315 research outputs found

    Conception d’un support de communication opportuniste pour les services pervasifs

    Get PDF
    The vision of pervasive computing of building interactive smart spaces in the physical environment is gradually heading from the research domain to reality. Computing capacity is moving beyond personal computers to many day-to-day devices, and these devices become, thanks to multiple interfaces, capable of communicating directly with one another or of connecting to the Internet.In this thesis, we are interested in a kind of pervasive computing environment that forms what we call an Intermittently Connected Hybrid Network (ICHN). An ICHN is a network composed of two parts: a fixed and a mobile part. The fixed part is formed of some fixed infostations (potentially connected together with some fixed infrastructure, typically the Internet). The mobile part, on the other hand, is formed of smartphones carried by nomadic people. While the fixed part is mainly stable, the mobile part is considered challenging and form what is called an Opportunistic Network. Indeed, relying on short-range communication means coupled with the free movements of people and radio interferences lead to frequent disconnections. To perform a network-wide communication, the "store, carry and forward" approach is usually applied. With this approach, a message can be stored temporarily on a device, in order to be forwarded later when circumstances permit. Any device can opportunistically be used as an intermediate relay to facilitate the propagation of a message from one part of the network to another. In this context, the provisioning of pervasive services is particularly challenging, and requires revisiting important components of the provisioning process, such as performing pervasive service discovery and invocation with the presence of connectivity disruptions and absence of both end-to-end paths and access continuity due to user mobility. This thesis addresses the problems of providing network-wide service provisioning in ICHNs and proposes solutions for pervasive service discovery, invocation and access continuity. Concerning service discovery challenge, we propose TAO-DIS, a service discovery protocol that performs an automatic and fast service discovery mechanism. TAO-DIS takes into account the hybrid nature of an ICHN and that the majority of services are provided by infostations. It permits mobile users to discover all the services in the surrounding environment in order to identify and choose the most convenient ones. To allow users to interact with the discovered services, we introduce TAO-INV. TAO-INV is a service invocation protocol specifically designed for ICHNs. It relies on a set of heuristics and mechanisms that ensures performing efficient routing of messages (both service requests and responses) between fixed infostations and mobile clients while preserving both low values of overhead and round trip delays. Since some infostations in the network might be connected, we propose a soft handover mechanism that modifies the invocation process in order to reduce service delivery delays. This handover mechanism takes into consideration the opportunistic nature of the mobile part of the ICHN. We have performed various experiments to evaluate our solutions and compare them with other protocols designed for ad hoc and opportunistic networks. The obtained results tend to prove that our solutions outperform these protocols, namely thanks to the optimizations we have developed for ICHNs. In our opinion, building specialized protocols that benefit from techniques specifically designed for ICHNs is an approach that should be pursued, in complement with research works on general-purpose communication protocolsLa vision de l'informatique ubiquitaire permettant de construire des espaces intelligents interactifs dans l'environnement physique passe, peu Ă  peu, du