic labels for
training. Several different feature sets, such as words and entities, are extracted from the doc-
uments to train the Wide & Deep model. Furthermore, categories that are associated with the
entities present in documents have also been utilized as a feature set. As shown in Figure 5.1,
Wikipedia has been leveraged as a KB in this work.

Section 5.3.1 and Section 5.3.2 provide a detailed description of each module and the
feature sets that have been utilized by each module.

5.3.1 Labeled Data Generation

The aim of this module is to generate labeled documents from a given label list and unla-
beled set of documents (cf. Figure 5.1). In other words, given a short text t and n labels
L = {l1, l2, .., ln}, the goal of this module is to produce a probabilistic label for t as
yt = [p1, p2, ..., pn], where pi ∈ [0, 1], and pi is the corresponding probability of li for t. To
this end, this module utilizes three different embedding models, namely, LINE, Doc2Vec and
pre-trained Word2Vec to capture the semantic correlations between the predefined labels and
the words as well as entities present in a short text. First, each document and label is projected
into common vector spaces, then the probabilistic labels of given texts are calculated based
on the semantic similarity between documents and the set of predefined labels.

The network embedding models that have been employed in this work are presented as
follows:

• LINE is a network embedding model, which is designed to learn embedding of arbi-
trary types of large-scale networks (weighted, directed, undirected, etc.). The model has
been trained by utilizing Wikipedia hyperlink structure to obtain a vector representation
of each entity from Wikipedia. In other words, from Wikipedia hyperlink structure,
an entity-network has been constructed to be utilized by this model. More technical
details about the construction of the entity-network can be found in Section 4.6.1.

108

5.3 Weakly Supervised Short Text Categorization

To obtain a document vector with the help of LINE, we simply take the average of
entity vectors present in that document. To extract entities from a document an anchor
text dictionary (cf. Section 4.3) is used. The anchor text dictionary is constructed by
leveraging the anchor texts of hyperlinks of Wikipedia, which are pointing to any article
in Wikipedia. The anchor texts are considered as entity mentions and the links refer to
the corresponding entities.

• Doc2Vec creates the distributed representation of documents by utilizing the context
words present in the corresponding documents. This model has been trained on
Wikipedia articles and contains a vector representation of each entity of Wikipedia.
Note that we consider each Wikipedia article page as an entity. To form a document
vector for a given text, the average of entity vectors present in that text is considered.

• Word2Vec learns the low dimensional distributed representation of words. We use
the pre-trained Word2Vec model1 for our approach. To create document vectors with
Word2Vec, the average of the word vectors in that document is considered.

Moreover, each given label is also mapped to its corresponding vector in the respective
vector space, e.g., the label Music is mapped to the word vector of Music from Word2Vec and
it is also mapped to the entity vector of Music from Doc2Vec and LINE.

After embedding each text and label into common vector spaces, each embedding
model assigns the most similar label to each text based on the vector similarity between the
text and the labels. As there are three embedding models, for each given text three labels are
generated. These labels can overlap or conflict. Then, the goal of the remaining process of
this module is to convert the outputs of the embedding measures into probabilistic training
labels. In order to achieve that a heuristic approach has been employed.

Based on outputs of each embedding measure for all texts, the heuristic approach
estimates the confidence of each embedding model by considering the output label agreement
and disagreement rates. The confidence of an embedding model EMi is defined as follows:

CEMi =
AggEMi + noneAgg

TotalAgg + noneAgg
, (5.1)

where AggEMi is the number of documents, on which the model EMi agreed for a label
with at least one of the other embeddings, noneAgg is the number of documents, on which
none of the embedding models agreed for the assigned label and TotalAgg is the number of
documents which at least two embedding models agreed on their labels (i.e., TotalAgg =
#TotalDocuments− noneAgg).

The confidence values are exploited to convert the generated labels into probabilistic
1https://code.google.com/archive/p/word2vec/

109

5 Weakly Supervised Short Text Categorization

training labels yt. For each text, the preferred label from each embedding measure will be
weighted using its confidence and then all three weighted labels are combined together, which
could result in three probabilistic labels when three measures disagree with each other or two
probabilistic labels when two measures agree or one label when all agree on it. Finally, these
values are normalized to produce the probabilistic training labels yt.

Given a short text t and n labels L = {l1, l2, .., ln}, let yt = [p1, p2, ..., pn] denote t’s
probabilistic training labels, where pi ∈ [0, 1]. To calculate the probability pi of the label li
for t, we define the following formula:

pi(t) =

∑e
j=1CEMjI

i
EMj

(t)∑n
k=1

∑e
j=1CEMjI

k
EMj

(t)
, (5.2)

where e is the total number of embedding models that are utilized in labeled data genera-
tion module, CEMj is the confidence of embedding model EMj , n is the total number of
predefined labels and IiEMj

is defined as

IiEMj
(t) =

{
1 if EMj assigns li to t ,
0 otherwise .

(5.3)

5.3.2 Wide and Deep Model for Short Text Categorization

The Wide & Deep model originally proposed for recommendation systems. One of the main
contributions of this chapter is the adaption of Wide & Deep learning paradigm to the weakly
supervised short text categorization task. The second main module of the workflow (Fig-
ure 5.1) illustrates the adaption of the Wide & Deep learning based categorization model to
short text categorization. To the best of our knowledge, this is the first attempt of utilizing the
Wide & Deep model for short text categorization.

The model consists of two main components i.e., Wide Component and Deep Compo-
nent. Moreover, the model has the ability of memorizing feature interactions and generalizing
feature combinations by jointly training the wide and deep components as shown in Figure 5.1
(right).

In the following, first the Wide model and Deep model separately are introduced and
then joint Wide & Deep model are presented:

• Wide Model: The wide part has the ability of memorizing feature interactions. In
other words, it is able to learn the frequent co-occurrence of features. Hence, we de-
sign this model to be able to capture the correlation between the co-occurrence of fea-
tures and the target labels. In our approach, Entity co-occurrence information of each
document is used as a feature for the wide part (cf. Figure 5.1). Given a short text

110

5.3 Weakly Supervised Short Text Categorization

t let xt = [x1, x2, x3, ..., xm] denote the m entities present in t. To construct the d
dimensional Entity co-occurrence feature vector we apply cross-product transforma-
tion (Cheng et al., 2016) as:

φk(xt) =
m∏
i=1

xckii cki ∈ {0, 1}, (5.4)

where cki is a boolean variable that is 1 if the i-th feature is part of the k-th transforma-
tion φk, and 0 otherwise. The wide part is a model of the form as:

P (Y = li|t) = softmax(wT
i φ(xt) + bi), (5.5)

where t is a given short text, φ(xt) = [φ1(xt), φ2(xt), ..., φd(xt)] is the cross product
transformations of xt, wi = [w1, w2, ..., wd] and bi are the model parameters corre-
sponding to the i-th label li. The softmax function is defined as:

softmax(zi) =
ezi∑

zj∈z e
zj
, (5.6)

for i = 1, 2, .., n and z = (z1, z2, ..., zn) ∈ Rn.

We give the following example to illustrate how an Entity co-occurrence feature
vector can be formed. Given a short text “Motorola and HP in Linux tie-up”, the
extracted entities are E′ = {Motorola,HP,Linux} and the possible entity pairs
are E′p = {(Motorola,HP), (Motorola, Linux), (HP,Linux)}. The dimension
of the vector is the number of all the possible entity pairs of the dataset and each
dimension corresponds to an entity pair. For each entity pair epi ∈ E′p, the value of the
corresponding dimension of the vector would be 1 and the rest would be 0.

• Deep Model: The deep part is a neural network, which is capable of generalization
of feature combinations through low-dimensional dense embeddings. In our approach,
three different embedding vectors, i.e., Entity Embedding, Category Embedding and
Text Embedding are utilized as an input to the deep part (cf. Figure 5.1).

To construct each feature vector, different embedding models are utilized, i.e., for En-
tity Embedding LINE, for Category Embedding the joint entity and category embedding
model (cf. Section 4.6) and for Text Embedding Word2Vec. The joint entity and cat-
egory embedding model has been proposed by (Türker et al., 2019) to capture the se-
mantic relations between entities and categories from a KB. This model first constructs
a weighted network of entities and categories, and then jointly learns their embeddings
from the network.

In order to form an Entity Embedding vector for a given text, entities present in the
document are extracted with the help of a prefabricated Anchor-Text dictionary (cf.

111

5 Weakly Supervised Short Text Categorization

Section 4.3) and then the average of the vector representations of these entities is taken.
For the Category Embedding feature vector, all the categories that are directly associated
with the entities appearing in the text are collected from Wikipedia, then the average of
the category vector representations is taken. Finally, for a given text a Text Embedding
feature vector is constructed by taking the average of the word vector representations in
that document.

