25 research outputs found

    Improving Utility of GPU in Accelerating Industrial Applications with User-centred Automatic Code Translation

    Get PDF
    SMEs (Small and medium-sized enterprises), particularly those whose business is focused on developing innovative produces, are limited by a major bottleneck on the speed of computation in many applications. The recent developments in GPUs have been the marked increase in their versatility in many computational areas. But due to the lack of specialist GPU (Graphics processing units) programming skills, the explosion of GPU power has not been fully utilized in general SME applications by inexperienced users. Also, existing automatic CPU-to-GPU code translators are mainly designed for research purposes with poor user interface design and hard-to-use. Little attentions have been paid to the applicability, usability and learnability of these tools for normal users. In this paper, we present an online automated CPU-to-GPU source translation system, (GPSME) for inexperienced users to utilize GPU capability in accelerating general SME applications. This system designs and implements a directive programming model with new kernel generation scheme and memory management hierarchy to optimize its performance. A web-service based interface is designed for inexperienced users to easily and flexibly invoke the automatic resource translator. Our experiments with non-expert GPU users in 4 SMEs reflect that GPSME system can efficiently accelerate real-world applications with at least 4x and have a better applicability, usability and learnability than existing automatic CPU-to-GPU source translators

    Rapid Segmentation Techniques for Cardiac and Neuroimage Analysis

    Get PDF
    Recent technological advances in medical imaging have allowed for the quick acquisition of highly resolved data to aid in diagnosis and characterization of diseases or to guide interventions. In order to to be integrated into a clinical work flow, accurate and robust methods of analysis must be developed which manage this increase in data. Recent improvements in in- expensive commercially available graphics hardware and General-Purpose Programming on Graphics Processing Units (GPGPU) have allowed for many large scale data analysis problems to be addressed in meaningful time and will continue to as parallel computing technology improves. In this thesis we propose methods to tackle two clinically relevant image segmentation problems: a user-guided segmentation of myocardial scar from Late-Enhancement Magnetic Resonance Images (LE-MRI) and a multi-atlas segmentation pipeline to automatically segment and partition brain tissue from multi-channel MRI. Both methods are based on recent advances in computer vision, in particular max-flow optimization that aims at solving the segmentation problem in continuous space. This allows for (approximately) globally optimal solvers to be employed in multi-region segmentation problems, without the particular drawbacks of their discrete counterparts, graph cuts, which typically present with metrication artefacts. Max-flow solvers are generally able to produce robust results, but are known for being computationally expensive, especially with large datasets, such as volume images. Additionally, we propose two new deformable registration methods based on Gauss-Newton optimization and smooth the resulting deformation fields via total-variation regularization to guarantee the problem is mathematically well-posed. We compare the performance of these two methods against four highly ranked and well-known deformable registration methods on four publicly available databases and are able to demonstrate a highly accurate performance with low run times. The best performing variant is subsequently used in a multi-atlas segmentation pipeline for the segmentation of brain tissue and facilitates fast run times for this computationally expensive approach. All proposed methods are implemented using GPGPU for a substantial increase in computational performance and so facilitate deployment into clinical work flows. We evaluate all proposed algorithms in terms of run times, accuracy, repeatability and errors arising from user interactions and we demonstrate that these methods are able to outperform established methods. The presented approaches demonstrate high performance in comparison with established methods in terms of accuracy and repeatability while largely reducing run times due to the employment of GPU hardware

    PiCo: A Domain-Specific Language for Data Analytics Pipelines

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models—for which only informal (and often confusing) semantics is generally provided—all share a common under- lying model, namely, the Dataflow model. Using this model as a starting point, it is possible to categorize and analyze almost all aspects about Big Data analytics tools from a high level perspective. This analysis can be considered as a first step toward a formal model to be exploited in the design of a (new) framework for Big Data analytics. By putting clear separations between all levels of abstraction (i.e., from the runtime to the user API), it is easier for a programmer or software designer to avoid mixing low level with high level aspects, as we are often used to see in state-of-the-art Big Data analytics frameworks. From the user-level perspective, we think that a clearer and simple semantics is preferable, together with a strong separation of concerns. For this reason, we use the Dataflow model as a starting point to build a programming environment with a simplified programming model implemented as a Domain-Specific Language, that is on top of a stack of layers that build a prototypical framework for Big Data analytics. The contribution of this thesis is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm, Google Dataflow), thus making it easier to understand high-level data-processing applications written in such frameworks. As result of this analysis, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level. Second, we propose a programming environment based on such layered model in the form of a Domain-Specific Language (DSL) for processing data collections, called PiCo (Pipeline Composition). The main entity of this programming model is the Pipeline, basically a DAG-composition of processing elements. This model is intended to give the user an unique interface for both stream and batch processing, hiding completely data management and focusing only on operations, which are represented by Pipeline stages. Our DSL will be built on top of the FastFlow library, exploiting both shared and distributed parallelism, and implemented in C++11/14 with the aim of porting C++ into the Big Data world