domaine de la recherche Ă  la rĂ©alitĂ©. La capacitĂ© de calcul ne se limite plus Ă  l'ordinateur personnel mais s'intĂšgre dans de multiples appareils du quotidien, et ces appareils deviennent, grĂące Ă  plusieurs interfaces, capables de communiquer directement les uns avec les autres ou bien de se connecter Ă  Internet.Dans cette thĂšse, nous nous sommes intĂ©ressĂ©s Ă  un type d'environnement cible de l'informatique ubiquitaire qui forme ce que nous appelons un rĂ©seau hybride Ă  connexions intermittentes (ICHN). Un ICHN est un rĂ©seau composĂ© de deux parties : une partie fixe et une partie mobile. La partie fixe est constituĂ©e de plusieurs infostations fixes (potentiellement reliĂ©es entre elles avec une infrastructure fixe, typiquement l'Internet). La partie mobile, quant Ă  elle, est constituĂ©e de smartphones portĂ©s par des personnes nomades. Tandis que la partie fixe est principalement stable, la partie mobile pose un certain nombre de dĂ©fis propres aux rĂ©seaux opportunistes. En effet, l'utilisation de moyens de communication Ă  courte portĂ©e couplĂ©e Ă  des dĂ©placements de personnes non contraints et Ă  des interfĂ©rences radio induit des dĂ©connexions frĂ©quentes. Le concept du "store, carry and forward" est alors habituellement appliquĂ© pour permettre la communication sur l'ensemble du rĂ©seau. Avec cette approche, un message peut ĂȘtre stockĂ© temporairement sur un appareil avant d'ĂȘtre transfĂ©rĂ© plus tard quand les circonstances sont plus favorables. Ainsi, n'importe quel appareil devient un relai de transmission opportuniste qui permet de faciliter la propagation d'un message dans le rĂ©seau. Dans ce contexte, la fourniture de services est particuliĂšrement problĂ©matique, et exige de revisiter les composants principaux du processus de fourniture, tels que la dĂ©couverte et l'invocation de service, en prĂ©sence de ruptures de connectivitĂ© et en l'absence de chemins de bout en bout. Cette thĂšse aborde les problĂšmes de fourniture de service sur l'ensemble d'un ICHN et propose des solutions pour la dĂ©couverte de services, l'invocation et la continuitĂ© d'accĂšs. En ce qui concerne le dĂ©fi de la dĂ©couverte de services, nous proposons TAO-DIS, un protocole qui met en Ɠuvre un mĂ©canisme automatique et rapide de dĂ©couverte de services. TAO-DIS tient compte de la nature hybride d'un ICHN et du fait que la majoritĂ© des services sont fournis par des infostations. Il permet aux utilisateurs mobiles de dĂ©couvrir tous les services dans l'environnement afin d'identifier et de choisir les plus intĂ©ressants. Pour permettre aux utilisateurs d'interagir avec les services dĂ©couverts, nous introduisons TAO-INV. TAO-INV est un protocole d'invocation de service spĂ©cialement conçu pour les ICHN. Il se fonde sur un ensemble d'heuristiques et de mĂ©canismes qui assurent un acheminement efficace des messages (des requĂȘtes et des rĂ©ponses de services) entre les infostations fixes et les clients mobiles tout en conservant un surcoĂ»t et des temps de rĂ©ponses rĂ©duits. Puisque certaines infostations dans le rĂ©seau peuvent ĂȘtre reliĂ©es entre elles, nous proposons un mĂ©canisme de continuitĂ© d'accĂšs (handover) qui modifie le processus d'invocation pour rĂ©duire les dĂ©lais de dĂ©livrance. Dans sa dĂ©finition, il est tenu compte de la nature opportuniste de la partie mobile de l'ICHN. Nous avons menĂ© diverses expĂ©rimentations pour Ă©valuer nos solutions et les comparer Ă  d'autres protocoles conçus pour des rĂ©seaux ad hoc et des rĂ©seaux opportunistes. Les rĂ©sultats obtenus tendent Ă  montrer que nos solutions surpassent ces autres protocoles, notamment grĂące aux optimisations que nous avons dĂ©veloppĂ©es pour les ICHN. À notre avis, construire des protocoles spĂ©cialisĂ©s qui tirent parti des techniques spĂ©cifiquement conçues pour les ICHN est une approche Ă  poursuivre en complĂ©ment des recherches sur des protocoles de communication polyvalent