The deep part is a feed forward neural network, which takes low-dimensional embed-
ding vectors as an input i.e., [eet , ect , ett], where eet is the entity embedding, ect is the
category embedding and ett is the text embedding.
The deep part is the model of the form as:

P (Y = li|t) = softmax(wT
i a

(lf) + b), (5.7)

where wi are the weights that are applied on the final activation a(lf) for the i-th label
li, l is the layer number and f is the activation function which is ReLU.

We have built 3-layer feed forward neural network for the deep part and each hidden
layer of this model performs the following computation (Cheng et al., 2016):

a(l+1) = f(W (l)a(l) + b(l)), (5.8)

a(l) is activations, b(l) is bias and W (l) is model weights at l-th layer.

• Wide & Deep Model: The wide and the deep components are combined for joint train-
ing by back propagating the gradients from the output of both wide and deep parts
simultaneously. The combined model is illustrated in Fig. 5.1 (right). For a given short
text t the prediction of Wide & Deep model is:

P (Y = li|t) = softmax(wwide
T
i φ(xt) + wdeep

T
i a

(lf) + bi). (5.9)

In order to deal with the probabilistic training labels, we configure our model to train
with a noise-aware loss function, i.e., cross-entropy between the probability of each
training label and the output of the softmax function, which is defined as:

H(p, q) = −
∑
n

pi(t) ∗ log(P (Y = li|t)) (5.10)

Note that the reason of exploiting different feature sets in Labeled Data Generation
and Wide & Deep modules is mainly two-fold: (1) Combining different features into
Labeled Data Generation module requires much more feature engineering efforts. In
other words, the Wide & Deep model can automatically learn the weights of the fea-
ture sets, however, it is not the same case with the proposed heuristic model designed

112

5.4 Experiments

for labeled data generation. (2) There are some features (e.g., entity co-occurrence)
that cannot be straightforwardly integrated into heuristic algorithms to help calculate
semantic similarity between input text and labels and do the labeling. However, such
“non-heuristic” features can be transferred into the final categorization model trained
on labeled data generated by the heuristic algorithms using other features. Overall,
we expect the trained model to provide performance gains over the heuristics that it is
trained on both by applying to “non-heuristic” features (e.g., entity co-occurrence), and
by learning to generalize beyond heuristics, i.e., putting weights on more subtle features
that each individual heuristic algorithm cannot cover.

5.4 Experiments

This section provides a description of the datasets and the baselines, followed by the experi-
mental results and a comparison to the state-of-the-art text categorization approaches.

5.4.1 Datasets

In Section 4.7.1 two real-world datasets, namely, AG News, Google Snippets have been lever-
aged to assess the performance of KBSTC which has been proposed in Chapter 4. In these
experiments in order to extend the evaluation process four different datasets, i.e., AG News,
Google Snippets, DBpedia as well as Twitter dataset have been used to demonstrate the per-
formance of the proposed approach. The details of the AG News and Google Snippets are
given in Section 4.7.1. Therefore, in this section, DBpedia and Twitter datasets are introduced
in more detail.

• AG News (Zhang & LeCun, 2015) contains titles and short descriptions of news articles.

• Snippets (Phan et al., 2008) contains short snippets from Google search results.

• DBpedia Ontology is also adopted from (Zhang & LeCun, 2015). The well-known text
categorization benchmark has been built by selecting 14 non-overlapping classes from
DBpedia 2014. The dataset distribution is shown in Table 5.1. The dataset contains
short abstracts of DBpedia entities. In comparison to the other datasets, the DBpedia
dataset has the highest number of categories, further, it has the largest training samples
per category.

• Twitter 2 is a topic categorization dataset, contains tweets belong to 6 different cat-

2https://github.com/madhasri/Twitter-Trending-Topic-Classification/tree/
master/data

113

https://github.com/madhasri/Twitter-Trending-Topic-Classification/tree/master/data
https://github.com/madhasri/Twitter-Trending-Topic-Classification/tree/master/data

5 Weakly Supervised Short Text Categorization

egories. The dataset distribution is shown in Table 5.2. The Twitter dataset is pre-
processed, in other words, the dataset does not contain hash symbols, emoticons, user
mentions, etc.

Table 5.3 shows the distribution of the datasets and the average number of entities and
words per text in each dataset. More details about AG news and Google Snippets datasets can
be found in Section 4.7.1.

Furthermore, as WESSTEC does not require any labeled training data, the training
datasets of AG News, Snippets, DBpedia and Twitter have been used without their labels. In
other words, the training set of each dataset without their labels have been utilized as an input
to Labeled Data Generation module of the WESSTEC framework (cf. Figure 5.1) to generate
the training labels.

Category #Train #Test

Company

40,000 5,000

Educational Institution

Athlete

Office Holder

Mean of Transportation

Building

Natural Place

Village

Animal

Building

Plant

Album

Film

Written Work

Table 5.1: The data distribution of the DB-
pedia dataset

Category #Train #Test

Business 1673 601

Entertainment 1700 500

Food-Lifestyle 1901 900

Politics 1730 996

Sports 1375 400

Technology 1500 300

Table 5.2: The data distribution of the Twit-
ter dataset

114

5.4 Experiments

Dataset #Category #Train #Test Avg. #Ent Avg. #Word

AG News 4 120,000 7,600 11.83 38.65

Google Snippets 8 10,060 2,280 8.90 17.97

DBpedia 14 560,000 70,000 15.30 46.49

Twitter 6 9,879 3,697 4.31 12.36

Table 5.3: The statistics for the short text datasets

5.4.2 Baseline Approaches

To demonstrate the performance of the proposed approach, the following models have been
selected as baselines:

• Dataless ESA and Dataless Word2Vec (cf. Section 4.2.1): Two variants of the state-
of-the-art dataless approach (Song & Roth, 2014) are considered as baselines which are
based on different methods to compute word similarity, i.e., ESA (Gabrilovich et al.,
2007) and Word2Vec (Mikolov et al., 2013b).

• KBSTC (cf. Chapter 4): Knowledge-based short text categorization, which does not
require any labeled data for short text categorization. Instead, it relies on the seman-
tic similarity between the given short text and predefined labels to categorize a given
short text. Therefore, KBSTC can be considered as the most relevant prior work to
WESSTEC.

• SVM+tf-idf (cf. Section 3.5): In this model, the term frequency-inverse document
frequency (tf-idf) is calculated as features for a subsequent Support Vector Machine
(SVM).

• CNN (Zhang & Wallace, 2017)+Word2Vec, CNN+Ent and CNN+Category: A Con-
volutional Neural Network (CNN) is applied on text, entity and category matrices sep-
arately. These matrices are constructed by using Word2Vec, LINE, joint entity and
category embedding model(cf. Section 4.6), respectively.

• LSTM (cf. Section 2.1.5): The standard LSTM model is composed of a single LSTM
layer followed by a dense output layer.

• charCNN (Zhang & LeCun, 2015): This model learns character embeddings using
“one-hot” encoding. Subsequently, CNN is applied for the categorization process.

• BERT (Devlin et al., 2019) (cf. Section 2.1.6): The state-of-the-art language repre-
sentation model3 have been commonly leveraged to derive sentence embeddings. To
produce BERT embeddings, first, each sentence has been passed through pre-trained
BERT, then the outputs of the model have been averaged, which is the most common
way of obtaining sentence embeddings from BERT (Reimers & Gurevych, 2019). In the

3https://github.com/google-research/bert

115

https://github.com/google-research/bert

5 Weakly Supervised Short Text Categorization

experiments, the BERT embeddings have been generated as features for the subsequent
3-layer feed forward neural network.

5.4.3 Feature Sets

This section describes the feature sets that have been extracted from the Documents with
Probabilistic Labels (cf. Figure 5.1) and utilized to train the Wide & Deep model. To construct
feature sets, words and entities present in texts as well as parent categories of entities from
Wikipedia have been leveraged.

As shown in Figure 5.1, the wide part exploits the Entity Co-occurrence (Ent Co)
information as a feature and the deep part utilizes three different feature sets, namely, Text
Embedding (Text), Entity Embedding (Entity) and Category Embedding (Category) vec-
tors as well as their combinations, such as Text+Entity (cf. Table 5.4) refers to the concatena-
tion of text embeddings and entity embeddings. The detailed construction of the feature sets
is explained in Section 5.3.2.

5.4.4 Evaluation of WESSTEC

Table 5.4 depicts the categorization accuracy of the Wide & Deep model of WESSTEC, in
comparison to individual Wide-only and Deep-only models with different features on AG
News, Snippets, DBpedia, Twitter datasets.

It has been observed that the jointly trained Wide & Deep model outperforms the in-
dividual Wide-only and Deep-only models on each dataset. As stated before, the Wide model
capable of memorizing feature interactions and on the other hand the Deep model capable of
generalization of feature combinations. Hence, the reason here can be attributed to the ben-
efit of utilizing the Wide & Deep model to achieve both memorization and generalization of
features for short text categorization.