    Development and application of real-time and interactive software for complex system

    Get PDF
    Soft materials have attracted considerable interest in recent years for predicting the characteristics of phase separation and self-assembly in nanoscale structures. A popular method for demonstrating and simulating the dynamic behaviour of particles (e.g. particle tracking) and to consider effects of simulation parameters is cell dynamic simulation (CDS). This is a cellular computerisation technique that can be used to investigate different aspects of morphological topographies of soft material systems. The acquisition of quantitative data from particles is a critical requirement in order to obtain a better understanding and of characterising their dynamic behaviour. To achieve this objective particle tracking methods considering quantitative data and focusing on different properties and components of particles is essential. Despite the availability of various types of particle tracking used in experimental work, there is no method available to consider uniform computational data. In order to achieve accurate and efficient computational results for cell dynamic simulation method and particle tracking, two factors are essential: computing/calculating time-scale and simulation system size. Consequently, finding available computing algorithms and resources such as sequential algorithm for implementing a complex technique and achieving precise results is critical and rather expensive. Therefore, it is highly desirable to consider a parallel algorithm and programming model to solve time-consuming and massive computational processing issues. Hence, the gaps between the experimental and computational works and solving time consuming for expensive computational calculations need to be filled in order to investigate a uniform computational technique for particle tracking and significant enhancements in speed and execution times. The work presented in this thesis details a new particle tracking method for integrating diblock copolymers in the form of spheres with a shear flow and a novel designed GPU-based parallel acceleration approach to cell dynamic simulation (CDS). In addition, the evaluation of parallel models and architectures (CPUs and GPUs) utilising the mixtures of application program interface, OpenMP and programming model, CUDA were developed. Finally, this study presents the performance enhancements achieved with GPU-CUDA of approximately ~2 times faster than multi-threading implementation and 13~14 times quicker than optimised sequential processing for the CDS computations/workloads respectively

    Directive-based Approach to Heterogeneous Computing

    Get PDF
    El mundo de la computación de altas prestaciones está sufriendo grandes cambios que incrementan notablemente su complejidad. La incapacidad de los sistemas monoprocesador o incluso multiprocesador de mantener el incremento de la potencia de cómputo para suplir las necesidades de la comunidad científica ha forzado la irrupción de arquitecturas hardware masivamente paralelas y de unidades específicas para realizar operaciones concretas. Un buen ejemplo de este tipo de dispositivos son las GPU (Unidades de procesamiento gráfico). Estos dispositivos, tradicionalmente dedicados a la programación gráfica, se han convertido recientemente en una plataforma ideal para implementar cómputos masivamente paralelos. La combinación de GPUs para realizar tareas intensivas en cómputo con multi-procesadores para llevar tareas menos intensas pero con lógica de control más compleja, se ha convertido en los últimos años en una de las plataformas más comunes para la realización de cálculos científicos a bajo coste, dado que la potencia desplegada en muchos casos puede alcanzar la de clústers de pequeño o mediano tamaño, con un coste inicial y de mantenimiento notablemente inferior. La incorporación de GPUs en clústers ha permitido también aumentar la capacidad de éstos. Sin embargo, la complejidad de la programación de GPUs, y su integración con códigos existentes, dificultan enormemente la introducción de estas tecnologías entre usuarios menos expertos. En esta tésis exploramos la utilización de modelos de programación basados en directivas para este tipo de entornos, multi-core, many-core, GPUs y clústers, donde el usuario medio ve disminuida notablemente su productividad debido a la dificultad de programación en estos entornos. Para explorar la mejor forma de aplicar directivas en estos entornos, hemos desarrollado un conjunto de herramientas software altamente flexibles (un compilador y un runtime), que permiten explorar diversas técnicas con relativamente poco esfuerzo. La irrupción del estándar de programación de directivas de OpenACC nos permitió demostrar la capacidad de estas herramientas, realizando una implementación experimental del estándar (accULL) en muy poco tiempo y con un rendimiento nada desdeñable. Los resultados computacionales aportados nos permiten demostrar: (a) La disminución en el esfuerzo de programación que permiten las aproximaciones basadas en directivas, (b) La capacidad y flexibilidad de las herramientas diseñadas durante esta tésis para explorar estas aproximaciones y finalmente (c) El potencial de desarrollo futuro de accULL como herramienta experimental en OpenACC en base al rendimiento obtenido actualmente frente al rendimiento de otras aproximaciones comerciales