    QoSHVCP: hybrid vehicular communications protocol with QoS prioritization for safety applications

    Get PDF
    This paper introduces a hybrid communication paradigm for achieving seamless connectivity in Vehicular Ad hoc Networks (VANETs), wherein the connectivity is often affected by changes in the dynamic topology, vehicles' speed, as well as the traffic density. Our proposed technique named QoS-oriented Hybrid Vehicular Communications Protocol (QoSHVCP) exploits both existing network infrastructure through a Vehicle-to-Infrastructure (V2I), as well as a traditional Vehicle-to-Vehicle (V2V) connection that could satisfy Quality-of-Service requirements. QoSHVCP is based on a V2V-V2I protocol switching algorithm, executed in a distributed fashion by each vehicle and is based on the cost function for alternative paths each time it needs to transmit a message. We utilize time delay as a performance metric and present the delay propagation rates when vehicles are transmitting high priority messages via QoSHVCP. Simulation results indicate that simultaneous usage of preexisting network infrastructure along with intervehicular communication provide lower delays, while maintaining the level of user's performance. Our results show a great promise for their future use in VANETs

    Resource-efficient strategies for mobile ad-hoc networking

    Get PDF
    The ubiquity and widespread availability of wireless mobile devices with ever increasing inter-connectivity (e. g. by means of Bluetooth, WiFi or UWB) have led to new and emerging next generation mobile communication paradigms, such as the Mobile Ad-hoc NETworks (MANETs). MANETs are differentiated from traditional mobile systems by their unique properties, e. g. unpredictable nodal location, unstable topology and multi-hop packet relay. The success of on-going research in communications involving MANETs has encouraged their applications in areas with stringent performance requirements such as the e-healthcare, e. g. to connect them with existing systems to deliver e-healthcare services anytime anywhere. However, given that the capacity of mobile devices is restricted by their resource constraints (e. g. computing power, energy supply and bandwidth), a fundamental challenge in MANETs is how to realize the crucial performance/Quality of Service (QoS) expectations of communications in a network of high dynamism without overusing the limited resources. A variety of networking technologies (e. g. routing, mobility estimation and connectivity prediction) have been developed to overcome the topological instability and unpredictability and to enable communications in MANETs with satisfactory performance or QoS. However, these technologies often feature a high consumption of power and/or bandwidth, which makes them unsuitable for resource constrained handheld or embedded mobile devices. In particular, existing strategies of routing and mobility characterization are shown to achieve fairly good performance but at the expense of excessive traffic overhead or energy consumption. For instance, existing hybrid routing protocols in dense MANETs are based in two-dimensional organizations that produce heavy proactive traffic. In sparse MANETs, existing packet delivery strategy often replicates too many copies of a packet for a QoS target. In addition, existing tools for measuring nodal mobility are based on either the GPS or GPS-free positioning systems, which incur intensive communications/computations that are costly for battery-powered terminals. There is a need to develop economical networking strategies (in terms of resource utilization) in delivering the desired performance/soft QoS targets. The main goal of this project is to develop new networking strategies (in particular, for routing and mobility characterization) that are efficient in terms of resource consumptions while being effective in realizing performance expectations for communication services (e. g. in the scenario of e-healthcare emergency) with critical QoS requirements in resource-constrained MANETs. The main contributions of the thesis are threefold: (1) In order to tackle the inefficient bandwidth utilization of hybrid service/routing discovery in dense MANETs, a novel "track-based" scheme is developed. The scheme deploys a one-dimensional track-like structure for hybrid routing and service discovery. In comparison with existing hybrid routing/service discovery protocols that are based on two-dimensional structures, the track-based scheme is more efficient in terms of traffic overhead (e. g. about 60% less in low mobility scenarios as shown in Fig. 3.4). Due to the way "provocative tracks" are established, the scheme has also the capability to adapt to the network traffic and mobility for a better performance. (2) To minimize the resource utilization of packet delivery in sparse MANETs where wireless links are intermittently connected, a store-and-forward based scheme, "adaptive multicopy routing", was developed for packet delivery in sparse mobile ad-hoc networks. Instead of relying on the source to control the delivery overhead as in the conventional multi-copy protocols, the scheme allows each intermediate node to independently decide whether to forward a packet according to the soft QoS target and local network conditions. Therefore, the scheme can adapt to varying networking situations that cannot be anticipated in conventional source-defined strategies and deliver packets for a specific QoS targets using minimum traffic overhead. ii (3) The important issue of mobility measurement that imposes heavy communication/computation burdens on a mobile is addressed with a set of resource-efficient "GPS-free" soluti ons, which provide mobility characterization with minimal resource utilization for ranging and signalling by making use of the information of the time-varying ranges between neighbouring mobile nodes (or groups of mobile nodes). The range-based solutions for mobility characterization consist of a new mobility metric for network-wide performance measurement, two velocity estimators for approximating the inter-node relative speeds, and a new scheme for characterizing the nodal mobility. The new metric and its variants are capable of capturing the mobility of a network as well as predicting the performance. The velocity estimators are used to measure the speed and orientation of a mobile relative to its neighbours, given the presence of a departing node. Based on the velocity estimators, the new scheme for mobility characterization is capable of characterizing the mobility of a node that are associated with topological stability, i. e. the node's speeds, orientations relative to its neighbouring nodes and its past epoch time. iiiBIOPATTERN EU Network of Excellence (EU Contract 508803