In addition, we have randomly sampled some instances from the wrongly categorized
samples with the Deep part. It has been observed that some of these instances, have been
correctly categorized after combining the Wide part with the Deep part and jointly training
the model.

The wide model performs best on the AG News dataset. This dataset has the least
number of categories and the length of the samples are not as limited as Twitter dataset, there-
fore, it is easier for the Wide model to handle this type of a dataset in comparison to the other
datasets. Further, in contrast to the Snippets and Twitter datasets, AG News contains an equal
number of samples per class, i.e., it is a balanced dataset.

The reason for the general low accuracy of the Wide model (in comparison to the Deep
model and Wide & Deep model) is that a very sparse set of features, i.e., entity occurrence

116

5.4 Experiments

Model Feature AG News Snippets DBpedia Twitter

Wide Entity Co-occurance (Ent Co) 0.561 0.447 0.499 0.278

Deep

Text 0.802 0.795 0.786 0.555

Entity 0.790 0.764 0.775 0.521

Category 0.773 0.698 0.754 0.444

Text+Entity 0.793 0.785 0.779 0.524

Text+Category 0.801 0.794 0.786 0.554

Entity+Category 0.792 0.771 0.771 0.534

Text+Entity+Category 0.792 0.786 0.785 0.529

Wide & Deep

Ent Co+Text 0.807 0.792 0.786 0.556

Ent Co+Entity 0.791 0.774 0.768 0.520

Ent Co+Category 0.792 0.693 0.774 0.446

Ent Co+Text+Entity 0.787 0.802 0.776 0.53

Ent Co+Text+Category 0.814 0.803 0.792 0.581
Ent Co+Entity+Category 0.791 0.770 0.766 0.544

Ent Co+Text+Entity+Category 0.790 0.805 0.778 0.572

Table 5.4: The categorization accuracy of different models with different features

information, have been used to train the model. Although Deep Neural Networks (DNNs) are
computationally more expensive, it is a well-known fact that they can be much more powerful
than the linear models. Therefore, in these experiments, the Deep model always outperforms
the Wide model on each dataset. Similar to the Wide model, with the Deep model the best
categorization accuracy has been obtained on the AG news.

On the other hand, despite the specific properties of Tweets (e.g., out-of-vocabulary
words) WESSTEC can still obtain reasonable accuracy on the Twitter dataset. To illus-
trate the difficulty of categorizing tweets, we give the following tweet from the Twitter
dataset as an example: “BSE NSE Stock Tip HINDUSZI", which is labeled as “Busi-
ness". The categorization of such tweets is rather difficult for many standard categoriza-
tion models, which rely on only words. However, WESSTEC enriches text representa-
tions by leveraging entities present in texts and their associated categories with the help
of a KB. For the given example the detected entities are Bombay_Stock_Exchange,
National_Stock_Exchange_of_India and Stock, which capture very useful in-
formation for categorization of the tweet. Further, even for out-of-vocabulary words such as
“BSE", WESSTEC can still detect entities, which are crucial for the categorization task.

This study has also investigated the impact of each feature combination on the catego-

117

5 Weakly Supervised Short Text Categorization

rization performance. The Deep model performs the best when utilizing only words. Whereas,
the Wide & Deep model enjoys the combination of the feature sets. However, it has been ob-
served that using entity features in both wide and deep parts could result in a bias of the
whole model towards entity information, which might not reflect the entire semantics of text,
especially when the text is longer such that there could be some more words that cannot be
detected as entities (e.g., in AG News and DBpedia). This suggests that our Wide & Deep
model (Ent-Co+Text+Category) using Entity Co-occurrence (Ent-Co) as a feature in the wide
part as well as Text Embedding (Text) and Category Embedding (Category) as features in the
deep part could be the most promising combination. The results in Table 5.4 also shows that
(Ent-Co+Text+Category) clearly yields best results on AG News and DBpedia datasets and
performs only slightly worse than (Ent-Co+Text+Entity+Category) on Snippets dataset (with
the difference of 0.002 for accuracy).

Overall, the experiments show that, firstly, it is possible to perform short text cate-
gorization with a high accuracy in the complete absence of labeled data with our proposed
approach and secondly, the Wide & Deep model can be successfully applied for the short text
categorization problem.

Since WESSTEC achieves almost the best performance with the combination of Ent-
Co+Text+Category features, we use the results of this model for the comparison between
WESSTEC and other approaches in the rest of the experiments.

5.4.5 Comparison of WESSTEC with the Unsupervised Approaches

Table 5.5 presents the categorization accuracy of WESSTEC in comparison to the text cate-
gorization approaches that do not require any labeled data.

It is observed that the proposed approach based on the Wide & Deep model consid-
erably outperforms the dataless approaches as well as KBSTC. Although the dataless ap-
proaches achieved promising results in the case of longer news articles in (Song & Roth,
2014), they cannot perform well on short text due to the data sparsity problem.

Model AG News Snippets DBpedia Twitter

Dataless ESA (Song & Roth, 2014) 0.641 0.485 0.551 0.317

Dataless Word2Vec (Song & Roth, 2014) 0.527 0.524 0.679 0.5

KBSTC (cf. Chapter 4) 0.805 0.720 0.460 0.359

WESSTEC 0.814 0.803 0.792 0.581

Table 5.5: The categorization accuracy against the unsupervised baselines

KBSTC is the most recent related work to WESSTEC. It is a probabilistic model and
does not require any labeled training data to perform short text categorization. Instead, the cat-

118

5.4 Experiments

egory of the given text is derived based on the semantic similarity between the entities present
in the text and the set of predefined categories. KBSTC utilizes only entities and ignores the
words. Whereas WESSTEC first generates documents with probabilistic labels from a given
unlabeled document set, then it utilizes those documents to train a Wide & Deep model to
categorize new documents. In other words, WESSTEC exploits words present in text as well
as entities and their directly associated categories from a KB for categorization. In addition,
the proposed model leverages both textual information (in Doc2Vec model) and structural in-
formation (in LINE model) from KBs to better capture the semantic representation of entities,
however, KBSTC uses only structural information of entities. Further, while KBSTC labels
the input text only based on the heuristics of semantic similarity, WESSTEC adapts an addi-
tional categorization model using Wide & Deep learning. Hence, the proposed model is much
more sophisticated and utilizes more features than the KBSTC model. Therefore, as expected
the categorization performance has been improved with the proposed approach.

5.4.6 Comparison of WESSTEC with the Supervised Approaches

In order to show the effectiveness of the Wide & Deep Module (cf. Section 5.3.2), its per-
formance has been compared with the supervised baselines. The generated training sets of
respective datasets (cf. Section 5.3.1) have been utilized to train Wide & Deep as well as the
baseline models. The respective original test datasets have been used for evaluating the trained
models. Table 5.6 reports the categorization performance.

Model AG Snippets DBpedia Twitter

SVM+tf-idf 0.808 0.696 0.784 0.513

CNN+W2V 0.796 0.787 0.784 0.542

CNN+Ent 0.794 0.703 78.24 0.456

CNN+Category 0.779 0.656 0.762 0.449

LSTM 0.786 0.693 0.796 0.473

charCNN 0.773 0.497 0.760 0.472

BERT 0.806 0.801 0.804 0.560

Wide & Deep 0.814 0.803 0.792 0.581

Table 5.6: The categorization accuracy against the supervised baselines. The baselines have
been trained with the generated training sets (cf. Section 5.3.1) of respective
datasets.

The results show that the proposed Wide & Deep model can yield better accuracy
in comparison to the baselines. This is due to the fact that in contrast to other approaches,

119

5 Weakly Supervised Short Text Categorization

the Wide & Deep model is capable of both memorization and generalization of features and
thus it performs the best among all the approaches. Moreover, especially on the Snippets
dataset, Wide & Deep model significantly outperforms all the baselines. The reason here
can be attributed to the different characteristics of this dataset. The Snippets dataset has less
average number of entities, words per text and the size of the training set is much smaller in
comparison to other datasets (cf. Table 5.3). In contrast to baselines, the proposed Wide &
Deep model utilizes different resources from a KB to enrich the semantic representations of
texts. Thus, it is capable of categorizing of such a dataset with a high accuracy.

Another advantage of the Wide & Deep model over the baselines is different feature
combinations (e.g., entity co-occurrence, text embedding, entity embedding, etc.) can be
easily exploited by the model for the categorization task.

Furthermore, a statistical significance test, namely, the 5x2cv paired t-test (Dietterich,
1998) has been also performed to compare the results of Wide & Deep and BERT. This test has
been proposed to overcome the drawbacks of other significance tests (e.g., resampled paired
t-test) and it is based on five iterations of two-fold cross validation. According to 5x2cv paired
t-test, the experimental results are significantly different at 95% level of significance with 5
degrees of freedom.

Overall, the obtained results in Table 5.6 suggest that in comparison to the baselines
the Wide & Deep model is better suited for the short text categorization task by utilizing the
generated labeled data for training.

