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Abstract—SMEs (Small and medium-sized enterprises), 

particularly those whose business is focused on developing 

innovative produces, are limited by a major bottleneck on the 

speed of computation in many applications. The recent 

developments in GPUs have been the marked increase in their 

versatility in many computational areas. But due to the lack of 

specialist GPU (Graphics processing units) programming skills, 

the explosion of GPU power has not been fully utilized in general 

SME applications by inexperienced users. Also, existing automatic 

CPU-to-GPU code translators are mainly designed for research 

purposes with poor user interface design and hard-to-use. Little 

attentions have been paid to the applicability, usability and 

learnability of these tools for normal users. In this paper, we 

present an online automated CPU-to-GPU source translation 

system, (GPSME) for inexperienced users to utilize GPU 

capability in accelerating general SME applications. This system 

designs and implements a directive programming model with new 

kernel generation scheme and memory management hierarchy to 

optimize its performance. A web-service based interface is 

designed for inexperienced users to easily and flexibly invoke the 

automatic resource translator. Our experiments with non-expert 

GPU users in 4 SMEs reflect that GPSME system can efficiently 

accelerate real-world applications with at least 4x and have a 

better applicability, usability and learnability than existing 

automatic CPU-to-GPU source translators.  

 
Index Terms— Usability, Parallel Computing, GPU, Automatic 

Translation 

I. INTRODUCTION 

MEs, particularly those whose business is focused on 

developing innovative products, are subject to many 

pressures in maintaining and growing their market share 

and ensuring that their products remain competitive in an age 

of rapid technological change. In many high-tech fields, users 

are experiencing a huge growth in data, with increases in 

quantity, in resolution, in variety, etc., while the work often 

present significant time constraints on the associated data 

processing. This leads to a continual upward pressure on 

computational resources and, indeed, the speed of computation 

is now a major bottleneck that dramatically limits the 

applicability of available technology in many applications in 

SMEs.  

   The major challenges in many high-tech applications in SMEs 

relate to a huge growth in data processing requirements through 

increases in quantity, in resolution, in variety etc. demanded by 

 
 

general applications. Parallel computing techniques [1] have 

gained wide popularity among researchers and developers to 

overcome these challenges. Many computing tasks exhibit a 

parallel nature and are hence suitable for parallel computing. 

The concept of parallel computing is to split large problems into 

small components and distributing them among multiple 

processors. Conventional parallel computing takes place using 

multi-core CPUs or via distributed, grid, high performance 

computers. The remarkable rise in performance of Graphics 

Processing Unit (GPU) [2] in recent years offers a very 

attractive alternative, which can handle many demanding tasks 

by only harnessing local computing resource in low-cost 

computer platforms. 

    The most important development in GPUs in recent years has 

been the marked increase in their versatility. Their capabilities 

are now much more widely applicable and they have become 

used in many computational areas - this is known as General 

Purpose GPU programming (GPGPU) [3]. OpenCL [4] and 

NVIDIA’s CUDA [5] are two mainly widespread GPU parallel 

programming languages designed to help users manage GPU 

utilization. If the capacities of the GPU are harnessed properly, 

the achieved speed-up can be significant. But the parallelization 

of CPU code for execution on GPUs is not light and handy to 

general users. This process requires an in-depth knowledge of 

the complex underlying GPU architecture and the GPU 

memory optimization schemes. These skills are still in 

relatively short supply to non-expert GPU users. It is highly 

desirable to have a cost-effective approach that enables 

inexperienced users to easily utilise GPU technology for 

accelerating their general applications.  

    Automatic CPU-to-GPU source translation technique can be 

a candidate to make GPU technology more accessible to the 

inexperienced user. To date, numerous automatic CPU-to-GPU 

source parallelization translation tools [9-27], including 

algorithmic skeleton based [14-16], polyhedral model based [9-

13], or directive based [17-23] have been developed for 

academic and commercial use. While their acceleration is 

promising, utilizing them by normal users in general real-word 

applications is still challenging. Many tools are originally for 

research purposes with a non-availability of public-access and 

a limited applicability of supporting different algorithm 

structures. Simultaneously, the usability and learnability of 

these tools are not prospective, since their attentions are mostly 

on improving  
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Table 1. Comparison of properties of typical automatic parallelization source translation tools 

 Acceleration  Applicability  Usability  Adaptability  

PoCC [10] 1x-10x 8 benchmarks  C-to-optimized C Open source, programming in Linux 

Pluto [11] 2x-12x 13 benchmarks OpenMP to C Open source, programming in Linux 

R-Stream [12] >10x Matrix multiplication, Guass Seidal  C-to-C (Binary) Non public avaiable source  

Par4All [13] 2x-128x 6 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux 

SkePu [14] 10x 7 skeletons (map, mapArray, reduce, etc)  C-to-CUDA/OpenCL Non public avaiable source 

HMPP [25] -10x Multipe types of loops C-to-CUDA/OpenCL Commercial product 

Bones [16] 1x-13x 8 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux 

CUDA-lite [17] 2x-17x MRI-FHD, TPACF CUDA-to- optimized CUDA Non public avaiable source 

hiCUDA [18] -18x 9 benchmarks, MCML C to CUDA Open source, programming in Linux 

MINT [19] 10x-16x Stencil computing  C to CUDA Open source, programming in Linux 

OpenMPC [20] -50x JACOBI, SPMUL OpenMP-to-CUDA Non public avaiable source 

PGI [21] 10x  Multipe types of loops Fortran, C, C++ to CUDA Commercial product 

PPCG [24] 1x-100x 30 benchmarks C to CUDA Open source, programming in Linux 

speedup performance rather than making them more accessible 

to general users. Also, the diverse types of algorithms and loops 

in general applications pose significant challenges towards the 

use of these tools. So there are no existing CPU-to-GPU source 

translation tools reported in literature to provide an outstanding 

solution for non-expert GPU users with reasonable acceleration, 

wide applicability, good usability and well learnability. The 

motivation of this work is to seek out a solution to satisfy the 

above requirements.   

    In this paper, we propose a web-service based automated 

CPU-to-GPU source translation system, (GPSME) for 

inexperienced users to utilize GPU capability in accelerating 

general SME applications. We design and implement a 

directive based programming model that is capable of carrying 

out semi-automatic CPU-to-GPU source-to-source translation 

on moderately priced standard GPU cards and off-the-shelf 

GPU clusters. A web-service based interface is particularly 

designed for inexperienced users to easily and flexibly invoke 

the automatic resource translator. Our experiments with non-

expert users from 4 SMEs reflect that GPSME system can 

efficiently accelerate general real-world applications with at 

least 4x; and also have an improved applicability, usability and 

learnability than existing CPU-to-GPU source translation tools. 

