16,610 research outputs found

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    Constraint specification by example in a Meta-CASE tool

    Get PDF
    CASE tools are very helpful to software engineers in different ways and in different phases of software development. However, they are not easy to specialise to meet the needs of particular application domains or particular software modelling requirements. Meta-CASE tools offer a way of providing such specialisation by enabling a designer to specify a tool which is then generated automatically. Constraints are often used in such meta-CASE tools as a technique for governing the syntax and semantics of model elements and the values of their attributes. However, although constraint definition is a difficult process it has attracted relatively little research attention. The PhD research described here presents an approach for improving the process of CASE tool constraint specification based on the notion of programming by example (or demonstration). The feasibility of the approach will be demonstrated via experiments with a prototype using the meta-CASE tool Diagram Editor Constraints System (DECS) as context

    Gentleman : a lightweight web-based projectional editor

    Full text link
    Lors de la conception et la manipulation de logiciel par modĂ©lisation, il est avantageux de bĂ©nĂ©ïŹcier d’un grand degrĂ© de libertĂ© au niveau de la prĂ©sentation aïŹn de comprendre l’information et prendre une action en exerçant peu d’eïŹ€ort cognitif et physique. Cette caractĂ©ristique doit aussi s’étendre aux outils que nous employons aïŹn que ceux-ci augmentent nos capacitĂ©s, plutĂŽt que les restreindre. En gĂ©nie logiciel, nous travaillons prĂ©sentement Ă  rehausser encore le niveau d’abstraction aïŹn de rĂ©duire le rĂŽle central du code dĂ©crit avec un langage de programmation Ă  usage gĂ©nĂ©ral. Ceci permettrait d’inclure les experts non techniques dans les activitĂ©s de dĂ©veloppement de logiciel. Cette approche, centralisĂ©e sur le domaine et l’expert, s’inscrit dans l’ingĂ©nierie dirigĂ©e par les modĂšles (IDM), oĂč un modĂšle est produit et manipulĂ© par divers experts et utilisateurs. Le modĂšle est alors dĂ©crit avec un langage crĂ©Ă© spĂ©ciïŹquement pour un domaine d’application ou une tache, appelĂ© langage dĂ©diĂ© (DSL). Une technique utilisĂ©e pour crĂ©er ces modĂšles et leurs DSL est le projectional editing, qui permet d’utiliser des notations diverses interchangeables et d’étendre et composer facilement un langage. Toutefois, les solutions actuelles sont lourdes, spĂ©ciïŹques Ă  une plateforme, et manquent considĂ©rablement d’utilisabilitĂ©, limitant ainsi l’usage et l’exploitation de cette approche. Pour mieux reïŹ‚Ă©ter les avantages du paradigme IDM avec le style projectionnel, nous introduisons dans cette thĂšse Gentleman, un Ă©diteur projectionnel lĂ©ger sur le web. Avec Gentleman, le dĂ©veloppeur crĂ©e un modĂšle en combinant des concepts utilisĂ©s pour dĂ©ïŹnir la structure du modĂšle et des projections pour les manipuler dans l’éditeur. Nous avons Ă©valuĂ© Gentleman Ă  travers une Ă©tude basĂ©e sur un groupe d’utilisateur. L’étude a conïŹrmĂ© sa capacitĂ© Ă  crĂ©er et manipuler des modĂšles eïŹƒcacement. Les participants ont notĂ© qu’il est facile de prendre en main Gentleman et que l’interface est trĂšs intuitive comparativement aux Ă©diteurs existants. Nous avons aussi intĂ©grĂ© Gentleman avec succĂšs Ă  une plateforme web, dĂ©montrant ainsi ses capacitĂ©s d’interopĂ©rabilitĂ© et l’avantage d’une solution web.In software activities and, more specifically, when modeling, the modeler should benefit from as much freedom as possible to understand the presented information and take action with minimal cognitive and mechanical effort. This characteristic should also apply to the tools used in the process so that they extend our capabilities rather than limit them. In the field of software engineering, current work aims to push the level of abstraction past general-purpose programming language into domain-specific modeling. This enables domain experts with various backgrounds to participate in software development activities. This vision is central to model-driven engineering (MDE) where, instead of code, various experts and users produce and manipulate domain-specific language (DSL). In recent years, projectional editing has proven to be a valid approach to creating and manipulating DSLs, as it supports various easily interchangeable notations and enables language extension and composition. However, current solutions are heavyweight, platform-specific, and suffer from poor usability. To better support this paradigm and minimize the risk of accidental complexity in terms of expressiveness, in this thesis, we introduce Gentleman, a lightweight web-based projectional editor. With Gentleman, a developer creates a model by combining concepts used to define its structure and projections to interact and manipulate them in the editor. We have evaluated Gentleman through a user study. The evaluation confirmed its capacity to create and manipulate models effectively. Most participants noted that the editor is very user-friendly and intuitive compared to existing editors. We have also successfully integrated Gentleman into a web application, demonstrating its interoperability and the benefit of a web solution

    RULEBENDER: INTEGRATED MODELING, SIMULATION, AND VISUALIZATION FOR RULE-BASED INTRACELLULAR BIOCHEMISTRY

    Get PDF
    Rule-based modeling (RBM) is a powerful and increasingly popular approach to modeling cell signaling networks. However, novel visual tools are needed in order to make RBM accessible to a broad range of users, to make specification of models less error prone, and to improve workflows. We introduce RuleBender, a novel visualization system for the integrated visualization, modeling and simulation of rule-based intracellular biochemistry. We present the user requirements, visual paradigms, algorithms and design decisions behind RuleBender, with emphasis on visual global/local model exploration and integrated execution of simulations. The support of RBM creation, debugging, and interactive visualization expedites the RBM learning process and reduces model construction time; while built-in model simulation and results with multiple linked views streamline the execution and analysis of newly created models and generated networks. RuleBender has been adopted as both an educational and a research tool and is available as a free open source tool at http://www.rulebender.org. A development cycle that includes close interaction with expert users allows RuleBender to better serve the needs of the systems biology community
    • 

    corecore