6,418 research outputs found

    A simple circular cell method for multilevel finite element analysis

    Get PDF
    A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed

    A Simple Circular Cell Method for Multilevel Finite Element Analysis

    Get PDF
    A simple multiscale analysis framework for heterogeneous solids based on a computational homogenization technique is presented. The macroscopic strain is linked kinematically to the boundary displacement of a circular or spherical representative volume which contains the microscopic information of the material. The macroscopic stress is obtained from the energy principle between the macroscopic scale and the microscopic scale. This new method is applied to several standard examples to show its accuracy and consistency of the method proposed

    Suitably graded THB-spline refinement and coarsening: Towards an adaptive isogeometric analysis of additive manufacturing processes

    Get PDF
    In the present work we introduce a complete set of algorithms to efficiently perform adaptive refinement and coarsening by exploiting truncated hierarchical B-splines (THB-splines) defined on suitably graded isogeometric meshes, that are called admissible mesh configurations. We apply the proposed algorithms to two-dimensional linear heat transfer problems with localized moving heat source, as simplified models for additive manufacturing applications. We first verify the accuracy of the admissible adaptive scheme with respect to an overkilled solution, for then comparing our results with similar schemes which consider different refinement and coarsening algorithms, with or without taking into account grading parameters. This study shows that the THB-spline admissible solution delivers an optimal discretization for what concerns not only the accuracy of the approximation, but also the (reduced) number of degrees of freedom per time step. In the last example we investigate the capability of the algorithms to approximate the thermal history of the problem for a more complicated source path. The comparison with uniform and non-admissible hierarchical meshes demonstrates that also in this case our adaptive scheme returns the desired accuracy while strongly improving the computational efficiency.Comment: 20 pages, 12 figure

    Adaptive multiresolution computations applied to detonations

    Full text link
    A space-time adaptive method is presented for the reactive Euler equations describing chemically reacting gas flow where a two species model is used for the chemistry. The governing equations are discretized with a finite volume method and dynamic space adaptivity is introduced using multiresolution analysis. A time splitting method of Strang is applied to be able to consider stiff problems while keeping the method explicit. For time adaptivity an improved Runge--Kutta--Fehlberg scheme is used. Applications deal with detonation problems in one and two space dimensions. A comparison of the adaptive scheme with reference computations on a regular grid allow to assess the accuracy and the computational efficiency, in terms of CPU time and memory requirements.Comment: Zeitschrift f\"ur Physicalische Chemie, accepte

    Embedded multilevel Monte Carlo for uncertainty quantification in random domains

    Get PDF
    The multilevel Monte Carlo (MLMC) method has proven to be an effective variance-reduction statistical method for Uncertainty quantification in PDE models. It combines approximations at different levels of accuracy using a hierarchy of meshes in a similar way as multigrid. The generation of body-fitted mesh hierarchies is only possible for simple geometries. On top of that, MLMC for random domains involves the generation of a mesh for every sample. Instead, here we consider the use of embedded methods which make use of simple background meshes of an artificial domain (a bounding-box) for which it is easy to define a mesh hierarchy, thus eliminating the need of body-fitted unstructured meshes, but can produce ill-conditioned discrete problems. To avoid this complication, we consider the recent aggregated finite element method (AgFEM). In particular, we design an embedded MLMC framework for (geometrically and topologically) random domains implicitly defined through a random level-set function, which makes use of a set of hierarchical background meshes and the AgFEM. Performance predictions from existing theory are verified statistically in three numerical experiments, namely the solution of the Poisson equation on a circular domain of random radius, the solution of the Poisson equation on a topologically identical but more complex domain, and the solution of a heat-transfer problem in a domain that has geometric and topological uncertainties. Finally, the use of AgFE is statistically demonstrated to be crucial for complex and uncertain geometries in terms of robustness and computational cost. Date: November 28, 2019

    Embedded multilevel monte carlo for uncertainty quantification in random domains

    Get PDF
    The multilevel Monte Carlo (MLMC) method has proven to be an effective variance-reduction statistical method for uncertainty quantification (UQ) in partial differential equation (PDE) models. It combines approximations at different levels of accuracy using a hierarchy of meshes whose generation is only possible for simple geometries. On top of that, MLMC and Monte Carlo (MC) for random domains involve the generation of a mesh for every sample. Here we consider the use of embedded methods which make use of simple background meshes of an artificial domain (a bounding-box) for which it is easy to define a mesh hierarchy. We use the recent aggregated finite element method (AgFEM) method, which permits to avoid ill-conditioning due to small cuts, to design an embedded MLMC (EMLMC) framework for (geometrically and topologically) random domains implicitly defined through a random level-set function. Predictions from existing theory are verified in numerical experiments and the use of AgFEM is statistically demonstrated to be crucial for complex and uncertain geometries in terms of robustness and computational cost.Peer ReviewedPostprint (author's final draft
    • …
    corecore