The main contributions of this paper are below:  

 A comprehensive requirement analysis of inexperienced 

users for utilizing GPU technology in general SMEs 

applications is given. It is benefit to improve the accessibility 

and the applicability of existing automatic CPU-to-GPU 

source translators in real-world applications.    

 A web-service based automated CPU-to-GPU source 

translation system, GPSME, is presented and implemented. 

This tool introduces a new kernel generation scheme and a 

memory management hierarchy to optimize its performance.      

 A thorough performance evaluation of GPSME system with 

general SMEs applications has been carried out. The results 

suggest that the proposed tool can effectively and efficiently 

accelerate general real-world applications, and have 

improved applicability, usability and learnability over 

existing automatic CPU-to-GPU source translation tools 

[23-30].  

    The rest of the paper is organized as follows. Section 2 

reviews notable automatic CPU-to-GPU source translators. 

Section 3 analyses the general requirement of inexperienced 

GPU users. Section 4 presents the design and implementation 

of GPSME system. Section 5 shows the experimental validation 

results. Section 6 gives a conclusion and future work. 

II. RELATED WORK 

A large amount of research has been dedicated to automatic 

converting CPU code to GPU code. This section reviews 

existing typical automatic parallelization source translators 

regarding acceleration, applicability, usability and adaptability.  

Polyhedral model [9-10] for performing loop transformations 

has been the basis of early attempts for automatic optimization 

and parallelization of CPU programs. With the emergence of 

GPUs, the polyhedral model is adopted to develop efficient 

CPU-to-GPU source translators such as Pluto [11], R-Stream 

[12], Par4All [13], and PPCG [24]. They translate source code 

with affine loop structures by performing dependency analysis 

and loop transformations. These tools normally require little or 

no input from the users, and have a promising acceleration 

performance; but they have some drawbacks on applicability 

and adaptability. R-Stream supports C-to-CUDA compilation 

but is not publicly available yet. Pluto automatically generates 

CUDA kernel code; but the CUDA host code has to be written 

manually by users. Par4All compiler is a public available tool 

supporting automatic integrated compilation of applications for 

hybrid architectures including GPUs. Yet some restrictions and 

code restructuring might be required for reaching a promising 

performance.   

    Algorithmic skeleton based tools adopt an idea of generating 

efficient target code by a specific algorithm class. Examples of 

such tools are SkePU [14], SkelCL [15], and Bones [16]. Each 

algorithm skeleton is coded as a template of specific algorithm 

class on target architecture. These tools have highly optimized 

library implementations for classes of algorithms instead of 

individual algorithm, as a result of dramatic acceleration.  

Algorithmic skeleton and polyhedral model based tools both 

have a well usability since they do not require users having deep 

GPU knowledge to identify parallel region and memory transfer 

in CPU code. Yet, their applicability is relatively narrow and 

highly sensitive to the characteristics and data structure of CPU 

algorithms. This shortcoming limits their wide acceptances by 

general users. 

    For the purpose of allowing automatic CPU-to-GPU 

translators to be more applicable, directive-based source 

translators [17-23] became popular. By using these tools for 

generating target GPU code, users only need to provide some 

basic annotations about parallelism exploitation and also 

annotations that deal with data transfer. CUDA-lite [17] 

introduces some directives to improve the memory hierarchy of 
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Table.2. Detailed information of inexperienced GPU users from industry

 

CUDA by directly inserting the directives into the CUDA code. 

hiCUDA [18] provides a set of pragmas mapping to typical 

CUDA operations for programmers. CUDA code generated 

from hiCUDA is optimized by operating global memory and 

transformations to leverage the complex memory hierarchy. 

But a prerequisite of hiCUDA is that users have to understand 

sufficient GPU knowledge for specifying the threads and thread 

blocks. OpenMPC [20] project proposes a Cetus compiler 

framework for translating standard OpenMP shared-memory 

programs into CUDA-based GPGPU programs. Despite the 

significant speedup of OpenMPC, its adoption was slowed by a 

manual revision of input source as OpenMP programs. 

Similarly, PGI compiler [21] accelerates applications written in 

C++ by adding standard OpenACC [22] directives; But its 

pragmas are far too complex, and the GPGPU code it outputs is 

almost unreadable (since PGI is designed as a compiler instead 

of a source-to-source translator). Besides, MINT [19] is a very 

easy-to-use C-to-CUDA source translator containing only five 

types of pragmas. It is designed for speedup stencil 

computations on NVIDIA GPUs only. This translator accepts C 

source input with some intuitive MINT directives to generate 

highly optimized CUDA C which may produce performance 

gains of up to 10x. Directive-based tools have a better 

applicability in dealing with complex CPU algorithms due to 

their flexibility of adding annotations in the CPU source code. 

However, their usability is not very good, since users have to 

identify the parallelization region and manage the complex 

memory hierarchy by themselves. Also, hard-learning 

directives and unreadable output code in the tools increase the 

difficulties for inexperienced users to harness them.  

III. REQUIREMENT ANALYSIS   

This section identifies and analyses general expectations of 

inexperienced GPU users on an automatic CPU-to-GPU source 

translator for accelerating their applications. The participated 

users are from four companies in the EU funded project 

GPSME [29]: Imagemetry Ltd (IME) [30], Biocomputing 

Competence Centre (B3C) [31], Rotasoft [32] and AnSmart 

[33]. Their products involve a wide applicable area including 

Image forgery detection, augmented reality book and virtual 

physiological human. Table.2 illustrates the applicable area of 

each company and the problem they face. For collecting a 

general requirement of their non-expert GPU users, IME Ltd 

communicated with the other three companies and collected 

their feedbacks in three months through emails or project 

meetings. Inexperienced GPU users have some common 

objectives such as:  

 No need on having an in-depth understanding of GPUs 

 Full or semi-automatic CPU-to-GPU source 

translation  

 Support C++ programming language  

 Support either CUDA or OpenCL  

 Efficient speedup performance and no accuracy loss 

 Source code protection  

 Report the system process and error diagnostics 

Regarding the above general objectives, it appears that existing 

CPU-to-GPU source translators in Table.1 hardly satisfies the 

full needs.  

