5,332 research outputs found

    Eyewear Computing \u2013 Augmenting the Human with Head-Mounted Wearable Assistants

    Get PDF
    The seminar was composed of workshops and tutorials on head-mounted eye tracking, egocentric vision, optics, and head-mounted displays. The seminar welcomed 30 academic and industry researchers from Europe, the US, and Asia with a diverse background, including wearable and ubiquitous computing, computer vision, developmental psychology, optics, and human-computer interaction. In contrast to several previous Dagstuhl seminars, we used an ignite talk format to reduce the time of talks to one half-day and to leave the rest of the week for hands-on sessions, group work, general discussions, and socialising. The key results of this seminar are 1) the identification of key research challenges and summaries of breakout groups on multimodal eyewear computing, egocentric vision, security and privacy issues, skill augmentation and task guidance, eyewear computing for gaming, as well as prototyping of VR applications, 2) a list of datasets and research tools for eyewear computing, 3) three small-scale datasets recorded during the seminar, 4) an article in ACM Interactions entitled \u201cEyewear Computers for Human-Computer Interaction\u201d, as well as 5) two follow-up workshops on \u201cEgocentric Perception, Interaction, and Computing\u201d at the European Conference on Computer Vision (ECCV) as well as \u201cEyewear Computing\u201d at the ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp)

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare

    Interdisciplinary perspectives on privacy awareness in lifelogging technology development

    Get PDF
    Population aging resulting from demographic changes requires some challenging decisions and necessary steps to be taken by different stakeholders to manage current and future demand for assistance and support. The consequences of population aging can be mitigated to some extent by assisting technologies that can support the autonomous living of older individuals and persons in need of care in their private environments as long as possible. A variety of technical solutions are already available on the market, but privacy protection is a serious, often neglected, issue when using such (assisting) technology. Thus, privacy needs to be thoroughly taken under consideration in this context. In a three-year project PAAL (‘Privacy-Aware and Acceptable Lifelogging Services for Older and Frail People’), researchers from different disciplines, such as law, rehabilitation, human-computer interaction, and computer science, investigated the phenomenon of privacy when using assistive lifelogging technologies. In concrete terms, the concept of Privacy by Design was realized using two exemplary lifelogging applications in private and professional environments. A user-centered empirical approach was applied to the lifelogging technologies, investigating the perceptions and attitudes of (older) users with different health-related and biographical profiles. The knowledge gained through the interdisciplinary collaboration can improve the implementation and optimization of assistive applications. In this paper, partners of the PAAL project present insights gained from their cross-national, interdisciplinary work regarding privacy-aware and acceptable lifelogging technologies.Open Access funding enabled and organized by Projekt DEAL. This work is part of the PAAL-project (“Privacy-Aware and Acceptable Lifelogging services for older and frail people”). The support of the Joint Programme Initiative “More Years, Better Lives” (award number: PAAL_JTC2017), the German Federal Ministry of Education and Research (grant no: 16SV7955), the Swedish Research Council for Health, Working Life, and Welfare (grant no: 2017–02302), the Spanish Agencia Estatal de Investigacion (PCIN-2017-114), the Italian Ministero dell’Istruzione dell’Universitá e della Ricerca, (CUP: I36G17000380001), and the Canadian Institutes of Health Research is gratefully acknowledged

    A Situative Space Model for Mobile Mixed-Reality Computing

    Get PDF

    HOW TO DIMINISH ADVICE DISCOUNTING WITH MOBILE MULTIMEDIA INTERVENTIONS

    Get PDF
    The phenomenon of advice discounting in advice taking and the lack of motivational force in advice giving often hamper follow-up actions which are important to satisfy both advice seekers’ and advi-sors’ demands. This paper strives to diminish the well-known problem of advice discounting by invest-ing in a design study and creating a new information system supporting advisors. The prototype is mobile and provides multimedia interventions. These enable the advisors to activate advice takers on an emotional level with wow-factor episodes which strengthen advisors’ arguments. This study is af-fected by and evaluated in the practical field of home security advice. The evaluation points to the conclusion that the motivation to utilize given advice is higher in the IS-supported advisory service compared to the conventional approach of plain speech-based advice giving. The paper contributes general design implications facing advice discounting in mobile and collaborative advisory services. Furthermore, it supports home security provider in designing their mobile service encounter to in-crease the advice implementation

    LLM-Powered Conversational Voice Assistants: Interaction Patterns, Opportunities, Challenges, and Design Guidelines

    Full text link
    Conventional Voice Assistants (VAs) rely on traditional language models to discern user intent and respond to their queries, leading to interactions that often lack a broader contextual understanding, an area in which Large Language Models (LLMs) excel. However, current LLMs are largely designed for text-based interactions, thus making it unclear how user interactions will evolve if their modality is changed to voice. In this work, we investigate whether LLMs can enrich VA interactions via an exploratory study with participants (N=20) using a ChatGPT-powered VA for three scenarios (medical self-diagnosis, creative planning, and debate) with varied constraints, stakes, and objectivity. We observe that LLM-powered VA elicits richer interaction patterns that vary across tasks, showing its versatility. Notably, LLMs absorb the majority of VA intent recognition failures. We additionally discuss the potential of harnessing LLMs for more resilient and fluid user-VA interactions and provide design guidelines for tailoring LLMs for voice assistance

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die BerĂŒcksichtigung verĂ€nderter Schwerkraftbedingungen

    A Consumer-tier based Visual-Brain Machine Interface for Augmented Reality Glasses Interactions

    Full text link
    Objective.Visual-Brain Machine Interface(V-BMI) has provide a novel interaction technique for Augmented Reality (AR) industries. Several state-of-arts work has demonstates its high accuracy and real-time interaction capbilities. However, most of the studies employ EEGs devices that are rigid and difficult to apply in real-life AR glasseses application sceniraros. Here we develop a consumer-tier Visual-Brain Machine Inteface(V-BMI) system specialized for Augmented Reality(AR) glasses interactions. Approach. The developed system consists of a wearable hardware which takes advantages of fast set-up, reliable recording and comfortable wearable experience that specificized for AR glasses applications. Complementing this hardware, we have devised a software framework that facilitates real-time interactions within the system while accommodating a modular configuration to enhance scalability. Main results. The developed hardware is only 110g and 120x85x23 mm, which with 1 Tohm and peak to peak voltage is less than 1.5 uV, and a V-BMI based angry bird game and an Internet of Thing (IoT) AR applications are deisgned, we demonstrated such technology merits of intuitive experience and efficiency interaction. The real-time interaction accuracy is between 85 and 96 percentages in a commercial AR glasses (DTI is 2.24s and ITR 65 bits-min ). Significance. Our study indicates the developed system can provide an essential hardware-software framework for consumer based V-BMI AR glasses. Also, we derive several pivotal design factors for a consumer-grade V-BMI-based AR system: 1) Dynamic adaptation of stimulation patterns-classification methods via computer vision algorithms is necessary for AR glasses applications; and 2) Algorithmic localization to foster system stability and latency reduction.Comment: 15 pages,10 figure
    • 

    corecore