5.4.7 Evaluation of the Generated Labeled Data

To evaluate the performance of each embedding model, i.e., Word2Vec, Doc2Vec and LINE
in the context of labeling the training data, we have conducted a set of experiments. First,
each of the unlabeled documents and predefined labels has been projected into common vec-
tor spaces. Then each embedding model has assigned the most similar label to the documents
based on the vector similarity. Additionally, by considering a simple majority vote of all the
embedding models each document has also been labeled. The accuracy of labeled datasets has
been calculated by comparing them with the original hand-labeled data. Table 5.7 presents the
accuracy of the labeled training data based on the individual embedding models and the ma-
jority vote. The results suggest that considering all the embedding models for the labeling
task can help in assigning more accurate labels. Therefore, to estimate the probabilistic la-
bels for each training sample, all the embedding models have been used in the Labeled Data
Generation module (cf. Section 5.3.1).

Further experiments have been conducted to asses the performance of the Wide &
Deep model when it is trained on the training samples that are labeled based on majority vote.
Table 5.8 presents the categorization accuracy. The results show that using probabilistic labels
in WESSTEC leads to higher-quality supervision for training the end categorization model.

120

5.5 Summary and Conclusion

Model AG News Snippets DBpedia Twitter

Vector Similarity LINE 0.776 0.657 0.708 0.536

Vector Similarity Doc2Vec 0.651 0.644 0.672 0.479

Vector Similarity Word2Vec 0.612 0.692 0.702 0.527

Vector Similarity (Majority) 0.778 0.709 0.757 0.555

Table 5.7: The accuracy of generated training data based on the embedding models

Model AG News Snippets DBpedia Twitter

Wide & Deep (Majority) 0.812 0.799 0.772 0.559

WESSTEC 0.814 0.803 0.792 0.581

Table 5.8: The categorization accuracy of WESSTEC against the Wide & Deep model
trained on majority vote based training set

5.5 Summary and Conclusion

This chapter has investigated the following research question (cf. Section 1.2 (Research Ques-
tion 3)):

• How to combine a deep neural network with a knowledge base to perform short text
categorization without requiring any hand-labeled data?

In this regard, an approach called WESSTEC, which does not require any labeled data for
short text categorization, has been proposed. It is a new paradigm for weakly supervised
short text categorization using world knowledge. The model contains two main modules,
namely, labeled data generation and categorization model which is based on Wide & Deep
learning. The first module, i.e., the labeled data generation module responsible for generating
labeled training data from unlabeled documents by utilizing three different embedding models,
i.e., Word2Vec, LINE, Doc2Vec. Several features, i.e., words, entities, and their associated
categories from the underlying knowledge base are extracted from the labeled documents to
train the Wide & Deep categorization model. Finally, the new documents are categorized with
the help of this model. In conclusion, the experimental results have proven that WESSTEC
is capable of categorizing short text documents with high accuracy without requiring any
hand-labeled data. Furthermore, the Wide & Deep model which has been proposed for a
recommendation system can be successfully applied for the short text categorization problem.
Moreover, the jointly trained Wide & Deep model outperforms the individual Wide-only and
Deep-only models on each dataset. Further, it also significantly outperforms the categorization
approaches which do not require any labeled data. The experimental results have also proven

121

5 Weakly Supervised Short Text Categorization

that the Wide & Deep model is better suited for the short text categorization task by utilizing
the generated labeled data in comparison to the baselines, e.g., BERT, CNN, etc.
As for future work, we aim to

1. improve the labeled data generation process by exploiting advanced weak supervision
approaches such as Snorkel (Ratner et al., 2017);

2. adopt WESSTEC with different KBs;

3. evaluate the performance of WESSTEC on more text categorization benchmarks.

122

6 Conclusion

This chapter provides a summary of the research questions, which are introduced in Chap-
ter 1.2 and the main contributions of the thesis. Moreover, the thesis is concluded with possi-
ble future directions.

6.1 Summary

The main focus of the thesis has been performing short text categorization effectively without
requiring any labeled data. In this regard, two main challenges, namely, the "labeled data
requirement" and the "non-standard characteristics of short texts" are faced. These challenges
have been discussed in Chapter 1.1. To address these challenges the main research question
of the thesis have been introduced as follows:

How to perform short text categorization effectively without requiring any hand-labeled
data?

This broad research question has broken down into three specific research questions
according to the challenges and tasks that they are concerned about. Each question and the
findings are given as follows:

Research Question 1. How can a knowledge base be utilized to categorize short texts without
requiring any labeled training data?

In Chapter 4, a novel short text categorization approach so-called KBSTC has been intro-
duced. The model does not require any labeled data to perform short text categorization,
instead, it exploits a knowledge base, i.e., Wikipedia as an external source. KBSTC is a
probabilistic model, which does not have any training phase, further, it relies on the semantic
similarity between the entities present in a text and predefined categories to assign the most
relevant category for the given short text. The main contributions of this chapter include
a new paradigm for short text categorization, which is based on a knowledge base without
requiring any labeled data.

123

6 Conclusion

Research Question 2. How to learn the semantic representation of short texts and predefined
categories with the help of a knowledge base?

In Section 4.6.1 we have aimed to address this research question by proposing a new entity
and category embedding model. The embedding model enables to quantify the meaningful
semantic relatedness between the short texts, which contain a set of entities and predefined
categories. More specifically, the model first constructs entity-entity and entity-category
networks by exploiting a hyperlink structure of a large knowledge base, i.e., Wikipedia.
Then the model embeds these networks into a common vector space. After generating vector
representation of each entity and category, the low dimensional representation of short texts
is formed by leveraging the entities present in texts.

Research Question 3. How to combine a deep neural network with a knowledge base to
perform short text categorization without requiring any hand-labeled data?

In Chapter 5, we have proposed a novel approach, which is called WESSTEC to address
this research question. The model has been designed to perform weakly supervised short
text categorization without requiring any hand-labeled data. It consists of two main modules:
(1) a labeled data generation module, (2) a categorization model, which is based on a deep
neural network. The contributions of this approach include a principle way of combining
different weak supervising sources (e.g., embedding models) without requiring any manual
effort to label unlabeled short text data and adaption of Wide & Deep model for short text
categorization. As the name indicates, the first module is responsible for generating labeled
short text data. To train the deep neural network model effectively, the representation of the
generated labeled data by the first module is enriched by exploiting a knowledge base. As
stated before, due to the main characteristics of short texts (e.g., sparsity), it is indispensable
to enhance the text representations by leveraging external sources.

6.2 Outlook

Chapter 4 and Chapter 5 have already presented relevant future works for the proposed
methods. However, this section aims to provide more general, possible future directions. In
the following we define the future research questions:

Future Work 1. How to generalize the proposed models to perform categorization of
arbitrary-length documents?

The main focus of this thesis has been to perform short text categorization without requiring
any labeled data, instead, utilizing a knowledge base as an external source. In this regard, in

124

6.2 Outlook

Chapter 4 and Chapter 5 two models have been presented for short text categorization. The
experiments show that the proposed models can categorize short texts with high accuracy. As
a subsequent step, we plan to generalize the proposed approaches for the categorization of
arbitrary-length documents, including, long documents (e.g., news articles), etc. The main ad-
vantage of arbitrary-length documents is that they contain more contextual information which
could help to ease the categorization process. However, there are still several challenges that
need to be addressed in this regard. Long text often contain entities and words that do not
contribute to the categorization task. In fact, such noise could harm the categorization perfor-
mance. Hence, as for future work, we plan to investigate how to perform arbitrary-length text
categorization by leveraging the most representative features of documents without requiring
any hand-labeled data.

Future Work 2. How to perform categorization of text documents into hierarchically related
categories?

In the course of this thesis, the proposed models (cf. Chapter 4 and Chapter 5) are designed for
the categorization of the text documents into flat-structured categories. However, depending
on the domain, the predefined categories could be hierarchically related. Therefore, we aim
to extend the proposed models to enable the hierarchical categorization of text documents. To
do so, as a first step we plan to integrate categories’ hierarchy information into an embedding
space. This will enable differentiating between the samples that come from the hierarchically
related domains, e.g., basketball (which is a subcategory of sports) and sports. Further, for
the categorization process, a categorization model, which is capable of categorizing samples
into hierarchically related categories will be leveraged.

Future Work 3. How to combine several different weak supervision sources to label unla-
beled documents?

In Chapter 5, a novel weakly supervised short text categorization model has been pro-
posed. The model has two main components, namely, labeled data generation module
and categorization module, which is based on a supervised model. The labeled data gen-
eration module utilizes three different embedding models, namely, word2vec, Doc2Vec,
LINE (cf. Section 2.1.6 and Section 2.1.7) to heuristically label unlabeled short text doc-
uments without requiring any manual effort. As for future work, we aim to include more
embedding models in order to enhance the labeling process. The main challenge of this
idea is the effective combination of several different embedding models. There exist an
approach called Snorkel (Ratner et al., 2017), which is designed to generate labeled data
by leveraging several different labeling functions. However, this model requires manually
designed labeling functions, i.e., weak supervision sources. In contrast to this model, we aim

125

6 Conclusion

to avoid any manual effort while combining the output of several different embedding models.

