

Qattous, H.K. (2009) Constraint specification by example in a Meta-
CASE tool. In: The 7th joint meeting of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE), 24-28 Aug 2009,
Amsterdam, The Netherlands.

http://eprints.gla.ac.uk/47875/

Deposited on: 16 December 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/6557.html

Constraint Specification by Example
in a Meta-CASE Tool

 Hazem Qattous
Department of Computing Science

Sir Alwyn Williams Building
University of Glasgow, G12 8QQ, UK

+44 141 330 0916

hqattous@dcs.gla.ac.uk

ABSTRACT
CASE tools are very helpful to software engineers in different
ways and in different phases of software development. However,
they are not easy to specialise to meet the needs of particular
application domains or particular software modelling
requirements. Meta-CASE tools offer a way of providing such
specialisation by enabling a designer to specify a tool which is
then generated automatically. Constraints are often used in such
meta-CASE tools as a technique for governing the syntax and
semantics of model elements and the values of their attributes.
However, although constraint definition is a difficult process it
has attracted relatively little research attention. The PhD research
described here presents an approach for improving the process of
CASE tool constraint specification based on the notion of
programming by example (or demonstration). The feasibility of
the approach will be demonstrated via experiments with a
prototype using the meta-CASE tool Diagram Editor Constraints
System (DECS) as context.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
Computer Aided Software Engineering (CASE).

General Terms
Design, Human Factors, Languages.

Keywords
Meta-CASE tools, Domain Specific Language, Programming By
Example.

1. INTRODUCTION
CASE tools are helpful to software engineers in increasing the
productivity, shortening development time, and improving
software quality. One of the main advantages of CASE tools is
their potential domain specificity. Meta-CASE tools can specify
and generate domain specific CASE tools including design
diagram editors, the experimental domain of this research. A

meta-CASE tool defines a diagram editor by specifying the
modelling language itself through a meta-modelling process.
Meta-modelling techniques depend on two components to define
the domain specific language syntax and semantics, a meta-model
and constraints.

The meta-modelling process is complicated, needs time, and in the
case of several tools, needs experts [4]. This is because the
definition of syntax and semantics needs experience and
knowledge of the meta-model, constraint definition, and the
domain specific language to be modelled. In the field of meta-
CASE tools, most research is directed towards enhancing the
meta-models to improve the meta-modelling process [7].
However, constraints which play an important role in CASE tool
configuration and the meta-modelling process attract very little
research attention. It is believed that improving the meta-
modelling process can be achieved through enhancing and
simplifying the constraint definition process. However, constraint
definition is not an easy task. Constraint definition, in the context
of meta-CASE tools, is performed using a constraint language.
“MetaBuilder” [4] is a meta-CASE tool that requires the user
(CASE tool designer) to enter constraints via a constraint
language. Consequently, the user must learn a constraint
programming language to accomplish the job. Several studies
have attempted to reduce the difficulty of constraint definition
within meta-CASE tools. In place of direct entry, “MetaEdit+”
[8] uses form-filling, with one form for each constraint type.

One other technique used to reduce the difficulty of constraint
definition is visual programming [10]. The Pounamu meta-CASE
tool includes a visual language to represent events and associated
actions. They also have proposed using programming by example
in the event handling as another technique to reduce the
complexity of the process including constraint definition. These
examples indicate that constraint definition is not easy and several
approaches have been offered to solve its complexity. This also
indicates the importance of constraints as a part of the meta-
modelling process.

The next section of this abstract presents the aim of the research
including a thesis statement. This is followed by an outline of the
approach being taken. Constraints in meta-CASE tools and their
importance are then introduced in section 4. DECS, the meta-
CASE tool used for this work, is presented in section 5. Section 6
introduces programming by example and its use for specifying
constraints. Section 7 outlines progress made so far, followed in
Section 8 by plans for future work and a set of open questions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

2. Thesis Statement
The aim of this research is to improve the process of constraint
definition as part of domain specific CASE tool specification in a
meta-CASE tool. In particular, the work will focus on facilitating
and simplifying constraint definition process using programming
by example technique. Programming by example technique has
not been used before in the context of meta-CASE tools which is
considered as the main contribution of this research.

In summary, this research sets out to establish that it is possible
to improve the process of CASE tool specification by facilitating
and simplifying the constraint definition process using a
programming by example technique.

3. Approach
To be able to accept or reject the hypothesis of the thesis, studies
should be conducted to explore the feasibility, advantages, and
disadvantages of the new technique, programming by example, in
constraint definition process in a meta-CASE tool.

