

1

Abstract—SMEs (Small and medium-sized enterprises),

particularly those whose business is focused on developing

innovative produces, are limited by a major bottleneck on the

speed of computation in many applications. The recent

developments in GPUs have been the marked increase in their

versatility in many computational areas. But due to the lack of

specialist GPU (Graphics processing units) programming skills,

the explosion of GPU power has not been fully utilized in general

SME applications by inexperienced users. Also, existing automatic

CPU-to-GPU code translators are mainly designed for research

purposes with poor user interface design and hard-to-use. Little

attentions have been paid to the applicability, usability and

learnability of these tools for normal users. In this paper, we

present an online automated CPU-to-GPU source translation

system, (GPSME) for inexperienced users to utilize GPU

capability in accelerating general SME applications. This system

designs and implements a directive programming model with new

kernel generation scheme and memory management hierarchy to

optimize its performance. A web-service based interface is

designed for inexperienced users to easily and flexibly invoke the

automatic resource translator. Our experiments with non-expert

GPU users in 4 SMEs reflect that GPSME system can efficiently

accelerate real-world applications with at least 4x and have a

better applicability, usability and learnability than existing

automatic CPU-to-GPU source translators.

Index Terms— Usability, Parallel Computing, GPU, Automatic

Translation

I. INTRODUCTION

MEs, particularly those whose business is focused on

developing innovative products, are subject to many

pressures in maintaining and growing their market share

and ensuring that their products remain competitive in an age

of rapid technological change. In many high-tech fields, users

are experiencing a huge growth in data, with increases in

quantity, in resolution, in variety, etc., while the work often

present significant time constraints on the associated data

processing. This leads to a continual upward pressure on

computational resources and, indeed, the speed of computation

is now a major bottleneck that dramatically limits the

applicability of available technology in many applications in

SMEs.

 The major challenges in many high-tech applications in SMEs

relate to a huge growth in data processing requirements through

increases in quantity, in resolution, in variety etc. demanded by

general applications. Parallel computing techniques [1] have

gained wide popularity among researchers and developers to

overcome these challenges. Many computing tasks exhibit a

parallel nature and are hence suitable for parallel computing.

The concept of parallel computing is to split large problems into

small components and distributing them among multiple

processors. Conventional parallel computing takes place using

multi-core CPUs or via distributed, grid, high performance

computers. The remarkable rise in performance of Graphics

Processing Unit (GPU) [2] in recent years offers a very

attractive alternative, which can handle many demanding tasks

by only harnessing local computing resource in low-cost

computer platforms.

 The most important development in GPUs in recent years has

been the marked increase in their versatility. Their capabilities

are now much more widely applicable and they have become

used in many computational areas - this is known as General

Purpose GPU programming (GPGPU) [3]. OpenCL [4] and

NVIDIA’s CUDA [5] are two mainly widespread GPU parallel

programming languages designed to help users manage GPU

utilization. If the capacities of the GPU are harnessed properly,

the achieved speed-up can be significant. But the parallelization

of CPU code for execution on GPUs is not light and handy to

general users. This process requires an in-depth knowledge of

the complex underlying GPU architecture and the GPU

memory optimization schemes. These skills are still in

relatively short supply to non-expert GPU users. It is highly

desirable to have a cost-effective approach that enables

inexperienced users to easily utilise GPU technology for

accelerating their general applications.

 Automatic CPU-to-GPU source translation technique can be

a candidate to make GPU technology more accessible to the

inexperienced user. To date, numerous automatic CPU-to-GPU

source parallelization translation tools [9-27], including

algorithmic skeleton based [14-16], polyhedral model based [9-

13], or directive based [17-23] have been developed for

academic and commercial use. While their acceleration is

promising, utilizing them by normal users in general real-word

applications is still challenging. Many tools are originally for

research purposes with a non-availability of public-access and

a limited applicability of supporting different algorithm

structures. Simultaneously, the usability and learnability of

these tools are not prospective, since their attentions are mostly

on improving

Improving Utility of GPU in Accelerating

Industrial Applications with User-centred

Automatic Code Translation

S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/83957526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Table 1. Comparison of properties of typical automatic parallelization source translation tools

 Acceleration Applicability Usability Adaptability

PoCC [10] 1x-10x 8 benchmarks C-to-optimized C Open source, programming in Linux

Pluto [11] 2x-12x 13 benchmarks OpenMP to C Open source, programming in Linux

R-Stream [12] >10x Matrix multiplication, Guass Seidal C-to-C (Binary) Non public avaiable source

Par4All [13] 2x-128x 6 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux

SkePu [14] 10x 7 skeletons (map, mapArray, reduce, etc) C-to-CUDA/OpenCL Non public avaiable source

HMPP [25] -10x Multipe types of loops C-to-CUDA/OpenCL Commercial product

Bones [16] 1x-13x 8 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux

CUDA-lite [17] 2x-17x MRI-FHD, TPACF CUDA-to- optimized CUDA Non public avaiable source

hiCUDA [18] -18x 9 benchmarks, MCML C to CUDA Open source, programming in Linux

MINT [19] 10x-16x Stencil computing C to CUDA Open source, programming in Linux

OpenMPC [20] -50x JACOBI, SPMUL OpenMP-to-CUDA Non public avaiable source

PGI [21] 10x Multipe types of loops Fortran, C, C++ to CUDA Commercial product

PPCG [24] 1x-100x 30 benchmarks C to CUDA Open source, programming in Linux

speedup performance rather than making them more accessible

to general users. Also, the diverse types of algorithms and loops

in general applications pose significant challenges towards the

use of these tools. So there are no existing CPU-to-GPU source

translation tools reported in literature to provide an outstanding

solution for non-expert GPU users with reasonable acceleration,

wide applicability, good usability and well learnability. The

motivation of this work is to seek out a solution to satisfy the

above requirements.

 In this paper, we propose a web-service based automated

CPU-to-GPU source translation system, (GPSME) for

inexperienced users to utilize GPU capability in accelerating

general SME applications. We design and implement a

directive based programming model that is capable of carrying

out semi-automatic CPU-to-GPU source-to-source translation

on moderately priced standard GPU cards and off-the-shelf

GPU clusters. A web-service based interface is particularly

designed for inexperienced users to easily and flexibly invoke

the automatic resource translator. Our experiments with non-

expert users from 4 SMEs reflect that GPSME system can

efficiently accelerate general real-world applications with at

least 4x; and also have an improved applicability, usability and

learnability than existing CPU-to-GPU source translation tools.

The main contributions of this paper are below:

 A comprehensive requirement analysis of inexperienced

users for utilizing GPU technology in general SMEs

applications is given. It is benefit to improve the accessibility

and the applicability of existing automatic CPU-to-GPU

source translators in real-world applications.

 A web-service based automated CPU-to-GPU source

translation system, GPSME, is presented and implemented.

This tool introduces a new kernel generation scheme and a

memory management hierarchy to optimize its performance.

 A thorough performance evaluation of GPSME system with

general SMEs applications has been carried out. The results

suggest that the proposed tool can effectively and efficiently

accelerate general real-world applications, and have

improved applicability, usability and learnability over

existing automatic CPU-to-GPU source translation tools

[23-30].

 The rest of the paper is organized as follows. Section 2

reviews notable automatic CPU-to-GPU source translators.