In this thesis, we have investigated the main research question of how to perform
short text categorization effectively without requiring any labeled data using knowledge bases
as an external source. In this context, two novel short text categorization models namely,
Knowledge-Based Short Text Categorization (KBSTC) and Weakly Supervised Short Text
Categorization using World Knowledge (WESSTEC) have been introduced and evaluated in
this thesis. The extensive experiments have been conducted to assess the performance of
the proposed short text categorization models. The experimental results of two models have
demonstrated that it is possible to perform short text categorization effectively without requir-
ing any hand-labeled data with high accuracy.

126

Bibliography

Aggarwal, C. C. (2018a). Machine learning for text. Springer.

Aggarwal, C. C. (2018b). Neural Networks and Deep Learning - A Textbook. Springer.

Aggarwal, C. C. & Zhai, C. (2012). A survey of text classification algorithms. In Aggarwal,
C. C. & Zhai, C. (Eds.), Mining Text Data, pages 163–222. Springer.

Ahmad, W. U., Chang, K., & Wang, H. (2019). Context attentive document ranking and
query suggestion. In Piwowarski, B., Chevalier, M., Gaussier, É., Maarek, Y., Nie, J.,
& Scholer, F. (Eds.), Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July
21-25, 2019, pages 385–394. ACM.

Alam, M. (2015). Interactive Knowledge Discovery over Web of Data. (Découverte interactive
de connaissances dans le web des données). PhD thesis, University of Lorraine, Nancy,
France.

Almeida, F. & Xexéo, G. (2019). Word embeddings: A survey. CoRR, abs/1901.09069.

Arsov, N. & Mirceva, G. (2019). Network embedding: An overview. CoRR, abs/1911.11726.

Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. G. (2007). Dbpedia:
A nucleus for a web of open data. In The Semantic Web, 6th International Semantic Web
Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan,
Korea, November 11-15, 2007., pages 722–735.

Bellomarini, L., Fakhoury, D., Gottlob, G., & Sallinger, E. (2019). Knowledge graphs and
enterprise AI: the promise of an enabling technology. In 35th IEEE International Con-
ference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019.

Berners-Lee, T., Fielding, R., Masinter, L., et al. (1998). Uniform resource identifiers (uri):
Generic syntax.

Bollacker, K. D., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: a col-
laboratively created graph database for structuring human knowledge. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008,
Vancouver, BC, Canada, June 10-12, 2008, pages 1247–1250.

Borst, P., Akkermans, H., & Top, J. L. (1997). Engineering ontologies. Int. J. Hum. Comput.
Stud., 46(2):365–406.

Bouaziz, A., ’e lia da Costa Pereira, C., Pallez, C. D. ., & ’e d é ric Precioso, F. (2016).

127

BIBLIOGRAPHY

Introducing semantics in short text classification. In Gelbukh, A. F. (Ed.), Computational
Linguistics and Intelligent Text Processing - 17th International Conference, CICLing
2016, Konya, Turkey, April 3-9, 2016, Revised Selected Papers, Part II, volume 9624 of
Lecture Notes in Computer Science, pages 433–445. Springer.

Burel, G., Saif, H., & Alani, H. (2017). Semantic wide and deep learning for detecting crisis-
information categories on social media. In The Semantic Web - ISWC 2017 - 16th Inter-
national Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings,
Part I, pages 138–155.

Carlson, A., Betteridge, J., Wang, R. C., Jr., E. R. H., & Mitchell, T. M. (2010). Coupled semi-
supervised learning for information extraction. In Proceedings of the Third International
Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA,
February 4-6, 2010, pages 101–110.

Chakravarthy, V., Joshi, S., Ramakrishnan, G., Godbole, S., & Balakrishnan, S. (2008). Learn-
ing decision lists with known rules for text mining. In Third International Joint Confer-
ence on Natural Language Processing, IJCNLP 2008, Hyderabad, India, January 7-12,
2008, pages 835–840. The Association for Computer Linguistics.

Chang, M., Ratinov, L., Roth, D., & Srikumar, V. (2008). Importance of semantic represen-
tation: Dataless classification. In Fox, D. & Gomes, C. P. (Eds.), Proceedings of the
Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois,
USA, July 13-17, 2008, pages 830–835. AAAI Press.

Chen, Jin, X., & Shen, D. (2011). Short text classification improved by learning multi-
granularity topics. In Walsh, T. (Ed.), IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-
22, 2011, pages 1776–1781. IJCAI / AAAI.

Chen, J., Hu, Y., Liu, J., Xiao, Y., & Jiang, H. (2019). Deep short text classification with
knowledge powered attention. In The Thirty-Third AAAI Conference on Artificial Intel-
ligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 6252–6259.

Chen, P., Sun, Z., Bing, L., & Yang, W. (2017). Recurrent attention network on memory for
aspect sentiment analysis. In Palmer, M., Hwa, R., & Riedel, S. (Eds.), Proceedings of
the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP
2017, Copenhagen, Denmark, September 9-11, 2017, pages 452–461. Association for
Computational Linguistics.

Chen, X., Xia, Y., Jin, P., & Carroll, J. A. (2015a). Dataless text classification with descriptive
LDA. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, pages 2224–2231. AAAI Press.

128

BIBLIOGRAPHY

Chen, X., Xia, Y., Jin, P., & Carroll, J. A. (2015b). Dataless text classification with descriptive
lda. In AAAI, pages 2224–2231. AAAI Press.

Cheng, H., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Cor-
rado, G., Chai, W., Ispir, M., Anil, R., Haque, Z., Hong, L., Jain, V., Liu, X., & Shah,
H. (2016). Wide & deep learning for recommender systems. In Karatzoglou, A., Hidasi,
B., Tikk, D., Shalom, O. S., Roitman, H., Shapira, B., & Rokach, L. (Eds.), Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems, DLRS@RecSys 2016,
Boston, MA, USA, September 15, 2016, pages 7–10. ACM.

Cilibrasi, R. L. & Vitanyi, P. M. (2007). The google similarity distance. IEEE Transactions
on knowledge and data engineering, 19(3):370–383.

Cohen, W. W. & Singer, Y. (1999). Context-sensitive learning methods for text categorization.
ACM Transactions on Information Systems (TOIS), 17(2):141–173.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. P. (2011).
Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12:2493–2537.

Conneau, A., Schwenk, H., Barrault, L., & LeCun, Y. (2016). Very deep convolutional net-
works for natural language processing. CoRR, abs/1606.01781.

Conneau, A., Schwenk, H., Barrault, L., & LeCun, Y. (2017). Very deep convolutional net-
works for text classification. In Lapata, M., Blunsom, P., & Koller, A. (Eds.), Proceedings
of the 15th Conference of the European Chapter of the Association for Computational
Linguistics, EACL 2017, Valencia, Spain, April 3-7, 2017, Volume 1: Long Papers, pages
1107–1116. Association for Computational Linguistics.

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3):273–297.

Cui, P., Wang, X., Pei, J., & Zhu, W. (2019). A survey on network embedding. IEEE Trans.
Knowl. Data Eng., 31(5):833–852.

Dai, Z., Sun, A., & Liu, X. (2013). Crest: Cluster-based representation enrichment for short
text classification. In Pei, J., Tseng, V. S., Cao, L., Motoda, H., & Xu, G. (Eds.), Advances
in Knowledge Discovery and Data Mining, 17th Pacific-Asia Conference, PAKDD 2013,
Gold Coast, Australia, April 14-17, 2013, Proceedings, Part II, volume 7819 of Lecture
Notes in Computer Science, pages 256–267. Springer.

de Vries, G. K. D. (2013). A fast approximation of the weisfeiler-lehman graph kernel for RDF
data. In Blockeel, H., Kersting, K., Nijssen, S., & ’y, F. Z. (Eds.), Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML PKDD 2013,
Prague, Czech Republic, September 23-27, 2013, Proceedings, Part I, volume 8188 of
Lecture Notes in Computer Science, pages 606–621. Springer.

de Vries, G. K. D. & de Rooij, S. (2015). Substructure counting graph kernels for machine
learning from RDF data. J. Web Semant., 35:71–84.

Deibe, M. A. (2018). Query processing over graph-structured data on the web. PhD thesis,
Karlsruhe Institute of Technology, Germany.

129

BIBLIOGRAPHY

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2019). BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Burstein, J., Doran, C., & Solorio, T.
(Eds.), Proceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pages
4171–4186. Association for Computational Linguistics.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification
learning algorithms. Neural Computation, 10:1895–1923.

Druck, G., Mann, G. S., & McCallum, A. (2008). Learning from labeled features using
generalized expectation criteria. In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008,
Singapore, July 20-24, 2008, pages 595–602. ACM.

