Objective.Visual-Brain Machine Interface(V-BMI) has provide a novel
interaction technique for Augmented Reality (AR) industries. Several
state-of-arts work has demonstates its high accuracy and real-time interaction
capbilities. However, most of the studies employ EEGs devices that are rigid
and difficult to apply in real-life AR glasseses application sceniraros. Here
we develop a consumer-tier Visual-Brain Machine Inteface(V-BMI) system
specialized for Augmented Reality(AR) glasses interactions. Approach. The
developed system consists of a wearable hardware which takes advantages of fast
set-up, reliable recording and comfortable wearable experience that
specificized for AR glasses applications. Complementing this hardware, we have
devised a software framework that facilitates real-time interactions within the
system while accommodating a modular configuration to enhance scalability. Main
results. The developed hardware is only 110g and 120x85x23 mm, which with 1
Tohm and peak to peak voltage is less than 1.5 uV, and a V-BMI based angry bird
game and an Internet of Thing (IoT) AR applications are deisgned, we
demonstrated such technology merits of intuitive experience and efficiency
interaction. The real-time interaction accuracy is between 85 and 96
percentages in a commercial AR glasses (DTI is 2.24s and ITR 65 bits-min ).
Significance. Our study indicates the developed system can provide an essential
hardware-software framework for consumer based V-BMI AR glasses. Also, we
derive several pivotal design factors for a consumer-grade V-BMI-based AR
system: 1) Dynamic adaptation of stimulation patterns-classification methods
via computer vision algorithms is necessary for AR glasses applications; and 2)
Algorithmic localization to foster system stability and latency reduction.Comment: 15 pages,10 figure