As a first step in the research, an experimental meta-CASE tool,
Diagram Editor Constraints System (DECS), has been developed,
improved and used as a platform and context for the experiments.

The next step involved creating an XML-based constraint
description and expression language. Concurrently, a constraint
manager that holds and handles constraints at runtime was
developed as a separate component and attached to DECS.

The third step introduced a way to define constraints other than
direct editing of the XML constraint descriptions. The first part
of this step required developing a constraint definition wizard.

Recently, a constraint definition by example technique has been
partially developed. An inference engine has been adopted and
embedded within a newly developed component, the inference
manager. Details of these steps are given in the following
sections.

4. Constraints in Meta-CASE Tools
In the context of design diagram editors, constraints can be
considered as signs to guide architects to a good design solution.
They are rules that limit the available alternatives to achieve a
task, and provide valuable support to designers by enforcing
compliance with a specific development methodology [14].

In most reviewed meta-CASE tools, constraints play an important
role in specifying diagram editors and composing an important
part of the meta-modelling process. In meta-CASE tools, both,
meta-model and constraints are used to define syntax and
semantics of the domains specific language. Despite this
importance of constraints in meta-modelling process, very little
research conducted to enhance constrain definition process such
as [10] and [5] compared to research conducted in the field of
meta-models [7].

5. DECS
DECS (Diagram Editor Constraints System) is an Eclipse-based
meta-CASE experimental prototype initially developed at the
University of Glasgow prior to the start of this research. It
generates constraint-based domain specific diagram editors
extended from Graphical Editing Framework (GEF) Eclipse plug-
in. The DECS meta-modelling process is composed of defining
vertices, edges, and constraints. As shown in DECS architecture

(figure 1), this process is done by the CASE tool designer (editor
designer) using wizards. The definition is stored as XML files.

The CASE tool user (editor user) uses the generated environment
to develop system diagrams and models. DECS depends mainly
on XML files as a repository to allow communication between
different levels (meta-level and modelling level).

5.1 The Constraint Manager
The constraint manager is implemented as a separate DECS
component. It reads the constraint XML files and converts them
into runtime objects using the wrapper designer pattern. The
design depends on considering every property of the constraint as
a separate wrapper layer which gives flexibility for any future
extension of the properties. The constraint manager maintains the
constraints in a list and uses them as assertions for the user’s
actions in the modelling environment. Every time the user
updates (modifies) the diagram model, the constraint manager is
consulted. If a violation is detected, the constraint manager either
warns or prevents the user from violating the constraint,
depending on the violated constraint type.

6. Constraint Definition by Example
According to [11], programming by example is the technique of
presenting examples of data and values to the system, from which
it can generalise these values to generate a program. The
objective of programming by example is to make programming an
easier task and available for non-programmers. The technique
depends on providing examples of the required program to the
system. The system then infers the program by generalising the
examples. Cypher [3] introduces inferring the user intent from an
example as the main challenge in applying such technique.

This technique has been applied in a number of different contexts
such as DocWizards” [12] for generating documentation, and in
mapping between a state and its associated actions in robotic
applications [1]. The programming by example technique has
been applied to constraint specification by several researchers.
Myers [11] used the technique to infer constraints between
different graphical user interface components. Using “Peridot”, it
is possible to build a GUI without programming. Kurlander &
Feiner [9] used the same technique to infer geometric constraints
between vertices in a system called “Chimera”. Borning [2]
defines graphical constraints by example that must be true all the
time. The system always tries to keep the constraints hold while
the user manipulates the graph.

Figure 1. DECS architecture.

However, from the reviewed literature, it has been noticed that the
constraint by example technique has not been used yet in the
context of meta-CASE tools. In this research, it was decided to
study the feasibility of applying this technique for the purpose of
making constraint definition in meta-CASE tools easier.

7. Progress Report
7.1 Constraint Description
To be able to express constraints, DECS adopted a property-value
XML description as each constraint depends on a set of
properties. Similar technique has been introduced by [14]. Some
values in a DECS constraint description can be the URIs of other
constraints. This ability to encapsulate constraints within each
other makes it possible to construct complex constraints. The
same feature has been introduced by [10] to express complex
behaviour and they called that “packing”.

Within DECS, the user can define a constraint either using a
wizard or by example. In the first case, the user goes through
several forms to assign values to different constraint properties as
required. The proposed technique, constraint definition by
example, depends on allowing the user to introduce one or more
examples of the required constraint. From the example(s), the
system should be able to infer the intended constraint. The
inference process in this context is fairly complicated because of
constraints’ complicated nature and the wide range of constraint
alternatives that an example could mean. A similar problem has
been introduced by [9]. Their solution depended on limiting the
number of constraints that can be inferred. Since DECS generates
constraint-based CASE tools, it is not possible to adopt a similar
solution as that may limit the number of constraints or their
expressiveness.