Section 3 analyses the general requirement of inexperienced

GPU users. Section 4 presents the design and implementation

of GPSME system. Section 5 shows the experimental validation

results. Section 6 gives a conclusion and future work.

II. RELATED WORK

A large amount of research has been dedicated to automatic

converting CPU code to GPU code. This section reviews

existing typical automatic parallelization source translators

regarding acceleration, applicability, usability and adaptability.

Polyhedral model [9-10] for performing loop transformations

has been the basis of early attempts for automatic optimization

and parallelization of CPU programs. With the emergence of

GPUs, the polyhedral model is adopted to develop efficient

CPU-to-GPU source translators such as Pluto [11], R-Stream

[12], Par4All [13], and PPCG [24]. They translate source code

with affine loop structures by performing dependency analysis

and loop transformations. These tools normally require little or

no input from the users, and have a promising acceleration

performance; but they have some drawbacks on applicability

and adaptability. R-Stream supports C-to-CUDA compilation

but is not publicly available yet. Pluto automatically generates

CUDA kernel code; but the CUDA host code has to be written

manually by users. Par4All compiler is a public available tool

supporting automatic integrated compilation of applications for

hybrid architectures including GPUs. Yet some restrictions and

code restructuring might be required for reaching a promising

performance.

 Algorithmic skeleton based tools adopt an idea of generating

efficient target code by a specific algorithm class. Examples of

such tools are SkePU [14], SkelCL [15], and Bones [16]. Each

algorithm skeleton is coded as a template of specific algorithm

class on target architecture. These tools have highly optimized

library implementations for classes of algorithms instead of

individual algorithm, as a result of dramatic acceleration.

Algorithmic skeleton and polyhedral model based tools both

have a well usability since they do not require users having deep

GPU knowledge to identify parallel region and memory transfer

in CPU code. Yet, their applicability is relatively narrow and

highly sensitive to the characteristics and data structure of CPU

algorithms. This shortcoming limits their wide acceptances by

general users.

 For the purpose of allowing automatic CPU-to-GPU

translators to be more applicable, directive-based source

translators [17-23] became popular. By using these tools for

generating target GPU code, users only need to provide some

basic annotations about parallelism exploitation and also

annotations that deal with data transfer. CUDA-lite [17]

introduces some directives to improve the memory hierarchy of

3

Table.2. Detailed information of inexperienced GPU users from industry

CUDA by directly inserting the directives into the CUDA code.

hiCUDA [18] provides a set of pragmas mapping to typical

CUDA operations for programmers. CUDA code generated

from hiCUDA is optimized by operating global memory and

transformations to leverage the complex memory hierarchy.

But a prerequisite of hiCUDA is that users have to understand

sufficient GPU knowledge for specifying the threads and thread

blocks. OpenMPC [20] project proposes a Cetus compiler

framework for translating standard OpenMP shared-memory

programs into CUDA-based GPGPU programs. Despite the

significant speedup of OpenMPC, its adoption was slowed by a

manual revision of input source as OpenMP programs.

Similarly, PGI compiler [21] accelerates applications written in

C++ by adding standard OpenACC [22] directives; But its

pragmas are far too complex, and the GPGPU code it outputs is

almost unreadable (since PGI is designed as a compiler instead

of a source-to-source translator). Besides, MINT [19] is a very

easy-to-use C-to-CUDA source translator containing only five

types of pragmas. It is designed for speedup stencil

computations on NVIDIA GPUs only. This translator accepts C

source input with some intuitive MINT directives to generate

highly optimized CUDA C which may produce performance

gains of up to 10x. Directive-based tools have a better

applicability in dealing with complex CPU algorithms due to

their flexibility of adding annotations in the CPU source code.

However, their usability is not very good, since users have to

identify the parallelization region and manage the complex

memory hierarchy by themselves. Also, hard-learning

directives and unreadable output code in the tools increase the

difficulties for inexperienced users to harness them.

III. REQUIREMENT ANALYSIS

This section identifies and analyses general expectations of

inexperienced GPU users on an automatic CPU-to-GPU source

translator for accelerating their applications. The participated

users are from four companies in the EU funded project

GPSME [29]: Imagemetry Ltd (IME) [30], Biocomputing

Competence Centre (B3C) [31], Rotasoft [32] and AnSmart

[33]. Their products involve a wide applicable area including

Image forgery detection, augmented reality book and virtual

physiological human. Table.2 illustrates the applicable area of

each company and the problem they face. For collecting a

general requirement of their non-expert GPU users, IME Ltd

communicated with the other three companies and collected

their feedbacks in three months through emails or project

meetings. Inexperienced GPU users have some common

objectives such as:

 No need on having an in-depth understanding of GPUs

 Full or semi-automatic CPU-to-GPU source

translation

 Support C++ programming language

 Support either CUDA or OpenCL

 Efficient speedup performance and no accuracy loss

 Source code protection

 Report the system process and error diagnostics

Regarding the above general objectives, it appears that existing

CPU-to-GPU source translators in Table.1 hardly satisfies the

full needs.

Non-expert GPU users expect a system that enables them to

quickly take advantage of current GPU capability to effectively

and economically speed up their products. In terms of this goal,

an explicit requirement analysis of their expectations on this

system is given as below:

 Acceleration: They expect their general CPU applications

to be accelerated significantly on moderate hardware

platforms. Non-expert GPU users are more interested in

actual time saved in their applications instead of a high

speed-up ratio of GPU over CPU. However, existing CPU-

to-GPU translators focus more on the improvement of their

speed-up ratio for reflecting their parallel efficiency. Their

acceleration results are mostly achieved by running simple C

code samples though a high-level GPU hardware. Their

utilization in practical applications cannot reach and can

even decrease the performance since some indispensable

CPU source code revisions are required. So the acceleration

capability of the GPSME system in this paper need be

evaluated by practical applications, and not only the sample

code for the parallel region.

 Applicability: They look forward to a system with wide

applicability, which can solve time-consuming problems in

various types of products. Among the existing CPU-to-GPU

translators, algorithm skeleton based tools like Bones [16]

has limited classes so they cannot support the applications

with complex or diverse loop types. Directive-based tools

like OpenMP [20], hiCuda [18] and PGI [21] have wide

applicability guaranteed by flexible usage of standard

pragmas. But the understanding and learning of these

pragmas become hard tasks for non-expert users. There has

to be a trade-off of these tools between applicability and

directive complexity. The directives of GPSME system have

to be simple but enable supporting all types of algorithms

skeleton and loop patterns from their general applications.

 Usability: Inexperienced GPU users have strong demands

on usability of the GPSME system. First, the input and

output languages are essentially to support C/C++ and

CUDA/ OpenCL. Second, they suggest using a web-service

interface to achieve a cross-platform (Windows and Linux)

usage of code translation. A user file management system

with source code protection scheme is required for this

interface. Among existing CPU-to-GPU source translators,

most of their interface are C-to-CUDA based command line

tools under Linux. A system with better usability for non-

expert GPU users is expected.

 Langauge Product Area Problem

IME C++ Image forgery detection Time consuming task in detecting suspicious and altered parts of the image or video.
B3C C++ Virtual physiological human Many VPH applications are computationally demanding.

ROTA C++ Augmented reality book Imge processing speed in real time AR books.

AnSmart C++ Eye Tracking Medical image analysis in diagnosising eye diseases.