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Actas da 10ÂȘ ConferĂȘncia sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    Software-Defined Networking Enabled Capacity Sharing in User Centric Networks

    Get PDF
    International audienceIn this paper, we discuss User Centric Networks (UCNs) as a way of, if not completely solving, considerably mitigating the problem of sharing limited network capacity and resources efficiently and fairly. UCNs are self-organizing networks where the end-user plays an active role in delivering networking functions such as providing Internet access to other users. We propose to leverage the recently proposed Software Defined Networking (SDN) paradigm to enable cooperation between wireless nodes and provide capacity sharing services in UCNs. Our SDN-based approach allows to extend coverage of existing network infrastructure (such as WiFi or 3GPP) to other end-users or ad hoc networks that would otherwise not be able to have access to network connectivity and services. Moreover, the proposed SDN-based architecture also takes into account current network load and conditions, and quality-of service (QoS) requirements. Another important feature of our framework is that security is an integral part of the architecture and protocols. We discuss the requirements for enabling capacity sharing services in the context of UCNs (e.g., resource discovery, node admission control, cooperation incentives, QoS, security, etc) and how SDN can aid in enabling such services. The paper also describes the proposed SDN-enabled capacity sharing framework for UCNs

    A Vision and Framework for the High Altitude Platform Station (HAPS) Networks of the Future

    Full text link
    A High Altitude Platform Station (HAPS) is a network node that operates in the stratosphere at an of altitude around 20 km and is instrumental for providing communication services. Precipitated by technological innovations in the areas of autonomous avionics, array antennas, solar panel efficiency levels, and battery energy densities, and fueled by flourishing industry ecosystems, the HAPS has emerged as an indispensable component of next-generations of wireless networks. In this article, we provide a vision and framework for the HAPS networks of the future supported by a comprehensive and state-of-the-art literature review. We highlight the unrealized potential of HAPS systems and elaborate on their unique ability to serve metropolitan areas. The latest advancements and promising technologies in the HAPS energy and payload systems are discussed. The integration of the emerging Reconfigurable Smart Surface (RSS) technology in the communications payload of HAPS systems for providing a cost-effective deployment is proposed. A detailed overview of the radio resource management in HAPS systems is presented along with synergistic physical layer techniques, including Faster-Than-Nyquist (FTN) signaling. Numerous aspects of handoff management in HAPS systems are described. The notable contributions of Artificial Intelligence (AI) in HAPS, including machine learning in the design, topology management, handoff, and resource allocation aspects are emphasized. The extensive overview of the literature we provide is crucial for substantiating our vision that depicts the expected deployment opportunities and challenges in the next 10 years (next-generation networks), as well as in the subsequent 10 years (next-next-generation networks).Comment: To appear in IEEE Communications Surveys & Tutorial
    • 

    corecore