33 research outputs found

    Analysis and application of improved feedthrough logic

    Get PDF
    Continuous technology scaling and increased frequency of operation of VLSI circuits leads to increase in power density which raises thermal management problem. Therefore design of low power VLSI circuit technique is a challenging task without sacrificing its performance. This thesis presents the design of a low power dynamic circuit using a new CMOS domino logic family called feedthrough (FTL) logic. Dynamic logic circuits are more significant because of its faster speed and lesser transistor requirement as compared to static CMOS logic circuits. The need for faster circuits compels designers to use FTL as compared static and domino CMOS logic and the requirement of output inverter for cascading of various logic blocks in domino logic are eliminated in the proposed design. The proposed circuit for low power (LP-FTL) improves dynamic power consumption as compared to the existing FTL and to further improve its speed we propose another circuit (HS-FTL). This logic family improves speed at the cost of dynamic power consumption and area. Proposed modified FTL circuit families provide better PDP as compared to the existing FTL. Simulation results of both the proposed circuit using 0.18 µm, 1.8 V CMOS process technology indicate that the LP-FTL structure reduces the dynamic power approximately by 42% and the HS-FTL structure achieves a speed up- 1.4 for 10-stage of inverters and 8-bit ripple carry adder in comparison to existing FTL logic. Furthermore, we present various circuit design techniques to improve noise tolerance of the proposed FTL logic families. Noise in deep submicron technology limits the reliability and performance of ICs. The ANTE (average noise threshold energy) metric is used for the analysis of noise tolerance of proposed FTL. A 2-input NAND and NOR gate is designed by the proposed technique. Simulation results for a 2-input NAND gate at 0.18-µm, 1.8 V CMOS process technology show that the proposed noise tolerant circuit achieves 1.79X ANTE improvement along with the reduction in leakage power. Continuous scaling of technology towards the nanometer range significantly increases leakage current level and the effect of noise. This research can be further extended for performance optimization in terms of power, speed, area and noise immunity

    Ultralow-power GaAs MESFET MSI circuits using two-phase dynamic FET logic

    Get PDF

    Evaluation of RTD-CMOS logic gates

    Get PDF
    Trabajo presentado al 13th DSD celebrado en Lille del 1 al 3 de septiembre de 2010.The incorporation of Resonant Tunnel Diodes (RTDs) into III/V transistor technologies has shown an improved circuit performance: higher circuit speed, reduced component count, and/or lowered power consumption. Currently, the incorporation of these devices into CMOS technologies (RTD-CMOS) is an area of active research. Although some works have focused the evaluation of the advantages of this incorporation, additional work in this direction is required. This paper compares RTD-CMOS and pure CMOS realizations of a set of logic gates which can be operated in a gate-level nanopipelined fashion, thus allows estimating logic networks operating frequency. Lower power-delay products are obtained for RTD/CMOS implementations.This work has been funded by the Spanish Government under project NDR, TEC2007-67245/MIC, and the Junta de Andalucía through the Proyecto de Excelencia TIC-2961.Peer Reviewe

    Characterisation & optimisation of computational functional blocks for ATM switches GaAs MESFET technology

    Get PDF
    Thesis (MESc) -- University of Adelaide, Department of Electrical and Electronic Engineering, 199

    GaAs Implementation of FIR Filter

    Get PDF
    This thesis discusses the findings of the final year project involving Gallium Arsenide implementation of a triangular FIR filter to perform discrete wavelet transforms. The overall characteristics of Gallium Arsenide technology- its construction, behaviour and electrical charactersitics as they apply to VLSI technology - were investigated in this project. In depth understanding of its architecture is required to be able to understand the various design techniques employed. A comparison of Silicon and GaAs performance and other characteristics has also been made to fully justify the choice of this material for system implementation. A lot of research and active interest has gone into the field of image and video compression. Wavelet-based image transformation is one of the very efficient compression techniques used. An analysis of discrete wavelet transformations and the required triangular FIR filter was done to be able to produce a transform algorithm and the related filter architecture. Finally, the filter architecture was implemented as a VLSI design and layout. A variety of functional blocks required for the architecture were designed, tested and analysed. All these blocks were integrated to produce a model of a complete filter cell. The filter implementation was designed to be self-timed - without a system clock. Self-timed systems have considerable advantages over clocked architectures. Various design styles and handshaking mechanisms involved in designing a self-timed system were analysed and designed. There are many avenues still to explore. One of them is the VHDL analysis of filter architecture. Further development on this project would involve integration of higher-level logic and formation of a complete filter array