Non-expert GPU users expect a system that enables them to 

quickly take advantage of current GPU capability to effectively 

and economically speed up their products. In terms of this goal, 

an explicit requirement analysis of their expectations on this 

system is given as below:  

 Acceleration: They expect their general CPU applications 

to be accelerated significantly on moderate hardware 

platforms. Non-expert GPU users are more interested in 

actual time saved in their applications instead of a high 

speed-up ratio of GPU over CPU. However, existing CPU-

to-GPU translators focus more on the improvement of their 

speed-up ratio for reflecting their parallel efficiency. Their 

acceleration results are mostly achieved by running simple C 

code samples though a high-level GPU hardware. Their 

utilization in practical applications cannot reach and can 

even decrease the performance since some indispensable 

CPU source code revisions are required. So the acceleration 

capability of the GPSME system in this paper need be 

evaluated by practical applications, and not only the sample 

code for the parallel region.  

 Applicability: They look forward to a system with wide 

applicability, which can solve time-consuming problems in 

various types of products. Among the existing CPU-to-GPU 

translators, algorithm skeleton based tools like Bones [16] 

has limited classes so they cannot support the applications 

with complex or diverse loop types. Directive-based tools 

like OpenMP [20], hiCuda [18] and PGI [21] have wide 

applicability guaranteed by flexible usage of standard 

pragmas. But the understanding and learning of these 

pragmas become hard tasks for non-expert users. There has 

to be a trade-off of these tools between applicability and 

directive complexity. The directives of GPSME system have 

to be simple but enable supporting all types of algorithms 

skeleton and loop patterns from their general applications.   

 Usability: Inexperienced GPU users have strong demands 

on usability of the GPSME system. First, the input and 

output languages are essentially to support C/C++ and 

CUDA/ OpenCL. Second, they suggest using a web-service 

interface to achieve a cross-platform (Windows and Linux) 

usage of code translation. A user file management system 

with source code protection scheme is required for this 

interface. Among existing CPU-to-GPU source translators, 

most of their interface are C-to-CUDA based command line 

tools under Linux. A system with better usability for non-

expert GPU users is expected. 

 Langauge  Product Area Problem 

IME C++ Image forgery detection Time consuming task in detecting suspicious and altered parts of the image or video. 
B3C C++  Virtual physiological human Many VPH applications are computationally demanding.  

ROTA C++ Augmented reality book Imge processing speed in real time AR books. 

AnSmart C++ Eye Tracking Medical image analysis in diagnosising eye diseases. 
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 Adaptability: The easy-to-learn nature of the tool is 

paramount to inexperienced GPU users. GPU technology 

and programming skills are hard to grasp. The existing CPU-

to-GPU source translators still need users to study the usage 

of the directives. In fact, the simplicity of the directives is 

crucial to the adaptability of the system. This paper aimed to 

design simple, flexible and efficient directives. 

IV. GPSME SYSTEM OVERVIEW 

GPSME system is a deliverable of the GPSME [29] EU funded 

project. The significance of this tool distinguishing from other 

CPU-to-GPU source translators is that relatively much attention 

has been paid to the usability and adaptability. Also, driven by 

the potential difficulties of having a local GPSME installation 

and the increased visibility of the system, access to GPSME 

system through a remote web server is more suggested. The 

main system architecture of the GPSME system includes two 

components: GPSME web-interface and GPSME core library. 

The communication between these two components is handled 

through a web-service. Though the web-interface, 

inexperienced GPU users can upload their CPU source files; 

execute translations by invoking the core library; and download 

the generated GPU source files.  

A. GPSME Web Interface 

GPSME web-interface is designed and implemented using the 

ExtJS framework for providing appearance and user experience 

close to desktop applications. The web application of GPSME 

includes file explorer, rich text editor, interactive help system 

and tabbed information windows. Also, it encrypts users’ code 

to protect their intelligent properties and facilitates a translation 

of users’ source code, not needing anything related to the 

system locally installed on the users’ machines. The GPSME 

web interface is presented in in Figure.1.  

 

Fig. 1. GPSME web interface 

The typical usage of the GPSME web application is as follows: 

• The user creates an account with his/her details. 

• The user uploads C/C++ source file and necessary header files. 

• The user selects the desired output type and initiates the code 

translation process. 

• It takes a few seconds for the GPSME web server to process 

the user files. If success, the results can be retrieved under the 

‘Processed files’ tab.  

The user does not run the system locally on a Linux machine 

but will be instead making use this remote web server.  

• If CPU source code has an external dependency then it must 

be presented or installed on the remote webserver (in addition 

to user’s local machine). Users need to contact the server 

administrator to get the dependencies installed if so required. 

• When uploading a C++ file for parallelisation users must also 

upload any of their own headers on which the C++ file is 

dependent. It is assumed that these belong in the same directory 

as the C++ source file, so users avoid deep paths in their 

#include statements. 

B. GPSME Core Library  

The design of GPSME core library is inspired by MINT [19], 

which is developed on Linux by using the ROSE compiler 

framework [34] at Lawrence Livermore National Laboratory. 

ROSE provides an open source compiler with API to develop 

customized source-to-source translators for performing code 

transformations, analyses and optimizations. The structure of 

GPSME core library is similar to MINT [19] but with some 

extended components. The system structure and translation 

flow of implementing the core library is illustrated in Figure.2.  

 

Fig. 2. Structure of GPSME core library  

The input of GPSME system is a set of C/C++ source files 

annotated with GPSME directives. Once source files are read, 

the ROSE frontend constructs an Abstract Syntax Tree (AST). 

The core library traverses the AST and queries parallel regions 

containing data parallel for loops. The Identifier is responsive 

to identify and classify loop pattern, variables and device 

information from the AST. Regarding the identifications, the 

Analyser and the Optimizer investigate the possibility of using 

predefined approaches in GPSME system for  
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Table 3. Listing of GPSME directives (some are inherited from and MINT [19])

AST transformations. The Translator adopts similar rules in 

MINT Baseline Translator to perform transformations on the 

AST. But it enhances the functionalities of MINT, whose 

details are presented in section I. GPSME core library supports 

both CUDA and OpenCL code by unparsing the transformed 

AST. Due to the similar code generation procedure between 

CUDA and OpenCL, this paper mainly discusses the generation 

of CUDA code using the GPSME core library.   

C. Interaction  

The interaction between GPSME web application and GPSME 

core library is designed and implemented by utilizing the 

jQuery Framework and Java Servlet. At the server side, 

RESTful web-services are deployed to Tomcat 7 servlet 

container for handling the AJAX requests including file upload, 

edit and execute. Figure 3 illustrates an interactive workflow 

between GPSME web interface and core library at GPSME 

server.  