4

 Adaptability: The easy-to-learn nature of the tool is

paramount to inexperienced GPU users. GPU technology

and programming skills are hard to grasp. The existing CPU-

to-GPU source translators still need users to study the usage

of the directives. In fact, the simplicity of the directives is

crucial to the adaptability of the system. This paper aimed to

design simple, flexible and efficient directives.

IV. GPSME SYSTEM OVERVIEW

GPSME system is a deliverable of the GPSME [29] EU funded

project. The significance of this tool distinguishing from other

CPU-to-GPU source translators is that relatively much attention

has been paid to the usability and adaptability. Also, driven by

the potential difficulties of having a local GPSME installation

and the increased visibility of the system, access to GPSME

system through a remote web server is more suggested. The

main system architecture of the GPSME system includes two

components: GPSME web-interface and GPSME core library.

The communication between these two components is handled

through a web-service. Though the web-interface,

inexperienced GPU users can upload their CPU source files;

execute translations by invoking the core library; and download

the generated GPU source files.

A. GPSME Web Interface

GPSME web-interface is designed and implemented using the

ExtJS framework for providing appearance and user experience

close to desktop applications. The web application of GPSME

includes file explorer, rich text editor, interactive help system

and tabbed information windows. Also, it encrypts users’ code

to protect their intelligent properties and facilitates a translation

of users’ source code, not needing anything related to the

system locally installed on the users’ machines. The GPSME

web interface is presented in in Figure.1.

Fig. 1. GPSME web interface

The typical usage of the GPSME web application is as follows:

• The user creates an account with his/her details.

• The user uploads C/C++ source file and necessary header files.

• The user selects the desired output type and initiates the code

translation process.

• It takes a few seconds for the GPSME web server to process

the user files. If success, the results can be retrieved under the

‘Processed files’ tab.

The user does not run the system locally on a Linux machine

but will be instead making use this remote web server.

• If CPU source code has an external dependency then it must

be presented or installed on the remote webserver (in addition

to user’s local machine). Users need to contact the server

administrator to get the dependencies installed if so required.

• When uploading a C++ file for parallelisation users must also

upload any of their own headers on which the C++ file is

dependent. It is assumed that these belong in the same directory

as the C++ source file, so users avoid deep paths in their

#include statements.

B. GPSME Core Library

The design of GPSME core library is inspired by MINT [19],

which is developed on Linux by using the ROSE compiler

framework [34] at Lawrence Livermore National Laboratory.

ROSE provides an open source compiler with API to develop

customized source-to-source translators for performing code

transformations, analyses and optimizations. The structure of

GPSME core library is similar to MINT [19] but with some

extended components. The system structure and translation

flow of implementing the core library is illustrated in Figure.2.

Fig. 2. Structure of GPSME core library

The input of GPSME system is a set of C/C++ source files

annotated with GPSME directives. Once source files are read,

the ROSE frontend constructs an Abstract Syntax Tree (AST).

The core library traverses the AST and queries parallel regions

containing data parallel for loops. The Identifier is responsive

to identify and classify loop pattern, variables and device

information from the AST. Regarding the identifications, the

Analyser and the Optimizer investigate the possibility of using

predefined approaches in GPSME system for

5

Table 3. Listing of GPSME directives (some are inherited from and MINT [19])

AST transformations. The Translator adopts similar rules in

MINT Baseline Translator to perform transformations on the

AST. But it enhances the functionalities of MINT, whose

details are presented in section I. GPSME core library supports

both CUDA and OpenCL code by unparsing the transformed

AST. Due to the similar code generation procedure between

CUDA and OpenCL, this paper mainly discusses the generation

of CUDA code using the GPSME core library.

C. Interaction

The interaction between GPSME web application and GPSME

core library is designed and implemented by utilizing the

jQuery Framework and Java Servlet. At the server side,

RESTful web-services are deployed to Tomcat 7 servlet

container for handling the AJAX requests including file upload,

edit and execute. Figure 3 illustrates an interactive workflow

between GPSME web interface and core library at GPSME

server.

Fig. 3. Interaction between GPSME web interface and core library

In Figure.3, users firstly register and upload their source files

though GPSME web interface. They receive a private key for

decrypting uploaded source files in their emails. The public key

was generated and stored in server database for encrypting

uploaded source files. Users need key in a correct private key

to display, edit, save or translate the source files. In code

process, an AJAX request will be sent to the REST service end

point and invoke the GPSME core library to execute command

line tools. Once execution finished, the outputted files and log

files are collected and returned to GPSME web interface. User

can view the diagnosis and error reporting information and

download the CUDA or OpenCL source files. Meanwhile,

some sample codes and tutorials are provided in web interface

for users to learn and experience.

D. GPSME Directives

In MINT [19], five types of different directives are employed

for three main tasks: a) Identification of parallel region. b)

Memory management. c) Kernel generation. The MINT for

directives in MINT is the most important since it identifies a

parallel for loop nest and helps guide optimization and

generation of kernel code. The MINT copy directives help users

manage the separate host and device memory space. However,

the utilization of MINT in general applications faces to three

challenges below:

 The MINT directives indicating parallel regions and kernel

regions are too simple to use for complicated algorithms. The

directive parallel marking a parallel region must be located

immediately behind the directive copy. It cannot handle

algorithms in which users need to insert source code between

these two directives.

 The copy directives combining memory allocation and data

transfer is too extensive to support high level storage setup

and management. Particularly, in practical applications, it

requires separating the operations of memory allocation and

data transfer to allow the reuse of the allocated memory for

data transfer.

 The MINT kernel generation directives only support stencil

computing. Many algorithm skeletons in general

applications are beyond stencil computing, which hardly

copy with by MINT kernel.

 Directives Descriptions

Basic pragma

Parallel (MINT) To identify a region generating a kernel function

For (MINT) To mark the succeeding “for” loop for GPU acceleration

Single (MINT) To indicate serial regions in the GPSME

Parallel region

To identify a parallel region containing parallel work

Memory

Management

Copy (MINT) To express the declaration, allocation, data transfers between the host and device

CopyByTexture To create a CUDA texture on a device, and bind or unbind with 2D data

CopyMalloc1DArray To create a CUDA array on a device, associating it with a CUDA texture on the device

CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between CPU and GPU memory

CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data between CPU and GPU memory

CopyBindTexture To bind the created texture memory to a CUDA global array

Copy2DArrayTo1DArray

To convert the array with different dimensions on the CPU memory buffer

Kernel

Generation

For, nest, tile, chunksize (MINT) To generate CUDA kernel for each parapllel “for” loop with given thread blocks and threads.

Initialisation To define a one dimensional array for storing the data in a sliding window

Transfer To transform the code of putting the data in a sliding window into a local variable within a “For”

loop

Remain To transform the operations on a sliding window from CPU algorithm to the GPU kernel.

Assign To assign the new data to the relevant GPU buffer with the correct index.

6

For overcoming the limits to MINT directives, the design of

GPSME directives consider the practical requirements in

section 2. The detailed information of GPSME directives are

reported in our early work on GSWO programming model [37].

First, the basic GPSME directives are inherited from MINT as

shown in Table.3. The primary extension of GPSME directives

is that its memory management directives have an enhanced

hierarchy. GPSME introduces a set of memory management

pragmas to control GPU memory allocation, CPU-to-GPU

memory transfer and CPU memory conversion, respectively. It

also provides pragmas to allow for the use of texture memory

(in addition to the use of global memory). These new pragmas

bring the flexibility and effectiveness to memory management

that is needed in general applications for image processing.

