Un1vers1ty

Qf Glasgow

Qattous, H.K. (2009) Constraint specification by example in a Meta-
CASE tool. In: The 7th joint meeting of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), 24-28 Aug 2009,
Amsterdam, The Netherlands.

http://eprints.gla.ac.uk/47875/

Deposited on: 16 December 2010

Enlighten — Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/6557.html

Constraint Specification by Example
in a Meta-CASE Tool

Hazem Qattous
Department of Computing Science
Sir Alwyn Williams Building
University of Glasgow, G12 8QQ, UK
+44 141 330 0916

hgattous@dcs.gla.ac.uk

ABSTRACT

CASE tools are very helpful to software engineerdifferent
ways and in different phases of software develogmétowever,
they are not easy to specialise to meet the nekgmrticular
application domains or particular software modellin
requirements. Meta-CASE tools offer a way of pdawy such
specialisation by enabling a designer to specifpa which is
then generated automatically. Constraints arenafed in such
meta-CASE tools as a technique for governing theasyand
semantics of model elements and the values of di#ibutes.
However, although constraint definition is a diffic process it
has attracted relatively little research attentidine PhD research
described here presents an approach for improviagtocess of
CASE tool constraint specification based on theiomotof
programming by example (or demonstration). Thesifslity of
the approach will be demonstrated via experimenith va
prototype using the meta-CASE tool Diagram Editon€§traints
System (DECS) as context.

Categoriesand Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques —
Computer Aided Software Engineering (CASE).

General Terms
Design, Human Factors, Languages.

Keywords
Meta-CASE tools, Domain Specific Language, ProgramnBy
Example.

1. INTRODUCTION

CASE tools are helpful to software engineers inréasing the
productivity, shortening development time, and ioyng
software quality. One of the main advantages of EASols is
their potential domain specificity. Meta-CASE teaan specify
and generate domain specific CASE tools includinesigh
diagram editors, the experimental domain of thiseaech. A

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies
are not made or distributed for profit or commdreidvantage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers oreistribute to lists,
requires prior specific permission and/or a fee.

Conference’04Month 1-2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004...$5.00.

meta-CASE tool defines a diagram editor by spengyithe
modelling language itself through a meta-modellipgcess.
Meta-modelling techniques depend on two componentefine
the domain specific language syntax and semartiosgta-model
and constraints.

The meta-modelling process is complicated, neeas, tand in the
case of several tools, needs experts [4]. Thibeisause the
definition of syntax and semantics needs experie@acs
knowledge of the meta-model, constraint definitiand the
domain specific language to be modelled. In tled&dfiof meta-
CASE tools, most research is directed towards esihgnthe
meta-models to improve the meta-modelling proce3$. [
However, constraints which play an important raleJASE tool
configuration and the meta-modelling process dttvaey little
research attention. It is believed that improvitige meta-
modelling process can be achieved through enhaneing
simplifying the constraint definition process. Hower, constraint
definition is not an easy task. Constraint deifimit in the context
of meta-CASE tools, is performed using a constré&nguage.
“MetaBuilder” [4] is a meta-CASE tool that requirdise user
(CASE tool designer) to enter constraints via a st@nt
language. Consequently, the user must learn atreoms
programming language to accomplish the job. Séwralies
have attempted to reduce the difficulty of constraiefinition
within meta-CASE tools. In place of direct enttjetaEdit+”
[8] uses form-filling, with one form for each corant type.

One other technique used to reduce the difficuftycanstraint
definition is visual programming [10]. The Pounamata-CASE
tool includes a visual language to represent evamdsassociated
actions. They also have proposed using programiyrexample
in the event handling as another technique to mdtie
complexity of the process including constraint digbn. These
examples indicate that constraint definition is easy and several
approaches have been offered to solve its complexitis also
indicates the importance of constraints as a parthe meta-
modelling process.