 
Fig. 3. Interaction between GPSME web interface and core library  

In Figure.3, users firstly register and upload their source files 

though GPSME web interface. They receive a private key for 

decrypting uploaded source files in their emails. The public key 

was generated and stored in server database for encrypting 

uploaded source files. Users need key in a correct private key 

to display, edit, save or translate the source files. In code 

process, an AJAX request will be sent to the REST service end 

point and invoke the GPSME core library to execute command 

line tools. Once execution finished, the outputted files and log 

files are collected and returned to GPSME web interface. User 

can view the diagnosis and error reporting information and 

download the CUDA or OpenCL source files. Meanwhile, 

some sample codes and tutorials are provided in web interface 

for users to learn and experience.        

D. GPSME Directives 

In MINT [19], five types of different directives are employed 

for three main tasks: a) Identification of parallel region. b) 

Memory management. c) Kernel generation. The MINT for 

directives in MINT is the most important since it identifies a 

parallel for loop nest and helps guide optimization and 

generation of kernel code. The MINT copy directives help users 

manage the separate host and device memory space. However, 

the utilization of MINT in general applications faces to three 

challenges below:      

 The MINT directives indicating parallel regions and kernel 

regions are too simple to use for complicated algorithms. The 

directive parallel marking a parallel region must be located 

immediately behind the directive copy. It cannot handle 

algorithms in which users need to insert source code between 

these two directives.     

 The copy directives combining memory allocation and data 

transfer is too extensive to support high level storage setup 

and management. Particularly, in practical applications, it 

requires separating the operations of memory allocation and 

data transfer to allow the reuse of the allocated memory for 

data transfer. 

 The MINT kernel generation directives only support stencil 

computing. Many algorithm skeletons in general 

applications are beyond stencil computing, which hardly 

copy with by MINT kernel.   

 Directives  Descriptions 

 

Basic pragma 

Parallel                         (MINT) To identify a region generating a kernel function 

For                                (MINT) To mark the succeeding “for” loop for GPU acceleration  

Single                            (MINT) To indicate serial regions in the GPSME  

Parallel region   

 

To identify a parallel region containing parallel work 

 

 

Memory  

Management 

Copy                              (MINT) To express the declaration, allocation, data transfers between the host and device  

CopyByTexture To create a CUDA texture on a device, and bind or unbind with 2D data 

CopyMalloc1DArray To create a CUDA array on a device, associating it with a CUDA texture on the device 

CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between CPU and GPU memory 

CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data between CPU and GPU memory 

CopyBindTexture To bind the created texture memory to a CUDA global array 

Copy2DArrayTo1DArray 

 

To convert the array with different dimensions on the CPU memory buffer 

 

Kernel  

Generation 

For, nest, tile, chunksize (MINT) To generate CUDA kernel for each parapllel “for” loop with given thread blocks and threads.  

 

Initialisation To define a one dimensional array for storing the data in a sliding window 

Transfer To transform the code of putting the data in a sliding window into a local variable within a “For” 

loop 

Remain To transform the operations on a sliding window from CPU algorithm to the GPU kernel. 

Assign To assign the new data to the relevant GPU buffer with the correct index. 
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For overcoming the limits to MINT directives, the design of 

GPSME directives consider the practical requirements in 

section 2. The detailed information of GPSME directives are 

reported in our early work on GSWO programming model [37]. 

First, the basic GPSME directives are inherited from MINT as 

shown in Table.3. The primary extension of GPSME directives 

is that its memory management directives have an enhanced 

hierarchy. GPSME introduces a set of memory management 

pragmas to control GPU memory allocation, CPU-to-GPU 

memory transfer and CPU memory conversion, respectively. It 

also provides pragmas to allow for the use of texture memory 

(in addition to the use of global memory). These new pragmas 

bring the flexibility and effectiveness to memory management 

that is needed in general applications for image processing.  

Also, GPSME introduces a set of newly defined kernel 

generation directives. These were designed for Sliding Window 

Operations based image processing applications by following a 

typical procedure, which contains initiation, transfer, remain 

and assign. They are simple and can be applied to all types of 

parallelizable operations in sliding windows. Our experiments 

showed that using GPSME directives provides a significant 

improvement in usability and productivity when compared with 

other CPU-to-GPU translators. 

The final improvement of GPSME directives is that it extends 

the directive parallel of MINT into two directives parallel and 

parallel region to distinguish the kernel region from the parallel 

region. The parallel region indicates the start of a parallel 

region containing the CPU source code for parallelization, 

whereas the parallel marks a loop for generating a GPU kernel 

function. This extension is highly similar to the directives 

parallel and kernels in the OpenACC standard, but is less 

complicated and more easy to use by non-expert GPU users. 

With these two directives, the GPSME system can support more 

complicated algorithmic structures than MINT. 

V. KEY ENHANCEMENTS 

The GPSME system has some functional extensions to MINT 

[19], including C++ and multi-file support, preliminary 

OpenCL output, and a user-friendly interface. Besides, some 

key enhancements on improving its acceleration capability and 

applicability were also implemented.  

A. Supporting Triangular Loops 

In earlier work [35], GPSME system with original MINT kernel 

was applied to the PolyBench [23] benchmarking suite in order 

to assess the resulting performance increase. During this 

process, the lack of support for triangular loops was identified 

as an inhibiting factor of the auto-parallelization process. MINT 

kernel was still able to process the outermost loop but this 

yielded significantly lower performance that that which was 

theoretically obtainable.  

An example of such a problematic triangular loop is shown in 

Table.4, and the iteration space is depicted visually in Figure.4. 

Note how the initial value of  j2 in the inner loop is dependent 

on the current value of j1 in the outer loop. Mint was still able 

to process the input code but generated a non-compilable output 

which attempted to make use of variables prior to their 

declaration. 

GPSME have therefore implemented triangular loop support as 

an extension to the MINT. We define a rectangular iteration 

space over the full range of values which j1 and j2 can assume, 

and then overlay a grid of CUDA thread blocks. The CUDA 

kernel checks whether the current iteration does indeed fall 

within the triangular part of the iteration space, and skips 

execution if this test fails.  

Table.4. Example of problematic triangular loop 

Algorithm                                          

1: #pragma mint copy(data,toDevice, M, N) 

2:  #pragma mint copy(mean,toDevice, M) 

3:  #pragma mint copy(symmat,toDevice, M, N) 

4:  #pragma mint parallel 

5: { 

6:           ... //Some code omitted for brevity 

7:      #pragma mint for nest(2) tile(16, 16) 

8:          for (j1 = 0; j1 < M; j1++) 

9:             { 

10:                for (j2 = j1; j2 < M; j2++) 

11:                    { 

12:                            ... //Some code omitted for brevity 

13:                     } 

14:            } 

15: } 

16:  #pragma mint copy(symmat,fromDevice, M, N) 

With this in mind, a thread block can be categorized as being in 

one of three states with respect to the number of threads which 

need to execute: 

 Full: All threads are part of the triangular iteration space 

and must be executed. No processing capability is wasted 

in this scenario. 