Also, GPSME introduces a set of newly defined kernel

generation directives. These were designed for Sliding Window

Operations based image processing applications by following a

typical procedure, which contains initiation, transfer, remain

and assign. They are simple and can be applied to all types of

parallelizable operations in sliding windows. Our experiments

showed that using GPSME directives provides a significant

improvement in usability and productivity when compared with

other CPU-to-GPU translators.

The final improvement of GPSME directives is that it extends

the directive parallel of MINT into two directives parallel and

parallel region to distinguish the kernel region from the parallel

region. The parallel region indicates the start of a parallel

region containing the CPU source code for parallelization,

whereas the parallel marks a loop for generating a GPU kernel

function. This extension is highly similar to the directives

parallel and kernels in the OpenACC standard, but is less

complicated and more easy to use by non-expert GPU users.

With these two directives, the GPSME system can support more

complicated algorithmic structures than MINT.

V. KEY ENHANCEMENTS

The GPSME system has some functional extensions to MINT

[19], including C++ and multi-file support, preliminary

OpenCL output, and a user-friendly interface. Besides, some

key enhancements on improving its acceleration capability and

applicability were also implemented.

A. Supporting Triangular Loops

In earlier work [35], GPSME system with original MINT kernel

was applied to the PolyBench [23] benchmarking suite in order

to assess the resulting performance increase. During this

process, the lack of support for triangular loops was identified

as an inhibiting factor of the auto-parallelization process. MINT

kernel was still able to process the outermost loop but this

yielded significantly lower performance that that which was

theoretically obtainable.

An example of such a problematic triangular loop is shown in

Table.4, and the iteration space is depicted visually in Figure.4.

Note how the initial value of j2 in the inner loop is dependent

on the current value of j1 in the outer loop. Mint was still able

to process the input code but generated a non-compilable output

which attempted to make use of variables prior to their

declaration.

GPSME have therefore implemented triangular loop support as

an extension to the MINT. We define a rectangular iteration

space over the full range of values which j1 and j2 can assume,

and then overlay a grid of CUDA thread blocks. The CUDA

kernel checks whether the current iteration does indeed fall

within the triangular part of the iteration space, and skips

execution if this test fails.

Table.4. Example of problematic triangular loop

Algorithm

1: #pragma mint copy(data,toDevice, M, N)

2: #pragma mint copy(mean,toDevice, M)

3: #pragma mint copy(symmat,toDevice, M, N)

4: #pragma mint parallel

5: {

6: ... //Some code omitted for brevity

7: #pragma mint for nest(2) tile(16, 16)

8: for (j1 = 0; j1 < M; j1++)

9: {

10: for (j2 = j1; j2 < M; j2++)

11: {

12: ... //Some code omitted for brevity

13: }

14: }

15: }

16: #pragma mint copy(symmat,fromDevice, M, N)

With this in mind, a thread block can be categorized as being in

one of three states with respect to the number of threads which

need to execute:

 Full: All threads are part of the triangular iteration space

and must be executed. No processing capability is wasted

in this scenario.

 Empty: None of the threads are part of the triangular

iteration space. All threads will fail the membership test

implemented in the kernel and return immediately.

 Half-full: In this case the running time of the thread block

is determined by the threads which do need to run. Threads

which do not need to run must still wait upon those that do,

and this represents some wasted processing capability.

Fig. 4. Iteration space of the two-level covariance loop

7

This approach has yielded a performance increase greater than

that which was obtained from OpenACC, and more than 30

times greater than that which was obtained from the original

Mint. The proportion of half-full blocks decreases as the

problem size increases, which limits the impact of the GPU's

relatively poor performance in the presence of divergent

operations.

GPSME system has evaluated the triangular loop support on a

sample CPU code for the computation of colon centerlines to

be used for the purpose of virtual endoscopy. When running on

the CPU, the provided code took approximately five minutes to

fully process a CT dataset with a resolution of 512x512x512

voxels. This code was optimised prior to GPUification such that

it ran in 48 seconds on a single core. The GPSME system was

then able to achieve a three-fold speed increase bringing the

execution time down to 17 seconds, which was comparable to

the 15 seconds taken by the four-core CPU version. A manual

implementation was able to further decrease the runtime to only

1.2 seconds [36].

While the GPSME system was effective in parallelizing this

application, the main problem was the large memory usage. Our

manual implementation was able to be much smarter about the

allocation and copying of memory which led to a significant

speed increase. However, this manual implementation did take

several days of work, whereas the auto-parallized version only

took one hour to add the directives and perform some minor

debugging.

B. Single-dimensional vs Multi-dimensional Arrays

Another improvement to the GPSME system is that it adds

more optimization opportunities when applied to code that use

multi-dimensional arrays. The optimizations are in terms of

better register reuse, as well as better shared memory usage.

This assumption was evaluated on some of the Polybench tests

[26]. For the 2MM and SYR2K tests, a further 25%

performance increase is obtained when using two-dimensional

addressing instead of the default flattened array addressing.

The changes from single-dimensional to multi-dimensional

array accesses were done in a manual manner, as in Polybench

all tests are written with flattened array accesses. However, with

extra hints from the programmer the GPSME system should be

able to treat the single dimensional arrays as multi-dimensional

ones. An interesting observation is that when faced with the

same two-dimensional arrays in the 2MM and SYR2K tests, the

OpenACC compiler reports more than two times worse

performance. The reasons for this are not currently clear and

will be the subject of some future investigation.

 C. Kernel generation scheme for SWO

Considering the limitation of MINT kernel generation, another

kernel generation scheme in GPSME system is designed into

our early work (GSWO model [37]) to orchestrate the GPU

kernel code generation. Figure.5 shows an example workflow

of the kernel generation scheme for median filter. We have

designed new “single” pragmas for kernel code generation, four

of which are defined below.

 Single Initialisation: generates CUDA kernel code that

defines a 1D array with size I×J for storing the data in the

sliding window.

 Single Transfer generates CUDA kernel code to transfer the

data of the sliding window into the 1D array defined in the

Single Initialisation directive.

 Single Remain generates CUDA kernel code that

corresponds to the operations on the sliding window.

 Single Assign generates CUDA kernel code that copies the

processed data in the sliding window to the relevant GPU

buffer obtained via the thread and block IDs.

Figure. 5. Working flow of Kernel Generation Pragmas

VI. PERFORMANCE EVALUATION

In this section, the effectiveness of the GPSME system is

evaluated on the general applications of four companies from

the GPSME project [29]. The evaluation methodology used in

this paper is based on the measurement of acceleration ratio

between GPU and CPU performance without losing the original

algorithm’s accuracy. The baseline is the performance of the

original CPU code running on conventional hardware without

using multi-threading. The evaluation platforms were: (a) Intel

Core i7-2670QM CPU and NVIDIA GeForce GT 540M; (b)

Intel Core i7-3770K CPU and NVIDIA GeForce GTX 690; (c)

Intel Core i3-2.1GHz CPU and NVIDIA GeForce GT 520M;

(d) Intel Core i7-3.4GHz CPU and NVIDIA GeForce GTX

680M; All GPU implementations used NVIDIA GPU SDK

version 4.1. OpenMP programs were compiled using Visual

Studio 2008, and all computation used double precision.