Duque, A. B., Santos, L. L. J., Macêdo, D., & Zanchettin, C. (2019). Squeezed very deep
convolutional neural networks for text classification. In Tetko, I. V., Kurková, V., Karpov,
P., & Theis, F. J. (Eds.), Artificial Neural Networks and Machine Learning - ICANN 2019:
Theoretical Neural Computation - 28th International Conference on Artificial Neural
Networks, Munich, Germany, September 17-19, 2019, Proceedings, Part I, volume 11727
of Lecture Notes in Computer Science, pages 193–207. Springer.

Dürst, M. J. & Suignard, M. (2005). Internationalized resource identifiers (iris). RFC, 3987:1–
46.

Ehrlinger, L. & Wöß, W. (2016). Towards a definition of knowledge graphs. In Martin, M.,
Cuquet, M., & Folmer, E. (Eds.), Joint Proceedings of the Posters and Demos Track
of the 12th International Conference on Semantic Systems - SEMANTiCS2016 and the
1st International Workshop on Semantic Change & Evolving Semantics (SuCCESS’16)
co-located with the 12th International Conference on Semantic Systems (SEMANTiCS
2016), Leipzig, Germany, September 12-15, 2016.

Fabian, M., Gjergji, K., Gerhard, W., et al. (2007). Yago: A core of semantic knowledge
unifying wordnet and wikipedia. In 16th International World Wide Web Conference,
WWW.

Färber, M., Bartscherer, F., Menne, C., & Rettinger, A. (2018). Linked data quality of dbpedia,
freebase, opencyc, wikidata, and YAGO. Semantic Web, 9(1):77–129.

Färber, M., Ell, B., Menne, C., & Rettinger, A. (2015). A comparative survey of dbpedia,
freebase, opencyc, wikidata, and yago. Semantic Web Journal.

Fellbaum, C. (Ed.) (1998). WordNet: an electronic lexical database. MIT Press.

Gabrilovich, E., Markovitch, S., et al. (2007). Computing semantic relatedness using
wikipedia-based explicit semantic analysis. In IJcAI, volume 7, pages 1606–1611.

Gao, H., Wang, Z., & Ji, S. (2018). Large-scale learnable graph convolutional networks. In
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discov-

130

BIBLIOGRAPHY

ery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 1416–1424.
ACM.

Genkin, A., Lewis, D. D., & Madigan, D. (2007). Large-scale bayesian logistic regression for
text categorization. Technometrics, 49(3):291–304.

Gomaa, W. H., Fahmy, A. A., et al. (2013). A survey of text similarity approaches. Interna-
tional Journal of Computer Applications, 68(13):13–18.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Gruber, T. R. et al. (1993). A translation approach to portable ontology specifications. Knowl-
edge acquisition, 5(2):199–221.

Gutmann, M. & Hyvärinen, A. (2012). Noise-contrastive estimation of unnormalized statisti-
cal models, with applications to natural image statistics. J. Mach. Learn. Res., 13:307–
361.

Harispe, S., Ranwez, S., Janaqi, S., & Montmain, J. (2013). Semantic measures for the com-
parison of units of language, concepts or entities from text and knowledge base analysis.
CoRR, abs/1310.1285.

Hingmire, S. & Chakraborti, S. (2014). Topic labeled text classification: a weakly supervised
approach. In Geva, S., Trotman, A., Bruza, P., Clarke, C. L. A., & Järvelin, K. (Eds.), The
37th International ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’14, Gold Coast , QLD, Australia - July 06 - 11, 2014, pages 385–394.
ACM.

Hingmire, S., Chougule, S., Palshikar, G. K., & Chakraborti, S. (2013). Document classifica-
tion by topic labeling. In SIGIR, pages 877–880. ACM.

Hitzler, P., Krötzsch, M., & Rudolph, S. (2010). Foundations of Semantic Web Technologies.
Chapman and Hall/CRC Press.

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., de Melo, G., Gutierrez, C., Gayo, J.
E. L., Kirrane, S., Neumaier, S., Polleres, A., et al. (2020). Knowledge graphs. arXiv
preprint arXiv:2003.02320.

Hu, L., Yang, T., Shi, C., Ji, H., & Li, X. (2019). Heterogeneous graph attention networks
for semi-supervised short text classification. In Inui, K., Jiang, J., Ng, V., & Wan, X.
(Eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Process-
ing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 4820–4829.
Association for Computational Linguistics.

Hu, Z., Huang, P., Deng, Y., Gao, Y., & Xing, E. P. (2015). Entity hierarchy embedding. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics and the 7th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 1: Long Papers, pages 1292–1300. The Association for Computer

131

BIBLIOGRAPHY

Linguistics.

Ifrim, G., Bakir, G. H., & Weikum, G. (2008). Fast logistic regression for text categorization
with variable-length n-grams. In Li, Y., Liu, B., & Sarawagi, S. (Eds.), Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages 354–362. ACM.

Jacobs, I. & Walsh, N. (2004). Architecture of the world wide web, volume one. w3c recom-
mendation. World Wide Web Consortium (W3C).

Joachims, T. (1997). A probabilistic analysis of the rocchio algorithm with TFIDF for text
categorization. In Fisher, D. H. (Ed.), Proceedings of the Fourteenth International Con-
ference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July 8-12, 1997,
pages 143–151. Morgan Kaufmann.

Joachims, T. (1998). Text categorization with support vector machines: Learning with many
relevant features. In Nedellec, C. & Rouveirol, C. (Eds.), Machine Learning: ECML-
98, 10th European Conference on Machine Learning, Chemnitz, Germany, April 21-23,
1998, Proceedings, volume 1398 of Lecture Notes in Computer Science, pages 137–142.
Springer.

Jurafsky, D. & Martin, J. H. (2009). Speech and Language Processing (2Nd Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A convolutional neural network for
modelling sentences. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume
1: Long Papers, pages 655–665. The Association for Computer Linguistics.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Moschitti, A.,
Pang, B., & Daelemans, W. (Eds.), Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1746–1751.
ACL.

Koller, D. & Sahami, M. (2007). Hierarchically classifying documents with very few words.
In ICML Conference.

Komarek, P. & Moore, A. (2003). Fast logistic regression for data mining, text classification
and link detection. Proceedings of NIPS2003.

Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. E.
(2019). Text classification algorithms: A survey. Information, 10(4):150.

Landauer, T. K. & Dumais, S. T. (1997). A solution to plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psychological
review, 104(2):211.

Le, Q. V. & Mikolov, T. (2014). Distributed representations of sentences and documents. In
Proceedings of the 31th International Conference on Machine Learning, ICML 2014,

132

BIBLIOGRAPHY

Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference Pro-
ceedings, pages 1188–1196. JMLR.org.

Lei, T., Barzilay, R., & Jaakkola, T. S. (2015). Molding cnns for text: non-linear, non-
consecutive convolutions. In Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., &
Marton, Y. (Eds.), Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pages
1565–1575. The Association for Computational Linguistics.

Lenat, D. B. (1995). CYC: A large-scale investment in knowledge infrastructure. Commun.
ACM, 38(11):32–38.

Li, C., Xing, J., Sun, A., & Ma, Z. (2016a). Effective document labeling with very few seed
words: A topic model approach. In Mukhopadhyay, S., Zhai, C., Bertino, E., Crestani, F.,
Mostafa, J., Tang, J., Si, L., Zhou, X., Chang, Y., Li, Y., & Sondhi, P. (Eds.), Proceedings
of the 25th ACM International Conference on Information and Knowledge Management,
CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 85–94. ACM.

Li, C., Xing, J., Sun, A., & Ma, Z. (2016b). Effective document labeling with very few seed
words: A topic model approach. In Mukhopadhyay, S., Zhai, C., Bertino, E., Crestani, F.,
Mostafa, J., Tang, J., Si, L., Zhou, X., Chang, Y., Li, Y., & Sondhi, P. (Eds.), Proceedings
of the 25th ACM International Conference on Information and Knowledge Management,
CIKM 2016, Indianapolis, IN, USA, October 24-28, 2016, pages 85–94. ACM.

Li, Y. H. & Jain, A. K. (1998). Classification of text documents. The Computer Journal,
41(8):537–546.

Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., & Sycara, K. P. (2016c). Joint embedding of hier-
archical categories and entities for concept categorization and dataless classification. In
COLING 2016, 26th International Conference on Computational Linguistics, Proceed-
ings of the Conference: Technical Papers, December 11-16, 2016, Osaka, Japan, pages
2678–2688.

Li, Y., Zheng, R., Tian, T., Hu, Z., Iyer, R., & Sycara, K. P. (2016d). Joint embedding of
hierarchical categories and entities for concept categorization and dataless classification.
In Calzolari, N., Matsumoto, Y., & Prasad, R. (Eds.), COLING 2016, 26th International
Conference on Computational Linguistics, Proceedings of the Conference: Technical
Papers, December 11-16, 2016, Osaka, Japan, pages 2678–2688. ACL.