The next section of this abstract presents theddithe research
including a thesis statement. This is followed byoatline of the
approach being taken. Constraints in meta-CASEs tand their
importance are then introduced in section 4. DEtS, meta-
CASE tool used for this work, is presented in ggch. Section 6
introduces programming by example and its use farcifying

constraints. Section 7 outlines progress made rsddifowed in

Section 8 by plans for future work and a set ofrogeestions.

2. Thesis Statement

The aim of this research is to improve the proadssonstraint
definition as part of domain specific CASE tool sifieation in a
meta-CASE tool. In particular, the work will focos facilitating
and simplifying constraint definition process usimggramming
by example technique. Programming by example igcienhas
not been used before in the context of meta-CASIS tohich is
considered as the main contribution of this redearc

In summary this research sets out to establish that it is gmes
to improve the process of CASE tool specificatiprfdzilitating
and simplifying the constraint definition processing a
programming by example technique

3. Approach

To be able to accept or reject the hypothesis ettlesis, studies
should be conducted to explore the feasibility, aadages, and
disadvantages of the new technique, programmingxaynple, in

constraint definition process in a meta-CASE tool.

As a first step in the research, an experimentdhf8ASE tool,
Diagram Editor Constraints System (DECS), has lkmloped,
improved and used as a platform and context foexperiments.

The next step involved creating an XML-based ca@mstr
description and expression language. Concurreatlgonstraint
manager that holds and handles constraints atnmentivas
developed as a separate component and attach¢6G8.D

The third step introduced a way to define constsagther than
direct editing of the XML constraint description3he first part
of this step required developing a constraint didin wizard.

Recently, a constraint definition by example tequei has been
partially developed. An inference engine has bagopted and
embedded within a newly developed component, tifierénce
manager. Details of these steps are given in thewing
sections.

4. Constraintsin Meta-CASE Tools

In the context of design diagram editors, constsaican be
considered as signs to guide architects to a gesdyd solution.
They are rules that limit the available alternagite achieve a
task, and provide valuable support to designersebfprcing
compliance with a specific development methodolidgh)}.

In most reviewed meta-CASE tools, constraints jplaymportant
role in specifying diagram editors and composingiraportant

part of the meta-modelling process. In meta-CA8&lst both,
meta-model and constraints are used to define syatad

semantics of the domains specific language. Destfiis

importance of constraints in meta-modelling processy little

research conducted to enhance constrain definifosess such
as [10] and [5] compared to research conductechénfield of

meta-models [7].

5. DECS

DECS (Diagram Editor Constraints System) is an [@selbased
meta-CASE experimental prototype initially develdpat the
University of Glasgow prior to the start of thissearch. It
generates constraint-based domain specific diageitors
extended from Graphical Editing Framework (GEF)ifisg plug-
in. The DECS meta-modelling process is composedefihing
vertices, edges, and constraints. As shown in DECSBitecture

(figure 1), this process is done by the CASE taadigner (editor
designer) using wizards. The definition is stoasdXML files.

Delies veriozs,

. edges, ard consirainls
Reads ard Wiles Matatodeimg
%+ s
Pwizards]
i
Edilor Designer
) Reads
c"‘:ﬁ""“s - Geraated Deredngs modsls
L) + Dizgram Edir
r .
Cortro's Modelisg
Bebaiowr and Shows
Messages ‘-\
Ediar Usar
B Faals Consiairt
s Panager

Figure 1. DECS architecture.

The CASE tool user (editor user) uses the geneetgfonment
to develop system diagrams and models. DECS depmathly
on XML files as a repository to allow communicatibetween
different levels (meta-level and modelling level).

5.1 TheConstraint Manager

The constraint manager is implemented as a sep&BE@€S

component. It reads the constraint XML files amdherts them
into runtime objects using the wrapper designetepat The
design depends on considering every property o€timstraint as
a separate wrapper layer which gives flexibility fny future
extension of the properties. The constraint managentains the
constraints in a list and uses them as assertionshe user’'s
actions in the modelling environment. Every tintee tuser
updates (modifies) the diagram model, the congtramnager is
consulted. If a violation is detected, the cornistrenanager either
warns or prevents the user from violating the awinst,

depending on the violated constraint type.