8

A. Acceleration Performance

Acceleration is the most important indicator reflecting the

performance of the GPSME system. In order to evaluate this,

we have compared the execution performance of the original

CPU code, the GPSME system generated GPU code, and the

manually-generated GPU code. The original CPU codes were

provided by inexperienced GPU users from their general

applications. They were revised by the users in order to be

processed by the GPSME system. The system generated the

machine-generated GPU codes. To better represent the

performance of the generated GPU code, we have also

performed the CPU to GPU code conversion manually. The

acceleration performance is shown in Table. 4.

SCS: The application from SCS is centerline extraction for a

given 3D model. The code from SCS is based on C++, and also

calls VTK functions for centerline extraction. The performance

gain from the use of the system is shown in Table.4. It appears

that the GPSME system can accelerate the application from

B3C up to 2-3 times on average, dependent on the GPU devices

used.

IME: The application from IME is to produce a camera

fingerprint by applying de-noising methods to a set of images

that are known to come from a given camera. The sample code

from IME are based on C++, and aims at implementing a 3×3

median filter for de-noising. The image resolution is 3648 ×

2736. The number of images is 39. The algorithm splits the

images into a number Region of Interests (ROIs), which can be

processed in parallel. Table 5 shows the performance gain from

the use of the GPSME system.

It shows that the accuracy of the IME application delivered by

the GPU implementation and the CPU implementation is

exactly the same, which means that the machine generated GPU

implementation does not negatively impact the camera

fingerprint application. Secondly, it appears that on average the

GPSME system accelerates the performance with up to 3-4

times. If only considering the acceleration of the kernel region,

the speedup performance can achieve execution times of up to

6 times shorter than the original CPU application. This proves

that the GPU kernel implementation is certainly capable of

speeding up the CPU code in the parallel regions.

ROTA: The application from Rotasoft uses the highly

viewpoint-invariant ASIFT algorithm for feature extraction in

augmented reality applications. Rotasoft has successfully

evaluated the ASIFT implementations on their own dataset. The

matching accuracy of the GPU implementation is almost the

same as the original CPU implementation. After using GPSME

system, the performance of the application is greatly increased,

as shown in Table. 6. It appears that GPSME system accelerates

the whole application up to 6x times for a lower grade system,

and up to 13.6x for a high performance system.

AnSmart: The application from AnSmart is to use

morphological filter to detect the eye’s region position in a

video. While OpenCV provides some functions to detect the

position of eye regions, the performance is limited by a variety

of issues, such as the lighting, the head position, other noise,

etc. Therefore, AnSmart develops some own morphological

filter based algorithms to segment the eye regions from videos.

The morphological filter relies on the repeated use of dilation

and erosion operations on a binary image. However, the

repeated use of dilation and erosion is a quite time-consuming

task, particularly for high resolution image with large sizes of

window kernels. The GPSME system is capable of successfully

accelerating the performance of morphological filters. The

results are as shown in Table.7. It appears that the GPSME

system can effectively speed up the morphological filtering for

the AnSmart eye detection algorithm with up to 3 times. The

times of repeating the operations of dilation and erosion will

impact the acceleration performance of GPSME system. If the

times for the dilation and erosion operations are increased, the

acceleration performance will be better. Another issue is that

the window size of the running kernel could impact the

acceleration performance. Due to the image resolution, a 9*9

morphological kernel is used in this case. If the window size

increases, the speedup ratio is enhanced significantly.

Oppositely, for small window size kernel, the performance of

GPSME system is close to that of the CPU implementation.

Table 4. Acceleration performance of general applications from industry

Companies Applications Platform GPSME

Speedup

Manual

Speedup

Auto-GPU running

time

SCS :

Centerline extraction

Small 3D Model A 2.11 4.56 78 ms

B 2.34 4.68 56 ms

Big 3D model A 3.14 24.38 448 ms

B 3.25 24.68 128ms

IME :

Centerline extraction

Denosing filter kernel region

for single image

A 6.17 13.25 8.32 s

B 4.23 7.23 3.91 s

Whole program for single

image

A 4.29 10.56 19.7 s

B 3.40 7.12 8.28 s

Denosing filter kernel region

for image sequence

A 6.21 13.54 5m 25 s
B 4.35 7.56 2m 34 s

Whole program for image

sequence

A 4.31 11.23 11m 47 s

B 3.78 7.34 4 m 48 s

RotaSoft :

Feature extraction in augmented reality

ASFIT algorithm for feature

extraction

C 4.76 5.56 14.6 s

D 8.09 13.6 3.2 s

AnSmart :

Eye recognition with morphological filtering
People Eye 1 (1285 × 751) A 2.91 5.23 847 ms

People Eye 2 (1279 × 721) A 3.72 6.65 780 ms

People Eye 3 (640 × 480) A 2.68 6.12 458 ms

9

To sum up, the acceleration ability of the GPSME system is

outstanding. With necessary code revisions on original CPU

applications, GPSME system successfully semi-automatically

converts C/C++ code into either CUDA or OpenCL code. On

average their applications can be sped up to 3-4x times, even up

to over 10 times for a high-grade GPU system. Considering that

the targeted applications are all real-world programs, the overall

acceleration is very good.

B. Applicability

Applicability is another important factor for the GPSME system.

We expect the system to be applicable to a wide range of

industrial applications. To this end, we have evaluated the

GPSME system in a variety of application scenarios.

Document Segmentation: Large-scale document digitalisation

is a popular topic for many libraries and museums in recent

years. It involves a significant amount of document layout

analysis, region segmentation and text line segmentation. For

large scale document digitalisation, this is a time-consuming

task due to the amount of newspapers, magazines and other

documents required to be scanned at high-resolution on a daily

basis. We have used dilation and erosion algorithms to process

some sample newspaper documents images from IMPACT,

which is the most successful large-scale document digitalisation

project in the last 10 years. The processed newspaper document

images are set to be evaluated by a region segmentation method.

The image resolution is 3595 × 5194. The GPSME system is

capable of processing C++ code, and the results are shown in

Table 5.

Table 5. Document Analysis code evaluation by GPSME

The evaluation results in Table 5 show that for dilation or

erosion operators with size over 5 × 5, the GPSME system can

speed up the application performance up to 1-3 times. For

dilation or erosion operator on less than 5 × 5 sub-windows, the

GPU performance is even slower than the CPU performance.

This phenomenon implies that if the dilation or erosion operator

is less than 5 × 5 sub-windows, the benefit of GPU acceleration

is cancelled out by the introduced overheads (e.g. data

transmission between CPU and GPU) and by other commitment

introduced on the CPU side, e.g. the extra CPU code employed

for the purpose of processing the pragmas, etc.

Sliding Window Image FIlter: Sliding Window Operation is

a very popular technique in image processing. Typically,

Sliding Window Operation repeatedly applies an image filter to

a predefined small size sub-window that is shifted across a

target image. This operation involves high computing

complexity if the image filter contains many loops or iterations

with high floating-point arithmetic intensity. This particular

structure fits very well with the GPU date parallel programming

model. The IME users have implemented several statistic

measurements for image filter algorithms. Ten typical SWO

image operators were selected as benchmarks. A high

resolution image by using different size of sliding windows.

The size of the evaluated sliding window is respectively given

as 3×3, 5×5, 7×7, 9×9. The resolution of the evaluated image is

3325×4765. The baseline is the performance of the original

CPU code running on conventional hardware without using

multi-threads. It compares the speedup ratio of the GPSME-

generated CUDA, MINT-generated CUDA and OpenMP over

this baseline. For the simplicity, here we only demonstrate the

speedup ratio of the above ten benchmarks with sliding window

5×5. The results are shown in Figure 7.