Liu, P., Qiu, X., & Huang, X. (2016). Recurrent neural network for text classification with
multi-task learning. In Kambhampati, S. (Ed.), Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016, pages 2873–2879. IJCAI/AAAI Press.

Liu, Y. & Lapata, M. (2019). Text summarization with pretrained encoders. In Inui, K., Jiang,
J., Ng, V., & Wan, X. (Eds.), Proceedings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural

133

BIBLIOGRAPHY

Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019,
pages 3728–3738. Association for Computational Linguistics.

Lu, Z., Zhu, Y., Pan, S. J., Xiang, E. W., Wang, Y., & Yang, Q. (2014). Source free transfer
learning for text classification. In Brodley, C. E. & Stone, P. (Eds.), AAAI. AAAI Press.

Lukovnikov, D., Fischer, A., & Lehmann, J. (2019). Pretrained transformers for simple ques-
tion answering over knowledge graphs. In Ghidini, C., Hartig, O., Maleshkova, M.,
Svátek, V., Cruz, I. F., Hogan, A., Song, J., Lefrançois, M., & Gandon, F. (Eds.), The
Semantic Web - ISWC 2019 - 18th International Semantic Web Conference, Auckland,
New Zealand, October 26-30, 2019, Proceedings, Part I, volume 11778 of Lecture Notes
in Computer Science, pages 470–486. Springer.

Ma, Y., Peng, H., & Cambria, E. (2018). Targeted aspect-based sentiment analysis via em-
bedding commonsense knowledge into an attentive LSTM. In McIlraith, S. A. & Wein-
berger, K. Q. (Eds.), Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 5876–5883. AAAI
Press.

Mahdisoltani, F., Biega, J., & Suchanek, F. M. (2015). YAGO3: A knowledge base from
multilingual wikipedias. In CIDR 2015, Seventh Biennial Conference on Innovative
Data Systems Research, Asilomar, CA, USA, January 4-7, 2015, Online Proceedings.
www.cidrdb.org.

Max Schmachtenberg, Christian Bizer, A. J. & Cyganiak, R. (2014).

Mendes, P. N., Jakob, M., ’e s Garc ´ i a - Silva, A., & Bizer, C. (2011). Dbpedia spotlight:
shedding light on the web of documents. In Ghidini, C., Ngomo, A. . C. N., Lindstaedt,
S. N., & Pellegrini, T. (Eds.), Proceedings the 7th International Conference on Semantic
Systems, I-SEMANTICS 2011, Graz, Austria, September 7-9, 2011, ACM International
Conference Proceeding Series, pages 1–8. ACM.

Meng, Y., Shen, J., Zhang, C., & Han, J. (2018). Weakly-supervised neural text classification.
In CIKM.

Meng, Y., Shen, J., Zhang, C., & Han, J. (2019). Weakly-supervised hierarchical text classifi-
cation. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 6826–6833. AAAI Press.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of word represen-
tations in vector space. In Bengio, Y. & LeCun, Y. (Eds.), 1st International Conference
on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA, May 2-4, 2013,
Workshop Track Proceedings.

134

BIBLIOGRAPHY

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013b). Distributed repre-
sentations of words and phrases and their compositionality. In Burges, C. J. C., Bottou,
L., Ghahramani, Z., & Weinberger, K. Q. (Eds.), Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States, pages 3111–3119.

Nies, T. D., Beecks, C., Neve, W. D., Seidl, T., Mannens, E., & de Walle, R. V. (2014). To-
wards named-entity-based similarity measures: Challenges and opportunities. In Alonso,
O., Kamps, J., & Karlgren, J. (Eds.), Proceedings of the 7th International Workshop on
Exploiting Semantic Annotations in Information Retrieval, ESAIR ’14, Shanghai, China,
November 7, 2014, pages 9–11. ACM.

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T. M. (2000). Text classification from
labeled and unlabeled documents using EM. Mach. Learn., 39(2/3):103–134.

Paulheim, H. (2017). Knowledge graph refinement: A survey of approaches and evaluation
methods. Semantic Web.

Peng, H., Li, J., He, Y., Liu, Y., Bao, M., Wang, L., Song, Y., & Yang, Q. (2018). Large-scale
hierarchical text classification with recursively regularized deep graph-cnn. In Champin,
P., Gandon, F. L., Lalmas, M., & Ipeirotis, P. G. (Eds.), Proceedings of the 2018 World
Wide Web Conference on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 1063–1072. ACM.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: online learning of social represen-
tations. In Macskassy, S. A., Perlich, C., Leskovec, J., Wang, W., & Ghani, R. (Eds.),
The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 701–710. ACM.

Phan, X. H., Nguyen, M. L., & Horiguchi, S. (2008). Learning to classify short and sparse
text & web with hidden topics from large-scale data collections. In Huai, J., Chen, R.,
Hon, H., Liu, Y., Ma, W., Tomkins, A., & Zhang, X. (Eds.), Proceedings of the 17th
International Conference on World Wide Web, WWW 2008, Beijing, China, April 21-25,
2008, pages 91–100. ACM.

Rabinovich, E., Sznajder, B., Spector, A., Shnayderman, I., Aharonov, R., Konopnicki, D.,
& Slonim, N. (2018). Learning concept abstractness using weak supervision. In Riloff,
E., Chiang, D., Hockenmaier, J., & Tsujii, J. (Eds.), Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31
- November 4, 2018, pages 4854–4859. Association for Computational Linguistics.

Ratner, A., Bach, S. H., Ehrenberg, H. R., Fries, J. A., Wu, S., & Ré, C. (2017). Snorkel: Rapid
training data creation with weak supervision. Proc. VLDB Endow., pages 269–282.

Reimers, N. & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-
networks. In Inui, K., Jiang, J., Ng, V., & Wan, X. (Eds.), Proceedings of the 2019

135

BIBLIOGRAPHY

Conference on Empirical Methods in Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 3980–3990. Association for Computational
Linguistics.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes, pages 448–453.
Morgan Kaufmann.

Ristoski, P. & Paulheim, H. (2016). Rdf2vec: RDF graph embeddings for data mining. In
Groth, P. T., Simperl, E., Gray, A. J. G., Sabou, M., Krötzsch, M., Lécué, F., Flöck,
F., & Gil, Y. (Eds.), The Semantic Web - ISWC 2016 - 15th International Semantic Web
Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I, volume 9981 of
Lecture Notes in Computer Science, pages 498–514.

Röder, M., Usbeck, R., Hellmann, S., Gerber, D., & Both, A. (2014). N3 - A collection of
datasets for named entity recognition and disambiguation in the NLP interchange for-
mat. In Calzolari, N., Choukri, K., Declerck, T., Loftsson, H., Maegaard, B., Mariani, J.,
Moreno, A., Odijk, J., & Piperidis, S. (Eds.), Proceedings of the Ninth International Con-
ference on Language Resources and Evaluation, LREC 2014, Reykjavik, Iceland, May
26-31, 2014, pages 3529–3533. European Language Resources Association (ELRA).

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain mech-
anisms. Technical report, Cornell Aeronautical Lab Inc Buffalo NY.

Ross, S. (1976). A first course in probability. HwaTia, Taiwan, pages 136–137.

Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998). A bayesian approach to filter-
ing junk e-mail. In Learning for Text Categorization: Papers from the 1998 workshop,
volume 62, pages 98–105. Madison, Wisconsin.

Sakor, A., Mulang, I. O., Singh, K., Shekarpour, S., Vidal, M., Lehmann, J., & Auer, S. (2019).
Old is gold: Linguistic driven approach for entity and relation linking of short text. In
Burstein, J., Doran, C., & Solorio, T. (Eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 2336–2346. Association for Computational
Linguistics.

Sarkar, D. (2016). Text analytics with python.

Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Comput. Surv.,
34(1):1–47.

Singh, A., Nowak, R. D., & Zhu, X. (2008). Unlabeled data: Now it helps, now it
doesn’t. In Advances in Neural Information Processing Systems 21, Proceedings of the
Twenty-Second Annual Conference on Neural Information Processing Systems, Vancou-

136

BIBLIOGRAPHY

ver, British Columbia, Canada, December 8-11, 2008, pages 1513–1520.

Skansi, S. (2018). Introduction to Deep Learning - From Logical Calculus to Artificial Intel-
ligence. Undergraduate Topics in Computer Science. Springer.

Song, G., Ye, Y., Du, X., Huang, X., & Bie, S. (2014). Short text classification: A survey.
Journal of multimedia, 9(5):635–644.

Song, Y. & Roth, D. (2014). On dataless hierarchical text classification. In Brodley, C. E.
& Stone, P. (Eds.), Proceedings of the Twenty-Eighth AAAI Conference on Artificial In-
telligence, July 27 -31, 2014, Québec City, Québec, Canada, pages 1579–1585. AAAI
Press.