6. Constraint Definition by Example

According to [11], programming by example is thehtéique of
presenting examples of data and values to thersy$tem which
it can generalise these values to generate a pnogralhe
objective of programming by example is to make paiogning an
easier task and available for non-programmers. f€ohnique
depends on providing examples of the required @rogto the
system. The system then infers the program byrgésiag the
examples. Cypher [3] introduces inferring the us&nt from an
example as the main challenge in applying suchnigcie.

This technique has been applied in a number ofmdifft contexts
such as DocWizards” [12] for generating documeatatiand in
mapping between a state and its associated actiomsbotic
applications [1]. The programming by example téghe has
been applied to constraint specification by seveeskarchers.
Myers [11] used the technique to infer constraibetween
different graphical user interface components.ng$Peridot”, it
is possible to build a GUI without programming. rkunder &
Feiner [9] used the same technique to infer geacetmstraints
between vertices in a system called “Chimera”. rday [2]
defines graphical constraints by example that rbestrue all the
time. The system always tries to keep the comgirdiold while
the user manipulates the graph.

However, from the reviewed literature, it has baeticed that the
constraint by example technique has not been usednythe
context of meta-CASE tools. In this research, dswdecided to
study the feasibility of applying this technique fbe purpose of
making constraint definition in meta-CASE toolsieas

7. ProgressReport

7.1 Constraint Description

To be able to express constraints, DECS adoptedegy-value
XML description as each constraint depends on a dfet
properties. Similar technique has been introdumefll4]. Some
values in a DECS constraint description can beURés of other
constraints. This ability to encapsulate constsaimithin each
other makes it possible to construct complex caivgs. The
same feature has been introduced by [10] to expressplex
behaviour and they called that “packing”.

Within DECS, the user can define a constraint eithging a
wizard or by example. In the first case, the ugees through
several forms to assign values to different comdtiaoperties as
required. The proposed technique, constraint diefin by
example, depends on allowing the user to introduee or more
examples of the required constraint. From the @lafs), the
system should be able to infer the intended constra The
inference process in this context is fairly comgiéd because of
constraints’ complicated nature and the wide ramigeonstraint
alternatives that an example could mean. A singlablem has
been introduced by [9]. Their solution dependedimiting the
number of constraints that can be inferred. SDEES generates
constraint-based CASE tools, it is not possibledopt a similar
solution as that may limit the number of constsiotr their
expressiveness.

7.2 Constraint Inference

The key challenge in this research is the inferemogine and
inference technique to be used. A general revietheavailable
inference engines and inference techniques has tmeducted.
It has been decided to use forward chaining instéasackward
since the user introduce example to the systenitatwbuld infer
the target constraint not vice versa. An open a®unference
engine [13] has been adopted and modified forugHCS. One
key advantage of this system is the simplicitytefrule language,
simply written as if-then text statements in natuenguage,
lowering the overhead of writing rule sets.

A new component, the inference manager, has beeelaped
and the inference engine has been adapted within The
inference manager is only effective when the usSsSE tool
designer) is in the constraint definition by exaenphvironment.
Whenever the user performs an action (add, detetenect, or
modifies a property) on any element (vertex or gdipe manager
reviews its knowledge base and performs an inferenc

Another challenge in this research is the genexadis of objects
(elements, including vertices and edges). Thidblera has been
introduced by [15] in Kidsim; they overcame the ldemn by
allowing the user to specify his/her intention. DECS, this
problem is handled using the rules in the infereecgine.
Inference rules have been classified into two tyf@wmice rules”
and “action rules”, with different behaviour. Cbeirule, if
triggered, returns a choice to the user which sTEs an

inference from the current example (graph). Actiate affects
the example itself by generalising some elemenis of

The system takes the example(s) introduced by ser and
collects all the inferences generated by choicestul These
inferences are introduced to the user to choosa.frtf the user
cannot find the intended constraint, the inferem@mager looks
for an action rule to apply. Applying an actiorlerdeads to a
modification of the example itself. This can bensidered as
rewriting the example as shown in (figure 2). Altigh this is
different from graphical rule rewriting introducéd KidSim by
[15], the graph rewriting or re-drawing process DECS is
important to achieve the required generalisatiah tarreduce the
number of choices presented to the user.