Figure. 6. Performance evaluations of the SWO image filters

Blur moment invariants: Blur moment invariants are widely

used in digital image processing. They are functional invariant

with respect to blur. These blur invariants are employed by

IME to identify near-duplicated regions in a digital image. This

is carried out in a few main steps: 1. Tiling the image with

overlapping blocks, 2. Moment blur invariants representation

of the overlapped blocks, 3. Principal component

transformation, 4. K-d tree representation, 5. Blocks and

neighbours analyses (matching), 6. Near-duplication map

creation. The image is tiled by overlapping blocks of R × R

pixels. Blocks slide by one pixel along the image from the

upper left corner right and down to the lower right corner. The

total number of overlapped blocks for an image of M × N pixels

is (M – R + 1) × (N – R + 1). For instance, an image with the

size of 2000 × 2000 with blocks of size 16 × 16 will produce

3.940.225 overlapped blocks. The moment blur invariants

representation for each block is computed separately making

the run-time of the method too expensive. Thus, this is the part

that we can accelerate using the GPSME system. The

experimental results are shown in Table 6.

Table 6. Blur moment invariant evaluation by GPSME

 Photos

Size

CPU CPU (no

OpenCV)

GPU

Manual
GPU by

GPSME

Speedup

Ratio
1000 ×

1000
70.2s 69.7s 22.56s 23.44s 2.99

2000 ×

2000
287.1s 285.5s 90.6s 96.16s 2.98

3000 ×

3000
652.1s 647.4s 207.5s 218.0s 2.987

PRNU estimation in video signals: PRNU stands for photo

response nonuniformity (PRNU) and it is the key information

estimated from the video signals enabling us to provide image

System A (seconds) System B (seconds)

CPU GPU Times CPU GPU Times Details

0.26 1.0 0.26 1.3 1.6 0.81 3 × 3 dilation

1.19 1.2 0.92 4.3 1.9 2.22 5 × 5 dilation

3.69 1.2 2.92 18.2 2.3 7.87 9 × 9 dilation

0.24 1.03 0.24 1.5 2.3 0.68 3 × 3 erosion

1.10 1.0 1.07 5.7 2.1 2.73 5 × 5 erosion

3.35 1.1 2.87 16.8 2.5 6.62 9 × 9 erosion

10

and video ballistics services. Having a video signal consisting

of thousands of frames, PRNU is estimated separately for each

frame, this being very computationally expensive. An essential

step in estimating PRNU is de-noising the image in every JPEG

block (compressed block) separately. Moreover, in every block

we need to compute the residual of the image and its de-noised

version. This should be done in thousands of frames for an HD

video. For example, a 1280×720 video of 10 minute length

having 30 frames per second generates 4.320.000 blocks that

should be analysed separately. Thus, the need for GPU

acceleration is obvious. The experimental results are shown in

Table 7. From Table 7, it appears that the revised CPU

application by removing the use of the OpenCV library brings

a significant improvement over the original CPU code (three

times faster). The machine-generated GPU code can speed up

the original CPU application about 6-8x. The GPSME system

is therefore well suited for dealing with this application.

Table 7. PRNU estimation in video signals evaluation

 Photos

Size

CPU CPU (no

OpenCV)

GPU

Manual
GPU by

GPSME

Speedup

Ratio
1000 ×

1000
0.344s 0.110s 0.143s 0.082s 4.19

2000 ×

2000
1.348s 0.434s 0.257s 0.213s 6.32

3000 ×

3000
2.988s 0.967s 0.495s 0.451s 6.625

4000 ×

4000
5.252s 1.691s 0.821s 0.729s 7.204

5000 ×

5000
8.21s 2.624s 1.192s 1.104s 7.436

6000 ×

6000
31.43s 9.177s 3.892s 3.760s 8.36

Support vector machine (SVM): In order to further evaluate

the applicability of the GPSME system, we have chosen to test

it on a different class of application, this time from the field of

machine learning. We have decided on an application for

handwritten digit recognition, and we chose the support vector

machine (SVM) as the learning algorithm. Although the

accuracy of the SVM is good for a multitude of classification

tasks, its execution time tends to be very high, especially for

large datasets comprised of large feature sets. We have applied

the GPSME system in two key stages of the SVM execution:

the generation of the kernel matrices and the actual SVM

training. The datasets used was the standard MNIST and the

Indian Bangla digit dataset. Both datasets are comprised of

around 10000 training examples, each example being described

by a feature space with 784 dimensions. The experimental

results clearly outline the effectiveness of the system, being

highly close in terms of performance to the highly optimized

CUBLAS-based GPU-LibSVM implementation, and faster

than the OpenMP and OpenACC implementations. By having

a fast GPSME-based implementation we can run several

simulations for parameter tuning, pushing further also the

accuracy results. The results are shown in Table.8.

Table 8. SVM evaluation by GPSME

SVM

implementation
Accuracy

[%]

Standard

deviation[%]
Time

[s]

Dataset/

Feature

OpenMP 97.34 0.45 117.1

Bangla/

Pixel

features

LibSVM 96.70 n/a 60.5
GPU-LibSVM 96.70 n/a 10.5
PGI 97.34 0.45 36.3
GPSME 97.34 0.45 17.4

OpenMP 97.65 0.18 136.1

MNIST/

Pixel

features

LibSVM 97.17 n/a 35.5

GPU-LibSVM 97.17 n/a 7.8

PGI 97.65 0.18 43.8

GPSME 97.65 0.18 17.4

C. Usability and Adaptability

The usability of GPSME system mainly lies in the friendliness

of GPSME web-interface. The general users have used the

GPSME web-interface to upload, convert their C/C++ source

code, and download the machine generated CUDA or OpenCL

code. The evaluation procedure involves the test of the server

functions, user-friendliness, efficiency and accuracy. Most of

the essential functions stated in the user requirements have been

achieved by providing the server service. This includes the

transfer of source codes for analysis, converting CPU source

code for GPU processing, running performance diagnostics

with the system, validation of converted source codes and

creating reports/logs. In addition, the sample files can be

accessed in the web-interface of the GPSME system after user

logs in; a reminder message for the private key automatically

occurs when users log in for their first time; users can add

pragma by either keying in or using a dialogue box. The

efficiency of the GPSME system is good. The processing time

of running the system for each operation is less than 5 seconds,

which is acceptable by all non-expert GPU users from industry.

The adaptability of the GPSME system indicates how easily and

efficiently is for novices to learn how to use the GPSME system.

GPU programming requires a steep learning curve for novices.

The GPSME system features a great potential in bringing a

cost-effective solution for accessing GPU power. The

evaluation of the adaptability involves four parts, including the

understanding of loop patterns, algorithmic skeletons, pragmas

and warning messages. In summary, the adaptability of the

GPSME system is good. While the understanding of the kernel

generation pragmas is still hard to new users, the loop pattern

and algorithm skeleton appear to be easy to understand by users.

Also, the use of warning messages is well-received by users.