 Empty: None of the threads are part of the triangular 

iteration space. All threads will fail the membership test 

implemented in the kernel and return immediately. 

 Half-full: In this case the running time of the thread block 

is determined by the threads which do need to run. Threads 

which do not need to run must still wait upon those that do, 

and this represents some wasted processing capability. 

 
 

Fig. 4. Iteration space of the two-level covariance loop 



 

7 

 

This approach has yielded a performance increase greater than 

that which was obtained from OpenACC, and more than 30 

times greater than that which was obtained from the original 

Mint. The proportion of half-full blocks decreases as the 

problem size increases, which limits the impact of the GPU's 

relatively poor performance in the presence of divergent 

operations. 

GPSME system has evaluated the triangular loop support on a 

sample CPU code for the computation of colon centerlines to 

be used for the purpose of virtual endoscopy. When running on 

the CPU, the provided code took approximately five minutes to 

fully process a CT dataset with a resolution of 512x512x512 

voxels. This code was optimised prior to GPUification such that 

it ran in 48 seconds on a single core. The GPSME system was 

then able to achieve a three-fold speed increase bringing the 

execution time down to 17 seconds, which was comparable to 

the 15 seconds taken by the four-core CPU version. A manual 

implementation was able to further decrease the runtime to only 

1.2 seconds [36]. 

While the GPSME system was effective in parallelizing this 

application, the main problem was the large memory usage. Our 

manual implementation was able to be much smarter about the 

allocation and copying of memory which led to a significant 

speed increase. However, this manual implementation did take 

several days of work, whereas the auto-parallized version only 

took one hour to add the directives and perform some minor 

debugging. 

B. Single-dimensional vs Multi-dimensional Arrays 

Another improvement to the GPSME system is that it adds 

more optimization opportunities when applied to code that use 

multi-dimensional arrays. The optimizations are in terms of 

better register reuse, as well as better shared memory usage.  

This assumption was evaluated on some of the Polybench tests 

[26]. For the 2MM and SYR2K tests, a further 25% 

performance increase is obtained when using two-dimensional 

addressing instead of the default flattened array addressing. 

The changes from single-dimensional to multi-dimensional 

array accesses were done in a manual manner, as in Polybench 

all tests are written with flattened array accesses. However, with 

extra hints from the programmer the GPSME system should be 

able to treat the single dimensional arrays as multi-dimensional 

ones. An interesting observation is that when faced with the 

same two-dimensional arrays in the 2MM and SYR2K tests, the 

OpenACC compiler reports more than two times worse 

performance. The reasons for this are not currently clear and 

will be the subject of some future investigation. 

   C. Kernel generation scheme for SWO  

Considering the limitation of MINT kernel generation, another 

kernel generation scheme in GPSME system is designed into 

our early work (GSWO model [37]) to orchestrate the GPU 

kernel code generation. Figure.5 shows an example workflow 

of the kernel generation scheme for median filter. We have 

designed new “single” pragmas for kernel code generation, four 

of which are defined below.    

 Single Initialisation: generates CUDA kernel code that 

defines a 1D array with size I×J for storing the data in the 

sliding window.  

 Single Transfer generates CUDA kernel code to transfer the 

data of the sliding window into the 1D array defined in the 

Single Initialisation directive.  

 Single Remain generates CUDA kernel code that 

corresponds to the operations on the sliding window.  

 Single Assign generates CUDA kernel code that copies the 

processed data in the sliding window to the relevant GPU 

buffer obtained via the thread and block IDs.   

Figure. 5. Working flow of Kernel Generation Pragmas 

VI. PERFORMANCE EVALUATION 

In this section, the effectiveness of the GPSME system is 

evaluated on the general applications of four companies from 

the GPSME project [29]. The evaluation methodology used in 

this paper is based on the measurement of acceleration ratio 

between GPU and CPU performance without losing the original 

algorithm’s accuracy. The baseline is the performance of the 

original CPU code running on conventional hardware without 

using multi-threading. The evaluation platforms were: (a) Intel 

Core i7-2670QM CPU and NVIDIA GeForce GT 540M; (b) 

Intel Core i7-3770K CPU and NVIDIA GeForce GTX 690; (c) 

Intel Core i3-2.1GHz CPU and NVIDIA GeForce GT 520M; 

(d) Intel Core i7-3.4GHz CPU and NVIDIA GeForce GTX 

680M; All GPU implementations used NVIDIA GPU SDK 

version 4.1. OpenMP programs were compiled using Visual 

Studio 2008, and all computation used double precision. 
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A. Acceleration Performance 

Acceleration is the most important indicator reflecting the 

performance of the GPSME system. In order to evaluate this, 

we have compared the execution performance of the original 

CPU code, the GPSME system generated GPU code, and the 

manually-generated GPU code. The original CPU codes were 

provided by inexperienced GPU users from their general 

applications. They were revised by the users in order to be 

processed by the GPSME system. The system generated the 

machine-generated GPU codes. To better represent the 

performance of the generated GPU code, we have also 

performed the CPU to GPU code conversion manually. The 

acceleration performance is shown in Table. 4.  

SCS: The application from SCS is centerline extraction for a 

given 3D model. The code from SCS is based on C++, and also 

calls VTK functions for centerline extraction. The performance 

gain from the use of the system is shown in Table.4. It appears 

that the GPSME system can accelerate the application from 

B3C up to 2-3 times on average, dependent on the GPU devices 

used. 

IME: The application from IME is to produce a camera 

fingerprint by applying de-noising methods to a set of images 

that are known to come from a given camera. The sample code 

from IME are based on C++, and aims at implementing a 3×3 

median filter for de-noising. The image resolution is 3648 × 

2736. The number of images is 39. The algorithm splits the 

images into a number Region of Interests (ROIs), which can be 

processed in parallel. Table 5 shows the performance gain from 

the use of the GPSME system. 

It shows that the accuracy of the IME application delivered by 

the GPU implementation and the CPU implementation is 

exactly the same, which means that the machine generated GPU 

implementation does not negatively impact the camera 

fingerprint application. Secondly, it appears that on average the 

GPSME system accelerates the performance with up to 3-4 

times. If only considering the acceleration of the kernel region, 

the speedup performance can achieve execution times of up to 

6 times shorter than the original CPU application. This proves 

that the GPU kernel implementation is certainly capable of 

speeding up the CPU code in the parallel regions.  