    Un framework pour l'exécution efficace d'applications sur GPU et CPU+GPU

    Get PDF
    Technological limitations faced by the semi-conductor manufacturers in the early 2000's restricted the increase in performance of the sequential computation units. Nowadays, the trend is to increase the number of processor cores per socket and to progressively use the GPU cards for highly parallel computations. Complexity of the recent architectures makes it difficult to statically predict the performance of a program. We describe a reliable and accurate parallel loop nests execution time prediction method on GPUs based on three stages: static code generation, offline profiling, and online prediction. In addition, we present two techniques to fully exploit the computing resources at disposal on a system. The first technique consists in jointly using CPU and GPU for executing a code. In order to achieve higher performance, it is mandatory to consider load balance, in particular by predicting execution time. The runtime uses the profiling results and the scheduler computes the execution times and adjusts the load distributed to the processors. The second technique, puts CPU and GPU in a competition: instances of the considered code are simultaneously executed on CPU and GPU. The winner of the competition notifies its completion to the other instance, implying the termination of the latter.Les verrous technologiques rencontrés par les fabricants de semi-conducteurs au début des années deux-mille ont abrogé la flambée des performances des unités de calculs séquentielles. La tendance actuelle est à la multiplication du nombre de cœurs de processeur par socket et à l'utilisation progressive des cartes GPU pour des calculs hautement parallèles. La complexité des architectures récentes rend difficile l'estimation statique des performances d'un programme. Nous décrivons une méthode fiable et précise de prédiction du temps d'exécution de nids de boucles parallèles sur GPU basée sur trois étapes : la génération de code, le profilage offline et la prédiction online. En outre, nous présentons deux techniques pour exploiter l'ensemble des ressources disponibles d'un système pour la performance. La première consiste en l'utilisation conjointe des CPUs et GPUs pour l'exécution d'un code. Afin de préserver les performances il est nécessaire de considérer la répartition de charge, notamment en prédisant les temps d'exécution. Le runtime utilise les résultats du profilage et un ordonnanceur calcule des temps d'exécution et ajuste la charge distribuée aux processeurs. La seconde technique présentée met le CPU et le GPU en compétition : des instances du code cible sont exécutées simultanément sur CPU et GPU. Le vainqueur de la compétition notifie sa complétion à l'autre instance, impliquant son arrêt

    Indexed dependence metadata and its applications in software performance optimisation

    No full text
    To achieve continued performance improvements, modern microprocessor design is tending to concentrate an increasing proportion of hardware on computation units with less automatic management of data movement and extraction of parallelism. As a result, architectures increasingly include multiple computation cores and complicated, software-managed memory hierarchies. Compilers have difficulty characterizing the behaviour of a kernel in a general enough manner to enable automatic generation of efficient code in any but the most straightforward of cases. We propose the concept of indexed dependence metadata to improve application development and mapping onto such architectures. The metadata represent both the iteration space of a kernel and the mapping of that iteration space from a given index to the set of data elements that iteration might use: thus the dependence metadata is indexed by the kernel’s iteration space. This explicit mapping allows the compiler or runtime to optimise the program more efficiently, and improves the program structure for the developer. We argue that this form of explicit interface specification reduces the need for premature, architecture-specific optimisation. It improves program portability, supports intercomponent optimisation and enables generation of efficient data movement code. We offer the following contributions: an introduction to the concept of indexed dependence metadata as a generalisation of stream programming, a demonstration of its advantages in a component programming system, the decoupled access/execute model for C++ programs, and how indexed dependence metadata might be used to improve the programming model for GPU-based designs. Our experimental results with prototype implementations show that indexed dependence metadata supports automatic synthesis of double-buffered data movement for the Cell processor and enables aggressive loop fusion optimisations in image processing, linear algebra and multigrid application case studies
    corecore