7.2 Constraint Inference
The key challenge in this research is the inference engine and
inference technique to be used. A general review of the available
inference engines and inference techniques has been conducted.
It has been decided to use forward chaining instead of backward
since the user introduce example to the system and it should infer
the target constraint not vice versa. An open source inference
engine [13] has been adopted and modified for use in DECS. One
key advantage of this system is the simplicity of its rule language,
simply written as if-then text statements in natural language,
lowering the overhead of writing rule sets.

A new component, the inference manager, has been developed
and the inference engine has been adapted within it. The
inference manager is only effective when the user (CASE tool
designer) is in the constraint definition by example environment.
Whenever the user performs an action (add, delete, connect, or
modifies a property) on any element (vertex or edge), the manager
reviews its knowledge base and performs an inference.

Another challenge in this research is the generalisation of objects
(elements, including vertices and edges). This problem has been
introduced by [15] in Kidsim; they overcame the problem by
allowing the user to specify his/her intention. In DECS, this
problem is handled using the rules in the inference engine.
Inference rules have been classified into two types, “choice rules”
and “action rules”, with different behaviour. Choice rule, if
triggered, returns a choice to the user which represents an

inference from the current example (graph). Action rule affects
the example itself by generalising some elements of it.

The system takes the example(s) introduced by the user and
collects all the inferences generated by choice rules. These
inferences are introduced to the user to choose from. If the user
cannot find the intended constraint, the inference manager looks
for an action rule to apply. Applying an action rule leads to a
modification of the example itself. This can be considered as
rewriting the example as shown in (figure 2). Although this is
different from graphical rule rewriting introduced in KidSim by
[15], the graph rewriting or re-drawing process in DECS is
important to achieve the required generalisation and to reduce the
number of choices presented to the user.

Rewriting the example in DECS can be considered as a form of
inference which leads to triggering new rules. As the example has
been modified, new choice rules can be triggered. These rules
return new choices to the user to choose from. This cycle is
repeated until no more action or choice rules are triggered. In this
manner, the generalisation task has been assigned to the rules at
the knowledge base not to the user. In each cycle, the user is
asked to choose from a small inference list instead of presenting
all the inferences at once. This solves the problem of the large
number of possible meanings of an example by showing them all.
The process also involves the user in helping to determine the
required constraint, which can be considered as synergistic or
cooperative interaction between the user and the system. Such
synergistic interaction has previously been used in a programming
by example system to define the visual layout of a graph [6].

In contrast to most reviewed constraint programming by example
tools, DECS depends on negative constraints which represent
what must not be allowed. DECS negative constraints can be
expressed using negative examples. “Peridot” depends on
positive constraints and uses positive examples to express them.
However, sometimes, it was important to introduce “negative
examples” to express “what not to do” [11]. Similarly, positive
examples are sometimes useful in DECS for expressing negative
constraints. Although users may not be aware of the difference,
they should always keep in mind that they are working in a
negative example environment.

The knowledge base has been designed with high flexibility for
extension. Each rule is composed of two parts, the IF and the
THEN part. Each part is represented by a singleton object. The

Figure 2: Rewriting graph in DECS. (a) example by the
user, (b) first rewriting, (c) second rewriting.

(a)

(b)

(c)

IF object evaluates if the rule is triggered or not. The THEN
object returns either a choice or a modified example (graph)
depending on its type. Whenever there is a need to add a rule,
then it is necessary to write the rule in the inference engine rule
language, create an object for the IF part to evaluate the rule, and
create an object to return either a choice or a modified graph.

7.3 Initial Experiment and Evaluation
As a first investigation of the thesis hypothesis, an experiment will
be conducted to evaluate constraint definition by example
compared to constraint definition by wizard. For this purpose, a
set of constraints that specify state transition diagram syntax and
semantics have been identified. A state transition diagram has
been chosen because it is well known and relatively easy to
understand. The diagram also contains all the general constraints
(syntax and semantics) that may appear in most other diagrams. A
number of subjects will be trained to define constraints using the
two techniques. The determined constraints will be divided into
two sets. The two sets will interchangeably defined using one of
the techniques. Task performance will be measured in terms of
accuracy and time to complete. Participants will also be
interviewed to find out about perceived effort and performance as
well as their subjective assessment of the techniques.