ROTA: The application from Rotasoft uses the highly 

viewpoint-invariant ASIFT algorithm for feature extraction in 

augmented reality applications. Rotasoft has successfully 

evaluated the ASIFT implementations on their own dataset. The 

matching accuracy of the GPU implementation is almost the 

same as the original CPU implementation. After using GPSME 

system, the performance of the application is greatly increased, 

as shown in Table. 6. It appears that GPSME system accelerates 

the whole application up to 6x times for a lower grade system, 

and up to 13.6x for a high performance system. 

AnSmart: The application from AnSmart is to use 

morphological filter to detect the eye’s region position in a 

video. While OpenCV provides some functions to detect the 

position of eye regions, the performance is limited by a variety 

of issues, such as the lighting, the head position, other noise, 

etc. Therefore, AnSmart develops some own morphological 

filter based algorithms to segment the eye regions from videos. 

The morphological filter relies on the repeated use of dilation 

and erosion operations on a binary image. However, the 

repeated use of dilation and erosion is a quite time-consuming 

task, particularly for high resolution image with large sizes of 

window kernels. The GPSME system is capable of successfully 

accelerating the performance of morphological filters. The 

results are as shown in Table.7. It appears that the GPSME 

system can effectively speed up the morphological filtering for 

the AnSmart eye detection algorithm with up to 3 times. The 

times of repeating the operations of dilation and erosion will 

impact the acceleration performance of GPSME system. If the 

times for the dilation and erosion operations are increased, the 

acceleration performance will be better. Another issue is that 

the window size of the running kernel could impact the 

acceleration performance. Due to the image resolution, a 9*9 

morphological kernel is used in this case. If the window size 

increases, the speedup ratio is enhanced significantly. 

Oppositely, for small window size kernel, the performance of 

GPSME system is close to that of the CPU implementation.   

 

 

Table 4. Acceleration performance of general applications from industry 

Companies  Applications Platform GPSME  

Speedup 

Manual  

Speedup 

Auto-GPU running 

time 

 

SCS : 

Centerline extraction 

Small 3D Model A 2.11 4.56 78 ms 

B 2.34 4.68 56 ms 

Big 3D model A 3.14 24.38 448 ms 

B 3.25 24.68 128ms 

 

 

IME : 

Centerline extraction 

Denosing filter kernel region 

for single image 

A 6.17 13.25 8.32 s 

B 4.23 7.23 3.91 s 

Whole program for single 

image 

A 4.29 10.56 19.7 s 

B 3.40 7.12 8.28 s 

Denosing filter kernel region 

for image sequence 

A 6.21 13.54 5m 25 s 
B 4.35 7.56 2m 34 s 

Whole program for image 

sequence 

A 4.31 11.23 11m 47 s 

B 3.78 7.34 4 m 48 s 

RotaSoft :  

Feature extraction in augmented reality  

ASFIT algorithm for feature 

extraction 

C 4.76 5.56 14.6 s 

D 8.09 13.6 3.2 s 

AnSmart :  

Eye recognition with morphological filtering 
People Eye 1 (1285 × 751) A 2.91 5.23 847 ms 

People Eye 2 (1279 × 721) A 3.72 6.65 780 ms 

People Eye 3 (640 × 480) A 2.68 6.12 458 ms 
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To sum up, the acceleration ability of the GPSME system is 

outstanding. With necessary code revisions on original CPU 

applications, GPSME system successfully semi-automatically 

converts C/C++ code into either CUDA or OpenCL code. On 

average their applications can be sped up to 3-4x times, even up 

to over 10 times for a high-grade GPU system. Considering that 

the targeted applications are all real-world programs, the overall 

acceleration is very good.  

B. Applicability  

Applicability is another important factor for the GPSME system. 

We expect the system to be applicable to a wide range of 

industrial applications. To this end, we have evaluated the 

GPSME system in a variety of application scenarios.  

Document Segmentation: Large-scale document digitalisation 

is a popular topic for many libraries and museums in recent 

years. It involves a significant amount of document layout 

analysis, region segmentation and text line segmentation. For 

large scale document digitalisation, this is a time-consuming 

task due to the amount of newspapers, magazines and other 

documents required to be scanned at high-resolution on a daily 

basis. We have used dilation and erosion algorithms to process 

some sample newspaper documents images from IMPACT, 

which is the most successful large-scale document digitalisation 

project in the last 10 years. The processed newspaper document 

images are set to be evaluated by a region segmentation method. 

The image resolution is 3595 × 5194. The GPSME system is 

capable of processing C++ code, and the results are shown in 

Table 5. 

Table 5. Document Analysis code evaluation by GPSME 

The evaluation results in Table 5 show that for dilation or 

erosion operators with size over 5 × 5, the GPSME system can 

speed up the application performance up to 1-3 times. For 

dilation or erosion operator on less than 5 × 5 sub-windows, the 

GPU performance is even slower than the CPU performance. 

This phenomenon implies that if the dilation or erosion operator 

is less than 5 × 5 sub-windows, the benefit of GPU acceleration 

is cancelled out by the introduced overheads (e.g. data 

transmission between CPU and GPU) and by other commitment 

introduced on the CPU side, e.g. the extra CPU code employed 

for the purpose of processing the pragmas, etc. 

Sliding Window Image FIlter: Sliding Window Operation is 

a very popular technique in image processing. Typically, 

Sliding Window Operation repeatedly applies an image filter to 

a predefined small size sub-window that is shifted across a 

target image. This operation involves high computing 

complexity if the image filter contains many loops or iterations 

with high floating-point arithmetic intensity. This particular 

structure fits very well with the GPU date parallel programming 

model. The IME users have implemented several statistic 

measurements for image filter algorithms. Ten typical SWO 

image operators were selected as benchmarks. A high 

resolution image by using different size of sliding windows. 

The size of the evaluated sliding window is respectively given 

as 3×3, 5×5, 7×7, 9×9. The resolution of the evaluated image is 

3325×4765. The baseline is the performance of the original 

CPU code running on conventional hardware without using 

multi-threads. It compares the speedup ratio of the GPSME-

generated CUDA, MINT-generated CUDA and OpenMP over 

this baseline. For the simplicity, here we only demonstrate the 

speedup ratio of the above ten benchmarks with sliding window 

5×5. The results are shown in Figure 7.  