Ceme #

£ Sanpanents

End State (b)

e [T =
—=]
Shart Shafe

Tracsititn
PMon Tenminal Stats

1@

ect

rauee Start —————= raon Terminal S3ate OR End State

B2
N @
ect

e —{ -

e Lo

Figure 2: Rewriting graph in DECS. (a) example by the
user, (b) first rewriting, (c) second rewriting.

Rewriting the example in DECS can be considered &sm of
inference which leads to triggering new rules. tes example has
been modified, new choice rules can be trigger@tiese rules
return new choices to the user to choose from. s Thcle is
repeated until no more action or choice rules @ggéred. In this
manner, the generalisation task has been assignt trules at
the knowledge base not to the user. In each cyoteuser is
asked to choose from a small inference list instfapresenting
all the inferences at once. This solves the probdé the large
number of possible meanings of an example by skhptiem all.
The process also involves the user in helping terdene the
required constraint, which can be considered a®rgystic or
cooperative interaction between the user and tisteesy Such
synergistic interaction has previously been usea pmogramming
by example system to define the visual layout gfaph [6].

In contrast to most reviewed constraint programnfiggxample
tools, DECS depends on negative constraints whégresent
what must not be allowed. DECS negative conssagan be
expressed using negative examples. “Peridot” dépean
positive constraints and uses positive examplesxpress them.
However, sometimes, it was important to introducedative
examples” to express “what not to do” [11]. Simifa positive
examples are sometimes useful in DECS for exprgssayative
constraints. Although users may not be aware efdifference,
they should always keep in mind that they are waykin a
negative example environment.

The knowledge base has been designed with higlbifiex for
extension. Each rule is composed of two parts,|IEhand the
THEN part. Each part is represented by a singletmect. The

IF object evaluates if the rule is triggered or.ndfthe THEN

object returns either a choice or a modified examf@raph)

depending on its type. Whenever there is a neeatlitba rule,
then it is necessary to write the rule in the ief@e engine rule
language, create an object for the IF part to eaalthe rule, and
create an object to return either a choice or aifieddyraph.

7.3 Initial Experiment and Evaluation

As a first investigation of the thesis hypotheais experiment will

be conducted to evaluate constraint definition byaneple

compared to constraint definition by wizard. Foistpurpose, a
set of constraints that specify state transiticegcim syntax and
semantics have been identified. A state transiti@yram has
been chosen because it is well known and relatiesglgy to

understand. The diagram also contains all thergépenstraints
(syntax and semantics) that may appear in most diagrams. A
number of subjects will be trained to define coaistis using the
two techniques. The determined constraints wilidhéded into

two sets. The two sets will interchangeably definsing one of
the techniques. Task performance will be measimadrms of

accuracy and time to complete. Participants wioabe

interviewed to find out about perceived effort gretformance as
well as their subjective assessment of the teclesiqu

8. FutureWork

The next step of the research will be trying to lapmnstraint
definition by example to specify another diagramety Some
guestions that can be asked here include: is tgreeffect of the
modelling diagram itself? Is there any specific stoaint type that
is easier to define using a wizard than by the @leshased
technique?

This thesis is an initial investigation into theability of the
programming by example technique in the meta-CASBain. It
may be necessary to explore different inferencertigges if our
relatively simple rule-based method does not prdee be
satisfactory in our first experiments. As a pafttiis, rule
sequencing and prioritising depending on user actesn and
preferences could be applied to study their effecthe constraint
definition process. The current inference engisesurules for
inference. Instead, other artificial intelligerteehnique could be
used, such as neural networks or genetic algorjthongxplore
the effect of enabling the system to learn its reég. These
experiments may help to answer questions liket {gossible to
apply other artificial intelligence techniques viith the
programming by example technique? Will that make th
constraint definition process easier?