We also designed a questionnaire to collect feedbacks from

non-expert GPU users after evaluating the GPSME system. The

results are shown in Table. 9

Table 9. Learning and using GPSME system by inexperienced

GPU users

 IME B3C AnSmart Rotasoft

Understand loop

pattern
Easy easy easy easy

Understand

Basic pragma
Easy easy easy easy

Understand

advance pragma
moderate moderate moderate moderate

Web-interface

user-friendly
Yes Yes Yes Yes

File-editor easy-to-

use
Yes Yes Yes Yes

Running

sufficiently fast
Yes Yes Yes Yes

Error and warning

reporting
Satisfied Satisfied Satisfied Satisfied

Code protection Satisfied Satisfied Satisfied Satisfied
Easy to learn Yes Yes Yes Yes

11

Table 10. Comparision of properties of other CPU-to-GPU tools

D. Competitiveness

In order to know how the GPSME system behaves compared to

other CPU-to-GPU translators, we attempt to use MINT, Bones,

Par4All, OpenACC and OpenMP to evaluate some sample

codes. We identify a number of typical directive based source

translators and compare their performance in Table 10.

OpenACC and PGI are both commercial GPU programming

tools with stable applicability but not outstanding acceleration

performance in practical applications. CUDA-lite introduces

some directives to improve memory hierarchy of CUDA, but it

cannot directly support C++.

hiCuda can optimize CUDA code by dealing with global

memory and transformations to leverage the complex memory

hierarchy. But it requires users to have some GPU

programming experience. Compared to hiCuda, MINT is an

easy-use CPU-to-GPU source translator containing only five

types of pragmas. It is designed for accelerating stencil

computations on the NVIDIA GPU. This translator accepts the

input of C source with some intuitive MINT directives, and then

generates CUDA C with a speedup performance of up to 10x.

 The following issues have been observed regarding these

existing CPU-to-GPU translators.

• Applications written in C++ cannot be processed by most of

the above tools. Bones and Par4All do not accept the C++

language as an input source, so they cannot process the given

applications. Meanwhile, Bones is an algorithm skeleton based

tool with a limited applicability.

• Secondly, while MINT and OpenMP can be extended to

support C++ language, it is indispensable to rewrite the original

CPU code as an acceptable input for each tool. The actions of

removing the use of external library and breaking up the

variable dependencies in the parallelized regions are required.

E. Other issues

The security requirement aims to protect the source code of the

general users. The current GPSME web-interface provides a

user registration system to access the system. It provides the

registered users with private-keys to view their source code. In

general the security scheme can satisfy the user requirement to

protect their code. One issue that needs some further attention

is that the user password and private key are currently stored

into the cookie of the browsers unless users delete the cookies.

The users can also delete their uploaded files. If they do not

delete their files, these files are encrypted to store on server for

30 days. After 30 days, the files will be deleted so users have to

upload the files again if they need.

In the GPSME system, we use our existing GSWO model [41]

to determine the size of block and thread. The selection of block

and thread size here is based on the pragmas: nest, tile and

chunksize. They are used for indicating the depth of for-loop

parallelization within a loop nest, specifying how the iteration

space of a loop nest is to be subdivided into tiles, and

aggregating logical threads into a single CUDA thread,

respectively. The size of a CUDA thread block in the GPSME

project is the same as in MINT: threads (tx/cx, ty/cy,tz/cz). But

the impact of selected block and thread size on acceleration in

GSWO model is not as significant as that in MINT. The kernel

generator in MINT makes all of the parameters in the function

argument become kernel call parameters and makes all memory

references through device memory.

There are a few minor limitations on memory use in GPSME

project. In the GSWO model, the memory management

pragmas are not simple for a non-expert to understand and use

correctly, though they can be successful with a little care.

Finally, no optimizations of the CUDA kernels in the GSWO

model are considered in this GPSME. Hence, traditional

optimization methods that use shared memory or improve

memory bandwidth cannot be used directly. We will investigate

using shared memory to improve kernel acceleration in future

work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a web-service based CPU-to-GPU

source translation system, the GPSME system for general

applications. This system enables inexperienced GPU users to

take advantage of current GPU capability without having the

need for a deep understanding of GPUs. The architecture of this

system is inspired by an advanced programming model, MINT,

but with some practical extensions and improvements. The

functionality of GPSME is more generic, with better flexibility

and applicability for improving the productivity of practical

applications than conventional automatic CPU-to-GPU

programming models with purely research purpose. The

experimental results prove that this tool has an improved

efficiency and generality in a variety of real world applications.

We show that it enables non-expert GPU users to flexibly and

effectively use automatic CPU-to-GPU code translation. This

allows them to gain great speed performance and help the

advance of each application domain by allowing for advanced

computing models with high complexity. However, the

limitation of this GPSME system is that its kernel generation

directives are only benefit to the SWO or stencil computing

based applications. The future work will consider introducing

new directives to solve this problem. Meanwhile, it is expected

to be compatible with the existing research tools to optimize the

GPU performance of this tool.

 hiCUDA PGI MINT CUDA-lite GPSME
Language support C-to-CUDA C/Fortan-to-CUDA C-to-CUDA CUDA-to-CUDA C/C++-to-CUDA/OpenCL

Easy-use of

directives

Complex Very complex Easy Easy Easy

Applicability Good Outstanding Limited Good Outstanding

Speedup

performance

Good Good Outstanding Good Good

Optimisation

option

Use of shared
memory

No particular
one

Shared memory and
loop aggregation

Improved memory
hierarchy

Improved memory hierarachy (use
CUDA Texture)

12

REFERENCES

1. S. W. Keckler, W. J. Dally, B. Khailany, and M. Garland, “GPUs and the

Future of Parallel Computing” IEEE Micro. Vol 31, Issue 5, pp7-17, Sep,

2011.

2. W.J. Dally, “The GPU Computing Era”. IEEE Micro. Vol 30, Issue 2,

pp56-69, Mar, 2010.

3. GPGPU. (Nov. 2013), “General-Purpose Computation on Graphics

Hardware.” Available [Online]: http://gpgpu.org/.

4. OpenCL. (Nov. 2013), “Open Computing Language (OpenCL).”

Available [Online]: http://www.khronos.org/opencl/.

5. CUDA. (Nov. 2013), “NVIDIA, 2007. NVIDIA CUDA Programming

Guide v1.1.” Available [Online]:

http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUD

A_Programming_Guide_1.1.pdf.

6. J. Enmyren and C. K. Kessler. “SkePU: A multi-backend skeleton

programming library for multi-GPU systems”, In Proc. 4th Int. Workshop

on High-Level Parallel Programming and Applications (HLPP-2010),

Baltimore, Maryland, USA. ACM, pp. 5-14, 2010.

7. M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A.

Rountev, and P. Sadayappan., “A Compiler Framework for Optimization

of Affine Loop Nests for GPGPUs”, Proc. Int’l Conf. Supercomputing,

NewYork, USA. ACM, pp. 225-234, 2008.

8. A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C.

Bastoul, and R. Lethin, “A mapping path for multi-gpgpu accelerated

computers from a portable high level programming abstraction”, in

Proceedings of the 3rd Workshop on General-Purpose Computation on

Graphics Processing Units (GPGPU ’10), New York, NY, USA, ACM,

pp. 51–61, 2010.

9. U. Bondhugula, U. Hartono, A. Ramanujam, and P. Sadayappan, “A

practical automatic polyhedral parallelizer and locality optimizer”, ACM

SIGPLAN Not. Vol 43, Issue 6, pp.101–113, June, 2008.