8. Future Work
The next step of the research will be trying to apply constraint
definition by example to specify another diagram type. Some
questions that can be asked here include: is there any effect of the
modelling diagram itself? Is there any specific constraint type that
is easier to define using a wizard than by the example-based
technique?

This thesis is an initial investigation into the viability of the
programming by example technique in the meta-CASE domain. It
may be necessary to explore different inference techniques if our
relatively simple rule-based method does not prove to be
satisfactory in our first experiments. As a part of this, rule
sequencing and prioritising depending on user interaction and
preferences could be applied to study their effect on the constraint
definition process. The current inference engine uses rules for
inference. Instead, other artificial intelligence technique could be
used, such as neural networks or genetic algorithms, to explore
the effect of enabling the system to learn its rule set. These
experiments may help to answer questions like: is it possible to
apply other artificial intelligence techniques within the
programming by example technique? Will that make the
constraint definition process easier?

9. REFERENCES
[1] Argall, B., Chernova, S., Veloso, M., & Browning, B.

(2009). A survey of robot learning from demonstration.
Robotics and Autonomous Systems , 57 (5), 469-483. DOI=
10.1016/j.robot.2008.10.024.

[2] Borning, A. (1986). Defining Constraints Graphically.
Conference on Human Factors in Computing Systems (pp.
137-143). Boston, USA: ACM, USA. DOI=
http://doi.acm.org/10.1145/22627.22362

[3] Cypher, A. (1993). Watch What I Do: Programming by
Demonstration. Cambridge, Mass.: MIT Press.

[4] Ferguson, R., & Hunter, A. (2000). MetaBuilder: The
Diagrammer's Diagrammer. Lecture Notes In Computer
Science; Vol. 1889 (pp. 407 - 421). London, UK: Springer-
Verlag.

[5] Gray, P., & Welland, R. (1999). Increasing the flexibility of
modelling tools via constraint-based specification.
Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative research. Mississauga,
Canada: IBM Press.

[6] Hudson, S., & Hsi, C.-N. (1993). A Synergistic Approach to
Specifying Simple Number Independent Layouts by
Example. Conference on Human Factors in Computing
Systems (pp. 285-292). New York, USA: ACM. DOI=
http://doi.acm.org/10.1145/169059.169221.

[7] Isazadeh, H., & Lamb, D. A. (1997). CASE Environments
and MetaCASE Tools. Technical Report 1997-403, Queen's
University.

[8] Kelly, S. (2009). Domain-Specific Modeling: A Toolmaker
Perspective. MetaEdit+ Workbench questions. [online].
Available at:
http://www.metacase.com/faq/showfaq.asp?cate=MWB
[Accessed 1 March 2009].

[9] Kurlander, D., & Feiner, S. (1993). Inferring Constraints
From Multiple Snapshots. ACM Transactions on Graphics ,
12 (4), 277-304. New York, USA: ACM. DOI=
http://doi.acm.org/10.1145/159730.159731

[10] Liu, N., Hosking, J., & Grundy, J. (2007). A Visual
Language and Environment for Specifying User Interface
Event Handling in Design Tools. Conferences in Research
and Practice in Information Technology Series; Vol. 241
(pp. 87 - 94). Ballarat, Victoria, Australia : Australian
Computer Society, Inc., Australia.

[11] Myers, B. (1993). Peridot: Creating User Interfaces by
Demonstration. In A. Cypher, Watch What I Do:
Programming by Demonstration. Cambridge, Mass.: MIT
Press.

[12] Prabaker, M., Bergman, L., & Castelli, V. (2006). An
Evaluation of Using Programming by Demonstration and
Guided Walkthrough Techniques for Authoring and Utilizing
Documentation. Conference on Human Factors in
Computing Systems, Proceedings of the SIGCHI conference
on Human Factors in computing systems (pp. 241 - 250).
Montréal, Québec, Canada: ACM, New York, USA. DOI=
http://doi.acm.org/10.1145/1124772.1124809

[13] Sazonov, E. (2004). Open source fuzzy inference engine for
Java. [online]. Available at:
http://people.clarkson.edu/~esazonov/FuzzyEngine.htm
[Accessed 27 March 2009].

[14] Scott, L., Horvath, L., & Day, D. (2000). Characterising
CASE Constraints. Communications of the ACM, 43 (11),
232-238. DOI= http://doi.acm.org/10.1145/352515.352533.

[15] Smith, D., Cypher, A., & Spohrer, J. (1994). KidSim:
programming agents without a programming language.
Communications of the ACM , 37 (7), 54-67. DOI=
http://doi.acm.org/10.1145/176789.176795.

	citation_temp.pdf
	http://eprints.gla.ac.uk/47875/