    High Performance Logic for Arithmetic Circuits

    Get PDF
    The objective of this project is to design high performance arithmetic circuits which are faster and have lower power consumption using a new dynamic logic family of CMOS and to analyze its performance for sequential circuits and effects upon cascading. This new dynamic logic family is known as Feedthrough logic. It has two basic structures: high speed (HS0) and low power (LP0). It allows for commencement of evaluation in a computational block before its evaluation phase begins, and quickly performs a final evaluation as soon as the inputs are valid. This dynamic logic family is best suited to arithmetic circuits because the critical path is made of a long chain of cascaded inverting gates. As the major advantage of this logic which is higher speed is observed upon cascading, it’s most suitable for arithmetic circuits. We compare a set of ripple carry adders 4 bit and 16 bit in domino logic with the two basic structures derived. Experimental results have shown that the lower power structure provides for smaller power delay product when compared with domino logic. Certain modifications in the logic style are proposed to optimize the performance when applied to a single ended or double ended flip flops. The effects upon cascading are analyzed by using a 4-bit register. As delay is not propagated in a register circuit or any other synchronous sequential circuit (the circuit being edge triggered), the major advantage of this logic which is observed upon cascading cannot possibly be observed for sequential circuits. So even though the circuit can be optimised by feedthrough logic, this logic is not preferred for sequential circuits. So finally we have carried out the tapeout of 16 bit adder in LP0 using 180 UMC CMOS process flow

    Practical advances in asynchronous design

    Get PDF
    Journal ArticleRecent practical advances in asynchronous circuit and system design have resulted in renewed interest by circuit designers. Asynchronous systems are being viewed as in increasingly viable alternative to globally synchronous system organization. This tutorial will present the current state of the art in asynchronous circuit and system design in three different areas. The first section details asynchronous control systems. The second describes a variety of approaches to asynchronous datapaths. The third section is on asynchronous and self-timed circuits applied to the design of general purpose processors

    Chapter One – An Overview of Architecture-Level Power- and Energy-Efficient Design Techniques

    Get PDF
    Power dissipation and energy consumption became the primary design constraint for almost all computer systems in the last 15 years. Both computer architects and circuit designers intent to reduce power and energy (without a performance degradation) at all design levels, as it is currently the main obstacle to continue with further scaling according to Moore's law. The aim of this survey is to provide a comprehensive overview of power- and energy-efficient “state-of-the-art” techniques. We classify techniques by component where they apply to, which is the most natural way from a designer point of view. We further divide the techniques by the component of power/energy they optimize (static or dynamic), covering in that way complete low-power design flow at the architectural level. At the end, we conclude that only a holistic approach that assumes optimizations at all design levels can lead to significant savings.Peer ReviewedPostprint (published version

    Design and implementation of high-radix arithmetic systems based on the SDNR/RNS data representation

    Get PDF
    This project involved the design and implementation of high-radix arithmetic systems based on the hybrid SDNRIRNS data representation. Some real-time applications require a real-time arithmetic system. An SDNR/RNS arithmetic system provides parallel, real-time processing. The advantages and disadvantages of high-radix SDNR/RNS arithmetic, and the feasibility of implementing SDNR/RNS arithmetic systems in CMOS VLSI technology, were investigated in this project. A common methodological model, which included the stages of analysis, design, implementation, testing, and simulation, was followed. The combination of the SDNR and RNS transforms potential complex logic networks into simpler logic blocks. It was found that when constructing a SDNRIRNS adder, factors such as the radix, digit set, and moduli must be taken into account. There are many avenues still to explore. For example, implementing other arithmetic systems in the same CMOS VLSI technology used in this project and comparing them to equivalent SDNR/RNS systems would provide a set of benchmarks. These benchmarks would be useful in addressing issues relating to relative performance

    Gallium arsenide design methodology and testing of a systolic floating point processing element

    Get PDF
    Thesis (M.E.Sc.) -- University of Adelaide, Dept. of Electrical and Electronic Engineering, 199
    corecore