Srinivasan, S. (2017). Guide to Big Data Applications, volume 26. Springer.

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge engineering: Principles and
methods. Data Knowl. Eng., 25(1-2):161–197.

Su, J. & Zhang, H. (2006). A fast decision tree learning algorithm. In Proceedings, The
Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innova-
tive Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston, Mas-
sachusetts, USA, pages 500–505. AAAI Press.

Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: a core of semantic knowledge.
In Proceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8-12, 2007, pages 697–706.

Tahery, S. & Farzi, S. (2020). Customized query auto-completion and suggestion - A review.
Inf. Syst., 87.

Tang, J., Qu, M., & Mei, Q. (2015a). PTE: predictive text embedding through large-scale het-
erogeneous text networks. In Cao, L., Zhang, C., Joachims, T., Webb, G. I., Margineantu,
D. D., & Williams, G. (Eds.), Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10-
13, 2015, pages 1165–1174. ACM.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015b). LINE: large-scale in-
formation network embedding. In Gangemi, A., Leonardi, S., & Panconesi, A. (Eds.),
Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Flo-
rence, Italy, May 18-22, 2015, pages 1067–1077. ACM.

Teng, Z., Vo, D., & Zhang, Y. (2016). Context-sensitive lexicon features for neural sentiment
analysis. In Su, J., Carreras, X., & Duh, K. (Eds.), Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA,
November 1-4, 2016, pages 1629–1638. The Association for Computational Linguistics.

Türker, R., Mehwish, Alam, & Sack, H. (2020). Weakly supervised short text categorization
using world knowledge. In ISWC 2020.

Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2018a). TECNE: knowledge based text

137

BIBLIOGRAPHY

classification using network embeddings. In Proceedings of the EKAW 2018 Posters and
Demonstrations Session co-located with 21st International Conference on Knowledge
Engineering and Knowledge Management (EKAW 2018), Nancy, France, November 12-
16, 2018, volume 2262, pages 53–56.

Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2018b). "the less is more" for text clas-
sification,. In Proceedings of the Posters and Demos Track of the 14th International
Conference on Semantic Systems co-located with the 14th International Conference on
Semantic Systems (SEMANTiCS 2018), Vienna, Austria, September 10-13, 2018.

Türker, R., Zhang, L., Koutraki, M., & Sack, H. (2019). Knowledge-based short text catego-
rization using entity and category embedding. In Hitzler, P., ’a ndez, M. F., Janowicz,
K., Zaveri, A., Gray, A. J., ’o pez, V. L., Haller, A., & Hammar, K. (Eds.), The Se-
mantic Web - 16th International Conference, ESWC 2019, Portoro v z, Slovenia, June
2-6, 2019, Proceedings, volume 11503 of Lecture Notes in Computer Science, pages
346–362. Springer.

Usbeck, R., Röder, M., Ngomo, A. N., Baron, C., Both, A., Brümmer, M., Ceccarelli, D.,
Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C., Moro, A., Navigli, R.,
Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R., Waitelonis, J., & Wesemann, L.
(2015). GERBIL: general entity annotator benchmarking framework. In Gangemi, A.,
Leonardi, S., & Panconesi, A. (Eds.), Proceedings of the 24th International Conference
on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 1133–1143.
ACM.

Vrandecic, D. & Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase. Com-
mun. ACM, 57(10):78–85.

Waitelonis, J., Exeler, C., & Sack, H. (2015). Linked data enabled generalized vector space
model to improve document retrieval. NLP & DBpedia@ ISWC, 15:34–44.

Wang, C., Song, Y., Li, H., Zhang, M., & Han, J. (2016a). Text classification with het-
erogeneous information network kernels. In Schuurmans, D. & Wellman, M. P. (Eds.),
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, pages 2130–2136. AAAI Press.

Wang, J., Wang, Z., Zhang, D., & Yan, J. (2017). Combining knowledge with deep convo-
lutional neural networks for short text classification. In Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Aus-
tralia, August 19-25, 2017, pages 2915–2921.

Wang, P., Xu, B., Xu, J., Tian, G., Liu, C.-L., & Hao, H. (2016b). Semantic expansion using
word embedding clustering and convolutional neural network for improving short text
classification. Neurocomputing.

Wang, R., Li, Z., Cao, J., Chen, T., & Wang, L. (2019). Convolutional recurrent neural
networks for text classification. In International Joint Conference on Neural Networks,

138

BIBLIOGRAPHY

IJCNN 2019 Budapest, Hungary, July 14-19, 2019, pages 1–6. IEEE.

Wang, X., Liu, Y., Sun, C., Wang, B., & Wang, X. (2015). Predicting polarities of tweets
by composing word embeddings with long short-term memory. In Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing of the Asian Federation of
Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1:
Long Papers, pages 1343–1353. The Association for Computer Linguistics.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Yu, P. S. (2019). A comprehensive survey
on graph neural networks. CoRR, abs/1901.00596.

Xuan, J., Jiang, H., Ren, Z., Yan, J., & Luo, Z. (2017). Automatic bug triage using semi-
supervised text classification. CoRR, abs/1704.04769.

Yao, L., Mao, C., & Luo, Y. (2019). Graph convolutional networks for text classification. In
The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First
Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu,
Hawaii, USA, January 27 - February 1, 2019, pages 7370–7377. AAAI Press.

Zeng, J., Li, J., Song, Y., Gao, C., Lyu, M. R., & King, I. (2018). Topic memory networks for
short text classification. In EMNLP.

Zhang, R., Lee, H., & Radev, D. R. (2016). Dependency sensitive convolutional neural net-
works for modeling sentences and documents. In Knight, K., Nenkova, A., & Rambow,
O. (Eds.), NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016, pages 1512–1521. The Association for Computa-
tional Linguistics.

Zhang, X. & LeCun, Y. (2015). Text understanding from scratch. CoRR, abs/1502.01710.

Zhang, X., Zhao, J. J., & LeCun, Y. (2015). Character-level convolutional networks for text
classification. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., & Garnett, R.
(Eds.), Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada, pages 649–657.

Zhang, Y. & Wallace, B. C. (2017). A sensitivity analysis of (and practitioners’ guide to)
convolutional neural networks for sentence classification. In Kondrak, G. & Watanabe,
T. (Eds.), Proceedings of the Eighth International Joint Conference on Natural Language
Processing, IJCNLP 2017, Taipei, Taiwan, November 27 - December 1, 2017 - Volume
1: Long Papers, pages 253–263. Asian Federation of Natural Language Processing.

Zhou, C., Sun, C., Liu, Z., & Lau, F. C. M. (2015). A C-LSTM neural network for text
classification. CoRR, abs/1511.08630.

Zukarnain, N., Abbas, B. S., Wayan, S., Trisetyarso, A., & Kang, C. H. (2019). Spelling

139

BIBLIOGRAPHY

checker algorithm methods for many languages. In 2019 International Conference on
Information Management and Technology (ICIMTech), volume 1, pages 198–201. IEEE.

140

	Abstract
	Acknowledgements
	Introduction
	Challenges and Tasks
	Research Questions
	Contributions of the Thesis
	Publications
	Guide to the Reader

	Foundations
	Neural Networks
	Beginnings of Artificial Neural Networks
	Basic Architecture of Neural Networks
	Activation Functions
	Convolutional Neural Networks
	Recurrent Neural Networks
	Text Embedding Models
	Network Embedding Models

	Knowledge Graphs
	Definitions and Preliminaries
	Open Knowledge Graphs
	Linked Open Data

	Semantic Measures
	Summary

	Text Categorization
	Arbitrary-length Text Categorization
	Short Text Categorization
	Text Preprocessing
	Feature Extraction
	Text Categorization Algorithms
	Decision Trees and Random Forest
	Naïve Bayes
	Support Vector Machines
	Logistic Regression:

	Evaluation Methods
	Summary

	Knowledge-Based Short Text Categorization
	Introduction
	Related Approaches
	Dataless Text Categorization
	Entity and Category Embeddings

	Preliminaries and Overview
	Probabilistic Approach
	Model Parameter Estimation
	Joint Entity And Category Embedding
	Network Construction
	Embedding Model

	Experiments
	Datasets
	Baselines
	Evaluation of KBSTC
	Evaluation of Entity and Category Embedding
	Evaluation of Entity Linking
	Using Wikipedia as a Training Set
	Partitioning the Training Data

	Summary and Conclusion

	Weakly Supervised Short Text Categorization
	Introduction
	Related Approaches
	Weakly Supervised Short Text Categorization
	Labeled Data Generation
	Wide and Deep Model for Short Text Categorization

	Experiments
	Datasets
	Baseline Approaches
	Feature Sets
	Evaluation of WESSTEC
	Comparison of WESSTEC with the Unsupervised Approaches
	Comparison of WESSTEC with the Supervised Approaches
	Evaluation of the Generated Labeled Data

	Summary and Conclusion

	Conclusion
	Summary
	Outlook

	Bibliography