9. REFERENCES

[1] Argall, B., Chernova, S., Veloso, M., & Browning,. B
(2009). A survey of robot learning from demonstmati
Robotics and Autonomous Systendd (5), 469-483. DOI=
10.1016/j.robot.2008.10.024

[2] Borning, A. (1986). Defining Constraints Graphigall
Conference on Human Factors in Computing Systgms
137-143). Boston, USA: ACM, USA. DOI=
http://doi.acm.org/10.1145/22627.22362

[3] Cypher, A. (1993).Watch What | Do: Programming by
DemonstrationCambridge, Mass.: MIT Press.

[4] Ferguson, R., & Hunter, A. (2000). MetaBuilder: The
Diagrammer's DiagrammerLecture Notes In Computer
Science; Vol. 188%pp. 407 - 421). London, UK: Springer-
Verlag.

[5] Gray, P., & Welland, R. (1999). Increasing the ifidiky of
modelling tools via constraint-based specification.
Proceedings of the 1999 conference of the Centre fo
Advanced Studies on Collaborative researbfississauga,
Canada: IBM Press.

[6] Hudson, S., & Hsi, C.-N. (1993). A Synergistic Apach to
Specifying Simple Number Independent Layouts by
Example. Conference on Human Factors in Computing
Systems(pp. 285-292). New York, USA: ACM. DOI=
http://doi.acm.org/10.1145/169059.169221

[7] lIsazadeh, H., & Lamb, D. A. (1997CASE Environments
and MetaCASE Tooldechnical Report 1997-403, Queen's
University.

[8] Kelly, S. (2009).Domain-Specific Modeling: A Toolmaker
Perspective MetaEdit+ Workbench questions. [online].
Available at:
http://www.metacase.com/fag/showfaq.asp?cate=MWB
[Accessed 1 March 2009].

[9] Kurlander, D., & Feiner, S. (1993). Inferring Caastts
From Multiple SnapshotACM Transactions on Graphics
12 (4), 277-304. New York, USA: ACM. DOI=
http://doi.acm.org/10.1145/159730.159731

[10] Liu, N., Hosking, J., & Grundy, J. (2007). A Visual
Language and Environment for Specifying User laieef
Event Handling in Design Tool€onferences in Research
and Practice in Information Technology Series; Va4l
(pp. 87 - 94). Ballarat, Victoria, Australia : Avalian
Computer Society, Inc., Australia.

[11] Myers, B. (1993). Peridot: Creating User Interfades
Demonstration. In A. Cypher,Watch What | Do:
Programming by DemonstratiorCambridge, Mass.: MIT
Press.

[12] Prabaker, M., Bergman, L., & Castelli, V. (2006)n A
Evaluation of Using Programming by Demonstratiord an
Guided Walkthrough Techniques for Authoring andikltig
Documentation. Conference on Human Factors in
Computing Systems, Proceedings of the SIGCHI cemder
on Human Factors in computing syste(pp. 241 - 250).
Montréal, Québec, Canada: ACM, New York, USA. DOI=
http://doi.acm.org/10.1145/1124772.1124809

[13] Sazonov, E. (20040pen source fuzzy inference engine for
Java [online]. Available at:
http://people.clarkson.edu/~esazonov/FuzzyEngine.ht
[Accessed 27 March 2009].

[14] Scott, L., Horvath, L., & Day, D. (2000). Charadserg
CASE ConstraintsCommunications of the ACM, 43 (11),
232-238. DOI=http://doi.acm.org/10.1145/352515.352533

[15] Smith, D., Cypher, A., & Spohrer, J. (1994). KidSim
programming agents without a programming language.
Communications of the ACM37 (7) 54-67. DOI=
http://doi.acm.org/10.1145/176789.176795

	citation_temp.pdf
	http://eprints.gla.ac.uk/47875/