 
Figure. 6. Performance evaluations of the SWO image filters 

Blur moment invariants: Blur moment invariants are widely 

used in digital image processing. They are functional invariant 

with respect to blur. These blur invariants are employed by 

IME to identify near-duplicated regions in a digital image. This 

is carried out in a few main steps: 1. Tiling the image with 

overlapping blocks, 2. Moment blur invariants representation 

of the overlapped blocks, 3. Principal component 

transformation, 4. K-d tree representation, 5. Blocks and 

neighbours analyses (matching), 6. Near-duplication map 

creation. The image is tiled by overlapping blocks of R × R 

pixels. Blocks slide by one pixel along the image from the 

upper left corner right and down to the lower right corner. The 

total number of overlapped blocks for an image of M × N pixels 

is (M – R + 1) × (N – R + 1). For instance, an image with the 

size of 2000 × 2000 with blocks of size 16 × 16 will produce 

3.940.225 overlapped blocks. The moment blur invariants 

representation for each block is computed separately making 

the run-time of the method too expensive. Thus, this is the part 

that we can accelerate using the GPSME system. The 

experimental results are shown in Table 6. 

Table 6. Blur moment invariant evaluation by GPSME 

 Photos 

Size 

CPU CPU (no 

OpenCV) 

GPU 

Manual 
GPU by 

GPSME 

Speedup 

Ratio 
1000 × 

1000 
70.2s 69.7s 22.56s 23.44s 2.99 

2000 × 

2000 
287.1s 285.5s 90.6s 96.16s 2.98 

3000 × 

3000 
652.1s 647.4s 207.5s 218.0s 2.987 

PRNU estimation in video signals: PRNU stands for photo 

response nonuniformity (PRNU) and it is the key information 

estimated from the video signals enabling us to provide image 

System A (seconds) System B (seconds)  

CPU GPU Times CPU GPU Times Details 

0.26 1.0 0.26 1.3 1.6 0.81 3 × 3 dilation 

1.19 1.2 0.92 4.3 1.9 2.22 5 × 5 dilation 

3.69 1.2 2.92 18.2 2.3 7.87 9 × 9 dilation 

0.24 1.03 0.24 1.5 2.3 0.68 3 × 3 erosion 

1.10 1.0 1.07 5.7 2.1 2.73 5 × 5 erosion 

3.35 1.1 2.87 16.8 2.5 6.62 9 × 9 erosion 
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and video ballistics services. Having a video signal consisting 

of thousands of frames, PRNU is estimated separately for each 

frame, this being very computationally expensive. An essential 

step in estimating PRNU is de-noising the image in every JPEG 

block (compressed block) separately. Moreover, in every block 

we need to compute the residual of the image and its de-noised 

version. This should be done in thousands of frames for an HD 

video. For example, a 1280×720 video of 10 minute length 

having 30 frames per second generates 4.320.000 blocks that 

should be analysed separately. Thus, the need for GPU 

acceleration is obvious. The experimental results are shown in 

Table 7. From Table 7, it appears that the revised CPU 

application by removing the use of the OpenCV library brings 

a significant improvement over the original CPU code (three 

times faster). The machine-generated GPU code can speed up 

the original CPU application about 6-8x. The GPSME system 

is therefore well suited for dealing with this application. 

Table 7. PRNU estimation in video signals evaluation 

 Photos 

Size 

CPU CPU (no 

OpenCV) 

GPU 

Manual 
GPU by 

GPSME 

Speedup 

Ratio 
1000 × 

1000 
0.344s 0.110s 0.143s 0.082s 4.19 

2000 × 

2000 
1.348s 0.434s 0.257s 0.213s 6.32 

3000 × 

3000 
2.988s 0.967s 0.495s 0.451s 6.625 

4000 × 

4000 
5.252s 1.691s 0.821s 0.729s 7.204 

5000 × 

5000 
8.21s 2.624s 1.192s 1.104s 7.436 

6000 × 

6000 
31.43s 9.177s 3.892s 3.760s 8.36 

Support vector machine (SVM): In order to further evaluate 

the applicability of the GPSME system, we have chosen to test 

it on a different class of application, this time from the field of 

machine learning. We have decided on an application for 

handwritten digit recognition, and we chose the support vector 

machine (SVM) as the learning algorithm. Although the 

accuracy of the SVM is good for a multitude of classification 

tasks, its execution time tends to be very high, especially for 

large datasets comprised of large feature sets. We have applied 

the GPSME system in two key stages of the SVM execution: 

the generation of the kernel matrices and the actual SVM 

training. The datasets used was the standard MNIST and the 

Indian Bangla digit dataset. Both datasets are comprised of 

around 10000 training examples, each example being described 

by a feature space with 784 dimensions. The experimental 

results clearly outline the effectiveness of the system, being 

highly close in terms of performance to the highly optimized 

CUBLAS-based GPU-LibSVM implementation, and faster 

than the OpenMP and OpenACC implementations. By having 

a fast GPSME-based implementation we can run several 

simulations for parameter tuning, pushing further also the 

accuracy results. The results are shown in Table.8. 

Table 8. SVM evaluation by GPSME 

SVM 

implementation 
Accuracy 

[%] 

Standard 

deviation[%] 
Time 

[s] 

Dataset/ 

Feature 

OpenMP 97.34 0.45 117.1  

Bangla/ 

Pixel 

features 

LibSVM 96.70 n/a 60.5 
GPU-LibSVM 96.70 n/a 10.5 
PGI 97.34 0.45 36.3 
GPSME 97.34 0.45 17.4 

OpenMP 97.65 0.18 136.1  

MNIST/ 

Pixel 

features 

LibSVM 97.17 n/a 35.5 

GPU-LibSVM 97.17 n/a 7.8 

PGI 97.65 0.18 43.8 

GPSME 97.65 0.18 17.4 

C. Usability and Adaptability  

The usability of GPSME system mainly lies in the friendliness 

of GPSME web-interface. The general users have used the 

GPSME web-interface to upload, convert their C/C++ source 

code, and download the machine generated CUDA or OpenCL 

code. The evaluation procedure involves the test of the server 

functions, user-friendliness, efficiency and accuracy. Most of 

the essential functions stated in the user requirements have been 

achieved by providing the server service. This includes the 

transfer of source codes for analysis, converting CPU source 

code for GPU processing, running performance diagnostics 

with the system, validation of converted source codes and 

creating reports/logs. In addition, the sample files can be 

accessed in the web-interface of the GPSME system after user 

logs in; a reminder message for the private key automatically 

occurs when users log in for their first time; users can add 

pragma by either keying in or using a dialogue box. The 

efficiency of the GPSME system is good. The processing time 

of running the system for each operation is less than 5 seconds, 

which is acceptable by all non-expert GPU users from industry. 