10. PoCC 2012. PoCC: the polyhedral compiler collection version 1.1.

http://www.cse.ohio-state.edu/ pouchet/-software/pocc/

11. Pluto, (Dec, 2013), “A polyhedral automatic parallelizer and locality

optimizer for multicores”, Available [Online]:

http://pluto-compiler.sourceforge.net

12. A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C.

Bastoul, and R. Lethin, “A mapping path for multi-GPGPU accelerated

computers from a portable high level programming abstraction,” In Proc.

3rd International Workshop on General-Purpose Computation on

Graphics Processing Units, pp. 51-61, 2010.

13. HPC Project, (Oct, 2011), “Par4all automatic parallelization,” Available

[Online]: http://www.par4all.org.

14. J. Enmyren and C. K. Kessler. “SkePU: A multi-backend skeleton

programming library for multi-GPU systems”, In Proc. 4th Int. Workshop

on High-Level Parallel Programming and Applications (HLPP-2010),

Baltimore, Maryland, USA. ACM, pp. 5-14, 2010.

15. S. Sato and H. Iwasaki, “A skeletal parallel framework with fusion

optimizer for GPGPU programming”, Programming Languages and

Systems, Lecture Notes on Computer Science, vol 5904, pp 79-94, 2009.

16. C. Nugteren and H. Corporaal. “Introducing ‘Bones’: A Parallelizing

Source-to-Source Compiler Based on Algorithmic Skeletons.” In

GPGPU-5: 5th Workshop on General Purpose Processing on Graphics

Processing Units. ACM, 2012.

17. S.Z., Ueng, M. Lathara, S.S. Baghsorkhi, and W. W. Hwu, “CUDA-lite:

Reducing GPU Programming Complexity “, Proc. Int’l Workshop

Languages and Compilers for Parallel Computing, Berlin, Heidelberg.

Springer, pp. 1-15. 2008.

18. T. Han and T. Abdelrahman, “hiCUDA: High-Level GPGPU

Programming”, IEEE Trans. Parallel and Distributed Systems, vol 22, no.

1, pp. 78-90, Jan. 2011.

19. D. Unat, X. Cai, and S. B. Baden. ” Mint: Realizing CUDA Performance

in 3D Stencil Methods with Annotated C”, In ICS ’11: International

Conference on Supercomputing, New York, NY, USA, ACM, pp. 214-

224, 2011.

20. S.Y. Lee, S. J. Min, and R. Eigenmann, “OpenMP to GPGPU: A compiler

framework for automatic translation and optimization”, PPoPP 2009,

International Conference on Principles and Practice of Parallel

Programming, pp. 101-110, 2009.

21. The Portland Group, (June. 2009), “PGI Fortran and C Accelerator

Programming Model “, Available [Online]:

http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.0.pdf

22. The OpenACC Standard, “The OpenACC™ Application Programming

Interface”, Available [Online]:

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf,

November 2011.

23. L.-N. Pouchet. (Nov. 2011), “PolyBench: The Polyhedral Benchmark

Suite.” Available [Online]: http://www.cse.ohio-

state.edu/~pouchet/software/polybench/

24. S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gomez, C. Tenllado, and F.

Catthoor, “Polyhedral parallel code generation for CUDA”, ACM

Transactions on Architecture and Code Optimization, vol.9, issue.4, Jan,

2013.

25. HMPP 2010. “HMPP workbench: directive-based multi-language and

multi-target hybrid programming model.” Available [Online]:

http://www.caps-entreprise.com/hmpp.html

26. J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu, “Automatic

Generation of Multicore Chemical Kernels”, IEEE Trans. Parallel and

Distributed Systems, vol 22, no.1, pp.119-131, Jan, 2011.

27. J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM Kernels for

the Fermi GPU”, IEEE Trans. Parallel and Distributed Systems, vol 23,

no.11, pp.2045-2057, Nov, 2012.

28. Y. P. Zhang and F. Mueller, “Autogeneration and autotuning of 3D stencil

codes on Homogeneous and Heterogeneous GPU Clusters”, IEEE Trans.

Parallel and Distributed Systems, vol 24, no.3, pp. 417-427, Mar, 2013.

29. GPSME. (Oct, 2013), “A General Toolkit for “GPUtilisation” in SME

Applications”, Available [Online]: www.gp-sme.co.uk

30. IME. (Nov. 2013), Image Forgery Detection, Ltd. Available [Online]:

http://www.imagemetry.com/

31. B3C. (Nov. 2013), Biocomputing Competence Centre. Available

[Online]: http://www.b3c.it/

32. RotaSoft. (Nov. 2013), RotaSoft, Ltd. Available [Online]:

http://www.rotasoft.com.tr/

33. AnSmart. (Nov. 2013), AnSmart, Ltd. Available [Online]:

http://www.ansmart.co.uk/

34. ROSE. (Nov, 2012),”ROSE compiler infrastructure” Available [Online]:

http://rosecompiler.org/

35. D.Williams, V.Codreanu, P.Yang, B.Q.Liu, F. Dong, B. Yasar, B.

Mahdian, A. Chiarini, X. Zhao, and J. B.T.M. Roerdink. “Evaluation of

autoparallelization toolkits for commodity graphics hardware”, In 10th

International Conference on Parallel Processing and Applied

Mathematics. Warsaw, Poland. Springer, 2013.

36. D. Williams, V. Codreanu, J. B.T.M. Roerdink, P. Yang, B.Q. Liu, F.

Dong, and A. Chiarini. “Accelerating Colonic Polyp Detection Using

Commodity Graphics Hardware”, In Proceedings of the International

Conference on Computer Medical Applications. Sousse, Tunisia, pages 1–

6, 2013.

37. M. A. Orgun, and L. Xue, “From Predefined Consistency to User-

Centered Emergent Consistency in Real-time Collaborative Editing

Systems”, IEEE Trans. Systems, Man, and Cybernetics: Part A: System

and Humans, vol 36, no.6, pp.1063-1073, Oct, 2006.

http://www.khronos.org/opencl/
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://pluto-compiler.sourceforge.net/
http://www.par4all.org/
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.caps-entreprise.com/hmpp.html
http://www.gp-sme.co.uk/
http://www.imagemetry.com/
http://www.b3c.it/index_eng.htm
http://www.rotasoft.com.tr/
http://www.b3c.it/index_eng.htm
http://rosecompiler.org/

13

38. M. C. Dorneich, “A system design framework-driven implementation of

a learning collaboratory”, IEEE Trans. Systems, Man, and Cybernetics:

Part A: System and Humans, vol 32, no.2, pp.200-213, Nov, 2002.

39. W. P. BrinkMan, R. Haakma, and D. G. Bouwhuis, “Component-Specific

Usability Testing”, IEEE Trans. Systems, Man, and Cybernetics: Part A:

System and Humans, vol 38, no.5, pp.1143-1155, August, 2008.

40. B. Liu, A.C Telea, J. BTM. Roerdink, G. J. Clapworthy, D. Williams, P.

Yang, F. Dong, V. Codreanu, and A. Chiarini. 2014. ”Parallel centerline

extraction on the GPU”, Computers & Graphics, 41 :72-83

41. P. Yang, G. Clapworthy, F. Dong, V. Codreanu, D. Williams, B. Liu, J.

BTM. Roerdink, and Z. Deng. 2016. “GSWO: A programming model for

GPU-enabled parallelization of sliding window operations in image

processing,” SIGNAL PROCESSING-IMAGE COMMUNICATION, 47:

:332-345