The adaptability of the GPSME system indicates how easily and 

efficiently is for novices to learn how to use the GPSME system. 

GPU programming requires a steep learning curve for novices. 

The GPSME system features a great potential in bringing a 

cost-effective solution for accessing GPU power. The 

evaluation of the adaptability involves four parts, including the 

understanding of loop patterns, algorithmic skeletons, pragmas 

and warning messages. In summary, the adaptability of the 

GPSME system is good. While the understanding of the kernel 

generation pragmas is still hard to new users, the loop pattern 

and algorithm skeleton appear to be easy to understand by users. 

Also, the use of warning messages is well-received by users.  

We also designed a questionnaire to collect feedbacks from 

non-expert GPU users after evaluating the GPSME system. The 

results are shown in Table. 9 

Table 9. Learning and using GPSME system by inexperienced 

GPU users 

  IME B3C AnSmart Rotasoft 

Understand loop 

pattern 
Easy easy easy easy 

Understand 

Basic pragma  
Easy easy easy easy 

Understand 

advance pragma  
moderate moderate moderate moderate 

Web-interface 

user-friendly  
Yes Yes Yes Yes 

File-editor easy-to-

use 
Yes Yes Yes Yes 

Running 

sufficiently fast  
Yes Yes Yes Yes 

Error and warning 

reporting 
Satisfied Satisfied Satisfied Satisfied 

Code protection Satisfied Satisfied Satisfied Satisfied 
Easy to learn Yes Yes Yes Yes 
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Table 10. Comparision of properties of other CPU-to-GPU tools

D. Competitiveness 

In order to know how the GPSME system behaves compared to 

other CPU-to-GPU translators, we attempt to use MINT, Bones, 

Par4All, OpenACC and OpenMP to evaluate some sample  

codes. We identify a number of typical directive based source 

translators and compare their performance in Table 10. 

OpenACC and PGI are both commercial GPU programming 

tools with stable applicability but not outstanding acceleration 

performance in practical applications. CUDA-lite introduces 

some directives to improve memory hierarchy of CUDA, but it 

cannot directly support C++. 

hiCuda can optimize CUDA code by dealing with global 

memory and transformations to leverage the complex memory 

hierarchy. But it requires users to have some GPU 

programming experience. Compared to hiCuda, MINT is an 

easy-use CPU-to-GPU source translator containing only five 

types of pragmas. It is designed for accelerating stencil 

computations on the NVIDIA GPU. This translator accepts the 

input of C source with some intuitive MINT directives, and then 

generates CUDA C with a speedup performance of up to 10x. 

    The following issues have been observed regarding these 

existing CPU-to-GPU translators. 

• Applications written in C++ cannot be processed by most of 

the above tools. Bones and Par4All do not accept the C++ 

language as an input source, so they cannot process the given 

applications. Meanwhile, Bones is an algorithm skeleton based 

tool with a limited applicability. 

• Secondly, while MINT and OpenMP can be extended to 

support C++ language, it is indispensable to rewrite the original 

CPU code as an acceptable input for each tool. The actions of 

removing the use of external library and breaking up the 

variable dependencies in the parallelized regions are required.  

E. Other issues  

The security requirement aims to protect the source code of the 

general users. The current GPSME web-interface provides a 

user registration system to access the system. It provides the 

registered users with private-keys to view their source code. In 

general the security scheme can satisfy the user requirement to 

protect their code. One issue that needs some further attention 

is that the user password and private key are currently stored 

into the cookie of the browsers unless users delete the cookies. 

The users can also delete their uploaded files. If they do not 

delete their files, these files are encrypted to store on server for 

30 days. After 30 days, the files will be deleted so users have to 

upload the files again if they need. 

In the GPSME system, we use our existing GSWO model [41] 

to determine the size of block and thread. The selection of block 

and thread size here is based on the pragmas: nest, tile and 

chunksize. They are used for indicating the depth of for-loop 

parallelization within a loop nest, specifying how the iteration 

space of a loop nest is to be subdivided into tiles, and 

aggregating logical threads into a single CUDA thread, 

respectively. The size of a CUDA thread block in the GPSME 

project is the same as in MINT: threads (tx/cx, ty/cy,tz/cz). But 

the impact of selected block and thread size on acceleration in 

GSWO model is not as significant as that in MINT. The kernel 

generator in MINT makes all of the parameters in the function 

argument become kernel call parameters and makes all memory 

references through device memory.  

There are a few minor limitations on memory use in GPSME 

project. In the GSWO model, the memory management 

pragmas are not simple for a non-expert to understand and use 

correctly, though they can be successful with a little care. 

Finally, no optimizations of the CUDA kernels in the GSWO 

model are considered in this GPSME. Hence, traditional 

optimization methods that use shared memory or improve 

memory bandwidth cannot be used directly. We will investigate 

using shared memory to improve kernel acceleration in future 

work. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we introduced a web-service based CPU-to-GPU 

source translation system, the GPSME system for general 

applications. This system enables inexperienced GPU users to 

take advantage of current GPU capability without having the 

need for a deep understanding of GPUs. The architecture of this 

system is inspired by an advanced programming model, MINT, 

but with some practical extensions and improvements. The 

functionality of GPSME is more generic, with better flexibility 

and applicability for improving the productivity of practical 

applications than conventional automatic CPU-to-GPU 

programming models with purely research purpose. The 

experimental results prove that this tool has an improved 

efficiency and generality in a variety of real world applications. 

We show that it enables non-expert GPU users to flexibly and 

effectively use automatic CPU-to-GPU code translation. This 

allows them to gain great speed performance and help the 

advance of each application domain by allowing for advanced 

computing models with high complexity. However, the 

limitation of this GPSME system is that its kernel generation 

directives are only benefit to the SWO or stencil computing 

based applications. The future work will consider introducing 

new directives to solve this problem. Meanwhile, it is expected 

to be compatible with the existing research tools to optimize the 

GPU performance of this tool.  

 hiCUDA PGI MINT CUDA-lite GPSME 
Language support C-to-CUDA C/Fortan-to-CUDA C-to-CUDA CUDA-to-CUDA C/C++-to-CUDA/OpenCL 

Easy-use of  

directives 

Complex Very complex  Easy Easy Easy 

Applicability  Good  Outstanding Limited Good Outstanding 

Speedup 

performance 

Good  Good Outstanding  Good Good 

Optimisation 

option 

Use of shared 
memory  

No particular  
one 

Shared memory and 
loop aggregation 

Improved memory 
hierarchy 

Improved memory hierarachy (use 
CUDA Texture) 
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